1
|
Beck A, Schönau A, MacDuffie K, Dasgupta I, Flynn G, Song D, Goering S, Klein E. "In the spectrum of people who are healthy": Views of individuals at risk of dementia on using neurotechnology for cognitive enhancement. NEUROETHICS-NETH 2024; 17:24. [PMID: 39790464 PMCID: PMC11709137 DOI: 10.1007/s12152-024-09557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/14/2024] [Indexed: 01/12/2025]
Abstract
Neurotechnological cognitive enhancement has become an area of intense scientific, policy, and ethical interest. However, while work has increasingly focused on ethical views of the general public, less studied are those with personal connections to cognitive impairment. Using a mixed-methods design, we surveyed attitudes regarding implantable neurotechnological cognitive enhancement in individuals who self-identified as having increased likelihood of developing dementia (n=25; 'Our Study'), compared to a nationally representative sample of Americans (n=4726; 'Pew Study'). Participants in Our Study were additionally shown four videos showcasing hypothetical neurotechnological devices designed to enhance different cognitive abilities and were interviewed for more in-depth responses. Both groups expressed comparable degrees of worry and acknowledgement of potential ethical ramifications (all ps>0.05). Compared to the Pew Study, participants in Our Study expressed slightly higher desire (p<0.01), as well as higher acknowledgment for potential impacts on productivity (p<0.05). Ultimately, participants in Our Study were more likely to deem the device morally acceptable (56%; compared to Pew Study, 25.2%; p=0.0001). Interviews conducted in Our Study allowed participants to supply additional nuance and reasoning to survey responses, such as giving examples for increased productivity, perceived downsides of memory enhancement, or concerns regarding potentially resulting inequality. This study builds upon and adds to the growing focus on potential ethical issues surrounding neurotechnological cognitive enhancement by centering stakeholder perspectives, highlighting the need for inclusive research and consideration of diverse perspectives and lived experiences to ensure inclusive dialogue that best informs ethical and policy discussions in this rapidly advancing field.
Collapse
Affiliation(s)
- Asad Beck
- Department of Biology, University of Washington, Life Sciences Building, Seattle, WA, 98195, USA
- Graduate Program in Neuroscience, University of Washington, Health Sciences Building, Seattle, WA, 98195, USA
- Department of Philosophy, Savery Hall, University of Washington, Seattle, WA, 98195, USA
| | - Andreas Schönau
- Department of Philosophy, Savery Hall, University of Washington, Seattle, WA, 98195, USA
| | - Kate MacDuffie
- Treuman Katz Center for Pediatric Bioethics, Seattle Children’s Research Institute, 1900 Ninth Ave. Seattle, WA, 98101, USA
- Department of Pediatrics, Division of Bioethics and Palliative Care, University of Washington School of Medicine, Seattle, WA, 98105, USA
| | - Ishan Dasgupta
- The Dana Foundation, 1270 Avenue of the Americas, 12th Floor, New York, NY, 10020, USA
| | - Garrett Flynn
- Department of Biomedical Engineering, Denney Research Center, University of Southern California, Los Angeles, CA, 90089-1111, USA
| | - Dong Song
- Department of Biomedical Engineering, Denney Research Center, University of Southern California, Los Angeles, CA, 90089-1111, USA
| | - Sara Goering
- Department of Philosophy, Savery Hall, University of Washington, Seattle, WA, 98195, USA
| | - Eran Klein
- Department of Philosophy, Savery Hall, University of Washington, Seattle, WA, 98195, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR, 97239-3098, USA
| |
Collapse
|
2
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
3
|
Sisubalan N, Shalini R, Ramya S, Sivamaruthi BS, Chaiyasut C. Recent advances in nanomaterials for neural applications: opportunities and challenges. Nanomedicine (Lond) 2023; 18:1979-1994. [PMID: 38078433 DOI: 10.2217/nnm-2023-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Nanomedicines are promising for delivering drugs to the central nervous system, though their precision is still being improved. Fortifying nanoparticles with vital molecules can interact with the blood-brain barrier, enabling access to brain tissue. This study summarizes recent advances in nanomedicine to treat neurological complications. The integration of nanotechnology into cell biology aids in the study of brain cells' interactions. Magnetic microhydrogels have exhibited superior neuron activation compared with superparamagnetic iron oxide nanoparticles and hold promise for neuropsychiatric disorders. Nanomaterials have shown notable results, such as tackling neurodegenerative diseases by hindering harmful protein buildup and regulating cellular processes. However, further studies of the safety and effectiveness of nanoparticles in managing neurological diseases and disorders are still required.
Collapse
Affiliation(s)
- Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ramadoss Shalini
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Sakthivel Ramya
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
4
|
Sabbagh B, Fraiman NE, Fish A, Yossifon G. Designing with Iontronic Logic Gates─From a Single Polyelectrolyte Diode to an Integrated Ionic Circuit. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23361-23370. [PMID: 37068481 DOI: 10.1021/acsami.3c00062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This article presents the implementation of on-chip iontronic circuits via small-scale integration of multiple ionic logic gates made of bipolar polyelectrolyte diodes. These ionic circuits are analogous to solid-state electronic circuits, with ions as the charge carriers instead of electrons/holes. We experimentally characterize the responses of a single fluidic diode made of a junction of oppositely charged polyelectrolytes (i.e., anion and cation exchange membranes), with a similar underlying mechanism as a solid-state p- and n-type junction. This served to carry out predesigned logical computations in various architectures by integrating multiple diode-based logic gates, where the electrical signal between the integrated gates was transmitted entirely through ions. The findings shed light on the limitations affecting the number of logic gates that can be integrated, the degradation of the electrical signal, their transient response, and the design rules that can improve the performance of iontronic circuits.
Collapse
Affiliation(s)
- Barak Sabbagh
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Noa Edri Fraiman
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Alex Fish
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Cortés-Llanos B, Rauti R, Ayuso-Sacido Á, Pérez L, Ballerini L. Impact of Magnetite Nanowires on In Vitro Hippocampal Neural Networks. Biomolecules 2023; 13:biom13050783. [PMID: 37238653 DOI: 10.3390/biom13050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Nanomaterials design, synthesis, and characterization are ever-expanding approaches toward developing biodevices or neural interfaces to treat neurological diseases. The ability of nanomaterials features to tune neuronal networks' morphology or functionality is still under study. In this work, we unveil how interfacing mammalian brain cultured neurons and iron oxide nanowires' (NWs) orientation affect neuronal and glial densities and network activity. Iron oxide NWs were synthesized by electrodeposition, fixing the diameter to 100 nm and the length to 1 µm. Scanning electron microscopy, Raman, and contact angle measurements were performed to characterize the NWs' morphology, chemical composition, and hydrophilicity. Hippocampal cultures were seeded on NWs devices, and after 14 days, the cell morphology was studied by immunocytochemistry and confocal microscopy. Live calcium imaging was performed to study neuronal activity. Using random nanowires (R-NWs), higher neuronal and glial cell densities were obtained compared with the control and vertical nanowires (V-NWs), while using V-NWs, more stellate glial cells were found. R-NWs produced a reduction in neuronal activity, while V-NWs increased the neuronal network activity, possibly due to a higher neuronal maturity and a lower number of GABAergic neurons, respectively. These results highlight the potential of NWs manipulations to design ad hoc regenerative interfaces.
Collapse
Affiliation(s)
- Belén Cortés-Llanos
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Rossana Rauti
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
- Deparment of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy
| | - Ángel Ayuso-Sacido
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Experimental Science and Faculty of Medicine, University of Francisco de Vitoria, 28223 Madrid, Spain
| | - Lucas Pérez
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
| | - Laura Ballerini
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
| |
Collapse
|
6
|
Kanaoujiya R, Saroj SK, Rajput VD, Alimuddin, Srivastava S, Minkina T, Igwegbe CA, Singh M, Kumar A. Emerging application of nanotechnology for mankind. EMERGENT MATERIALS 2023; 6:439-452. [PMID: 36743193 PMCID: PMC9888745 DOI: 10.1007/s42247-023-00461-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/11/2023] [Indexed: 05/11/2023]
Abstract
Nanotechnology has proven to be the greatest multidisciplinary field in the current years with potential applications in agriculture, pollution remediation, environmental sustainability, as well as most recently in pharmaceutical industries. As a result of its physical, chemical, and biological productivity, resistance, and matricular organization at a larger scale, the potential of nanocomposites revealed different sorts of assembling structures via testing. Biosensors are known some specifically promising inventions whereas carbon nanotube, magnetic nanoparticles (NPs), quantum dots, and gold NPs showed capability to repair damaged cells, molecular docking, drug-delivery, and nano-remediation of toxic elements. PEGylated(Poly ethyl glycol amyl gated) redox-responsive nanoscale COFs drug delivery from AgNPs and AuNPs are known to be sun blockers in sunscreen lotions. The emerging trends and yet more to be discovered to bridge the gaps forming in the field of nanotechnology, especially insights into environmental concerns and health issues most importantly the food web which is connected with the well beings of mankind to perform its tasks giving necessary results. The current review detailed emerging role of nanomaterials in human life. Supplementary Information The online version contains supplementary material available at 10.1007/s42247-023-00461-8.
Collapse
Affiliation(s)
- Rahul Kanaoujiya
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Shruti Kumari Saroj
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090 Russia
| | - Alimuddin
- Physical Sciences Section, School of Sciences, Maulana Azad National Urdu University, 500032, Hyderabad, Telangana India
| | - Shekhar Srivastava
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090 Russia
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamadi Azikiwe University, P. M. B., 5025 Awka, Nigeria
| | - Mukta Singh
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Aditya Kumar
- Department of Physics, School of Science, IFTM University Moradabad, 244102 Moradabad, India
| |
Collapse
|
7
|
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023; 22:1. [PMID: 36593487 PMCID: PMC9809121 DOI: 10.1186/s12938-022-01062-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Artificial, de-novo manufactured materials (with controlled nano-sized characteristics) have been progressively used by neuroscientists during the last several decades. The introduction of novel implantable bioelectronics interfaces that are better suited to their biological targets is one example of an innovation that has emerged as a result of advanced nanostructures and implantable bioelectronics interfaces, which has increased the potential of prostheses and neural interfaces. The unique physical-chemical properties of nanoparticles have also facilitated the development of novel imaging instruments for advanced laboratory systems, as well as intelligently manufactured scaffolds and microelectrodes and other technologies designed to increase our understanding of neural tissue processes. The incorporation of nanotechnology into physiology and cell biology enables the tailoring of molecular interactions. This involves unique interactions with neurons and glial cells in neuroscience. Technology solutions intended to effectively interact with neuronal cells, improved molecular-based diagnostic techniques, biomaterials and hybridized compounds utilized for neural regeneration, neuroprotection, and targeted delivery of medicines as well as small chemicals across the blood-brain barrier are all purposes of the present article.
Collapse
Affiliation(s)
- Leili Shabani
- grid.412571.40000 0000 8819 4698Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Azarnew
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- grid.412571.40000 0000 8819 4698Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Conklin B, Conley BM, Hou Y, Chen M, Lee KB. Advanced theragnostics for the central nervous system (CNS) and neurological disorders using functional inorganic nanomaterials. Adv Drug Deliv Rev 2023; 192:114636. [PMID: 36481291 PMCID: PMC11829738 DOI: 10.1016/j.addr.2022.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Various types of inorganic nanomaterials are capable of diagnostic biomarker detection and the therapeutic delivery of a disease or inflammatory modulating agent. Those multi-functional nanomaterials have been utilized to treat neurodegenerative diseases and central nervous system (CNS) injuries in an effective and personalized manner. Even though many nanomaterials can deliver a payload and detect a biomarker of interest, only a few studies have yet to fully utilize this combined strategy to its full potential. Combining a nanomaterial's ability to facilitate targeted delivery, promote cellular proliferation and differentiation, and carry a large amount of material with various sensing approaches makes it possible to diagnose a patient selectively and sensitively while offering preventative measures or early disease-modifying strategies. By tuning the properties of an inorganic nanomaterial, the dimensionality, hydrophilicity, size, charge, shape, surface chemistry, and many other chemical and physical parameters, different types of cells in the central nervous system can be monitored, modulated, or further studies to elucidate underlying disease mechanisms. Scientists and clinicians have better understood the underlying processes of pathologies for many neurologically related diseases and injuries by implementing multi-dimensional 0D, 1D, and 2D theragnostic nanomaterials. The incorporation of nanomaterials has allowed scientists to better understand how to detect and treat these conditions at an early stage. To this end, having the multi-modal ability to both sense and treat ailments of the central nervous system can lead to favorable outcomes for patients suffering from such injuries and diseases.
Collapse
Affiliation(s)
- Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Vordos N, Gkika DA, Pradakis N, Mitropoulos AC, Kyzas GZ. Therapeutic and Diagnostic Potential of Nanomaterials for Enhanced Biomedical Applications. ADVANCED AND INNOVATIVE APPROACHES OF ENVIRONMENTAL BIOTECHNOLOGY IN INDUSTRIAL WASTEWATER TREATMENT 2023:277-300. [DOI: 10.1007/978-981-99-2598-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Loseva EV, Loginova NA, Russu LI, Mezentseva MV. Behavior of Rats in Tests for Anxiety after a Short Intranasal Injection of Single-Walled Carbon Nanotubes in Two Small Doses. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Rani L, Srivastav AL, Kaushal J, Nguyen XC. Recent advances in nanomaterial developments for efficient removal of Hg(II) from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62851-62869. [PMID: 35831652 DOI: 10.1007/s11356-022-21869-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
"Water" contamination by mercury Hg(II) has become the biggest concern due to its severe toxicities on public health. There are different conventional techniques like ion exchange, reverse osmosis, and filtration that have been used for the elimination of Hg(II) from the aqueous solutions. Although, these techniques have some drawbacks during the remediation of Hg(II) present in water. Adsorption could be a better option for the elimination of Hg(II) from the aqueous solutions. "Conventional adsorbents" like zeolite, clay, and activated carbons are inefficient for this purpose. Recently, nanomaterials have attracted attention for the elimination of Hg(II) from the aqueous solutions due to high porosity, better surface properties, and high efficiency. In this review, a thorough discussion has been carried out on the synthesis and characterization of nanomaterials along with mechanisms involved in the elimination of Hg(II) from aqueous solutions.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
- Chitkara University School of Pharmacy, Chitkara University, Himachal-Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal-Pradesh, India.
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Xuan Cuong Nguyen
- Laboratory of energy and environmental science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| |
Collapse
|
12
|
Gopalan PD, de Castro A. Central Nervous System Neurophysiology. MANAGEMENT OF SUBARACHNOID HEMORRHAGE 2022:19-40. [DOI: 10.1007/978-3-030-81333-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Al Kury LT, Papandreou D, Hurmach VV, Dryn DO, Melnyk MI, Platonov MO, Prylutskyy YI, Ritter U, Scharff P, Zholos AV. Single-Walled Carbon Nanotubes Inhibit TRPC4-Mediated Muscarinic Cation Current in Mouse Ileal Myocytes. NANOMATERIALS 2021; 11:nano11123410. [PMID: 34947764 PMCID: PMC8703819 DOI: 10.3390/nano11123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) are characterized by a combination of rather unique physical and chemical properties, which makes them interesting biocompatible nanostructured materials for various applications, including in the biomedical field. SWCNTs are not inert carriers of drug molecules, as they may interact with various biological macromolecules, including ion channels. To investigate the mechanisms of the inhibitory effects of SWCNTs on the muscarinic receptor cation current (mICAT), induced by intracellular GTPγs (200 μM), in isolated mouse ileal myocytes, we have used the patch-clamp method in the whole-cell configuration. Here, we use molecular docking/molecular dynamics simulations and direct patch-clamp recordings of whole-cell currents to show that SWCNTs, purified and functionalized by carboxylation in water suspension containing single SWCNTs with a diameter of 0.5–1.5 nm, can inhibit mICAT, which is mainly carried by TRPC4 cation channels in ileal smooth muscle cells, and is the main regulator of cholinergic excitation–contraction coupling in the small intestinal tract. This inhibition was voltage-independent and associated with a shortening of the mean open time of the channel. These results suggest that SWCNTs cause a direct blockage of the TRPC4 channel and may represent a novel class of TRPC4 modulators.
Collapse
Affiliation(s)
- Lina T. Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates; (L.T.A.K.); (D.P.)
| | - Dimitrios Papandreou
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates; (L.T.A.K.); (D.P.)
| | - Vasyl V. Hurmach
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (V.V.H.); (D.O.D.); (M.I.M.); (Y.I.P.)
| | - Dariia O. Dryn
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (V.V.H.); (D.O.D.); (M.I.M.); (Y.I.P.)
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, 14 Anton Tsedik Str., 03057 Kyiv, Ukraine
| | - Mariia I. Melnyk
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (V.V.H.); (D.O.D.); (M.I.M.); (Y.I.P.)
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, 14 Anton Tsedik Str., 03057 Kyiv, Ukraine
| | - Maxim O. Platonov
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine;
| | - Yuriy I. Prylutskyy
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (V.V.H.); (D.O.D.); (M.I.M.); (Y.I.P.)
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 25 Weimarer Str., 98693 Ilmenau, Germany; (U.R.); (P.S.)
| | - Peter Scharff
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 25 Weimarer Str., 98693 Ilmenau, Germany; (U.R.); (P.S.)
| | - Alexander V. Zholos
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (V.V.H.); (D.O.D.); (M.I.M.); (Y.I.P.)
- Correspondence: ; Tel.: +380-44-4312-0403
| |
Collapse
|
14
|
Domínguez-Bajo A, Rosa JM, González-Mayorga A, Rodilla BL, Arché-Núñez A, Benayas E, Ocón P, Pérez L, Camarero J, Miranda R, González MT, Aguilar J, López-Dolado E, Serrano MC. Nanostructured gold electrodes promote neural maturation and network connectivity. Biomaterials 2021; 279:121186. [PMID: 34700221 DOI: 10.1016/j.biomaterials.2021.121186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
Progress in the clinical application of recording and stimulation devices for neural diseases is still limited, mainly because of suboptimal material engineering and unfavorable interactions with biological entities. Nanotechnology is providing upgraded designs of materials to better mimic the native extracellular environment and attain more intimate contacts with individual neurons, besides allowing for the miniaturization of the electrodes. However, little progress has been done to date on the understanding of the biological impact that such neural interfaces have on neural network maturation and functionality. In this work, we elucidate the effect of a gold (Au) highly ordered nanostructure on the morphological and functional interactions with neural cells and tissues. Alumina-templated Au nanostructured electrodes composed of parallel nanowires of 160 nm in diameter and 1.2 μm in length (Au-NWs), with 320 nm of pitch, are designed and characterized. Equivalent non-structured Au electrodes (Au-Flat) are used for comparison. By using diverse techniques in in vitro cell cultures including live calcium imaging, we found that Au-NWs interfaced with primary neural cortical cells for up to 14 days allow neural networks growth and increase spontaneous activity and ability of neuronal synchronization, thus indicating that nanostructured features favor neuronal network. The enhancement in the number of glial cells found is hypothesized to be behind these beneficial functional effects. The in vivo effect of the implantation of these nanostructured electrodes and its potential relevance for future clinical applicability has been explored in an experimental model of rat spinal cord injury. Subacute responses to implanted Au-NWs show no overt reactive or toxic biological reactions besides those triggered by the injury itself. These results highlight the translational potential of Au-NWs electrodes for in vivo applications as neural interfaces in contact with central nervous tissues including the injured spinal cord.
Collapse
Affiliation(s)
- Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Juliana M Rosa
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | | | - Beatriz L Rodilla
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, 28040, Madrid, Spain
| | - Ana Arché-Núñez
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain
| | - Esther Benayas
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Pilar Ocón
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Lucas Pérez
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, 28040, Madrid, Spain
| | - Julio Camarero
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Instituto "Nicolás Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid, Madrid, 28049, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Instituto "Nicolás Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid, Madrid, 28049, Spain
| | - M Teresa González
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain
| | - Juan Aguilar
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain; Research Unit of "Design and development of biomaterials for neural regeneration", Hospital Nacional de Parapléjicos, Joint Research Unit with CSIC, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Elisa López-Dolado
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain; Research Unit of "Design and development of biomaterials for neural regeneration", Hospital Nacional de Parapléjicos, Joint Research Unit with CSIC, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.
| |
Collapse
|
15
|
Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, Aisyah HA, Norrrahim MNF, Ilyas RA, Abdullah N, Zainudin ES, Sapuan SM, Khalina A. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2186. [PMID: 34578502 PMCID: PMC8472375 DOI: 10.3390/nano11092186] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/05/2023]
Abstract
Developments in the synthesis and scalable manufacturing of carbon nanomaterials like carbon nanotubes (CNTs) have been widely used in the polymer material industry over the last few decades, resulting in a series of fascinating multifunctional composites used in fields ranging from portable electronic devices, entertainment and sports to the military, aerospace, and automotive sectors. CNTs offer good thermal and electrical properties, as well as a low density and a high Young's modulus, making them suitable nanofillers for polymer composites. As mechanical reinforcements for structural applications CNTs are unique due to their nano-dimensions and size, as well as their incredible strength. Although a large number of studies have been conducted on these novel materials, there have only been a few reviews published on their mechanical performance in polymer composites. As a result, in this review we have covered some of the key application factors as well as the mechanical properties of CNTs-reinforced polymer composites. Finally, the potential uses of CNTs hybridised with polymer composites reinforced with natural fibres such as kenaf fibre, oil palm empty fruit bunch (OPEFB) fibre, bamboo fibre, and sugar palm fibre have been highlighted.
Collapse
Affiliation(s)
- N. M. Nurazzi
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - F. A. Sabaruddin
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
| | - M. M. Harussani
- Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - S. H. Kamarudin
- Faculty of Applied Sciences, School of Industrial Technology, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Malaysia;
| | - M. Rayung
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - M. R. M. Asyraf
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - H. A. Aisyah
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - M. N. F. Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - R. A. Ilyas
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
| | - N. Abdullah
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - E. S. Zainudin
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - S. M. Sapuan
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
- Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - A. Khalina
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
| |
Collapse
|
16
|
Dugam S, Nangare S, Patil P, Jadhav N. Carbon dots: A novel trend in pharmaceutical applications. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:335-345. [PMID: 33383021 DOI: 10.1016/j.pharma.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Carbon quantum dots (CQDs, C-dots, or CDs), are generally small carbon nanoparticles having a size less than 10nm. Carbon dots (CDs) were accidentally discovered during the purification of single-walled carbon nanotubes through preparative electrophoresis in 2004. Carbon is an organic material having poor water solubility that emits less fluorescence. However, CDs have good aqueous solubility and excellent fluorescent property, hence more attention has been given to the synthesis of CDs and their applications in chemistry and allied sciences. CDs being easily accessible for in-house synthesis, simpler fabrication as per compendial requirements are wisely accepted. In addition, since CDs are biocompatible, of low toxicity, and of biodegradable nature, they appear as a promising tool for the health care sector. Furthermore, owing to their capabilities of expressing significant interaction with biological materials, and their excellent photoluminescence (PL), CDs have been emerging as novel pioneered nanoparticles useful for pharmaceutical and theranostic applications. Also, CDs are more eco-friendly in synthesis and therefore can be favorably consumed as alternatives in the further development of biological, environmental, and food areas. A massive study has been performed dealing with different approaches which are adopted for CDs synthesis and their applications as, filters for the separation of pollutants from polluted water, food safety, toxicological studies, and optical properties, etc. While still less emphasis is given on the applications of CDs in pharmaceuticals like for sustained and targeted drug delivery systems, theranostic study, etc. Hence, in the present review, we are exploring CQDs as a boon to pharmaceutical concerns.
Collapse
Affiliation(s)
- S Dugam
- Department of Pharmaceutics, Bharati-Vidyapeeth College of Pharmacy, 416013 Kolhapur, Maharashtra state, India
| | - S Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra state, India
| | - P Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra state, India
| | - N Jadhav
- Department of Pharmaceutics, Bharati-Vidyapeeth College of Pharmacy, 416013 Kolhapur, Maharashtra state, India.
| |
Collapse
|
17
|
Kelly SP, Huang KP, Liao CP, Khasanah RAN, Chien FSS, Hu JS, Wu CL, Tso IM. Mechanical and structural properties of major ampullate silk from spiders fed carbon nanomaterials. PLoS One 2020; 15:e0241829. [PMID: 33166360 PMCID: PMC7652353 DOI: 10.1371/journal.pone.0241829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
Abstract
The dragline silk of spiders is of particular interest to science due to its unique properties that make it an exceptional biomaterial that has both high tensile strength and elasticity. To improve these natural fibers, researchers have begun to try infusing metals and carbon nanomaterials to improve mechanical properties of spider silk. The objective of this study was to incorporate carbon nanomaterials into the silk of an orb-weaving spider, Nephila pilipes, by feeding them solutions containing graphene and carbon nanotubes. Spiders were collected from the field and in the lab were fed solutions by pipette containing either graphene sheets or nanotubes. Major ampullate silk was collected and a tensile tester was used to determine mechanical properties for pre- and post-treatment samples. Raman spectroscopy was then used to test for the presence of nanomaterials in silk samples. There was no apparent incorporation of carbon nanomaterials in the silk fibers that could be detected with Raman spectroscopy and there were no significant improvements in mechanical properties. This study represents an example for the importance of attempting to replicate previously published research. Researchers should be encouraged to continue to do these types of investigations in order to build a strong consensus and solid foundation for how to go forward with these new methods for creating novel biomaterials.
Collapse
Affiliation(s)
- Sean P. Kelly
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Kun-Ping Huang
- Mechanical and Mechatronics Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | | | | | | | - Jwu-Sheng Hu
- Mechanical and Mechatronics Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chung-Lin Wu
- Center for Measurement Standards, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
18
|
Caputo P, Porto M, Angelico R, Loise V, Calandra P, Oliviero Rossi C. Bitumen and asphalt concrete modified by nanometer-sized particles: Basic concepts, the state of the art and future perspectives of the nanoscale approach. Adv Colloid Interface Sci 2020; 285:102283. [PMID: 33099178 DOI: 10.1016/j.cis.2020.102283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Asphalt concretes are biphasic systems, with a predominant phase (c.a. 93-96% w/w) made by the macro-meter sized inorganic aggregates hold together by small amounts of a viscoelastic binding bitumen (c.a. 5%). Even if the bitumen is in minor amount, it plays an important role dictating all the desired properties: rheological performances, resistance to aging etc. What happens if nanoparticles are used as additive in such materials? They usually confer enhanced resistance under mechanical stress and give sometimes interesting added-values properties so, despite the high costs of their production, nanoparticles are interesting materials which are being monitored for large scales applications. This work introduces the reader to the properties of nanoparticles in an easy to review their use in bitumen and asphalt preparation. Silica, ceramic, clay, other oxides and inorganic nanoparticles are presented and critically discussed in the framework of their use in bitumen and asphalt preparation for various scopes. Organic and functionalized nanoparticles are likewise discussed. Perspectives and cost analysis are also given for a more complete view of the problematic, hoping this could help researchers in their piloted design of material for road pavements with ever-increasing performances.
Collapse
Affiliation(s)
- Paolino Caputo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Michele Porto
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Ruggero Angelico
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, Via De Sanctis, 86100 Campobasso, CB, Italy
| | - Valeria Loise
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Pietro Calandra
- CNR-ISMN, National Research Council - Institute for the Study of Nanostructured Materials, Via Salaria km 29.300, 00015 Monterotondo, Stazione (RM), Italy.
| | - Cesare Oliviero Rossi
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
19
|
Systemic Administrations of Water-Dispersible Single-Walled Carbon Nanotubes: Activation of NOS in Spontaneously Hypertensive Rats. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09858-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
David ME, Ion RM, Grigorescu RM, Iancu L, Andrei ER. Nanomaterials Used in Conservation and Restoration of Cultural Heritage: An Up-to-Date Overview. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2064. [PMID: 32365734 PMCID: PMC7254209 DOI: 10.3390/ma13092064] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
In the last few years, the preservation of cultural heritage has become an important issue globally, due to the fact that artifacts and monuments are continually threatened by degradation. It is thus very important to find adequate consolidators that are capable of saving and maintaining the natural aspect of these objects. This study aims to provide an updated survey of the main nanomaterials used for the conservation and restoration of cultural heritage. In the last few years, besides the classic nanomaterials used in this field, such as metal nanoparticles (copper and silver) and metal oxides (zinc and aluminum), hydroxyapatite and carbonated derivatives, tubular nanomaterials (such as carbon nanotubes) have been used as a potential consolidate material of cultural heritage. Tubular nanomaterials have attracted attention for use in different fields due to their structures, as well as their ability to present multiple walls. These nanotubes have the necessary properties in preserving cultural heritage, such as superior mechanical and elastic strength (even higher than steel), high hydrophobicity (with a contact angle up to 140°), optical properties (high photodegradation protection), large specific surface area (from 50 to 1315 m2/g, depending on the number of walls) for absorption of other nanomaterials and relatively good biocompatibility.
Collapse
Affiliation(s)
- Madalina Elena David
- “Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry–ICECHIM, 060021 Bucharest, Romania; (M.E.D.); (R.M.G.); (L.I.); (E.R.A.)
- Doctoral School of Materials Engineering Department, Valahia University, 130104 Targoviste, Romania
| | - Rodica-Mariana Ion
- “Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry–ICECHIM, 060021 Bucharest, Romania; (M.E.D.); (R.M.G.); (L.I.); (E.R.A.)
- Doctoral School of Materials Engineering Department, Valahia University, 130104 Targoviste, Romania
| | - Ramona Marina Grigorescu
- “Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry–ICECHIM, 060021 Bucharest, Romania; (M.E.D.); (R.M.G.); (L.I.); (E.R.A.)
| | - Lorena Iancu
- “Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry–ICECHIM, 060021 Bucharest, Romania; (M.E.D.); (R.M.G.); (L.I.); (E.R.A.)
- Doctoral School of Materials Engineering Department, Valahia University, 130104 Targoviste, Romania
| | - Elena Ramona Andrei
- “Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry–ICECHIM, 060021 Bucharest, Romania; (M.E.D.); (R.M.G.); (L.I.); (E.R.A.)
| |
Collapse
|
21
|
Recent Advances in Carbon Nanotubes for Nervous Tissue Regeneration. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6861205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regenerative medicine has taken advantage of several nanomaterials for reparation of diseased or damaged tissues in the nervous system involved in memory, cognition, and movement. Electrical, thermal, mechanical, and biocompatibility aspects of carbon-based nanomaterials (nanotubes, graphene, fullerenes, and their derivatives) make them suitable candidates to drive nerve tissue repair and stimulation. This review article focuses on key recent advances on the use of carbon nanotube- (CNT-) based technologies on nerve tissue engineering, outlining how neurons interact with CNT interfaces for promoting neuronal differentiation, growth and network reconstruction. CNTs still represent strong candidates for use in therapies of neurodegenerative pathologies and spinal cord injuries.
Collapse
|
22
|
Corletto A, Shapter JG. Nanoscale Patterning of Carbon Nanotubes: Techniques, Applications, and Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001778. [PMID: 33437571 PMCID: PMC7788638 DOI: 10.1002/advs.202001778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Indexed: 05/09/2023]
Abstract
Carbon nanotube (CNT) devices and electronics are achieving maturity and directly competing or surpassing devices that use conventional materials. CNTs have demonstrated ballistic conduction, minimal scaling effects, high current capacity, low power requirements, and excellent optical/photonic properties; making them the ideal candidate for a new material to replace conventional materials in next-generation electronic and photonic systems. CNTs also demonstrate high stability and flexibility, allowing them to be used in flexible, printable, and/or biocompatible electronics. However, a major challenge to fully commercialize these devices is the scalable placement of CNTs into desired micro/nanopatterns and architectures to translate the superior properties of CNTs into macroscale devices. Precise and high throughput patterning becomes increasingly difficult at nanoscale resolution, but it is essential to fully realize the benefits of CNTs. The relatively long, high aspect ratio structures of CNTs must be preserved to maintain their functionalities, consequently making them more difficult to pattern than conventional materials like metals and polymers. This review comprehensively explores the recent development of innovative CNT patterning techniques with nanoscale lateral resolution. Each technique is critically analyzed and applications for the nanoscale-resolution approaches are demonstrated. Promising techniques and the challenges ahead for future devices and applications are discussed.
Collapse
Affiliation(s)
- Alexander Corletto
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| | - Joseph G. Shapter
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
23
|
Baby R, Saifullah B, Hussein MZ. Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. NANOSCALE RESEARCH LETTERS 2019; 14:341. [PMID: 31712991 PMCID: PMC6848366 DOI: 10.1186/s11671-019-3167-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/30/2019] [Indexed: 05/08/2023]
Abstract
Nanotechnology is an advanced field of science having the ability to solve the variety of environmental challenges by controlling the size and shape of the materials at a nanoscale. Carbon nanomaterials are unique because of their nontoxic nature, high surface area, easier biodegradation, and particularly useful environmental remediation. Heavy metal contamination in water is a major problem and poses a great risk to human health. Carbon nanomaterials are getting more and more attention due to their superior physicochemical properties that can be exploited for advanced treatment of heavy metal-contaminated water. Carbon nanomaterials namely carbon nanotubes, fullerenes, graphene, graphene oxide, and activated carbon have great potential for removal of heavy metals from water because of their large surface area, nanoscale size, and availability of different functionalities and they are easier to be chemically modified and recycled. In this article, we have reviewed the recent advancements in the applications of these carbon nanomaterials in the treatment of heavy metal-contaminated water and have also highlighted their application in environmental remediation. Toxicological aspects of carbon-based nanomaterials have also been discussed.
Collapse
Affiliation(s)
- Rabia Baby
- Education Department Sukkur IBA University, Sukkur, Sindh 65200 Pakistan
- MSCL, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Bullo Saifullah
- MSCL, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Zobir Hussein
- MSCL, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
24
|
Hajra A, Bandyopadhyay D, Hajra SK. Future in neuromedicine: Nanotechnology. J Neurosci Rural Pract 2019; 7:613-614. [PMID: 27695256 PMCID: PMC5006488 DOI: 10.4103/0976-3147.185513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Adrija Hajra
- Department of Internal Medicine, IPGMER, Kolkata, West Bengal, India
| | | | | |
Collapse
|
25
|
An Overview of the Recent Developments in Metal Matrix Nanocomposites Reinforced by Graphene. MATERIALS 2019; 12:ma12172823. [PMID: 31480703 PMCID: PMC6747968 DOI: 10.3390/ma12172823] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/02/2022]
Abstract
Two-dimensional graphene plateletes with unique mechanical, electrical and thermo-physical properties could attract more attention for their employed as reinforcements in the production of new metal matrix nanocomposites (MMNCs), due to superior characteristics, such as being lightweight, high strength and high performance. Over the last years, due to the rapid advances of nanotechnology, increasing demand for the development of advanced MMNCs for various applications, such as structural engineering and functional device applications, has been generated. The purpose of this work is to review recent research into the development in the powder-based production, property characterization and application of magnesium, aluminum, copper, nickel, titanium and iron matrix nanocomposites reinforced with graphene. These include a comparison between the properties of graphene and another well-known carbonaceous reinforcement (carbon nanotube), following by powder-based processing strategies of MMNCs above, their mechanical and tribological properties and their electrical and thermal conductivities. The effects of graphene distribution in the metal matrices and the types of interfacial bonding are also discussed. Fundamentals and the structure–property relationship of such novel nanocomposites have also been discussed and reported.
Collapse
|
26
|
Bolan F, Louca I, Heal C, Cunningham CJ. The Potential of Biomaterial-Based Approaches as Therapies for Ischemic Stroke: A Systematic Review and Meta-Analysis of Pre-clinical Studies. Front Neurol 2019; 10:924. [PMID: 31507524 PMCID: PMC6718570 DOI: 10.3389/fneur.2019.00924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/09/2019] [Indexed: 01/07/2023] Open
Abstract
Background: In recent years pre-clinical stroke research has shown increased interest in the development of biomaterial-based therapies to promote tissue repair and functional recovery. Such strategies utilize biomaterials as structural support for tissue regeneration or as delivery vehicles for therapeutic agents. While a range of biomaterials have been tested in stroke models, currently no overview is available for evaluating the benefit of these approaches. We therefore performed a systematic review and meta-analysis of studies investigating the use of biomaterials for the treatment of stroke in experimental animal models. Methods: Studies were identified by searching electronic databases (PubMed, Web of Science) and reference lists of relevant review articles. Studies reporting lesion volume and/or neurological score were included. Standardized mean difference (SMD) and 95% confidence intervals were calculated using DerSimonian and Laird random effects. Study quality and risk of bias was assessed using the CAMARADES checklist. Publication bias was visualized by funnel plots followed by trim and fill analysis of missing publications. Results: A total of 66 publications were included in the systematic review, of which 44 (86 comparisons) were assessed in the meta-analysis. Overall, biomaterial-based interventions improved both lesion volume (SMD: -2.98, 95% CI: -3.48, -2.48) and neurological score (SMD: -2.3, 95% CI: -2.85, -1.76). The median score on the CAMARADES checklist was 5.5/10 (IQR 4.25-6). Funnel plots of lesion volume and neurological score data revealed pronounced asymmetry and publication bias. Additionally, trim and fill analysis estimated 19 "missing" studies for the lesion volume outcome adjusting the effect size to -1.91 (95% CI: -2.44, -1.38). Conclusions: Biomaterials including scaffolds and particles exerted a positive effect on histological and neurological outcomes in pre-clinical stroke models. However, heterogeneity in the field, publication bias and study quality scores which may be another source of bias call for standardization of outcome measures and improved study reporting.
Collapse
Affiliation(s)
- Faye Bolan
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Irene Louca
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Calvin Heal
- Faculty of Biology, Medicine and Health, Centre for Biostatistics, Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Catriona J. Cunningham
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom,*Correspondence: Catriona J. Cunningham
| |
Collapse
|
27
|
Govindaraj P, Fox B, Aitchison P, Hameed N. A Review on Graphene Polymer Nanocomposites in Harsh Operating Conditions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01183] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Premika Govindaraj
- Factory of the Future, Swinburne University of Technology, Melbourne 3127, VIC, Australia
| | - Bronwyn Fox
- Factory of the Future, Swinburne University of Technology, Melbourne 3127, VIC, Australia
| | | | - Nishar Hameed
- Factory of the Future, Swinburne University of Technology, Melbourne 3127, VIC, Australia
| |
Collapse
|
28
|
Pampaloni NP, Rago I, Calaresu I, Cozzarini L, Casalis L, Goldoni A, Ballerini L, Scaini D. Transparent carbon nanotubes promote the outgrowth of enthorino-dentate projections in lesioned organ slice cultures. Dev Neurobiol 2019; 80:316-331. [PMID: 31314946 DOI: 10.1002/dneu.22711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022]
Abstract
The increasing engineering of carbon-based nanomaterials as components of neuroregenerative interfaces is motivated by their dimensional compatibility with subcellular compartments of excitable cells, such as axons and synapses. In neuroscience applications, carbon nanotubes (CNTs) have been used to improve electronic device performance by exploiting their physical properties. Besides, when manufactured to interface neuronal networks formation in vitro, CNT carpets have shown their unique ability to potentiate synaptic networks formation and function. Due to the low optical transparency of CNTs films, further developments of these materials in neural prosthesis fabrication or in implementing interfacing devices to be paired with in vivo imaging or in vitro optogenetic approaches are currently limited. In the present work, we exploit a new method to fabricate CNTs by growing them on a fused silica surface, which results in a transparent CNT-based substrate (tCNTs). We show that tCNTs favor dissociated primary neurons network formation and function, an effect comparable to the one observed for their dark counterparts. We further adopt tCNTs to support the growth of intact or lesioned entorhinal-hippocampal complex organotypic cultures (EHCs). Through immunocytochemistry and electrophysiological field potential recordings, we show here that tCNTs platforms are suitable substrates for the growth of EHCs and we unmask their ability to significantly increase the signal synchronization and fiber sprouting between the cortex and the hippocampus with respect to Controls. tCNTs transparency and ability to enhance recovery of lesioned brain cultures, make them optimal candidates to implement implantable devices in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
| | - Ilaria Rago
- Elettra Sincrotrone Trieste, Trieste, Italy.,Department of Physics, University of Trieste, Trieste, Italy
| | - Ivo Calaresu
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Luca Cozzarini
- Elettra Sincrotrone Trieste, Trieste, Italy.,Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | | | | | - Laura Ballerini
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Denis Scaini
- International School for Advanced Studies (SISSA), Trieste, Italy.,Elettra Sincrotrone Trieste, Trieste, Italy
| |
Collapse
|
29
|
Pampaloni NP, Giugliano M, Scaini D, Ballerini L, Rauti R. Advances in Nano Neuroscience: From Nanomaterials to Nanotools. Front Neurosci 2019; 12:953. [PMID: 30697140 PMCID: PMC6341218 DOI: 10.3389/fnins.2018.00953] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
During the last decades, neuroscientists have increasingly exploited a variety of artificial, de-novo synthesized materials with controlled nano-sized features. For instance, a renewed interest in the development of prostheses or neural interfaces was driven by the availability of novel nanomaterials that enabled the fabrication of implantable bioelectronics interfaces with reduced side effects and increased integration with the target biological tissue. The peculiar physical-chemical properties of nanomaterials have also contributed to the engineering of novel imaging devices toward sophisticated experimental settings, to smart fabricated scaffolds and microelectrodes, or other tools ultimately aimed at a better understanding of neural tissue functions. In this review, we focus on nanomaterials and specifically on carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphene. While these materials raise potential safety concerns, they represent a tremendous technological opportunity for the restoration of neuronal functions. We then describe nanotools such as nanowires and nano-modified MEA for high-performance electrophysiological recording and stimulation of neuronal electrical activity. We finally focus on the fabrication of three-dimensional synthetic nanostructures, used as substrates to interface biological cells and tissues in vitro and in vivo.
Collapse
Affiliation(s)
| | - Michele Giugliano
- Department of Biomedical Sciences and Institute Born-Bunge, Molecular, Cellular, and Network Excitability, Universiteit Antwerpen, Antwerpen, Belgium
| | - Denis Scaini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
- ELETTRA Synchrotron Light Source, Nanoinnovation Lab, Trieste, Italy
| | - Laura Ballerini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Rossana Rauti
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
30
|
Amin H, Dipalo M, De Angelis F, Berdondini L. Biofunctionalized 3D Nanopillar Arrays Fostering Cell Guidance and Promoting Synapse Stability and Neuronal Activity in Networks. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15207-15215. [PMID: 29620843 PMCID: PMC5934727 DOI: 10.1021/acsami.8b00387] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/05/2018] [Indexed: 05/19/2023]
Abstract
A controlled geometry of in vitro neuronal networks allows investigation of the cellular mechanisms that underlie neuron-to-neuron and neuron-extracellular matrix interactions, which are essential to biomedical research. Herein, we report a selective guidance of primary hippocampal neurons by using arrays of three-dimensional vertical nanopillars (NPs) functionalized with a specific adhesion-promoting molecule-poly-dl-ornithine (PDLO). We show that 90% of neuronal cells are guided exclusively on the combinatorial PDLO/NP substrate. Moreover, we demonstrate the influence of the interplay between nanostructures and neurons on synapse formation and maturation, resulting in increased expression of postsynaptic density-95 protein and enhanced network cellular activity conferred by the endogenous c-fos expression. Successful guidance to foster synapse stability and cellular activity on multilevel cues of surface topography and chemical functionalization suggests the potential to devise technologies to control neuronal growth on nanostructures for tissue engineering, neuroprostheses, and drug development.
Collapse
Affiliation(s)
- Hayder Amin
- Nets Laboratory, Department of Neuroscience
and Brain
Technologies (NBT), and Department of Plasmon Nanotechnologies, Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Michele Dipalo
- Nets Laboratory, Department of Neuroscience
and Brain
Technologies (NBT), and Department of Plasmon Nanotechnologies, Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Francesco De Angelis
- Nets Laboratory, Department of Neuroscience
and Brain
Technologies (NBT), and Department of Plasmon Nanotechnologies, Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Luca Berdondini
- Nets Laboratory, Department of Neuroscience
and Brain
Technologies (NBT), and Department of Plasmon Nanotechnologies, Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
31
|
Da Silva-Candal A, Argibay B, Iglesias-Rey R, Vargas Z, Vieites-Prado A, López-Arias E, Rodríguez-Castro E, López-Dequidt I, Rodríguez-Yáñez M, Piñeiro Y, Sobrino T, Campos F, Rivas J, Castillo J. Vectorized nanodelivery systems for ischemic stroke: a concept and a need. J Nanobiotechnology 2017; 15:30. [PMID: 28399863 PMCID: PMC5387212 DOI: 10.1186/s12951-017-0264-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Neurological diseases of diverse aetiologies have significant effects on the quality of life of patients. The limited self-repairing capacity of the brain is considered to be the origin of the irreversible and progressive nature of many neurological diseases. Therefore, neuroprotection is an important goal shared by many clinical neurologists and neuroscientists. In this review, we discuss the main obstacles that have prevented the implementation of experimental neuroprotective strategies in humans and propose alternative avenues for the use of neuroprotection as a feasible therapeutic approach. Special attention is devoted to nanotechnology, which is a new approach for developing highly specific and localized biomedical solutions for the study of the multiple mechanisms involved in stroke. Nanotechnology is contributing to personalized neuroprotection by allowing us to identify mechanisms, determine optimal therapeutic windows, and protect patients from brain damage. In summary, multiple aspects of these new players in biomedicine should be considered in future in vivo and in vitro studies with the aim of improving their applicability to clinical studies.
Collapse
Affiliation(s)
- Andrés Da Silva-Candal
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Bárbara Argibay
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Zulema Vargas
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain
| | - Alba Vieites-Prado
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Esteban López-Arias
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Emilio Rodríguez-Castro
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Yolanda Piñeiro
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Francisco Campos
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - José Rivas
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain.
| | - José Castillo
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
32
|
Mahapatra C, Singh RK, Lee JH, Jung J, Hyun JK, Kim HW. Nano-shape varied cerium oxide nanomaterials rescue human dental stem cells from oxidative insult through intracellular or extracellular actions. Acta Biomater 2017; 50:142-153. [PMID: 27940193 DOI: 10.1016/j.actbio.2016.12.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 01/09/2023]
Abstract
Cerium oxide nanomaterials (CeNMs), due to their excellent scavenging properties of reactive oxygen species (ROS), have gained great promise for therapeutic applications. A high level of ROS often degrades the potential of stem cells in terms of survivability, maintenance and lineage differentiation. Here we hypothesize the CeNMs may play an important role in protecting the capacity of stem cells against the oxidative insult, and the suppression mechanism of ROS level may depend on the internalization of CeNMs. We synthesized CeNMs with different directional shapes (aspect ratios) by a pH-controlled hydrothermal method, and treated them to stem cells derived from human dental pulp at various doses. The short CeNMs (nanoparticles and nanorods) were internalized rapidly to cells whereas long CeNMs (nanowires) were slowly internalized, which led to different distributions of CeNMs and suppressed the ROS levels either intracellularly or extracellularly under the H2O2-exposed conditions. Resultantly, the stem cells, when dosed with the CeNMs, were rescued to have excellent cell survivability; the damages in intracellular components including DNA fragmentation, lipid rupture and protein degradation were significantly alleviated. The findings imply that the ROS-scavenging events of CeNMs need special consideration of aspect ratio-dependent cellular internalization, and also suggest the promising use of CeNMs to protect stem cells from the ROS-insult environments, which can ultimately improve the stem cell potential for tissue engineering and regenerative medicine uses. STATEMENT OF SIGNIFICANCE Oxidative stress governs many stem cell functions like self-renewal and lineage differentiation, and the biological conditions involving tissue repair and disease cure where stem cell therapy is often needed. Here we demonstrate the unique role of cerium oxide nanomaterials (CeNMs) in rescuing stem cell survivability, migration ability, and intracellular components from oxidative stress. In particular, we deliver a novel finding that nano-morphologically varied CeNMs show different mechanisms in their scavenging reactive oxygen species either intracellularly or extracellularly, and this is related with their different cellular internalizations. We used human dental pulp stem cells for the model study and proved the CeNMs were effective in controlling ROS level by means of scavenging intracellularly or extracellularly, which ultimately led to improving the intact therapeutic potential of stem cells. This work touches an important biological issue of nanomaterial interactions with stem cells under the conditions related with oxidative stress and the resultant damage. The correlation of shape factor in therapeutic nanomaterials with stem cell interaction and the oxidative stress-related functions will provide informative ideas in the design of CeNMs for cellular therapy.
Collapse
|
33
|
Englund-Johansson U, Netanyah E, Johansson F. Tailor-Made Electrospun Culture Scaffolds Control Human Neural Progenitor Cell Behavior—Studies on Cellular Migration and Phenotypic Differentiation. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbnb.2017.81001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Vassanelli S, Mahmud M. Trends and Challenges in Neuroengineering: Toward "Intelligent" Neuroprostheses through Brain-"Brain Inspired Systems" Communication. Front Neurosci 2016; 10:438. [PMID: 27721741 PMCID: PMC5034009 DOI: 10.3389/fnins.2016.00438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/09/2016] [Indexed: 11/30/2022] Open
Abstract
Future technologies aiming at restoring and enhancing organs function will intimately rely on near-physiological and energy-efficient communication between living and artificial biomimetic systems. Interfacing brain-inspired devices with the real brain is at the forefront of such emerging field, with the term "neurobiohybrids" indicating all those systems where such interaction is established. We argue that achieving a "high-level" communication and functional synergy between natural and artificial neuronal networks in vivo, will allow the development of a heterogeneous world of neurobiohybrids, which will include "living robots" but will also embrace "intelligent" neuroprostheses for augmentation of brain function. The societal and economical impact of intelligent neuroprostheses is likely to be potentially strong, as they will offer novel therapeutic perspectives for a number of diseases, and going beyond classical pharmaceutical schemes. However, they will unavoidably raise fundamental ethical questions on the intermingling between man and machine and more specifically, on how deeply it should be allowed that brain processing is affected by implanted "intelligent" artificial systems. Following this perspective, we provide the reader with insights on ongoing developments and trends in the field of neurobiohybrids. We address the topic also from a "community building" perspective, showing through a quantitative bibliographic analysis, how scientists working on the engineering of brain-inspired devices and brain-machine interfaces are increasing their interactions. We foresee that such trend preludes to a formidable technological and scientific revolution in brain-machine communication and to the opening of new avenues for restoring or even augmenting brain function for therapeutic purposes.
Collapse
Affiliation(s)
- Stefano Vassanelli
- NeuroChip Laboratory, Department of Biomedical Sciences, University of PadovaPadova, Italy
| | | |
Collapse
|
35
|
Patton AJ, Poole-Warren LA, Green RA. Mechanisms for Imparting Conductivity to Nonconductive Polymeric Biomaterials. Macromol Biosci 2016; 16:1103-21. [DOI: 10.1002/mabi.201600057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/31/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Rylie A. Green
- Graduate School of Biomedical Engineering; University of New South Wales
| |
Collapse
|
36
|
Notarianni M, Liu J, Vernon K, Motta N. Synthesis and applications of carbon nanomaterials for energy generation and storage. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:149-196. [PMID: 26925363 PMCID: PMC4734431 DOI: 10.3762/bjnano.7.17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/22/2015] [Indexed: 05/29/2023]
Abstract
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future.
Collapse
Affiliation(s)
- Marco Notarianni
- Institute of Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia
- Plasma-Therm LLC, 10050 16th St. North, St. Petersburg, FL 33716, USA
| | - Jinzhang Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Kristy Vernon
- Institute of Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Nunzio Motta
- Institute of Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia
| |
Collapse
|
37
|
Value of Functionalized Superparamagnetic Iron Oxide Nanoparticles in the Diagnosis and Treatment of Acute Temporal Lobe Epilepsy on MRI. Neural Plast 2016; 2016:2412958. [PMID: 26925269 PMCID: PMC4748095 DOI: 10.1155/2016/2412958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/27/2015] [Accepted: 01/03/2016] [Indexed: 12/18/2022] Open
Abstract
Purpose. Although active targeting of drugs using a magnetic-targeted drug delivery system (MTDS) with superparamagnetic iron oxide nanoparticles (SPIONs) is a very effective treatment approach for tumors and other illnesses, successful results of drug-resistant temporal lobe epilepsy (TLE) are unprecedented. A hallmark in the neuropathology of TLE is brain inflammation, in particular the activation of interleukin-1β (IL-1β) induced by activated glial cells, which has been considered a new mechanistic target for treatment. The purpose of this study was to determine the feasibility of the functionalized SPIONs with anti-IL-1β monoclonal antibody (mAb) attached to render MRI diagnoses and simultaneously provide targeted therapy with the neutralization of IL-1β overexpressed in epileptogenic zone of an acute rat model of TLE. Experimental Design. The anti-IL-1β mAb-SPIONs were studied in vivo versus plain SPIONs and saline. Lithium-chloride pilocarpine-induced TLE models (n = 60) were followed by Western blot, Perl's iron staining, Nissl staining, and immunofluorescent double-label staining after MRI examination. Results. The magnetic anti-IL-1β mAb-SPION administered intravenously, which crossed the BBB and was concentrated in the astrocytes and neurons in epileptogenic tissues, rendered these tissues visible on MRI and simultaneously delivered anti-IL-1β mAb to the epileptogenic focus. Conclusions. Our study provides the first evidence that the novel approach enhanced accumulation and the therapeutic effect of anti-IL-1β mAb by MTDS using SPIONs.
Collapse
|
38
|
Garrigue P, Giacomino L, Bucci C, Muzio V, Filannino MA, Sabatier F, Dignat-George F, Pisano P, Guillet B. Single photon emission computed tomography imaging of cerebral blood flow, blood–brain barrier disruption, and apoptosis time course after focal cerebral ischemia in rats. Int J Stroke 2015; 11:117-26. [DOI: 10.1177/1747493015607516] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Cerebral ischemia is a leading cause of disability worldwide and no other effective therapy has been validated to date than intravenous thrombolysis. In this context, many preclinical models have been developed and recent advances in preclinical imaging represent promising tools. Thus, we proposed here to characterize in vivo time profiles of cerebral blood flow, blood–brain barrier disruption and apoptosis following a transient middle cerebral artery occlusion in rats using SPECT/CT imaging. Methods Rats underwent a 1-h middle cerebral artery occlusion followed by reperfusion. Cerebral blood flow, blood–brain barrier disruption and apoptosis were evaluated by SPECT/CT imaging using respectively 99mTc-HMPAO, 99mTc-DTPA and the experimental 99mTc-Annexin V-128, up to 14 days after middle cerebral artery occlusion. Histological evaluation of apoptosis has been performed using TUNEL method to validate the 99mTc-Annexin V-128 uptake. Results 99mTc-HMPAO cerebral blood flow evaluation showed hypoperfusion during occlusion, partially restored on days 4 and 7 and sustained up to 14 days after middle cerebral artery occlusion. 99mTc-DTPA SPECT/CT showed a blood–brain barrier disruption starting on day 1 post-middle cerebral artery occlusion, peaking on day 2, with barrier integrity totally restored on day 7. 99mTc-Annexin V-128 SPECT/CT imaging showed significant positive correlation with TUNEL immunohistochemistry and allowed ischemic-induced apoptosis to be detected from day 2 to day 7, peaking on day 3 after middle cerebral artery occlusion. Conclusions Using SPECT/CT imaging, we showed that after transient middle cerebral artery occlusion in rat there was a sustained decrease in cerebral blood flow followed by blood–brain barrier disruption preceding meanwhile apoptosis. Rodent SPECT/CT imaging of cerebral blood flow, blood–brain barrier disruption and apoptosis appears to be an efficient tool for evaluating neuroprotective drugs and regenerative therapies against cerebral ischemia and time-windows for therapeutic intervention.
Collapse
Affiliation(s)
- Philippe Garrigue
- INSERM, INSERM UMR_S1076 VRCM Aix-Marseille Université, France
- APHM, Hôpital La Timone, Service de Radiopharmacie, Marseille, France
- CERIMED, Aix-Marseille Université, Marseille, France
| | - Laura Giacomino
- Département Anesthésie-Réanimation adulte, APHM, Aix-Marseille Université, Marseille, France
| | - Chiara Bucci
- Advanced Accelerator Applications, Colleretto Giacosa (TO), Italy
| | - Valeria Muzio
- Advanced Accelerator Applications, Colleretto Giacosa (TO), Italy
| | | | - Florence Sabatier
- INSERM, INSERM UMR_S1076 VRCM Aix-Marseille Université, France
- APHM, Laboratoire de Culture et Thérapie Cellulaire, INSERM, Hôpital La Conception, Marseille, France
| | - Françoise Dignat-George
- INSERM, INSERM UMR_S1076 VRCM Aix-Marseille Université, France
- APHM, Hôpital La Conception, Service d’Hématologie, Marseille, France
| | - Pascale Pisano
- INSERM, INSERM UMR_S1076 VRCM Aix-Marseille Université, France
- APHM, Pôle Pharmacie, Marseille, France
| | - Benjamin Guillet
- INSERM, INSERM UMR_S1076 VRCM Aix-Marseille Université, France
- APHM, Hôpital La Timone, Service de Radiopharmacie, Marseille, France
- CERIMED, Aix-Marseille Université, Marseille, France
| |
Collapse
|
39
|
Sabnis N, Bowman WP, Lacko AG. Lipoprotein based drug delivery: Potential for pediatric cancer applications. World J Pharmacol 2015; 4:172-179. [DOI: 10.5497/wjp.v4.i2.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/22/2014] [Accepted: 03/05/2015] [Indexed: 02/06/2023] Open
Abstract
While survival rates for patients with childhood cancers have substantially improved, the quality of life of the survivors is often adversely impacted by the residual effects of chemo and radiation therapy. Because of the existing metabolic and physiological disparities between pediatric and adult patients, the treatment of pediatric cancer patients poses special challenges to oncologists. While numerous clinical trials being conducted, to improve treatment outcomes for pediatric cancer patients, new approaches are required to increase the efficacy and to minimize the drug related toxic side effects. Nanotechnology is a potentially effective tool to overcome barriers to effective cancer therapeutics including poor bioavailability and non-specific targeting. Among the nano-delivery approaches, lipoprotein based formulations have shown particularly strong promise to improve cancer therapeutics. The present article describes the challenges faced in the treatment of pediatric cancers and reviews the potential of lipoprotein-based therapeutics for these malignancies.
Collapse
|
40
|
Opris I, Fuqua JL, Gerhardt GA, Hampson RE, Deadwyler SA. Prefrontal cortical recordings with biomorphic MEAs reveal complex columnar-laminar microcircuits for BCI/BMI implementation. J Neurosci Methods 2015; 244:104-13. [PMID: 24954713 PMCID: PMC4595476 DOI: 10.1016/j.jneumeth.2014.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/25/2023]
Abstract
The mammalian prefrontal cortex known as the seat of high brain functions uses a six layer distribution of minicolumnar neurons to coordinate the integration of sensory information and the selection of relevant signals for goal driven behavior. To reveal the complex functionality of these columnar microcircuits we employed simultaneous recordings with several configurations of biomorphic microelectrode arrays (MEAs) within cortical layers in adjacent minicolumns, in four nohuman primates (NHPs) performing a delayed match-to-sample (DMS) visual discrimination task. We examined: (1) the functionality of inter-laminar, and inter-columnar interactions between pairs of cells in the same or different minicolumns by use of normalized cross-correlation histograms (CCH), (2) the modulation of glutamate concentration in layer 2/3, and (3) the potential interactions within these microcircuits. The results demonstrate that neurons in both infra-granular and supra-granular layers interact through inter-laminar loops, as well as through intra-laminar to produce behavioral response signals. These results provide new insights into the manner in which prefrontal cortical microcircuitry integrates sensory stimuli used to provide behaviorally relevant signals that may be implemented in brain computer/machine interfaces (BCI/BMIs) during performance of the task.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Joshua L Fuqua
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Greg A Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Samuel A Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
41
|
Serruya MD. As we may think and be: brain-computer interfaces to expand the substrate of mind. Front Syst Neurosci 2015; 9:53. [PMID: 25926777 PMCID: PMC4396196 DOI: 10.3389/fnsys.2015.00053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/12/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mijail D Serruya
- Department of Neurology, Thomas Jefferson University Philadelphia, PA, USA
| |
Collapse
|