1
|
Battivelli D, Fan Z, Hu H, Gross CT. How can ethology inform the neuroscience of fear, aggression and dominance? Nat Rev Neurosci 2024; 25:809-819. [PMID: 39402310 DOI: 10.1038/s41583-024-00858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 11/20/2024]
Abstract
The study of behaviour is dominated by two approaches. On the one hand, ethologists aim to understand how behaviour promotes adaptation to natural contexts. On the other, neuroscientists aim to understand the molecular, cellular, circuit and psychological origins of behaviour. These two complementary approaches must be combined to arrive at a full understanding of behaviour in its natural setting. However, methodological limitations have restricted most neuroscientific research to the study of how discrete sensory stimuli elicit simple behavioural responses under controlled laboratory conditions that are only distantly related to those encountered in real life. Fortunately, the recent advent of neural monitoring and manipulation tools adapted for use in freely behaving animals has enabled neuroscientists to incorporate naturalistic behaviours into their studies and to begin to consider ethological questions. Here, we examine the promises and pitfalls of this trend by describing how investigations of rodent fear, aggression and dominance behaviours are changing to take advantage of an ethological appreciation of behaviour. We lay out current impediments to this approach and propose a framework for the evolution of the field that will allow us to take maximal advantage of an ethological approach to neuroscience and to increase its relevance for understanding human behaviour.
Collapse
Affiliation(s)
- Dorian Battivelli
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Zhengxiao Fan
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailan Hu
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy.
| |
Collapse
|
2
|
He ZX, Yue MH, Liu KJ, Wang Y, Qiao JY, Lv XY, Xi K, Zhang YX, Fan JN, Yu HL, He XX, Zhu XJ. Substance P in the medial amygdala regulates aggressive behaviors in male mice. Neuropsychopharmacology 2024; 49:1689-1699. [PMID: 38649427 PMCID: PMC11399394 DOI: 10.1038/s41386-024-01863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Behavioral and clinical studies have revealed a critical role of substance P (SP) in aggression; however, the neural circuit mechanisms underlying SP and aggression remain elusive. Here, we show that tachykinin-expressing neurons in the medial amygdala (MeATac1 neurons) are activated during aggressive behaviors in male mice. We identified MeATac1 neurons as a key mediator of aggression and found that MeATac1→ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl) projections are critical to the regulation of aggression. Moreover, SP/neurokinin-1 receptor (NK-1R) signaling in the VMHvl modulates aggressive behaviors in male mice. SP/NK-1R signaling regulates aggression by influencing glutamate transmission in neurons in the VMHvl. In summary, these findings place SP as a key node in aggression circuits.
Collapse
Affiliation(s)
- Zi-Xuan He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Mei-Hui Yue
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Kai-Jie Liu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Yao Wang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Jiu-Ye Qiao
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xin-Yue Lv
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Ke Xi
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Ya-Xin Zhang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Jia-Ni Fan
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China.
| |
Collapse
|
3
|
Singh R, Gobrogge K. Aggression Unleashed: Neural Circuits from Scent to Brain. Brain Sci 2024; 14:794. [PMID: 39199486 PMCID: PMC11352925 DOI: 10.3390/brainsci14080794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Aggression is a fundamental behavior with essential roles in dominance assertion, resource acquisition, and self-defense across the animal kingdom. However, dysregulation of the aggression circuitry can have severe consequences in humans, leading to economic, emotional, and societal burdens. Previous inconsistencies in aggression research have been due to limitations in techniques for studying these neurons at a high spatial resolution, resulting in an incomplete understanding of the neural mechanisms underlying aggression. Recent advancements in optogenetics, pharmacogenetics, single-cell RNA sequencing, and in vivo electrophysiology have provided new insights into this complex circuitry. This review aims to explore the aggression-provoking stimuli and their detection in rodents, particularly through the olfactory systems. Additionally, we will examine the core regions associated with aggression, their interactions, and their connection with the prefrontal cortex. We will also discuss the significance of top-down cognitive control systems in regulating atypical expressions of aggressive behavior. While the focus will primarily be on rodent circuitry, we will briefly touch upon the modulation of aggression in humans through the prefrontal cortex and discuss emerging therapeutic interventions that may benefit individuals with aggression disorders. This comprehensive understanding of the neural substrates of aggression will pave the way for the development of novel therapeutic strategies and clinical interventions. This approach contrasts with the broader perspective on neural mechanisms of aggression across species, aiming for a more focused analysis of specific pathways and their implications for therapeutic interventions.
Collapse
Affiliation(s)
- Rhea Singh
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Kyle Gobrogge
- Undergraduate Program in Neuroscience, Boston University, Boston, MA 02215, USA;
| |
Collapse
|
4
|
Zhang L, Sun Y, Wang J, Zhang M, Wang Q, Xie B, Yu F, Wen D, Ma C. Dopaminergic dominance in the ventral medial hypothalamus: A pivotal regulator for methamphetamine-induced pathological aggression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110971. [PMID: 38365104 DOI: 10.1016/j.pnpbp.2024.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Methamphetamine (METH) abuse is associated with a spectrum of behavioral consequences, among which heightened aggression presents a significant challenge. However, the causal role of METH's impact in aggression and its target circuit mechanisms remains largely unknown. We established an acute METH exposure-aggression mouse model to investigate the role of ventral tegmental area (VTA) dopaminergic neurons and ventral medial hypothalamus VMH glutamatergic neuron. Our findings revealed that METH-induced VTA dopamine excitability activates the ventromedial hypothalamus (VMH) glutamatergic neurons, contributing to pathological aggression. Notably, we uncovered a dopaminergic transmission within the VTA-VMH circuit that exclusively functioned under METH influence. This dopaminergic pathway emerged as a potential key player in enabling dopamine-related pathological aggression, with heightened dopaminergic excitability implicated in various psychiatric symptoms. Also, the modulatory function of this pathway opens new possibilities for targeted therapeutic strategies for intervention to improve treatment in METH abuse and may have broader implications for addressing pathological aggression syndromes.
Collapse
Affiliation(s)
- Ludi Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China; Identification Center of Forensic Medicine, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, 050017 Shijiazhuang, Hebei, PR China; Hebei Medical University Postdoctoral Research Station, 050017, Shijiazhuang, Hebei, PR China
| | - Yufei Sun
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China
| | - Jian Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China; Identification Center of Forensic Medicine, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China
| | - Minglong Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China
| | - Qingwu Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China; Identification Center of Forensic Medicine, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China; Identification Center of Forensic Medicine, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China
| | - Feng Yu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China; Identification Center of Forensic Medicine, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China; Identification Center of Forensic Medicine, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, 050017 Shijiazhuang, Hebei, PR China.
| | - Chunling Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China; Identification Center of Forensic Medicine, Hebei Medical University, 050017 Shijiazhuang, Hebei, PR China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, 050017 Shijiazhuang, Hebei, PR China.
| |
Collapse
|
5
|
Bell C, Rokicki J, Tesli N, Gurholt TP, Hjell G, Fischer-Vieler T, Bang N, Melle I, Agartz I, Andreassen OA, Ringen PA, Rasmussen K, Dahl H, Friestad C, Haukvik UK. Hypothalamic subunit volumes and relations to violence and psychopathy in male offenders with or without a psychotic disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-023-01725-4. [PMID: 38353675 DOI: 10.1007/s00406-023-01725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/04/2023] [Indexed: 09/01/2024]
Abstract
The hypothalamus is key to body homeostasis, including regulating cortisol, testosterone, vasopressin, and oxytocin hormones, modulating aggressive behavior. Animal studies have linked the morphology and function of the hypothalamus to aggression and affiliation, with a subregional pattern reflecting the functional division between the hypothalamic nuclei. We explored the relationship between hypothalamic subunit volumes in violent offenders with (PSY-V) and without (NPV) a psychotic disorder, and the association with psychopathy traits. 3T MRI scans (n = 628, all male 18-70 years) were obtained from PSY-V, n = 38, NPV, n = 20, non-violent psychosis patients (PSY-NV), n = 134, and healthy controls (HC), n = 436. The total hypothalamus volume and its eleven nuclei were delineated into five subunits using Freesurfer v7.3. Psychopathy traits were assessed with Psychopathy Checklist-revised (PCL-R). ANCOVAs and linear regressions were used to analyze associations with subunit volumes. Both groups with a history of violence exhibited smaller anterior-superior subunit volumes than HC (NPV Cohen's d = 0.56, p = 0.01 and PSY-V d = 0.38, p = 0.01). There were no significant differences between HC and PSY-NV. PCL-R scores were positively associated with the inferior tubular subunit on a trend level (uncorrected p = 0.045, Cohen's d = 0.04). We found distinct hypothalamic subunit volume reductions in persons with a history of violence independent of concomitant psychotic disorder but not in persons with psychosis alone. The results provide further information about the involvement of the hypothalamus in aggression, which ultimately may lead to the development of targeted treatment for the clinical and societal challenge of aggression and violent behavior.
Collapse
Affiliation(s)
- Christina Bell
- Department of Psychiatry, Oslo University Hospital, Nydalen, P. O. Box 4956, 0424, Oslo, Norway.
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Jaroslav Rokicki
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Natalia Tesli
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
| | - Gabriela Hjell
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital Trust, Graalum, Norway
| | - Thomas Fischer-Vieler
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
| | - Nina Bang
- Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
| | - Petter Andreas Ringen
- Department of Psychiatry, Oslo University Hospital, Nydalen, P. O. Box 4956, 0424, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kirsten Rasmussen
- Centre for Research and Education in Forensic Psychiatry, St. Olavs Hospital, Trondheim, Norway
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Hilde Dahl
- Centre for Research and Education in Forensic Psychiatry, St. Olavs Hospital, Trondheim, Norway
| | - Christine Friestad
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
- University College of Norwegian Correctional Service, Oslo, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Melleu FF, Canteras NS. Pathways from the Superior Colliculus to the Basal Ganglia. Curr Neuropharmacol 2024; 22:1431-1453. [PMID: 37702174 PMCID: PMC11097988 DOI: 10.2174/1570159x21666230911102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 09/14/2023] Open
Abstract
The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC's laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
7
|
Gao C, Gohel CA, Leng Y, Ma J, Goldman D, Levine AJ, Penzo MA. Molecular and spatial profiling of the paraventricular nucleus of the thalamus. eLife 2023; 12:81818. [PMID: 36867023 PMCID: PMC10014079 DOI: 10.7554/elife.81818] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/02/2023] [Indexed: 03/04/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is known to regulate various cognitive and behavioral processes. However, while functional diversity among PVT circuits has often been linked to cellular differences, the molecular identity and spatial distribution of PVT cell types remain unclear. To address this gap, here we used single nucleus RNA sequencing (snRNA-seq) and identified five molecularly distinct PVT neuronal subtypes in the mouse brain. Additionally, multiplex fluorescent in situ hybridization of top marker genes revealed that PVT subtypes are organized by a combination of previously unidentified molecular gradients. Lastly, comparing our dataset with a recently published single-cell sequencing atlas of the thalamus yielded novel insight into the PVT's connectivity with the cortex, including unexpected innervation of auditory and visual areas. This comparison also revealed that our data contains a largely non-overlapping transcriptomic map of multiple midline thalamic nuclei. Collectively, our findings uncover previously unknown features of the molecular diversity and anatomical organization of the PVT and provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Claire Gao
- National Institute of Mental HealthBethesdaUnited States
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Chiraag A Gohel
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Yan Leng
- National Institute of Mental HealthBethesdaUnited States
| | - Jun Ma
- National Institute of Mental HealthBethesdaUnited States
| | - David Goldman
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Ariel J Levine
- National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Mario A Penzo
- National Institute of Mental HealthBethesdaUnited States
| |
Collapse
|
8
|
Gorlova A, Svirin E, Pavlov D, Cespuglio R, Proshin A, Schroeter CA, Lesch KP, Strekalova T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int J Mol Sci 2023; 24:915. [PMID: 36674429 PMCID: PMC9861430 DOI: 10.3390/ijms24020915] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Neuroplast BV, 6222 NK Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Careen A. Schroeter
- Preventive and Environmental Medicine, Kastanienhof Clinic, 50858 Köln-Junkersdorf, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
9
|
Noto T, Zhou G, Yang Q, Lane G, Zelano C. Human Primary Olfactory Amygdala Subregions Form Distinct Functional Networks, Suggesting Distinct Olfactory Functions. Front Syst Neurosci 2021; 15:752320. [PMID: 34955769 PMCID: PMC8695617 DOI: 10.3389/fnsys.2021.752320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Three subregions of the amygdala receive monosynaptic projections from the olfactory bulb, making them part of the primary olfactory cortex. These primary olfactory areas are located at the anterior-medial aspect of the amygdala and include the medial amygdala (MeA), cortical amygdala (CoA), and the periamygdaloid complex (PAC). The vast majority of research on the amygdala has focused on the larger basolateral and basomedial subregions, which are known to be involved in implicit learning, threat responses, and emotion. Fewer studies have focused on the MeA, CoA, and PAC, with most conducted in rodents. Therefore, our understanding of the functions of these amygdala subregions is limited, particularly in humans. Here, we first conducted a review of existing literature on the MeA, CoA, and PAC. We then used resting-state fMRI and unbiased k-means clustering techniques to show that the anatomical boundaries of human MeA, CoA, and PAC accurately parcellate based on their whole-brain resting connectivity patterns alone, suggesting that their functional networks are distinct, relative both to each other and to the amygdala subregions that do not receive input from the olfactory bulb. Finally, considering that distinct functional networks are suggestive of distinct functions, we examined the whole-brain resting network of each subregion and speculated on potential roles that each region may play in olfactory processing. Based on these analyses, we speculate that the MeA could potentially be involved in the generation of rapid motor responses to olfactory stimuli (including fight/flight), particularly in approach/avoid contexts. The CoA could potentially be involved in olfactory-related reward processing, including learning and memory of approach/avoid responses. The PAC could potentially be involved in the multisensory integration of olfactory information with other sensory systems. These speculations can be used to form the basis of future studies aimed at clarifying the olfactory functions of these under-studied primary olfactory areas.
Collapse
Affiliation(s)
- Torben Noto
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guangyu Zhou
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qiaohan Yang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gregory Lane
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Zha X, Xu XH. Neural circuit mechanisms that govern inter-male attack in mice. Cell Mol Life Sci 2021; 78:7289-7307. [PMID: 34687319 PMCID: PMC11072497 DOI: 10.1007/s00018-021-03956-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Individuals of many species fight with conspecifics to gain access to or defend critical resources essential for survival and reproduction. Such intraspecific fighting is evolutionarily selected for in a species-, sex-, and environment-dependent manner when the value of resources secured exceeds the cost of fighting. One such example is males fighting for chances to mate with females. Recent advances in new tools open up ways to dissect the detailed neural circuit mechanisms that govern intraspecific, particularly inter-male, aggression in the model organism Mus musculus (house mouse). By targeting and functional manipulating genetically defined populations of neurons and their projections, these studies reveal a core neural circuit that controls the display of reactive male-male attacks in mice, from sensory detection to decision making and action selection. Here, we summarize these critical results. We then describe various modulatory inputs that route into the core circuit to afford state-dependent and top-down modulation of inter-male attacks. While reviewing these exciting developments, we note that how the inter-male attack circuit converges or diverges with neural circuits that mediate other forms of social interactions remain not fully understood. Finally, we emphasize the importance of combining circuit, pharmacological, and genetic analysis when studying the neural control of aggression in the future.
Collapse
Affiliation(s)
- Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
11
|
Abstract
The ventromedial nucleus of the hypothalamus (VMH) is a complex brain structure that is integral to many neuroendocrine functions, including glucose regulation, thermogenesis, and appetitive, social, and sexual behaviors. As such, it is of little surprise that the nucleus is under intensive investigation to decipher the mechanisms which underlie these diverse roles. Developments in genetic and investigative tools, for example the targeting of steroidogenic factor-1-expressing neurons, have allowed us to take a closer look at the VMH, its connections, and how it affects competing behaviors. In the current review, we aim to integrate recent findings into the literature and contemplate the conclusions that can be drawn.
Collapse
Affiliation(s)
- Tansi Khodai
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Simon M Luckman
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
- Correspondence: Simon M. Luckman, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
12
|
Benavidez NL, Bienkowski MS, Zhu M, Garcia LH, Fayzullina M, Gao L, Bowman I, Gou L, Khanjani N, Cotter KR, Korobkova L, Becerra M, Cao C, Song MY, Zhang B, Yamashita S, Tugangui AJ, Zingg B, Rose K, Lo D, Foster NN, Boesen T, Mun HS, Aquino S, Wickersham IR, Ascoli GA, Hintiryan H, Dong HW. Organization of the inputs and outputs of the mouse superior colliculus. Nat Commun 2021; 12:4004. [PMID: 34183678 PMCID: PMC8239028 DOI: 10.1038/s41467-021-24241-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
The superior colliculus (SC) receives diverse and robust cortical inputs to drive a range of cognitive and sensorimotor behaviors. However, it remains unclear how descending cortical input arising from higher-order associative areas coordinate with SC sensorimotor networks to influence its outputs. Here, we construct a comprehensive map of all cortico-tectal projections and identify four collicular zones with differential cortical inputs: medial (SC.m), centromedial (SC.cm), centrolateral (SC.cl) and lateral (SC.l). Further, we delineate the distinctive brain-wide input/output organization of each collicular zone, assemble multiple parallel cortico-tecto-thalamic subnetworks, and identify the somatotopic map in the SC that displays distinguishable spatial properties from the somatotopic maps in the neocortex and basal ganglia. Finally, we characterize interactions between those cortico-tecto-thalamic and cortico-basal ganglia-thalamic subnetworks. This study provides a structural basis for understanding how SC is involved in integrating different sensory modalities, translating sensory information to motor command, and coordinating different actions in goal-directed behaviors.
Collapse
Affiliation(s)
- Nora L Benavidez
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Bienkowski
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Muye Zhu
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Luis H Garcia
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marina Fayzullina
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lei Gao
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ian Bowman
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lin Gou
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Neda Khanjani
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kaelan R Cotter
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Laura Korobkova
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marlene Becerra
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chunru Cao
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Monica Y Song
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Bin Zhang
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Seita Yamashita
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Amanda J Tugangui
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian Zingg
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kasey Rose
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Darrick Lo
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas N Foster
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Tyler Boesen
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hyun-Seung Mun
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sarvia Aquino
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Houri Hintiryan
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hong-Wei Dong
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Yamaguchi T. Neural circuit mechanisms of sex and fighting in male mice. Neurosci Res 2021; 174:1-8. [PMID: 34175319 DOI: 10.1016/j.neures.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Surviving in the animal kingdom hinges on the ability to fight competitors and to mate with partners. Dedicated neural circuits in the brain allow animals to mate and attack without any prior experience. Classical lesioning and stimulation studies demonstrated that medial hypothalamic and limbic areas are crucial for male sexual and aggressive behaviors. Moreover, recent functional manipulation tools have uncovered neural circuits critical for mating and aggression, and optical and electrophysiological recordings have revealed how socially relevant information (e.g. sex-specific sensory signals, action commands for specific behaviors, mating- and aggression-specific motivational states) is encoded in these circuits. A better understanding of the neural mechanisms of innate social behaviors will provide critical insights to how complex behavioral outputs are coordinated at the circuit level. In this paper, I review these recent studies and discuss the potential circuit logic of male sexual and aggressive behaviors in mice.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
14
|
Gulevich RG, Shikhevich SG, Konoshenko MY, Kozhemyakina RV. Intermale Interactions on Neutral
Territory and Subsequent Dynamics of Blood Corticosterone and Testosterone
Levels in Tame and Aggressive Norway Rats (Rattus
norvegicus). J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Wei D, Talwar V, Lin D. Neural circuits of social behaviors: Innate yet flexible. Neuron 2021; 109:1600-1620. [PMID: 33705708 DOI: 10.1016/j.neuron.2021.02.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Social behaviors, such as mating, fighting, and parenting, are fundamental for survival of any vertebrate species. All members of a species express social behaviors in a stereotypical and species-specific way without training because of developmentally hardwired neural circuits dedicated to these behaviors. Despite being innate, social behaviors are flexible. The readiness to interact with a social target or engage in specific social acts can vary widely based on reproductive state, social experience, and many other internal and external factors. Such high flexibility gives vertebrates the ability to release the relevant behavior at the right moment and toward the right target. This maximizes reproductive success while minimizing the cost and risk associated with behavioral expression. Decades of research have revealed the basic neural circuits underlying each innate social behavior. The neural mechanisms that support behavioral plasticity have also started to emerge. Here we provide an overview of these social behaviors and their underlying neural circuits and then discuss in detail recent findings regarding the neural processes that support the flexibility of innate social behaviors.
Collapse
Affiliation(s)
- Dongyu Wei
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Vaishali Talwar
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
16
|
Bouchatta O, Chaibi I, Baba AA, Ba-M'Hamed S, Bennis M. The effects of Topiramate on isolation-induced aggression: a behavioral and immunohistochemical study in mice. Psychopharmacology (Berl) 2020; 237:2451-2467. [PMID: 32430516 DOI: 10.1007/s00213-020-05546-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Topiramate, an antiepileptic drug, has been found to be useful for the treatment of aggression in clinical populations. Most preclinical studies related to Topiramate have been focused exclusively on the quantitative aspects of the aggressive behavior between mice. However, there is still limited knowledge regarding the effects of Topiramate on neuronal mechanisms occurring in aggressive mice. The present work aims to understand further the effects of the antiepileptic drug Topiramate on aggressive behaviors, and on the neural correlates underlying such behaviors. To achieve this, we combined the resident-intruder model of isolation-induced aggression in mice with two drug regimens of Topiramate administration (30.0 mg/kg; acute and sub-chronic treatments). Our data showed that both acute and subchronic treatments decreased the intensity of agonistic encounters and reinforced social behavior. By using C-fos immunoreactivity, we investigated the neuronal activation of several brain regions involved in aggressive behavior following subchronic treatment. We found that Topiramate produced activation in several cortical areas and in the lateral septum of resident brain mice compared with their controls. However, Topiramate induced inhibition in the medial nucleus of the amygdala, the dorsomedial nucleus of the periaqueductal gray, and especially in the anterior hypothalamic nucleus. Finally, we performed microinfusion of Topiramate (0.1 and 0.3 mM) into the lateral septum and anterior hypothalamus on offensive behaviors in isolation-induced-aggression paradigm. Interestingly, the microinfusion of Topiramate into the lateral septum has the capacity to alleviate aggressive behavior, without affecting social behavior. However, the microinfusion of Topiramate into the anterior hypothalamus decreased aggressive behavior and slightly reinforced social behavior. Our observations supported that the dose of 0.1 mM of Topiramate appeared more efficacy to treat aggression in adult mice. These pharmacological characteristics may account for Topiramate efficacy on aggressive symptoms in psychiatric patients.
Collapse
Affiliation(s)
- Otmane Bouchatta
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Ilias Chaibi
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Abdelfatah Ait Baba
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Saadia Ba-M'Hamed
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco.
| |
Collapse
|
17
|
Lopes PC, König B. Wild mice with different social network sizes vary in brain gene expression. BMC Genomics 2020; 21:506. [PMID: 32698762 PMCID: PMC7374831 DOI: 10.1186/s12864-020-06911-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Appropriate social interactions influence animal fitness by impacting several processes, such as mating, territory defense, and offspring care. Many studies shedding light on the neurobiological underpinnings of social behavior have focused on nonapeptides (vasopressin, oxytocin, and homologues) and on sexual or parent-offspring interactions. Furthermore, animals have been studied under artificial laboratory conditions, where the consequences of behavioral responses may not be as critical as when expressed under natural environments, therefore obscuring certain physiological responses. We used automated recording of social interactions of wild house mice outside of the breeding season to detect individuals at both tails of a distribution of egocentric network sizes (characterized by number of different partners encountered per day). We then used RNA-seq to perform an unbiased assessment of neural differences in gene expression in the prefrontal cortex, the hippocampus and the hypothalamus between these mice with naturally occurring extreme differences in social network size. Results We found that the neurogenomic pathways associated with having extreme social network sizes differed between the sexes. In females, hundreds of genes were differentially expressed between animals with small and large social network sizes, whereas in males very few were. In males, X-chromosome inactivation pathways in the prefrontal cortex were the ones that better differentiated animals with small from those with large social network sizes animals. In females, animals with small network size showed up-regulation of dopaminergic production and transport pathways in the hypothalamus. Additionally, in females, extracellular matrix deposition on hippocampal neurons was higher in individuals with small relative to large social network size. Conclusions Studying neural substrates of natural variation in social behavior in traditional model organisms in their habitat can open new targets of research for understanding variation in social behavior in other taxa.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
18
|
Awathale SN, Dudhbhate BB, Rahangdale RR, Borkar CD, Subhedar NK, Kokare DM. Denial of food to the hungry rat: A novel paradigm for induction and evaluation of anger-like emotion. J Neurosci Methods 2020; 341:108791. [DOI: 10.1016/j.jneumeth.2020.108791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 11/28/2022]
|
19
|
Almeida O, Félix AS, Oliveira GA, Lopes JS, Oliveira RF. Fighting Assessment Triggers Rapid Changes in Activity of the Brain Social Decision-Making Network of Cichlid Fish. Front Behav Neurosci 2019; 13:229. [PMID: 31616264 PMCID: PMC6775253 DOI: 10.3389/fnbeh.2019.00229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Social living animals have to adjust their behavior to rapid changes in the social environment. It has been hypothesized that the expression of social behavior is better explained by the activity pattern of a diffuse social decision-making network (SDMN) in the brain than by the activity of a single brain region. In this study, we tested the hypothesis that it is the assessment that individuals make of the outcome of the fights, rather than the expression of aggressive behavior per se, that triggers changes in the pattern of activation of the SDMN which are reflected in socially driven behavioral profiles (e.g., dominant vs. subordinate specific behaviors). For this purpose, we manipulated the perception of the outcome of an agonistic interaction in an African cichlid fish (Oreochromis mossambicus) and assessed if either the perception of outcome or fighting by itself was sufficient to trigger rapid changes in the activity of the SDMN. We have used the expression of immediate early genes (c-fos and egr-1) as a proxy to measure the neuronal activity in the brain. Fish fought their own image on a mirror for 15 min after which they were allocated to one of three conditions for the two last minutes of the trial: (1) they remained fighting the mirror image (no outcome treatment); (2) the mirror was lifted and a dominant male that had just won a fight was presented behind a transparent partition (perception of defeat treatment); and (3) the mirror was lifted and a subordinate male that had just lost a fight was presented behind a transparent partition (perception of victory treatment). Results show that these short-term social interactions elicit distinct patterns in the SDMN and that the perception of the outcome was not a necessary condition to trigger a SDMN response as evidenced in the second treatment (perception of defeat treatment). We suggest that the mutual assessment of relative fighting behavior drives these acute changes in the state of the SDMN.
Collapse
Affiliation(s)
- Olinda Almeida
- ISPA-Instituto Universitário, University Institute of Psychological, Social and Life Sciences, Lisbon, Portugal
| | - Ana S Félix
- ISPA-Instituto Universitário, University Institute of Psychological, Social and Life Sciences, Lisbon, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Gonçalo A Oliveira
- ISPA-Instituto Universitário, University Institute of Psychological, Social and Life Sciences, Lisbon, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - João S Lopes
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rui F Oliveira
- ISPA-Instituto Universitário, University Institute of Psychological, Social and Life Sciences, Lisbon, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
20
|
Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 2019; 12:dmm039446. [PMID: 31413047 PMCID: PMC6737945 DOI: 10.1242/dmm.039446] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
Gouveia FV, Hamani C, Fonoff ET, Brentani H, Alho EJL, de Morais RMCB, de Souza AL, Rigonatti SP, Martinez RCR. Amygdala and Hypothalamus: Historical Overview With Focus on Aggression. Neurosurgery 2019; 85:11-30. [PMID: 30690521 PMCID: PMC6565484 DOI: 10.1093/neuros/nyy635] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
Aggressiveness has a high prevalence in psychiatric patients and is a major health problem. Two brain areas involved in the neural network of aggressive behavior are the amygdala and the hypothalamus. While pharmacological treatments are effective in most patients, some do not properly respond to conventional therapies and are considered medically refractory. In this population, surgical procedures (ie, stereotactic lesions and deep brain stimulation) have been performed in an attempt to improve symptomatology and quality of life. Clinical results obtained after surgery are difficult to interpret, and the mechanisms responsible for postoperative reductions in aggressive behavior are unknown. We review the rationale and neurobiological characteristics that may help to explain why functional neurosurgery has been proposed to control aggressive behavior.
Collapse
Affiliation(s)
| | - Clement Hamani
- Department of Neurology, Division of Functional Neurosurgery of the Institute of Psychiatry, University of Sao Paulo School, Medicine School, Sao Paulo, Brazil
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Erich Talamoni Fonoff
- Department of Neurology, Division of Functional Neurosurgery of the Institute of Psychiatry, University of Sao Paulo School, Medicine School, Sao Paulo, Brazil
| | - Helena Brentani
- Department of Psychiatry, University of Sao Paulo, Medical School, Sao Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, Sao Paulo, Brazil
| | - Eduardo Joaquim Lopes Alho
- Department of Neurology, Division of Functional Neurosurgery of the Institute of Psychiatry, University of Sao Paulo School, Medicine School, Sao Paulo, Brazil
| | | | - Aline Luz de Souza
- Department of Neurology, Division of Functional Neurosurgery of the Institute of Psychiatry, University of Sao Paulo School, Medicine School, Sao Paulo, Brazil
| | | | | |
Collapse
|
22
|
Covington HE, Newman EL, Leonard MZ, Miczek KA. Translational models of adaptive and excessive fighting: an emerging role for neural circuits in pathological aggression. F1000Res 2019; 8:F1000 Faculty Rev-963. [PMID: 31281636 PMCID: PMC6593325 DOI: 10.12688/f1000research.18883.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
Aggression is a phylogenetically stable behavior, and attacks on conspecifics are observed in most animal species. In this review, we discuss translational models as they relate to pathological forms of offensive aggression and the brain mechanisms that underlie these behaviors. Quantifiable escalations in attack or the development of an atypical sequence of attacks and threats is useful for characterizing abnormal variations in aggression across species. Aggression that serves as a reinforcer can be excessive, and certain schedules of reinforcement that allow aggression rewards also allow for examining brain and behavior during the anticipation of a fight. Ethological attempts to capture and measure offensive aggression point to two prominent hypotheses for the neural basis of violence. First, pathological aggression may be due to an exaggeration of activity in subcortical circuits that mediate adaptive aggressive behaviors as they are triggered by environmental or endogenous cues at vulnerable time points. Indeed, repeated fighting experiences occur with plasticity in brain areas once considered hardwired. Alternatively, a separate "violence network" may converge on aggression circuitry that disinhibits pathological aggression (for example, via disrupted cortical inhibition). Advancing animal models that capture the motivation to commit pathological aggression remains important to fully distinguish the neural architecture of violence as it differs from adaptive competition among conspecifics.
Collapse
Affiliation(s)
- Herbert E. Covington
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
| | - Emily L. Newman
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
| | - Michael Z. Leonard
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
| | - Klaus A. Miczek
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
- Department of Neuroscience, Tufts University, Boston, 136 Harrison Ave, 02111, MA, USA
| |
Collapse
|
23
|
Kneer J, Borchardt V, Kärgel C, Sinke C, Massau C, Tenbergen G, Ponseti J, Walter H, Beier KM, Schiffer B, Schiltz K, Walter M, Kruger THC. Diminished fronto-limbic functional connectivity in child sexual offenders. J Psychiatr Res 2019. [PMID: 29530321 DOI: 10.1016/j.jpsychires.2018.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Child sexual abuse and neglect have been related to an increased risk for the development of a wide range of behavioral, psychological, and sexual problems and increased rates of suicidal behavior. Contrary to the large amount of research focusing on the negative mental health consequences of child sexual abuse, very little is known about the characteristics of child sexual offenders and the neuronal underpinnings contributing to child sexual offending. METHODS AND SAMPLE This study investigates differences in resting state functional connectivity (rs-FC) between non-pedophilic child sexual offenders (N = 20; CSO-P) and matched healthy controls (N = 20; HC) using a seed-based approach. The focus of this investigation of rs-FC in CSO-P was put on prefrontal and limbic regions highly relevant for emotional and behavioral processing. RESULTS Results revealed a significant reduction of rs-FC between the right centromedial amygdala and the left dorsolateral prefrontal cortex in child sexual offenders compared to controls. CONCLUSION & RECOMMENDATIONS Given that, in the healthy brain, there is a strong top-down inhibitory control of prefrontal over limbic structures, these results suggest that diminished rs-FC between the amygdala and the dorsolateral prefrontal cortex and may foster sexual deviance and sexual offending. A profound understanding of these concepts should contribute to a better understanding of the occurrence of child sexual offending, as well as further development of more differentiated and effective interventions.
Collapse
Affiliation(s)
- Jonas Kneer
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg Strasse 1, D-30625 Hannover, Germany
| | - Viola Borchardt
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany; Leibniz Institute for Neurobiology, Department of Behavioral Neurology, Magdeburg, Germany
| | - Christian Kärgel
- LWL-University Hospital Bochum, Division of Forensic Psychiatry, Alexandrinenstr. 1-3, 44791 Bochum, Germany
| | - Christopher Sinke
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg Strasse 1, D-30625 Hannover, Germany
| | - Claudia Massau
- LWL-University Hospital Bochum, Division of Forensic Psychiatry, Alexandrinenstr. 1-3, 44791 Bochum, Germany
| | - Gilian Tenbergen
- Department of Psychology, SUNY College at Oswego, Oswego, NY, USA
| | - Jorge Ponseti
- Institute of Sexual Medicine and Forensic Psychiatry and Psychotherapy, Kiel University, Medical School, Kiel, Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Klaus M Beier
- Institute of Sexology and Sexual Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Boris Schiffer
- LWL-University Hospital Bochum, Division of Forensic Psychiatry, Alexandrinenstr. 1-3, 44791 Bochum, Germany
| | - Kolja Schiltz
- Department of Forensic Psychiatry, Psychiatric Hospital of the Ludwig-Maximilians-University, München, Germany; (j)Otto-von-Guericke-University Magdeburg, Department of Psychiatry, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry University of Tübingen Osianderstr. 24, 72076 Tübingen, Germany
| | - Tillmann H C Kruger
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg Strasse 1, D-30625 Hannover, Germany
| |
Collapse
|
24
|
A time to fight: Circadian control of aggression and associated autonomic support. Auton Neurosci 2018; 217:35-40. [PMID: 30704973 DOI: 10.1016/j.autneu.2018.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
The central circadian clock, located in the suprachiasmatic nucleus of the mammalian hypothalamus (SCN), regulates daily behavioral rhythms including the temporal propensity for aggressive behavior. Such aggression propensity rhythms are regulated by a functional circuit from the SCN to neurons that drive attack behavior in the ventromedial hypothalamus (VMH), via a relay in the subparaventricular zone (SPZ). In addition to this pathway, the SCN also regulates sleep-wake and locomotor activity rhythms, via the SPZ, in a circuit to the dorsomedial hypothalamus (DMH), a structure that is also known to play a key role in autonomic function and the sympathetic "fight-or-flight" response (which prepares the body for action in stressful situations such as an agonistic encounter). While the autonomic nervous system is known to be under pronounced circadian control, it is less apparent how such autonomic rhythms and their underlying circuitry may support the temporal propensity for aggressive behavior. Additionally, it is unclear how circadian and autonomic dysfunction may contribute to aberrant social and emotional behavior, such as agitation and aggression. Here we review the literature concerning interactions between the circadian and autonomic systems and aggression, and we discuss the implications of these relationships for human neural and behavioral pathologies.
Collapse
|
25
|
The Neural Mechanisms of Sexually Dimorphic Aggressive Behaviors. Trends Genet 2018; 34:755-776. [PMID: 30173869 DOI: 10.1016/j.tig.2018.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Aggression is a fundamental social behavior that is essential for competing for resources and protecting oneself and families in both males and females. As a result of natural selection, aggression is often displayed differentially between the sexes, typically at a higher level in males than females. Here, we highlight the behavioral differences between male and female aggression in rodents. We further outline the aggression circuits in males and females, and compare their differences at each circuit node. Lastly, we summarize our current understanding regarding the generation of sexually dimorphic aggression circuits during development and their maintenance during adulthood. In both cases, gonadal steroid hormones appear to play crucial roles in differentiating the circuits by impacting on the survival, morphology, and intrinsic properties of relevant cells. Many other factors, such as environment and experience, may also contribute to sex differences in aggression and remain to be investigated in future studies.
Collapse
|
26
|
Functions of medial hypothalamic and mesolimbic dopamine circuitries in aggression. Curr Opin Behav Sci 2018; 24:104-112. [PMID: 30746430 DOI: 10.1016/j.cobeha.2018.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aggression is a crucial survival behavior: it is employed to defend territory, compete for food and mating opportunities, protect kin, and resolve disputes. Although widely differing in its behavioral expression, aggression is observed across many species. The neural substrates of aggression have been investigated for nearly a century and two highly conserved circuitries emerge as critical substrates for generating and modulating aggression. One circuitry centers on the medial hypothalamus. Activity of the medial hypothalamic cells closely correlates with attacks and can bi-directionally modulate aggressive behaviors. The other aggression-related circuit involves the mesolimbic dopamine cells. Dopaminergic antagonists are the most commonly used treatment for suppressing human aggression in psychotic patients. Animal studies support essential roles of dopaminergic signaling in the nucleus accumbens in assessing the reward value of aggression and reinforcing the aggressive behaviors. In this review, we will provide an overview regarding the functions of medial hypothalamus and dopaminergic system in mediating aggressive behaviors and the potential interactions between these two circuitries.
Collapse
|
27
|
White SF, Thornton LC, Leshin J, Clanton R, Sinclair S, Coker-Appiah D, Meffert H, Hwang S, Blair JR. Looming Threats and Animacy: Reduced Responsiveness in Youth with Disrupted Behavior Disorders. JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2018; 46:741-754. [PMID: 28776147 PMCID: PMC5809317 DOI: 10.1007/s10802-017-0335-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Theoretical models have implicated amygdala dysfunction in the development of Disruptive Behavior Disorders (DBDs; Conduct Disorder/Oppositional Defiant Disorder). Amygdala dysfunction impacts valence evaluation/response selection and emotion attention in youth with DBDs, particularly in those with elevated callous-unemotional (CU) traits. However, amygdala responsiveness during social cognition and the responsiveness of the acute threat circuitry (amygdala/periaqueductal gray) in youth with DBDs have been less well-examined, particularly with reference to CU traits. 31 youth with DBDs and 27 typically developing youth (IQ, age and gender-matched) completed a threat paradigm during fMRI where animate and inanimate, threatening and neutral stimuli appeared to loom towards or recede from participants. Reduced responsiveness to threat variables, including visual threats and encroaching stimuli, was observed within acute threat circuitry and temporal, lateral frontal and parietal cortices in youth with DBDs. This reduced responsiveness, at least with respect to the looming variable, was modulated by CU traits. Reduced responsiveness to animacy information was also observed within temporal, lateral frontal and parietal cortices, but not within amygdala. Reduced responsiveness to animacy information as a function of CU traits was observed in PCC, though not within the amygdala. Reduced threat responsiveness may contribute to risk taking and impulsivity in youth with DBDs, particularly those with high levels of CU traits. Future work will need to examine the degree to which this reduced response to animacy is independent of amygdala dysfunction in youth with DBDs and what role PCC might play in the dysfunctional social cognition observed in youth with high levels of CU traits.
Collapse
Affiliation(s)
- Stuart F White
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Omaha, NE, USA.
- Section on Affective Cognitive Neuroscience, NIMH, Bethesda, MD, USA.
| | - Laura C Thornton
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Omaha, NE, USA
| | - Joseph Leshin
- Section on Affective Cognitive Neuroscience, NIMH, Bethesda, MD, USA
| | - Roberta Clanton
- Department of Psychology, University of Birmingham, Birmingham, UK
| | - Stephen Sinclair
- Section on Affective Cognitive Neuroscience, NIMH, Bethesda, MD, USA
| | - Dionne Coker-Appiah
- Department of Psychiatry, Georgetown University School of Medicine, Washington, DC, USA
| | - Harma Meffert
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Omaha, NE, USA
- Section on Affective Cognitive Neuroscience, NIMH, Bethesda, MD, USA
| | - Soonjo Hwang
- Section on Affective Cognitive Neuroscience, NIMH, Bethesda, MD, USA
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, USA
| | - James R Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Omaha, NE, USA
- Section on Affective Cognitive Neuroscience, NIMH, Bethesda, MD, USA
| |
Collapse
|
28
|
Task Division within the Prefrontal Cortex: Distinct Neuron Populations Selectively Control Different Aspects of Aggressive Behavior via the Hypothalamus. J Neurosci 2018; 38:4065-4075. [PMID: 29487128 DOI: 10.1523/jneurosci.3234-17.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/09/2018] [Accepted: 02/17/2018] [Indexed: 01/18/2023] Open
Abstract
An important question in behavioral neurobiology is how particular neuron populations and pathways mediate the overall roles of brain structures. Here we investigated this issue by studying the medial prefrontal cortex (mPFC), an established locus of inhibitory control of aggression. We established in male rats that dominantly distinct mPFC neuron populations project to and produce dense fiber networks with glutamate release sites in the mediobasal hypothalamus (MBH) and lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Optogenetic stimulation of mPFC terminals in MBH distinctively increased bite counts in resident/intruder conflicts, whereas the stimulation of similar terminals in LH specifically resulted in violent bites. No other behaviors were affected by stimulations. These findings show that the mPFC controls aggressiveness by behaviorally dedicated neuron populations and pathways, the roles of which may be opposite to those observed in experiments where the role of the whole mPFC (or of its major parts) has been investigated. Overall, our findings suggest that the mPFC organizes into working units that fulfill specific aspects of its wide-ranging roles.SIGNIFICANCE STATEMENT Aggression control is associated with many cognitive and emotional aspects processed by the prefrontal cortex (PFC). However, how the prefrontal cortex influences quantitative and qualitative aspects of aggressive behavior remains unclear. We demonstrated that dominantly distinct PFC neuron populations project to the mediobasal hypothalamus (MBH) and the lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Stimulation of mPFC fibers in MBH distinctively increased bite counts during fighting, whereas stimulation of similar terminals in LH specifically resulted in violent bites. Overall, our results suggest a direct prefrontal control over the hypothalamus, which is involved in the modulation of quantitative and qualitative aspects of aggressive behavior through distinct prefrontohypothalamic projections.
Collapse
|
29
|
Hood S, Amir S. Biological Clocks and Rhythms of Anger and Aggression. Front Behav Neurosci 2018; 12:4. [PMID: 29410618 PMCID: PMC5787107 DOI: 10.3389/fnbeh.2018.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
The body’s internal timekeeping system is an under-recognized but highly influential force in behaviors and emotions including anger and reactive aggression. Predictable cycles or rhythms in behavior are expressed on several different time scales such as circadian (circa diem, or approximately 24-h rhythms) and infradian (exceeding 24 h, such as monthly or seasonal cycles). The circadian timekeeping system underlying rhythmic behaviors in mammals is constituted by a network of clocks distributed throughout the brain and body, the activity of which synchronizes to a central pacemaker, or master clock. Our daily experiences with the external environment including social activity strongly influence the exact timing of this network. In the present review, we examine evidence from a number of species and propose that anger and reactive aggression interact in multiple ways with circadian clocks. Specifically, we argue that: (i) there are predictable rhythms in the expression of aggression and anger; (ii) disruptions of the normal functioning of the circadian system increase the likelihood of aggressive behaviors; and (iii) conversely, chronic expression of anger can disrupt normal rhythmic cycles of physiological activities and create conditions for pathologies such as cardiovascular disease to develop. Taken together, these observations suggest that a comprehensive perspective on anger and reactive aggression must incorporate an understanding of the role of the circadian timing system in these intense affective states.
Collapse
Affiliation(s)
- Suzanne Hood
- Department of Psychology, Bishop's University, Sherbrooke, QC, Canada
| | - Shimon Amir
- Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
30
|
Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, Sabol A, Piper WT, Lee H, Rudy B, Lin D. Esr1 + cells in the ventromedial hypothalamus control female aggression. Nat Neurosci 2017; 20:1580-1590. [PMID: 28920934 PMCID: PMC5953764 DOI: 10.1038/nn.4644] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
As an essential means of resolving conflicts, aggression is expressed by both sexes but often at a higher level in males than in females. Recent studies suggest that cells in the ventrolateral part of the ventromedial hypothalamus (VMHvl) that express estrogen receptor-α (Esr1) and progesterone receptor are essential for male but not female mouse aggression. In contrast, here we show that VMHvlEsr1+ cells are indispensable for female aggression. This population was active when females attacked naturally. Inactivation of these cells reduced female aggression whereas their activation elicited attack. Additionally, we found that female VMHvl contains two anatomically distinguishable subdivisions that showed differential gene expression, projection and activation patterns after mating and fighting. These results support an essential role of the VMHvl in both male and female aggression and reveal the existence of two previously unappreciated subdivisions in the female VMHvl that are involved in distinct social behaviors.
Collapse
Affiliation(s)
- Koichi Hashikawa
- Neuroscience Institute, New York University School of Medicine, New York, New York, USA
| | - Yoshiko Hashikawa
- Neuroscience Institute, New York University School of Medicine, New York, New York, USA
| | - Robin Tremblay
- Neuroscience Institute, New York University School of Medicine, New York, New York, USA
| | - Jiaxing Zhang
- Department of Physiology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - James E Feng
- Neuroscience Institute, New York University School of Medicine, New York, New York, USA
| | - Alexander Sabol
- Neuroscience Institute, New York University School of Medicine, New York, New York, USA
| | - Walter T Piper
- Center for Neural Science, New York University, New York, New York, USA
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - Bernardo Rudy
- Neuroscience Institute, New York University School of Medicine, New York, New York, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, New York, USA
- Center for Neural Science, New York University, New York, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
- Emotional Brain Institute, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
31
|
Avoidant Responses to Interpersonal Provocation Are Associated with Increased Amygdala and Decreased Mentalizing Network Activity. eNeuro 2017; 4:eN-NWR-0337-16. [PMID: 28660251 PMCID: PMC5485378 DOI: 10.1523/eneuro.0337-16.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/19/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
When intentionally pushed or insulted, one can either flee from the provoker or retaliate. The implementation of such fight-or-flight decisions is a central aspect in the genesis and evolution of aggression episodes, yet it is usually investigated only indirectly or in nonsocial situations. In the present fMRI study, we aimed to distinguish brain regions associated with aggressive and avoidant responses to interpersonal provocation in humans. Participants (thirty-six healthy young women) could either avoid or face a highly (HP) and a lowly (LP) provoking opponent in a competitive reaction time task: the fight-or-escape (FOE) paradigm. Subjects avoided the HP more often, but retaliated when facing her. Moreover, they chose to fight the HP more quickly, and showed increased heart rate (HR) right before confronting her. Orbitofrontal cortex (OFC) and sensorimotor cortex were more active when participants decided to fight, whereas the mentalizing network was engaged when deciding to avoid. Importantly, avoiding the HP relative to the LP was associated with both higher activation in the right basolateral amygdala and lower relative activity in several mentalizing regions [e.g., medial and inferior frontal gyrus (IFG), temporal-parietal junction (TPJ)]. These results suggest that avoidant responses to provocation might result from heightened threat anticipation and are associated with reduced perspective taking. Furthermore, our study helps to reconcile conflicting findings on the role of the mentalizing network, the amygdala, and the OFC in aggression.
Collapse
|
32
|
Walker DM, Gore AC. Epigenetic impacts of endocrine disruptors in the brain. Front Neuroendocrinol 2017; 44:1-26. [PMID: 27663243 PMCID: PMC5429819 DOI: 10.1016/j.yfrne.2016.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
The acquisition of reproductive competence is organized and activated by steroid hormones acting upon the hypothalamus during critical windows of development. This review describes the potential role of epigenetic processes, particularly DNA methylation, in the regulation of sexual differentiation of the hypothalamus by hormones. We examine disruption of these processes by endocrine-disrupting chemicals (EDCs) in an age-, sex-, and region-specific manner, focusing on how perinatal EDCs act through epigenetic mechanisms to reprogram DNA methylation and sex steroid hormone receptor expression throughout life. These receptors are necessary for brain sexual differentiation and their altered expression may underlie disrupted reproductive physiology and behavior. Finally, we review the literature on histone modifications and non-coding RNA involvement in brain sexual differentiation and their perturbation by EDCs. By putting these data into a sex and developmental context we conclude that perinatal EDC exposure alters the developmental trajectory of reproductive neuroendocrine systems in a sex-specific manner.
Collapse
Affiliation(s)
- Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, and The University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
33
|
Anderson DJ. Circuit modules linking internal states and social behaviour in flies and mice. Nat Rev Neurosci 2016; 17:692-704. [DOI: 10.1038/nrn.2016.125] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Hunger-Driven Motivational State Competition. Neuron 2016; 92:187-201. [PMID: 27693254 DOI: 10.1016/j.neuron.2016.08.032] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/12/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
Abstract
Behavioral choice is ubiquitous in the animal kingdom and is central to goal-oriented behavior. Hypothalamic Agouti-related peptide (AgRP) neurons are critical regulators of appetite. Hungry animals, bombarded by multiple sensory stimuli, are known to modify their behavior during times of caloric need, rapidly adapting to a consistently changing environment. Utilizing ARCAgRP neurons as an entry point, we analyzed the hierarchical position of hunger related to rival drive states. Employing a battery of behavioral assays, we found that hunger significantly increases its capacity to suppress competing motivational systems, such as thirst, anxiety-related behavior, innate fear, and social interactions, often only when food is accessible. Furthermore, real-time monitoring of ARCAgRP activity revealed time-locked responses to conspecific investigation in addition to food presentation, further establishing that, even at the level of ARCAgRP neurons, choices are remarkably flexible computations, integrating internal state, external factors, and anticipated yield. VIDEO ABSTRACT.
Collapse
|
35
|
Maruska KP, Butler JM, Field KE, Porter DT. Localization of glutamatergic, GABAergic, and cholinergic neurons in the brain of the African cichlid fish, Astatotilapia burtoni. J Comp Neurol 2016; 525:610-638. [PMID: 27507772 DOI: 10.1002/cne.24092] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 01/17/2023]
Abstract
Neural communication depends on release and reception of different neurotransmitters within complex circuits that ultimately mediate basic biological functions. We mapped the distribution of glutamatergic, GABAergic, and cholinergic neurons in the brain of the African cichlid fish Astatotilapia burtoni using in situ hybridization to label vesicular glutamate transporters (vglut1, vglut2.1, vglut3), glutamate decarboxylases (gad1, gad2), and choline acetyltransferase (chat). Cells expressing the glutamatergic markers vgluts 1-3 show primarily nonoverlapping distribution patterns, with the most widespread expression observed for vglut2.1, and more restricted expression of vglut1 and vglut3. vglut1 is prominent in granular layers of the cerebellum, habenula, preglomerular nuclei, and several other diencephalic, mesencephalic, and rhombencephalic regions. vglut2.1 is widely expressed in many nuclei from the olfactory bulbs to the hindbrain, while vglut3 is restricted to the hypothalamus and hindbrain. GABAergic cells show largely overlapping gad1 and gad2 expression in most brain regions. GABAergic expression dominates nuclei of the subpallial ventral telencephalon, while glutamatergic expression dominates nuclei of the pallial dorsal telencephalon. chat-expressing cells are prominent in motor cranial nerve nuclei, and some scattered cells lie in the preoptic area and ventral part of the ventral telencephalon. A localization summary of these markers within regions of the conserved social decision-making network reveals a predominance of either GABAergic or glutamatergic cells within individual nuclei. The neurotransmitter distributions described here in the brain of a single fish species provide an important resource for identification of brain nuclei in other fishes, as well as future comparative studies on circuit organization and function. J. Comp. Neurol. 525:610-638, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Julie M Butler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Karen E Field
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Danielle T Porter
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
36
|
Sokolowski K, Tran T, Esumi S, Kamal Y, Oboti L, Lischinsky J, Goodrich M, Lam A, Carter M, Nakagawa Y, Corbin JG. Molecular and behavioral profiling of Dbx1-derived neurons in the arcuate, lateral and ventromedial hypothalamic nuclei. Neural Dev 2016; 11:12. [PMID: 27209204 PMCID: PMC4875659 DOI: 10.1186/s13064-016-0067-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurons in the hypothalamus function to regulate the state of the animal during both learned and innate behaviors, and alterations in hypothalamic development may contribute to pathological conditions such as anxiety, depression or obesity. Despite many studies of hypothalamic development and function, the link between embryonic development and innate behaviors remains unexplored. Here, focusing on the embryonically expressed homeodomain-containing gene Developing Brain Homeobox 1 (Dbx1), we explored the relationship between embryonic lineage, post-natal neuronal identity and lineage-specific responses to innate cues. We found that Dbx1 is widely expressed across multiple developing hypothalamic subdomains. Using standard and inducible fate-mapping to trace the Dbx1-derived neurons, we identified their contribution to specific neuronal subtypes across hypothalamic nuclei and further mapped their activation patterns in response to a series of well-defined innate behaviors. RESULTS Dbx1-derived neurons occupy multiple postnatal hypothalamic nuclei including the lateral hypothalamus (LH), arcuate nucleus (Arc) and the ventral medial hypothalamus (VMH). Within these nuclei, Dbx1 (+) progenitors generate a large proportion of the Pmch-, Nesfatin-, Cart-, Hcrt-, Agrp- and ERα-expressing neuronal populations, and to a lesser extent the Pomc-, TH- and Aromatase-expressing populations. Inducible fate-mapping reveals distinct temporal windows for development of the Dbx1-derived LH and Arc populations, with Agrp(+) and Cart(+) populations in the Arc arising early (E7.5-E9.5), while Pmch(+) and Hcrt(+) populations in the LH derived from progenitors expressing Dbx1 later (E9.5-E11.5). Moreover, as revealed by c-Fos labeling, Dbx1-derived cells in male and female LH, Arc and VMH are responsive during mating and aggression. In contrast, Dbx1-lineage cells in the Arc and LH have a broader behavioral tuning, which includes responding to fasting and predator odor cues. CONCLUSION We define a novel fate map of the hypothalamus with respect to Dbx1 expression in hypothalamic progenitor zones. We demonstrate that in a temporally regulated manner, Dbx1-derived neurons contribute to molecularly distinct neuronal populations in the LH, Arc and VMH that have been implicated in a variety of hypothalamic-driven behaviors. Consistent with this, Dbx1-derived neurons in the LH, Arc and VMH are activated during stress and other innate behavioral responses, implicating their involvement in these diverse behaviors.
Collapse
Affiliation(s)
- Katie Sokolowski
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, 20010, DC, USA
| | - Tuyen Tran
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, 20010, DC, USA
| | - Shigeyuki Esumi
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, 20010, DC, USA
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yasmin Kamal
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, 20010, DC, USA
| | - Livio Oboti
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, 20010, DC, USA
| | - Julieta Lischinsky
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, 20010, DC, USA
- Institute for Biomedical Sciences, The George Washington University, Washington, 20037, DC, USA
| | - Meredith Goodrich
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, 20010, DC, USA
| | - Andrew Lam
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, 20010, DC, USA
| | - Margaret Carter
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, 20010, DC, USA
| | - Yasushi Nakagawa
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, 55455, MN, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, 20010, DC, USA.
| |
Collapse
|
37
|
Zilkha N, Sofer Y, Beny Y, Kimchi T. From classic ethology to modern neuroethology: overcoming the three biases in social behavior research. Curr Opin Neurobiol 2016; 38:96-108. [PMID: 27179302 DOI: 10.1016/j.conb.2016.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022]
Abstract
A typical current study investigating the neurobiology of animal behavior is likely restricted to male subjects, of standard inbred mouse strains, tested in simple behavioral assays under laboratory conditions. This approach enables the use of advanced molecular tools, alongside standardization and reproducibility, and has led to tremendous discoveries. However, the cost is a loss of genetic and phenotypic diversity and a divergence from ethologically-relevant behaviors. Here we review the pros and cons in behavioral neuroscience studies of the new era, focusing on reproductive behaviors in rodents. Recent advances in molecular technology and behavioral phenotyping in semi-natural conditions, together with an awareness of the critical need to study both sexes, may provide new insights into the neural mechanisms underlying social behaviors.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yamit Beny
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
38
|
Hypothalamic control of male aggression-seeking behavior. Nat Neurosci 2016; 19:596-604. [PMID: 26950005 PMCID: PMC4853470 DOI: 10.1038/nn.4264] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
In many vertebrate species, certain individuals will seek out opportunities for aggression, even in the absence of threat provoking cues. While several brain areas have been implicated in generating attack in response to social threat, little is known about the neural mechanisms that promote self-initiated or “voluntary” aggression seeking when no threat is present. To explore this directly, we utilize an aggression-seeking task wherein male mice can self-initiate aggression trials to gain brief and repeated access to a weaker male that they attack. In males that exhibit rapid task learning, we find that the ventrolateral part of the ventromedial hypothalamus (VMHvl), an area with a known role in attack, is essential for aggression seeking. Using both single unit electrophysiology and population optical recording, we find that VMHvl neurons become active during aggression seeking and their activity tracks changes in task learning and extinction. Inactivation of the VMHvl reduces aggression-seeking behavior, whereas optogenetic stimulation of the VMHvl accelerates moment-to-moment aggression seeking and intensifies future attack. These data demonstrate that the VMHvl can mediate both acute attack and flexible seeking actions that precede attack.
Collapse
|
39
|
Hoopfer ED, Jung Y, Inagaki HK, Rubin GM, Anderson DJ. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. eLife 2015; 4. [PMID: 26714106 PMCID: PMC4749567 DOI: 10.7554/elife.11346] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022] Open
Abstract
How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1 interneurons, previously thought to exclusively control male courtship, were sufficient to promote fighting. Optogenetic experiments indicated that P1 activation could promote aggression at a threshold below that required for wing extension. P1 activation in the absence of wing extension triggered persistent aggression via an internal state that could endure for minutes. High-frequency P1 activation promoted wing extension and suppressed aggression during photostimulation, whereas aggression resumed and wing extension was inhibited following photostimulation offset. Thus, P1 neuron activation promotes a latent, internal state that facilitates aggression and courtship, and controls the overt expression of these social behaviors in a threshold-dependent, inverse manner.
Collapse
Affiliation(s)
- Eric D Hoopfer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Yonil Jung
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Hidehiko K Inagaki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|
40
|
Zha X, Xu X. Dissecting the hypothalamic pathways that underlie innate behaviors. Neurosci Bull 2015; 31:629-48. [PMID: 26552801 PMCID: PMC5563731 DOI: 10.1007/s12264-015-1564-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022] Open
Abstract
Many complex behaviors that do not require learning are displayed and are termed innate. Although traditionally the subject matter of ethology, innate behaviors offer a unique entry point for neuroscientists to dissect the physiological mechanisms governing complex behaviors. Since the last century, converging evidence has implicated the hypothalamus as the central brain area that controls innate behaviors. Recent studies using cutting-edge tools have revealed that genetically-defined populations of neurons residing in distinct hypothalamic nuclei and their associated neural pathways regulate the initiation and maintenance of diverse behaviors including feeding, sleep, aggression, and parental care. Here, we review the newly-defined hypothalamic pathways that regulate each innate behavior. In addition, emerging general principles of the neural control of complex behaviors are discussed.
Collapse
Affiliation(s)
- Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
41
|
|