1
|
Givon L, Edut S, Klavir O. The role of fear and dopamine-striatal pathways in grooming. Neuropharmacology 2025; 269:110323. [PMID: 39880328 DOI: 10.1016/j.neuropharm.2025.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Fear is a fundamental emotion that triggers rapid and automatic behavioral response. Fear is known to suppress reward-seeking behaviors, interrupt previous activities to prioritize defensive responses and lead to rapid switch to defensive reactions. Dopamine (DA) plays a complicated role in the choice and performance of actions and it has a potential interaction of innate actions with the presence of fear. Here, in a series of experiments we explore the role of the different DA striatal pathways in mediating grooming, an innate behavior comprised of a structured sequence of repetitive actions, with or without the presence of fear. Using chemogenetics, we specifically inhibited the DA pathways projecting to the dorsolateral striatum (DLS), dorsomedial striatum (DMS), and ventral striatum (VS), while mice were engaged in a behavioral paradigm inducing grooming during the presentation of a fear related cue. We found that fear related cues consistently reduced grooming proportions and shortened induced grooming bouts, regardless of DA manipulation, indicating prioritization of freezing behavior in fearful contexts. This also suggests that fear responses may be mediated through pathways independent of DA-based action selection. The role of DA, however, varies depending on the specific striatal pathway. Inhibiting DLS DA input delayed grooming initiation and reduced grooming when competing with freezing. In contrast, DMS DA input had no effect on grooming, while inhibition of VS mesolimbic DA input increased grooming proportions and duration. These findings underscore the distinct and sometimes opposing roles of different DA-striatal pathways in modulating innate behaviors. We discuss potential implications of this duality in DA function for both theoretical and clinical fields.
Collapse
Affiliation(s)
- Lior Givon
- School of Psychological Sciences, The University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Shahaf Edut
- School of Psychological Sciences, The University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Oded Klavir
- School of Psychological Sciences, The University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
2
|
Marx H, Krahe TE, Wolmarans DW. Large nesting expression in deer mice remains stable under conditions of visual deprivation despite heightened limbic involvement: Perspectives on compulsive-like behavior. J Neurosci Res 2024; 102:e25320. [PMID: 38509778 DOI: 10.1002/jnr.25320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Visual stimuli and limbic activation varyingly influence obsessive-compulsive symptom expression and so impact treatment outcomes. Some symptom phenotypes, for example, covert repugnant thoughts, are likely less sensitive to sensory stimuli compared to symptoms with an extrinsic focus, that is, symptoms related to contamination, safety, and "just-right-perceptions." Toward an improved understanding of the neurocognitive underpinnings of obsessive-compulsive psychobiology, work in naturalistic animal model systems is useful. Here, we explored the impact of visual feedback and limbic processes on 24 normal (NNB) and large (LNB) nesting deer mice, respectively (as far as possible, equally distributed between sexes). Briefly, after behavioral classification into either the NNB or LNB cohorts, mice of each cohort were separated into two groups each and assessed for nesting expression under either standard light conditions or conditions of complete visual deprivation (VD). Nesting outcomes were assessed in terms of size and neatness. After nesting assessment completion, mice were euthanized, and samples of frontal-cortical and hippocampal tissues were collected to determine serotonin and noradrenaline concentrations. Our results show that LNB, as opposed to NNB, represents an inflexible and excessive behavioral phenotype that is not dependent on visually guided action-outcome processing, and that it associates with increased frontal-cortical and hippocampal noradrenaline concentrations, irrespective of lighting condition. Collectively, the current results are informing of the neurocognitive underpinnings of nesting behavior. It also provides a valuable foundation for continued investigations into the noradrenergic mechanisms that may influence the development and promulgation of excessive, rigid, and inflexible behaviors.
Collapse
Affiliation(s)
- Harry Marx
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Lee IB, Lee E, Han NE, Slavuj M, Hwang JW, Lee A, Sun T, Jeong Y, Baik JH, Park JY, Choi SY, Kwag J, Yoon BJ. Persistent enhancement of basolateral amygdala-dorsomedial striatum synapses causes compulsive-like behaviors in mice. Nat Commun 2024; 15:219. [PMID: 38191518 PMCID: PMC10774417 DOI: 10.1038/s41467-023-44322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Compulsive behaviors are observed in a range of psychiatric disorders, however the neural substrates underlying the behaviors are not clearly defined. Here we show that the basolateral amygdala-dorsomedial striatum (BLA-DMS) circuit activation leads to the manifestation of compulsive-like behaviors. We revealed that the BLA neurons projecting to the DMS, mainly onto dopamine D1 receptor-expressing neurons, largely overlap with the neuronal population that responds to aversive predator stress, a widely used anxiogenic stressor. Specific optogenetic activation of the BLA-DMS circuit induced a strong anxiety response followed by compulsive grooming. Furthermore, we developed a mouse model for compulsivity displaying a wide spectrum of compulsive-like behaviors by chronically activating the BLA-DMS circuit. In these mice, persistent molecular changes at the BLA-DMS synapses observed were causally related to the compulsive-like phenotypes. Together, our study demonstrates the involvement of the BLA-DMS circuit in the emergence of enduring compulsive-like behaviors via its persistent synaptic changes.
Collapse
Affiliation(s)
- In Bum Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Eugene Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Na-Eun Han
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Marko Slavuj
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong Wook Hwang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ahrim Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taeyoung Sun
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yehwan Jeong
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
| | - Jeehyun Kwag
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bong-June Yoon
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Shivakumar AB, Kumari S, Mehak SF, Gangadharan G. Compulsive-like Behaviors in Amyloid-β 1-42-Induced Alzheimer's Disease in Mice Are Associated With Hippocampo-cortical Neural Circuit Dysfunction. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:773-784. [PMID: 37881551 PMCID: PMC10593884 DOI: 10.1016/j.bpsgos.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Background In addition to memory deficits, patients with Alzheimer's disease (AD) experience neuropsychiatric disturbances. Recent studies have suggested the association of obsessive-compulsive disorder with the early stages of AD. However, there is a lack of understanding of the neurobiological underpinnings of compulsive-like behaviors at the neuronal circuit level and their relationship with AD. Methods We have addressed this issue in an amyloid-β 1-42-induced mouse model of AD by studying compulsive-like behaviors. Next, we compared the hippocampal and medial prefrontal cortex (mPFC) local field potential pattern and coherence between these regions of control and AD mice. We also assessed the expression pattern of acetylcholine and glutamatergic signaling in these regions, using quantitative polymerase chain reaction. Results Our findings show that AD mice exhibit compulsive-like behaviors, as evidenced by enhanced marble burying, nest building, and burrowing. Furthermore, AD mice exhibited hippocampo-cortical circuit dysfunction demonstrated by decreased power of rhythmic oscillations at the theta (4-12 Hz) and gamma (25-50 Hz) frequencies in the hippocampus and mPFC, two functionally interconnected brain regions involved both in AD and compulsive behaviors. Importantly, coherence between the hippocampus and mPFC in the theta band of AD animals was significantly reduced. Furthermore, we found reduced cholinergic and glutamatergic neurotransmission in the hippocampus and mPFC of AD mice. Conclusions We conclude that the hippocampo-cortical functional alterations may play a significant role in mediating the compulsive-like behaviors observed in AD mice. These findings may help in understanding the underlying circuit mechanisms of obsessive-compulsive disorder-like phenotypes associated with AD.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sparsha Kumari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Vellucci L, Ciccarelli M, Buonaguro EF, Fornaro M, D’Urso G, De Simone G, Iasevoli F, Barone A, de Bartolomeis A. The Neurobiological Underpinnings of Obsessive-Compulsive Symptoms in Psychosis, Translational Issues for Treatment-Resistant Schizophrenia. Biomolecules 2023; 13:1220. [PMID: 37627285 PMCID: PMC10452784 DOI: 10.3390/biom13081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Almost 25% of schizophrenia patients suffer from obsessive-compulsive symptoms (OCS) considered a transdiagnostic clinical continuum. The presence of symptoms pertaining to both schizophrenia and obsessive-compulsive disorder (OCD) may complicate pharmacological treatment and could contribute to lack or poor response to the therapy. Despite the clinical relevance, no reviews have been recently published on the possible neurobiological underpinnings of this comorbidity, which is still unclear. An integrative view exploring this topic should take into account the following aspects: (i) the implication for glutamate, dopamine, and serotonin neurotransmission as demonstrated by genetic findings; (ii) the growing neuroimaging evidence of the common brain regions and dysfunctional circuits involved in both diseases; (iii) the pharmacological modulation of dopaminergic, serotoninergic, and glutamatergic systems as current therapeutic strategies in schizophrenia OCS; (iv) the recent discovery of midbrain dopamine neurons and dopamine D1- and D2-like receptors as orchestrating hubs in repetitive and psychotic behaviors; (v) the contribution of N-methyl-D-aspartate receptor subunits to both psychosis and OCD neurobiology. Finally, we discuss the potential role of the postsynaptic density as a structural and functional hub for multiple molecular signaling both in schizophrenia and OCD pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
6
|
Petroccione MA, D'Brant LY, Affinnih N, Wehrle PH, Todd GC, Zahid S, Chesbro HE, Tschang IL, Scimemi A. Neuronal glutamate transporters control reciprocal inhibition and gain modulation in D1 medium spiny neurons. eLife 2023; 12:e81830. [PMID: 37435808 PMCID: PMC10411972 DOI: 10.7554/elife.81830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/09/2023] [Indexed: 07/13/2023] Open
Abstract
Understanding the function of glutamate transporters has broad implications for explaining how neurons integrate information and relay it through complex neuronal circuits. Most of what is currently known about glutamate transporters, specifically their ability to maintain glutamate homeostasis and limit glutamate diffusion away from the synaptic cleft, is based on studies of glial glutamate transporters. By contrast, little is known about the functional implications of neuronal glutamate transporters. The neuronal glutamate transporter EAAC1 is widely expressed throughout the brain, particularly in the striatum, the primary input nucleus of the basal ganglia, a region implicated with movement execution and reward. Here, we show that EAAC1 limits synaptic excitation onto a population of striatal medium spiny neurons identified for their expression of D1 dopamine receptors (D1-MSNs). In these cells, EAAC1 also contributes to strengthen lateral inhibition from other D1-MSNs. Together, these effects contribute to reduce the gain of the input-output relationship and increase the offset at increasing levels of synaptic inhibition in D1-MSNs. By reducing the sensitivity and dynamic range of action potential firing in D1-MSNs, EAAC1 limits the propensity of mice to rapidly switch between behaviors associated with different reward probabilities. Together, these findings shed light on some important molecular and cellular mechanisms implicated with behavior flexibility in mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Shergil Zahid
- SUNY Albany, Department of BiologyAlbanyUnited States
| | | | - Ian L Tschang
- SUNY Albany, Department of BiologyAlbanyUnited States
| | | |
Collapse
|
7
|
Pagliaccio D, Wengler K, Durham K, Fontaine M, Rueppel M, Becker H, Bilek E, Pieper S, Risdon C, Horga G, Fitzgerald KD, Marsh R. Probing midbrain dopamine function in pediatric obsessive-compulsive disorder via neuromelanin-sensitive magnetic resonance imaging. Mol Psychiatry 2023; 28:3075-3082. [PMID: 37198261 PMCID: PMC10189717 DOI: 10.1038/s41380-023-02105-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Obsessive-compulsive disorder (OCD) is an impairing psychiatric condition, which often onsets in childhood. Growing research highlights dopaminergic alterations in adult OCD, yet pediatric studies are limited by methodological constraints. This is the first study to utilize neuromelanin-sensitive MRI as a proxy for dopaminergic function among children with OCD. N = 135 youth (6-14-year-olds) completed high-resolution neuromelanin-sensitive MRI across two sites; n = 64 had an OCD diagnosis. N = 47 children with OCD completed a second scan after cognitive-behavioral therapy. Voxel-wise analyses identified that neuromelanin-MRI signal was higher among children with OCD compared to those without (483 voxels, permutation-corrected p = 0.018). Effects were significant within both the substania nigra pars compacta (p = 0.004, Cohen's d = 0.51) and ventral tegmental area (p = 0.006, d = 0.50). Follow-up analyses indicated that more severe lifetime symptoms (t = -2.72, p = 0.009) and longer illness duration (t = -2.22, p = 0.03) related to lower neuromelanin-MRI signal. Despite significant symptom reduction with therapy (p < 0.001, d = 1.44), neither baseline nor change in neuromelanin-MRI signal associated with symptom improvement. Current results provide the first demonstration of the utility of neuromelanin-MRI in pediatric psychiatry, specifically highlighting in vivo evidence for midbrain dopamine alterations in treatment-seeking youth with OCD. Neuromelanin-MRI likely indexes accumulating alterations over time, herein, implicating dopamine hyperactivity in OCD. Given evidence of increased neuromelanin signal in pediatric OCD but negative association with symptom severity, additional work is needed to parse potential longitudinal or compensatory mechanisms. Future studies should explore the utility of neuromelanin-MRI biomarkers to identify early risk prior to onset, parse OCD subtypes or symptom heterogeneity, and explore prediction of pharmacotherapy response.
Collapse
Affiliation(s)
- David Pagliaccio
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| | - Kenneth Wengler
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Katherine Durham
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Martine Fontaine
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Meryl Rueppel
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Hannah Becker
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Emily Bilek
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Pieper
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Caroline Risdon
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Guillermo Horga
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Kate D Fitzgerald
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Rachel Marsh
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
8
|
Hurter B, Gourley SL, Wolmarans DW. Associations between nesting, stereotypy, and working memory in deer mice: response to levetiracetam. Pharmacol Rep 2023; 75:647-656. [PMID: 37055664 PMCID: PMC10227124 DOI: 10.1007/s43440-023-00484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Some deer mice (Peromyscus maniculatus bairdii) exhibit various phenotypes of persistent behaviors. It remains unknown if and how said phenotypes associate with early-life and adult cognitive perturbations, and whether potentially cognitive enhancing drugs might modify such associations. Here, we explored the longitudinal relationship between early-life behavioral flexibility and the expression of persistent behavior in adulthood. We also investigated how said phenotypes might associate with working memory in adulthood, and how this association might respond to chronic exposure to the putative cognitive enhancer, levetiracetam (LEV). METHODS 76 juvenile deer mice were assessed for habit-proneness in the Barnes maze (BM) and divided into two exposure groups (n = 37-39 per group), i.e., control and LEV (75 mg/kg/day). After 56 days of uninterrupted exposure, mice were screened for nesting and stereotypical behavior, and then assessed for working memory in the T-maze. RESULTS Juvenile deer mice overwhelmingly utilize habit-like response strategies, regardless of LNB and HS behavior in adulthood. Further, LNB and HS are unrelated in terms of their expression, while LEV reduces the expression of LNB, but bolsters CR (but not VA). Last, an increased level of control over high stereotypical expression may facilitate improved working memory performance. CONCLUSION LNB, VA and CR, are divergent in terms of their neurocognitive underpinnings. Chronic LEV administration throughout the entire rearing period may be of benefit to some phenotypes, e.g., LNB, but not others (CR). We also show that an increased level of control over the expression of stereotypy may facilitate improved working memory performance.
Collapse
Affiliation(s)
- Bianca Hurter
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry, Emory School of Medicine, Atlanta, USA
- Children's Healthcare of Atlanta, Atlanta, USA
- Emory National Primate Research Center, Emory University, Atlanta, USA
| | - De Wet Wolmarans
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
9
|
Saaiman D, Brand L, de Brouwe G, Janse van Rensburg H, Terre'Blanche G, Legoabe L, Krahe T, Wolmarans D. Striatal adenosine A 2A receptor involvement in normal and large nest building deer mice: perspectives on compulsivity and anxiety. Behav Brain Res 2023; 449:114492. [PMID: 37172739 DOI: 10.1016/j.bbr.2023.114492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Obsessive-compulsive disorder (OCD) is characterized by recurring obsessive thoughts and repetitive behaviors that are often associated with anxiety and perturbations in cortico-striatal signaling. Given the suboptimal response of OCD to current serotonergic interventions, there is a need to better understand the psychobiological mechanisms that may underlie the disorder. In this regard, investigations into adenosinergic processes might be fruitful. Indeed, adenosine modulates both anxiety- and motor behavioral output. Thus, we aimed to explore the potential associations between compulsive-like large nest building (LNB) behavior in deer mice, anxiety and adenosinergic processes. From an initial pool of 120 adult deer mice, 34 normal nest building (NNB)- and 32 LNB-expressing mice of both sexes were selected and exposed to either a normal water (wCTRL) or vehicle control (vCTRL), lorazepam (LOR) or istradefylline (ISTRA) for 7- (LOR) or 28 days after which nesting assessment was repeated and animals screened for anxiety-like behavior in an anxiogenic open field. Mice were then euthanized, the striatal tissue removed on ice and the adenosine A2A receptor expression quantified. Our findings indicate that NNB and LNB behavior are not distinctly associated with measures of generalized anxiety and that ISTRA-induced changes in nesting expression are dissociated from changes in anxiety scores. Further, data from this investigation show that nesting in deer mice is directly related to striatal adenosine signaling, and that LNB is founded upon a lower degree of adenosinergic A2A stimulation.
Collapse
Affiliation(s)
- D Saaiman
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - L Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - G de Brouwe
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - H Janse van Rensburg
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - G Terre'Blanche
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - L Legoabe
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - T Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - D Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
10
|
Sun J, Xu L, Ma Y, Guo C, Du Z, Gao S, Luo Y, Chen Q, Hong Y, Yu X, Xiao X, Fang J. Different characteristics of striatal resting-state functional conectivity in treatment-resistant and non-treatment-resistant depression. Psychiatry Res Neuroimaging 2023; 328:111567. [PMID: 36462466 DOI: 10.1016/j.pscychresns.2022.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
Major depressive disorder is associated with a reward deficit manifested by abnormal striatal function. However, differences between treatment-resistant depression (TRD) and non TRD (nTRD) in striatal whole-brain functional connectivity (FC) have not been elucidated. Thirty-eight patients with TRD, 42 patients with nTRD, and 39 healthy controls (HCs) were recruited for this study. A seed-based FC approach was used to analyze abnormalities in six predefined striatal subregion circuits in the three groups of subjects, and further explore the correlation between abnormal FC and clinical symptoms. Results revealed that compared with the nTRD group, the TRD group showed increased FC of the inferior ventral striatum with the bilateral orbital area of the middle frontal gyrus, right cerebellum posterior lobe, left parahippocampal gyrus, left middle occipital gyrus and left lingual gyrus. Compared with the HC group, the TRD group showed a wider range of altered striatal function than the nTRD group. In the TRD group, the HAMD-17 scores were positively correlated with the FC between the right VRP and the left caudate. This study provides new insights into understanding the specificity of TRD striatal circuits.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Linjie Xu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shanshan Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qingyan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
11
|
Wang YC, Liu J, Wu YC, Wei Y, Xie HJ, Zhang T, Zhang Z. A randomized, sham-controlled trial of high-definition transcranial direct current stimulation on the right orbital frontal cortex in children and adolescents with attention-deficit hyperactivity disorder. Front Psychiatry 2023; 14:987093. [PMID: 36860502 PMCID: PMC9968859 DOI: 10.3389/fpsyt.2023.987093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE This study aimed to find out the clinical and cognitive effects of high-definition transcranial direct current stimulation (HD-tDCS) on the right orbital frontal cortex (OFC) in the treatment of attention deficit hyperactivity disorder (ADHD). METHODS A total of 56 patients with ADHD were recruited as subjects and completely and randomly divided into the HD-tDCS group and the Sham group. A 1.0 mA anode current was applied to the right OFC. The HD-tDCS group received real stimulation, while the Sham group received sham stimulation in 10 sessions of treatment. ADHD symptom assessment (the SNAP-IV Rating Scale and the Perceived Stress Questionnaire) was carried out before treatment, after the 5th and 10th stimuli, and at the 6th week after the end of all stimulations, while the cognitive effect was assessed by the Integrated Visual and Auditory Continuous Performance Test (IVA-CPT), the Stroop Color and Word Test (Stroop), and the Tower of Hanoi (TOH). Repeated-measure ANOVA was used to find out the results of both groups before and after treatment. RESULTS A total of 47 patients completed all sessions and evaluations. Their SNAP-IV score, their PSQ score, the mean visual and auditory reaction times by IVA-CPT, the interference RT of Stroop Color and Word, and the number of completed steps of TOH did not change with intervention time before and after treatment (P > 0.0031). However, the integrated visual and audiovisual commission errors and the TOH completion time results of the HD-tDCS group were significantly decreased after the 5th intervention, the 10th intervention, and the 6th week of intervention follow-up compared to the Sham group (P < 0.0031). CONCLUSION This study draws cautious conclusions that HD-tDCS does not significantly alleviate the overall symptoms of patients with ADHD but leads to significant improvements in the cognitive measures of attention maintenance. The study also attempted to fill in the gaps in research studies on HD-tDCS stimulation of the right OFC. CLINICAL TRIAL REGISTRATION ChiCTR2200062616.
Collapse
Affiliation(s)
- Yi-Chao Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhenjiang Mental Health Center (The Fifth People's Hospital of Zhenjiang City), Zhenjiang, Jiangsu, China
| | - Jun Liu
- Zhenjiang Mental Health Center (The Fifth People's Hospital of Zhenjiang City), Zhenjiang, Jiangsu, China
| | - Yan-Chun Wu
- Zhenjiang Mental Health Center (The Fifth People's Hospital of Zhenjiang City), Zhenjiang, Jiangsu, China
| | - Yan Wei
- Zhenjiang Mental Health Center (The Fifth People's Hospital of Zhenjiang City), Zhenjiang, Jiangsu, China
| | - Hong-Jing Xie
- Zhenjiang Mental Health Center (The Fifth People's Hospital of Zhenjiang City), Zhenjiang, Jiangsu, China
| | - Tao Zhang
- Zhenjiang Mental Health Center (The Fifth People's Hospital of Zhenjiang City), Zhenjiang, Jiangsu, China
| | - Zhen Zhang
- Zhenjiang Mental Health Center (The Fifth People's Hospital of Zhenjiang City), Zhenjiang, Jiangsu, China
| |
Collapse
|
12
|
Funch Uhre V, Melissa Larsen K, Marc Herz D, Baaré W, Katrine Pagsberg A, Roman Siebner H. Inhibitory control in obsessive compulsive disorder: A systematic review and activation likelihood estimation meta-analysis of functional magnetic resonance imaging studies. NEUROIMAGE: CLINICAL 2022; 36:103268. [PMID: 36451370 PMCID: PMC9723317 DOI: 10.1016/j.nicl.2022.103268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Patients with obsessive compulsive disorder (OCD) often show deficits in inhibitory control, which may underlie poor control over obsessions and compulsions. Several functional magnetic resonance imaging (fMRI) experiments utilizing a variety of tasks have investigated the neural correlates of inhibitory control in OCD. Evidence from existing meta-analyses suggests aberrant activation of regions in fronto-striatal circuits during inhibitory control. However, new fMRI articles have since been published, and a more rigorous methodology for neuroimaging meta-analyses is now available. OBJECTIVES First, to reevaluate the evidence for abnormal brain activation during performance of inhibitory control tasks in OCD while adhering to current best practices for meta-analyses, and second, to extend previous findings by separately assessing different subprocesses of inhibitory control. METHOD We systematically searched Web of Knowledge, ScienceDirect, Scopus, PubMed and the functional BrainMap database for fMRI articles that compared activation during performance of inhibitory control tasks in patients with OCD and healthy control (HC) subjects. Thirty-five experiments from 21 articles met our criteria for inclusion. We first performed activation-likelihood-estimation meta-analyses to elucidate brain areas in which case-control activation differences converged across articles and tasks. We then aimed to extend previous work by separately evaluating experiments requiring inhibition of a prepotent response without execution of an alternative response (i.e., response inhibition) and experiments requiring inhibition of a prepotent response and execution of an alternative response (i.e., cognitive inhibition). RESULTS The 35 experiments included a total of 394 patients and 410 controls. We did not find evidence of abnormal brain activation in OCD during inhibitory control when pooling data from all experiments. Analysis restricted to cognitive inhibition experiments showed abnormal activation of the dorsal anterior cingulate cortex (dACC; P = .04, cluster-level familywise error-corrected, cluster volume of 824 mm3). We did not have sufficient data to evaluate response inhibition experiments separately. CONCLUSION Findings of abnormal brain activation in OCD from different inhibitory control tasks do not appear to converge on the same brain regions, but the dACC may be implicated in abnormal cognitive inhibition. Our findings highlight a need for experiments that specifically target subprocesses of inhibitory control to achieve a more differentiated understanding of the neural correlates for impaired inhibitory control in OCD.
Collapse
Affiliation(s)
- Valdemar Funch Uhre
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Denmark,Child and Adolescent Mental Health Centre, Mental Health Services, Denmark,Corresponding author at: Danish Research Centre for Magnetic Resonance (DRCMR), section 714, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark.
| | - Kit Melissa Larsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark,Child and Adolescent Mental Health Centre, Mental Health Services, Denmark
| | - Damian Marc Herz
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK,Department of Neurology, Section Movement Disorders and Neurostimulation, University Hospital, Johannes Gutenberg University, Mainz, Germany
| | - William Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Anne Katrine Pagsberg
- Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Denmark,Child and Adolescent Mental Health Centre, Mental Health Services, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Denmark,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
13
|
Comprehensive Cortical Structural Features Predict the Efficacy of Cognitive Behavioral Therapy in Obsessive-Compulsive Disorder. Brain Sci 2022; 12:brainsci12070921. [PMID: 35884728 PMCID: PMC9322050 DOI: 10.3390/brainsci12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
Although cognitive behavioral therapy (CBT) is effective for patients with obsessive-compulsive disorder (OCD), 40% of OCD patients show a poor response to CBT. This study aimed to identify the cortical structural factors that predict CBT outcomes in OCD patients. A total of 56 patients with OCD received baseline structural MRI (sMRI) scanning and 14 individual CBT sessions. The linear support vector regression (SVR) models were used to identify the predictive performance of sMRI indices, including gray matter volume, cortical thickness, sulcal depth, and gyrification value. The patients’ OC symptoms decreased significantly after CBT intervention (p < 0.001). We found the model with the comprehensive variables exhibited better performance than the models with single structural indices (MAE = 0.14, MSE = 0.03, R2 = 0.36), showing a significant correlation between the true value and the predicted value (r = 0.63, p < 0.001). The results indicated that a model integrating four cortical structural features can accurately predict the effectiveness of CBT for OCD. Future models incorporating other brain indicators, including brain functional indicators, EEG indicators, neurotransmitters, etc., which might be more accurate for predicting the effectiveness of CBT for OCD, are needed.
Collapse
|
14
|
Li H, Mirabel R, Zimmerman J, Ghiviriga I, Phidd DK, Horenstein N, Urs NM. Structure-Functional Selectivity Relationship Studies on A-86929 Analogs and Small Aryl Fragments toward the Discovery of Biased Dopamine D1 Receptor Agonists. ACS Chem Neurosci 2022; 13:1818-1831. [PMID: 35658399 DOI: 10.1021/acschemneuro.2c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dopamine regulates normal functions such as movement, reinforcement learning, and cognition, and its dysfunction has been implicated in multiple psychiatric and neurological disorders. Dopamine acts through D1- (D1R and D5R) and D2-class (D2R, D3R, and D4R) receptors and activates both G protein- and β-arrestin-dependent signaling pathways. Current dopamine receptor-based therapies are used to ameliorate motor deficits in Parkinson's disease or as antipsychotic medications for schizophrenia. These drugs show efficacy for ameliorating only some symptoms caused by dopamine dysfunction and are plagued by debilitating side effects. Studies in primates and rodents have shown that shifting the balance of dopamine receptor signaling toward the arrestin pathway can be beneficial for inducing normal movement, while reducing motor side effects such as dyskinesias, and can be efficacious at enhancing cognitive function compared to balanced agonists. Several structure-activity relationship (SAR) studies have embarked on discovering β-arrestin-biased dopamine agonists, focused on D2 partial agonists, noncatechol D1 agonists, and mixed D1/D2R dopamine receptor agonists. Here, we describe an SAR study to identify novel D1R β-arrestin-biased ligands using A-86929, a high-affinity D1R catechol agonist, as a core scaffold to identify chemical motifs responsible for β-arrestin-biased activity at both D1 and D2Rs. Most of the A-86929 analogs screened were G protein-biased, but none of them were exclusively arrestin-biased. Additionally, various small-fragment molecular probes displayed weak bias toward the β-arrestin pathway. Continued in-depth SFSR (structure-functional selectivity relationship) studies informed by structure determination, molecular modeling, and mutagenesis studies will facilitate the discovery of potent and efficacious arrestin-biased dopamine receptor ligands.
Collapse
Affiliation(s)
- Haoxi Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Rosa Mirabel
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
| | - Joseph Zimmerman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Darian K Phidd
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Nicole Horenstein
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Nikhil M Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
15
|
Wang Z, Fontaine M, Cyr M, Rynn MA, Simpson HB, Marsh R, Pagliaccio D. Subcortical shape in pediatric and adult obsessive-compulsive disorder. Depress Anxiety 2022; 39:504-514. [PMID: 35485920 PMCID: PMC9813975 DOI: 10.1002/da.23261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) implicates alterations in cortico-striato-thalamo-cortical and fronto-limbic circuits. Building on prior structural findings, this is the largest study to date examining subcortical surface morphometry in OCD. METHODS Structural magnetic resonance imaging data were collected from 200 participants across development (5-55 years): 28 youth and 75 adults with OCD and 27 psychiatrically healthy youth and 70 adults. General linear models were used to assess group differences and group-by-age interactions on subcortical shape (FSL FIRST). RESULTS Compared to healthy participants, those with OCD exhibited surface expansions on the right nucleus accumbens and inward left amygdala deformations, which were associated with greater OCD symptom severity ([Children's] Yale-Brown Obsessive-Compulsive Scale). Group-by-age interactions indicated that accumbens group differences were driven by younger participants and that right pallidum shape was associated inversely with age in healthy participants, but not in participants with OCD. No differences in the shape of other subcortical regions or in volumes (FreeSurfer) were detected in supplementary analyses. CONCLUSIONS This study is the largest to date examining subcortical shape in OCD and the first to do so across the developmental spectrum. NAcc and amygdala shape deformation builds on extant neuroimaging findings and suggests subtle, subregional alterations beyond volumetric findings. Results shed light on morphometric alterations in OCD, informing current pathophysiological models.
Collapse
Affiliation(s)
- Zhishun Wang
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Martine Fontaine
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Marilyn Cyr
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Moira A. Rynn
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Helen Blair Simpson
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Rachel Marsh
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - David Pagliaccio
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
16
|
Widge AS, Zhang F, Gosai A, Papadimitrou G, Wilson-Braun P, Tsintou M, Palanivelu S, Noecker AM, McIntyre CC, O’Donnell L, McLaughlin NCR, Greenberg BD, Makris N, Dougherty DD, Rathi Y. Patient-specific connectomic models correlate with, but do not reliably predict, outcomes in deep brain stimulation for obsessive-compulsive disorder. Neuropsychopharmacology 2022; 47:965-972. [PMID: 34621015 PMCID: PMC8882183 DOI: 10.1038/s41386-021-01199-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Deep brain stimulation (DBS) of the ventral internal capsule/ventral striatum (VCVS) is an emerging treatment for obsessive-compulsive disorder (OCD). Recently, multiple studies using normative connectomes have correlated DBS outcomes to stimulation of specific white matter tracts. Those studies did not test whether these correlations are clinically predictive, and did not apply cross-validation approaches that are necessary for biomarker development. Further, they did not account for the possibility of systematic differences between DBS patients and the non-diagnosed controls used in normative connectomes. To address these gaps, we performed patient-specific diffusion imaging in 8 patients who underwent VCVS DBS for OCD. We delineated tracts connecting thalamus and subthalamic nucleus (STN) to prefrontal cortex via VCVS. We then calculated which tracts were likely activated by individual patients' DBS settings. We fit multiple statistical models to predict both OCD and depression outcomes from tract activation. We further attempted to predict hypomania, a VCVS DBS complication. We assessed all models' performance on held-out test sets. With this best-practices approach, no model predicted OCD response, depression response, or hypomania above chance. Coefficient inspection partly supported prior reports, in that capture of tracts projecting to cingulate cortex was associated with both YBOCS and MADRS response. In contrast to prior reports, however, tracts connected to STN were not reliably correlated with response. Thus, patient-specific imaging and a guideline-adherent analysis were unable to identify a tractographic target with sufficient effect size to drive clinical decision-making or predict individual outcomes. These findings suggest caution in interpreting the results of normative connectome studies.
Collapse
Affiliation(s)
- Alik S. Widge
- grid.17635.360000000419368657Department of Psychiatry, University of Minnesota, Minneapolis, MN USA
| | - Fan Zhang
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA
| | - Aishwarya Gosai
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - George Papadimitrou
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Peter Wilson-Braun
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Magdalini Tsintou
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Senthil Palanivelu
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Angela M. Noecker
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Cameron C. McIntyre
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Lauren O’Donnell
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA
| | - Nicole C. R. McLaughlin
- grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI USA ,grid.273271.20000 0000 8593 9332Butler Hospital, Providence, RI USA
| | - Benjamin D. Greenberg
- grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI USA ,grid.273271.20000 0000 8593 9332Butler Hospital, Providence, RI USA ,Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI USA
| | - Nikolaos Makris
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Darin D. Dougherty
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Yogesh Rathi
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA ,grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| |
Collapse
|
17
|
Yu J, Zhou P, Yuan S, Wu Y, Wang C, Zhang N, Li CSR, Liu N. Symptom provocation in obsessive-compulsive disorder: A voxel-based meta-analysis and meta-analytic connectivity modeling. J Psychiatr Res 2022; 146:125-134. [PMID: 34971910 DOI: 10.1016/j.jpsychires.2021.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a heterogeneous psychiatric illness with a complex array of symptoms and potentially distinct neural underpinnings. We employed meta-analysis and connectivity modeling of symptom dimensions to delineate the circuit mechanisms of OCD. METHODS With the activation likelihood estimation (ALE) algorithm we performed meta-analysis of whole-brain functional magnetic resonance imaging (fMRI) studies of symptom provocation. We contrasted all OCD patients and controls in a primary analysis and divided the studies according to clinical symptoms in secondary meta-analyses. Finally, we employed meta-analytic connectivity modeling analyses (MACMs) to examine co-activation patterns of the brain regions revealed in the primary meta-analysis. RESULTS A total of 14 experiments from 12 eligible studies with a total of 238 OCD patients (124 men) and 219 healthy controls (120 men) were included in the primary analysis. OCD patients showed higher activation in the right caudate body/putamen/insula and lower activation in the left orbitofrontal cortex (OFC), left inferior frontal gyrus (IFG), left caudate body/middle cingulate cortex (MCC), right middle temporal gyrus (MTG), middle occipital gyrus (MOG) and right lateral occipital gyrus (LOG). MACMs revealed significant co-activation between left IFG and left caudate body/MCC, left MOG and right LOG, right LOG and MTG. In the secondary meta-analyses, the washing subgroup showed higher activation in the right OFC, bilateral ACC, left MOG and right caudate body. CONCLUSION OCD patients showed elevated dorsal striatal activation during symptom provocation. In contrast, the washing subgroup engaged higher activation in frontal, temporal and posterior cortical structures as well as right caudate body. Broadly consistent with the proposition of cortico-striatal-thalamic-cortical circuit dysfunction, these findings highlight potentially distinct neural circuits that may underlie the symptoms and potentially etiological subtypes of OCD.
Collapse
Affiliation(s)
- Jianping Yu
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ping Zhou
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Shiting Yuan
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Yun Wu
- Functional Brain Imaging Institute of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chun Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
18
|
Hasuzawa S, Tomiyama H, Murayama K, Ohno A, Kang M, Mizobe T, Kato K, Matsuo A, Kikuchi K, Togao O, Nakao T. Inverse Association Between Resting-State Putamen Activity and Iowa Gambling Task Performance in Patients With Obsessive-Compulsive Disorder and Control Subjects. Front Psychiatry 2022; 13:836965. [PMID: 35633792 PMCID: PMC9136000 DOI: 10.3389/fpsyt.2022.836965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Symptoms of obsessive-compulsive disorder (OCD) have been conceptualized as manifestations of decision-making deficits. Patients with OCD exhibit impairment during the decision-making process, as assessed by the Iowa Gambling Task (IGT). This impairment is independent of clinical severity and disease progression. However, the association between the decision-making deficit and resting-state brain activity of patients with OCD has not been examined. METHODS Fifty unmedicated patients with OCD and 55 matched control subjects completed IGT. Resting-state brain activity was examined using the fractional amplitude of low-frequency fluctuations (fALFFs). fALFF analysis focused on the slow-4 and 5 bands. Group comparisons were performed to determine the association between IGT performance and fALFFs. RESULTS There was a significant group difference in the association between the IGT total net score and slow-4 fALFFs in the left putamen (voxel height threshold of p < 0.001; cluster size threshold of p < 0.05; family wise error-corrected). Higher putamen slow-4 fALFFs were correlated with lower IGT scores for OCD patients (r = -0.485; p < 0.0005) and higher IGT scores for control subjects (r = 0.402; p < 0.005). There was no group difference in the association between the IGT total net score and slow-5 fALFFs. CONCLUSIONS These findings in unmedicated patients demonstrate the importance of resting-state putamen activity for decision-making deficit associated with OCD, as measured by IGT. The inverse correlation may be explained by the hypersensitive response of the putamen in patients with OCD.
Collapse
Affiliation(s)
- Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aikana Ohno
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Mingi Kang
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Matsuo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Carga cognitiva y control atencional en puertorriqueños con trastorno obsesivocompulsivo. REVISTA IBEROAMERICANA DE PSICOLOGÍA 2021. [DOI: 10.33881/2027-1786.rip.15103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Trasfondo:El control ejecutivo de la atención media la resolución de problemas y la acción voluntaria y está implicado en la regulación de las emociones. Se ha reportado que el control atencional está afectado en personas con trastorno obsesivo-compulsivo (TOC). Sin embargo, no se ha considerado la influencia de la carga cognitiva y la distracción en la ejecución de tareas, lo que pudiera tener un impacto en el control atencional. En este estudio evaluamos si la carga cognitiva alta y baja influyen en el control atencional de personas con TOC, en comparación con un grupo control. Método:Quince adultos puertorriqueños con TOC (M=31.60, DE=10.70) y 26 saludables (M=28.42, DE=10.73) participaron en el estudio. Se administró el Attention Network Test y una tarea de carga cognitiva para evaluar el control atencional. Resultados:No se observaron diferencias significativas en las puntuaciones de alerta, orientación y control atencional entre los grupos en ambas condiciones de carga cognitiva (p>0.05). Solo se observó una diferencia significativa en el control atencional de los participantes con TOC (z=1.99, p=0.047) y del grupo control (z=-2.83, p=0.005) durante tareas con carga cognitiva baja y alta. Conclusiones:Ambos grupos experimentaron menor interferencia de distractores bajo alta carga cognitiva, lo que sugiere un mayor control de la atención durante esta condición. Es posible que el aumento de carga cognitiva pueda reducir la distracción en puertorriqueños saludables y aquellos con TOC. Tomar en cuenta la carga cognitiva puede facilitar el entrenamiento cognitivo para el control atencional y aumentar la flexibilidad cognitiva, mejorando la respuesta al tratamiento.
Collapse
|
20
|
de Brouwer G, Engelbrecht J, Mograbi DC, Legoabe L, Steyn SF, Wolmarans DW. Stereotypy and spontaneous alternation in deer mice and its response to anti-adenosinergic intervention. J Neurosci Res 2021; 99:2706-2720. [PMID: 34115897 DOI: 10.1002/jnr.24867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Repetitive behavioral phenotypes are a trait of several neuropsychiatric disorders, including obsessive-compulsive disorder (OCD). Such behaviors are typified by complex interactions between cognitive and neurobiological processes which most likely contribute to the suboptimal treatment responses often observed. To this end, exploration of the adenosinergic system may be useful, since adenosine-receptor modulation has previously shown promise to restore control over voluntary behavior and improve cognition in patients presenting with motor repetition. Here, we employed the deer mouse (Peromyscus maniculatus bairdii) model of compulsive-like behavioral persistence, seeking to investigate possible associations between stereotypic motor behavior and cognitive flexibility as measured in the T-maze continuous alternation task (T-CAT). The effect of istradefylline, a selective adenosine A2A receptor antagonist at two doses (10 and 20 mg kg-1 day-1 ) on the expression of stereotypy and T-CAT performance in high (H) and non-(N) stereotypical animals, was investigated in comparison to a control intervention (six groups; n = 8 or 9 per group). No correlation between H behavior and T-CAT performance was found. However, H but not N animals presented with istradefylline-sensitive spontaneous alternation and stereotypy, in that istradefylline at both doses significantly improved the spontaneous alternation scores and attenuated the stereotypical expression of H animals. Thus, evidence is presented that anti-adenosinergic drug action improves repetitive behavior and spontaneous alternation in stereotypical deer mice, putatively pointing to a shared psychobiological construct underlying naturalistic stereotypy and alterations in cognitive flexibility in deer mice.
Collapse
Affiliation(s)
- Geoffrey de Brouwer
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jaco Engelbrecht
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Daniel C Mograbi
- Department of Psychology, Pontifícia Universidade Católica - Rio (PUC-Rio), Rio de Janeiro, Brazil.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Lesetja Legoabe
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Stephan F Steyn
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
21
|
Bowen Z, Changlian T, Qian L, Wanrong P, Huihui Y, Zhaoxia L, Feng L, Jinyu L, Xiongzhao Z, Mingtian Z. Gray Matter Abnormalities of Orbitofrontal Cortex and Striatum in Drug-Naïve Adult Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:674568. [PMID: 34168582 PMCID: PMC8217443 DOI: 10.3389/fpsyt.2021.674568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study examined whether obsessive-compulsive disorder (OCD) patients have gray matter abnormalities in regions related to executive function, and whether such abnormalities are associated with impaired executive function. Methods: Multiple scales were administered to 27 first-episode drug-naïve OCD patients and 29 healthy controls. Comprehensive brain morphometric indicators of orbitofrontal cortex (OFC) and three striatum areas (caudate, putamen, and pallidum) were determined. Hemisphere lateralization index was calculated for each region of interest. Correlations between lateralization index and psychological variables were examined in OCD group. Results: The OCD group had greater local gyrification index for the right OFC and greater gray matter volumes of the bilateral putamen and left pallidum than healthy controls. They also had weaker left hemisphere superiority for local gyrification index of the OFC and gray matter volume of the putamen, but stronger left hemisphere superiority for gray matter volume of the pallidum. Patients' lateralization index for local gyrification index of the OFC correlated negatively with Yale-Brown Obsessive Compulsive Scale and Dysexecutive Questionnaire scores, respectively. Conclusion: Structural abnormalities of the bilateral putamen, left pallidum, and right OFC may underlie OCD pathology. Abnormal lateralization in OCD may contribute to the onset of obsessive-compulsive symptoms and impaired executive function.
Collapse
Affiliation(s)
- Zhang Bowen
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Tan Changlian
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Qian
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Peng Wanrong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Huihui
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Zhaoxia
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Liu Jinyu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Zhu Xiongzhao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
- Medical Psychological Institute, Central South University, Changsha, China
| | - Zhong Mingtian
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
22
|
Lost in translation: no effect of repeated optogenetic cortico-striatal stimulation on compulsivity in rats. Transl Psychiatry 2021; 11:315. [PMID: 34031365 PMCID: PMC8144623 DOI: 10.1038/s41398-021-01448-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
The orbitofrontal cortex-ventromedial striatum (OFC-VMS) circuitry is widely believed to drive compulsive behavior. Hyperactivating this pathway in inbred mice produces excessive and persistent self-grooming, which has been considered a model for human compulsivity. We aimed to replicate these findings in outbred rats, where there are few reliable compulsivity models. Male Long-Evans rats implanted with optical fibers into VMS and with opsins delivered into OFC received optical stimulation at parameters that produce OFC-VMS plasticity and compulsive grooming in mice. We then evaluated rats for compulsive self-grooming at six timepoints: before, during, immediately after, and 1 h after each stimulation, 1 and 2 weeks after the ending of a 6-day stimulation protocol. To further test for effects of OFC-VMS hyperstimulation, we ran animals in three standard compulsivity assays: marble burying, nestlet shredding, and operant attentional set-shifting. OFC-VMS stimulation did not increase self-grooming or induce significant changes in nestlet shredding, marble burying, or set-shifting in rats. Follow-on evoked potential studies verified that the stimulation protocol altered OFC-VMS synaptic weighting. In sum, although we induced physiological changes in the OFC-VMS circuitry, we could not reproduce in a strongly powered study in rats a model of compulsive behavior previously reported in mice. This suggests possible limitations to translation of mouse findings to species higher on the phylogenetic chain.
Collapse
|
23
|
Groman SM, Lee D, Taylor JR. Unlocking the reinforcement-learning circuits of the orbitofrontal cortex. Behav Neurosci 2021; 135:120-128. [PMID: 34060870 DOI: 10.1037/bne0000414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroimaging studies have consistently identified the orbitofrontal cortex (OFC) as being affected in individuals with neuropsychiatric disorders. OFC dysfunction has been proposed to be a key mechanism by which decision-making impairments emerge in diverse clinical populations, and recent studies employing computational approaches have revealed that distinct reinforcement-learning mechanisms of decision-making differ among diagnoses. In this perspective, we propose that these computational differences may be linked to select OFC circuits and present our recent work that has used a neurocomputational approach to understand the biobehavioral mechanisms of addiction pathology in rodent models. We describe how combining translationally analogous behavioral paradigms with reinforcement-learning algorithms and sophisticated neuroscience techniques in animals can provide critical insights into OFC pathology in biobehavioral disorders. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
24
|
Yalcinbas EA, Cazares C, Gremel CM. Call for a more balanced approach to understanding orbital frontal cortex function. Behav Neurosci 2021; 135:255-266. [PMID: 34060878 DOI: 10.1037/bne0000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Orbital frontal cortex (OFC) research has historically emphasized the function of this associative cortical area within top-down theoretical frameworks. This approach has largely focused on mapping OFC activity onto human-defined psychological or cognitive constructs and has often led to OFC circuitry bearing the weight of entire theoretical frameworks. New techniques and tools developed in the last decade have made it possible to revisit long-standing basic science questions in neuroscience and answer them with increasing sophistication. We can now study and specify the genetic, molecular, cellular, and circuit architecture of a brain region in much greater detail, which allows us to piece together how they contribute to emergent circuit functions. For instance, adopting such systematic and unbiased bottom-up approaches to elucidating the function of the visual system has paved the way to building a greater understanding of the spectrum of its computational capabilities. In the same vein, we argue that OFC research would benefit from a more balanced approach that also places focus on novel bottom-up investigations into OFC's computational capabilities. Furthermore, we believe that the knowledge gained by employing a more bottom-up approach to investigating OFC function will ultimately allow us to look at OFC's dysfunction in disease through a more nuanced biological lens. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Ege A Yalcinbas
- The Neurosciences Graduate Program, University of California, San Diego
| | - Christian Cazares
- The Neurosciences Graduate Program, University of California, San Diego
| | | |
Collapse
|
25
|
Costanzi M, Cianfanelli B, Santirocchi A, Lasaponara S, Spataro P, Rossi-Arnaud C, Cestari V. Forgetting Unwanted Memories: Active Forgetting and Implications for the Development of Psychological Disorders. J Pers Med 2021; 11:jpm11040241. [PMID: 33810436 PMCID: PMC8066077 DOI: 10.3390/jpm11040241] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Intrusive memories are a common feature of many psychopathologies, and suppression-induced forgetting of unwanted memories appears as a critical ability to preserve mental health. In recent years, biological and cognitive studies converged in revealing that forgetting is due to active processes. Recent neurobiological studies provide evidence on the active role of main neurotransmitter systems in forgetting, suggesting that the brain actively works to suppress retrieval of unwanted memories. On the cognitive side, there is evidence that voluntary and involuntary processes (here termed "intentional" and "incidental" forgetting, respectively) contribute to active forgetting. In intentional forgetting, an inhibitory control mechanism suppresses awareness of unwanted memories at encoding or retrieval. In incidental forgetting, retrieval practice of some memories involuntarily suppresses the retrieval of other related memories. In this review we describe recent findings on deficits in active forgetting observed in psychopathologies, like post-traumatic stress disorder, depression, schizophrenia, and obsessive-compulsive disorder. Moreover, we report studies in which the role of neurotransmitter systems, known to be involved in the pathogenesis of mental disorders, has been investigated in active forgetting paradigms. The possibility that biological and cognitive mechanisms of active forgetting could be considered as hallmarks of the early onset of psychopathologies is also discussed.
Collapse
Affiliation(s)
- Marco Costanzi
- Department of Human Sciences, Lumsa University, 00193 Rome, Italy; (B.C.); (S.L.)
- Correspondence:
| | - Beatrice Cianfanelli
- Department of Human Sciences, Lumsa University, 00193 Rome, Italy; (B.C.); (S.L.)
| | - Alessandro Santirocchi
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (A.S.); (C.R.-A.); (V.C.)
| | - Stefano Lasaponara
- Department of Human Sciences, Lumsa University, 00193 Rome, Italy; (B.C.); (S.L.)
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (A.S.); (C.R.-A.); (V.C.)
| | - Pietro Spataro
- Department of Economy, Universitas Mercatorum, 00100 Rome, Italy;
| | - Clelia Rossi-Arnaud
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (A.S.); (C.R.-A.); (V.C.)
| | - Vincenzo Cestari
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (A.S.); (C.R.-A.); (V.C.)
| |
Collapse
|
26
|
Deep brain stimulation response in obsessive-compulsive disorder is associated with preoperative nucleus accumbens volume. NEUROIMAGE-CLINICAL 2021; 30:102640. [PMID: 33799272 PMCID: PMC8044711 DOI: 10.1016/j.nicl.2021.102640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Preoperative MRI was associated with 12-months DBS treatment outcome in OCD patients. Larger nucleus accumbens volume was associated with larger clinical improvement. Machine learning analysis was not successful in predicting clinical improvement.
Background Deep brain stimulation (DBS) is a new treatment option for patients with therapy-resistant obsessive–compulsive disorder (OCD). Approximately 60% of patients benefit from DBS, which might be improved if a biomarker could identify patients who are likely to respond. Therefore, we evaluated the use of preoperative structural magnetic resonance imaging (MRI) in predicting treatment outcome for OCD patients on the group- and individual-level. Methods In this retrospective study, we analyzed preoperative MRI data of a large cohort of patients who received DBS for OCD (n = 57). We used voxel-based morphometry to investigate whether grey matter (GM) or white matter (WM) volume surrounding the DBS electrode (nucleus accumbens (NAc), anterior thalamic radiation), and whole-brain GM/WM volume were associated with OCD severity and response status at 12-month follow-up. In addition, we performed machine learning analyses to predict treatment outcome at an individual-level and evaluated its performance using cross-validation. Results Larger preoperative left NAc volume was associated with lower OCD severity at 12-month follow-up (pFWE < 0.05). None of the individual-level regression/classification analyses exceeded chance-level performance. Conclusions These results provide evidence that patients with larger NAc volumes show a better response to DBS, indicating that DBS success is partly determined by individual differences in brain anatomy. However, the results also indicate that structural MRI data alone does not provide sufficient information to guide clinical decision making at an individual level yet.
Collapse
|
27
|
Abstract
OCD has lagged behind other psychiatric illnesses in the identification of molecular treatment targets, due in part to a lack of significant findings in genome-wide association studies. However, while progress in this area is being made, OCD's symptoms of obsessions, compulsions, and anxiety can be deconstructed into distinct neural functions that can be dissected in animal models. Studies in rodents and non-human primates have highlighted the importance of cortico-basal ganglia-thalamic circuits in OCD pathophysiology, and emerging studies in human post-mortem brain tissue point to glutamatergic synapse abnormalities as a potential cellular substrate for observed dysfunctional behaviors. In addition, accumulated evidence points to a potential role for neuromodulators including serotonin and dopamine in both OCD pathology and treatment. Here, we review current efforts to use animal models for the identification of molecules, cell types, and circuits relevant to OCD pathophysiology. We start by describing features of OCD that can be modeled in animals, including circuit abnormalities and genetic findings. We then review different strategies that have been used to study OCD using animal model systems, including transgenic models, circuit manipulations, and dissection of OCD-relevant neural constructs. Finally, we discuss how these findings may ultimately help to develop new treatment strategies for OCD and other related disorders.
Collapse
Affiliation(s)
- Brittany L Chamberlain
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA. .,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Li K, Zhang H, Wang B, Yang Y, Zhang M, Li W, Li X, Lv L, Zhao J, Zhang H. Hippocampal functional network: The mediating role between obsession and anxiety in adult patients with obsessive-compulsive disorder. World J Biol Psychiatry 2020; 21:685-695. [PMID: 32174208 DOI: 10.1080/15622975.2020.1733082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Anxiety is a very common symptom and closely related to obsessive-compulsive symptoms in obsessive-compulsive disorder (OCD). However, the association between anxiety and obsessive-compulsive symptoms at the hippocampus network level remains unclear. METHODS This study enrolled 42 patients with OCD and 42 healthy controls (HCs), who underwent resting-state functional magnetic resonance imaging (fMRI) and clinical evaluation. Multiple linear regression analysis was performed to investigate the behavioural significance and interactive effects of obsessive-compulsive and anxiety symptoms on the hippocampus functional connectivity (HFC). The mediation analysis model was used to explore whether the hippocampus functional connectivity (FC) network indirectly mediated the relationship between obsessive-compulsive symptoms and anxiety. RESULTS Results showed that the FCs with the cerebellum, middle temporal gyrus (MTG) and anterior cingulate gyrus (ACG) were increased in the hippocampus FC network in patients with OCD compared with those in HCs. The regions of interactive effects between anxiety and obsession, which are mainly located in the prefrontal cortex and MTG, were positively correlated. The mediation effect is 0.018 between obsession and anxiety on the HFC networks in patients with OCD. CONCLUSIONS The FC between the hippocampus and MTG plays a key role in the relationship between anxiety and obsession.
Collapse
Affiliation(s)
- Kun Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, P. R. China
| | - Haisan Zhang
- Department of Radiology, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, P. R. China
| | - Bi Wang
- Department of Radiology, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, P. R. China
| | - Yongfeng Yang
- Henan Key Lab of Biological Psychiatry, Xinxiang, P. R. China
| | - Meng Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, P. R. China
| | - Wenqiang Li
- Henan Key Lab of Biological Psychiatry, Xinxiang, P. R. China
| | - Xianrui Li
- School of Psychology, Xinxiang Medical University, Xinxiang, P. R. China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, P. R. China.,Henan Key Lab of Biological Psychiatry, Xinxiang, P. R. China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, P. R. China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, P. R. China.,Henan Key Lab of Biological Psychiatry, Xinxiang, P. R. China.,School of Psychology, Xinxiang Medical University, Xinxiang, P. R. China
| |
Collapse
|
29
|
Liu W, Qin J, Tang Q, Han Y, Fang T, Zhang Z, Wang C, Lin X, Tian H, Zhuo C, Chen C. Disrupted pathways from the frontal-parietal cortices to basal nuclei and the cerebellum are a feature of the obsessive-compulsive disorder spectrum and can be used to aid in early differential diagnosis. Psychiatry Res 2020; 293:113436. [PMID: 32889343 DOI: 10.1016/j.psychres.2020.113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022]
Abstract
A marker for distinguishing patients with obsessive-compulsive disorder (OCD) spectrum has not yet been identified. Whole-brain resting-state effective and functional connectivity (rsEC and rsFC, respectively) networks were constructed for 50 unmedicated OCD (U-OCD) patients, 45 OCD patients in clinical remission (COCD), 47 treatment-resistant OCD (T-OCD) patients, 42 chronic schizophrenia patients who exhibit OCD symptoms (SCHOCD), and 50 healthy controls (HCs). Multivariate pattern analysis (MVPA) was performed to investigate the accuracy of using connectivity alterations to distinguished among the aforementioned groups. Compared to HCs, rsEC connections were significantly disrupted in the U-OCD (n = 15), COCD (n = 8), and T-OCD (n = 19) groups. Additionally, 21 rsEC connections were significantly disrupted in the T-OCD group compared to the SCHOCD group. The disrupted rsEC networks were associated mainly with the frontal-parietal cortex, basal ganglia, limbic regions, and the cerebellum. Classification accuracies for distinguishing OCD patients from HCs and SCHOCD patients ranged from 66.6% to 98.0%. In conclusion, disrupted communication from the frontal-parietal cortices to subcortical basal nuclei and the cerebellum may represent a functional pathological feature of the OCD spectrum. MVPA based on both abnormal rsEC and rsFC patterns may aid in early differential diagnosis of OCD.
Collapse
Affiliation(s)
- Wei Liu
- Department of Psychiatry, Harbin Medical University Affiliated First Hospital, Harbin, 150036, China
| | - Jun Qin
- Department of Psychiatry, Harbin Medical University Affiliated First Hospital, Harbin, 150036, China
| | - Qiuju Tang
- Department of Psychiatry, Harbin Medical University Affiliated First Hospital, Harbin, 150036, China
| | - Yunyi Han
- Department of Psychiatry, Harbin Medical University Affiliated First Hospital, Harbin, 150036, China
| | - Tao Fang
- Key Labotorary of Real Time Brian Circuits Tracing of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin, 300024, China
| | - Zhengqing Zhang
- Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, 361000, China
| | - Chunxiang Wang
- Department of Medical Imaging Center, Tianjin Children Hospital, Tianjin, 300305, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory (PNG-Lab), Wenzhou Seventh Hospital, Wenzhou, 325000, Zhejiang Province, China
| | - Hongjun Tian
- Key Labotorary of Real Time Brian Circuits Tracing of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin, 300024, China
| | - Chuanjun Zhuo
- Key Labotorary of Real Time Brian Circuits Tracing of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin, 300024, China; Department of Psychiatry, Tianjin Fourth Centre Hospital, Tianjin, 300024, Tianjin, China; Department of Psychiatry, Wenzhou Seventh Peolples Hospital, Wenzhou, 325000, China.
| | - Ce Chen
- PNGC_Lab, Tianjin Anding Hospital, Tianjin Medical Affiliated Mental Health Center, 300300, China
| |
Collapse
|
30
|
Srivastava A, Liachenko S, Sarkar S, Paule M, Negi G, Pandey JP, Hanig JP. Quantitative Neurotoxicology: An Assessment of the Neurotoxic Profile of Kainic Acid in Sprague Dawley Rats. Int J Toxicol 2020; 39:294-306. [PMID: 32468881 DOI: 10.1177/1091581820928497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study consisted of a qualitative and quantitative assessment of neuropathological changes in kainic acid (KA)-treated adult male rats. Rats were administered a single 10 mg/kg intraperitoneal injection of KA or the same volume of saline and sacrificed 24 or 48 hours posttreatment. Brains were collected, sectioned coronally (∼ 81 slices), and stained with amino cupric silver to reveal degenerative changes. For qualitative assessment of neural degeneration, sectioned material was evaluated by a board-certified pathologist, and the level of degeneration was graded based upon a 4-point scale. For measurement of quantitative neural degeneration in response to KA treatment, the HALO digital image analysis software tool was used. Quantitative measurements of specific regions within the brain were obtained from silver-stained tissue sections with quantitation based on stain color and optical density. This quantitative evaluation method identified degeneration primarily in the cerebral cortex, septal nuclei, amygdala, olfactory bulb, hippocampus, thalamus, and hypothalamus. The KA-produced neuronal degeneration in the cortex was primarily in the piriform, insular, rhinal, and cingulate areas. In the hippocampus, the dentate gyrus was found to be the most affected area. Our findings indicate global neurotoxicity due to KA treatment. Certain brain structures exhibited more degeneration than others, reflecting differential sensitivity or vulnerability of neurons to KA.
Collapse
Affiliation(s)
| | - Serguei Liachenko
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Sumit Sarkar
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Merle Paule
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Geeta Negi
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| | - Jai P Pandey
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| | - Joseph P Hanig
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| |
Collapse
|
31
|
The functional connectivity profile of tics and obsessive-compulsive symptoms in Tourette Syndrome. J Psychiatr Res 2020; 123:128-135. [PMID: 32065948 DOI: 10.1016/j.jpsychires.2020.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 11/24/2022]
Abstract
Tourette Syndrome (TS) is characterized by the presence of tics and sensory phenomena, such as premonitory urges, and is often accompanied by significant obsessive-compulsive symptoms (OCS). The goal of this exploratory study was to determine the association between functional connectivity and the different symptom domains of TS, as little is currently known about how they differ. Resting-state functional magnetic resonance imaging was performed in 39 patients with TS and 20 matched healthy controls. Seed-based functional connectivity of the supplementary motor area (SMA), orbitofrontal cortex (OFC), insula, caudate and putamen were compared between the groups, and correlated with clinical measures within the patient group. When compared to controls, patients with TS exhibited greater connectivity between the temporal gyri, insula and putamen, and between the OFC and cingulate cortex. Tic severity was associated with greater connectivity between the putamen and the sensorimotor cortex; OCS severity was associated with less connectivity between the SMA and thalamus and between the caudate and precuneus; and premonitory urge severity was associated with less connectivity between the OFC and sensorimotor cortex and between the inferior frontal gyrus and the putamen and insula seeds. Functional connectivity within sensorimotor processing regions were associated with all of the investigated symptom domains, including OCS, suggesting dysfunctions in the sensorimotor system may explain most of the observed symptoms in TS, and not just tics.
Collapse
|
32
|
Nucleus Accumbens Cell Type- and Input-Specific Suppression of Unproductive Reward Seeking. Cell Rep 2020; 30:3729-3742.e3. [DOI: 10.1016/j.celrep.2020.02.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/11/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
|
33
|
Picó-Pérez M, Moreira PS, de Melo Ferreira V, Radua J, Mataix-Cols D, Sousa N, Soriano-Mas C, Morgado P. Modality-specific overlaps in brain structure and function in obsessive-compulsive disorder: Multimodal meta-analysis of case-control MRI studies. Neurosci Biobehav Rev 2020; 112:83-94. [PMID: 32006553 DOI: 10.1016/j.neubiorev.2020.01.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Neuroimaging research has shown that patients with obsessive-compulsive disorder (OCD) may present brain structural and functional alterations, but the results across imaging modalities and task paradigms are difficult to reconcile. Are the same brain systems that are structurally different in OCD patients also involved in executive function and emotional processing? To answer this, we conducted separate meta-analyses of voxel-based morphometry studies, executive function functional magnetic resonance imaging (fMRI) studies, and emotional processing fMRI studies. Next, with a multimodal approach (conjunction analysis), we identified the common alterations across meta-analyses. Patients presented increased gray matter volume and hyperactivation in the putamen, but the putamen subregions affected differed depending on the psychological process. Left posterior/dorsal putamen showed hyperactivation during executive processing tasks, while predominantly right anterior/ventral putamen showed hyperactivation during emotional processing tasks. Interestingly, age was significantly associated with increased right putamen volume. Finally, the left dorsolateral prefrontal cortex was hyperactive in both functional domains. Our findings highlight task-specific correlates of brain structure and function in OCD and help integrate a growing literature.
Collapse
Affiliation(s)
- Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vanessa de Melo Ferreira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain
| | - David Mataix-Cols
- Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Carles Soriano-Mas
- Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal.
| |
Collapse
|
34
|
Kardos J, Dobolyi Á, Szabó Z, Simon Á, Lourmet G, Palkovits M, Héja L. Molecular Plasticity of the Nucleus Accumbens Revisited-Astrocytic Waves Shall Rise. Mol Neurobiol 2019; 56:7950-7965. [PMID: 31134458 PMCID: PMC6834761 DOI: 10.1007/s12035-019-1641-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Part of the ventral striatal division, the nucleus accumbens (NAc) drives the circuit activity of an entire macrosystem about reward like a "flagship," signaling and leading diverse conducts. Accordingly, NAc neurons feature complex inhibitory phenotypes that assemble to process circuit inputs and generate outputs by exploiting specific arrays of opposite and/or parallel neurotransmitters, neuromodulatory peptides. The resulting complex combinations enable versatile yet specific forms of accumbal circuit plasticity, including maladaptive behaviors. Although reward signaling and behavior are elaborately linked to neuronal circuit activities, it is plausible to propose whether these neuronal ensembles and synaptic islands can be directly controlled by astrocytes, a powerful modulator of neuronal activity. Pioneering studies showed that astrocytes in the NAc sense citrate cycle metabolites and/or ATP and may induce recurrent activation. We argue that the astrocytic calcium, GABA, and Glu signaling and altered sodium and chloride dynamics fundamentally shape metaplasticity by providing active regulatory roles in the synapse- and network-level flexibility of the NAc.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary.
| | - Árpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Üllői út 26, Budapest, 1086, Hungary
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Pázmány Péter sétány 1C, Budapest, 1117, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Guillaume Lourmet
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Üllői út 26, Budapest, 1086, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Tűzoltó utca 58, Budapest, H-1094, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| |
Collapse
|
35
|
Vestlund J, Kalafateli AL, Studer E, Westberg L, Jerlhag E. Neuromedin U induces self-grooming in socially-stimulated mice. Neuropharmacology 2019; 162:107818. [PMID: 31647973 DOI: 10.1016/j.neuropharm.2019.107818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 11/19/2022]
Abstract
Emerging evidence suggest that appetite-regulating peptides modulate social behaviors. We here investigate whether the anorexigenic peptide neuromedin U (NMU) modulates sexual behavior in male mice. However, instead of modulating sexual behaviors, NMU administered into the third ventricle increased self-grooming behavior. In addition, NMU-treatment increased self-grooming behavior when exposed to other mice or olfactory social-cues, but not when exposed to non-social environments. As the neuropeptide oxytocin is released during social investigation and exogenous oxytocin induces self-grooming, its role in NMU-induced self-grooming behavior was investigated. In line with our hypothesis, the oxytocin receptor antagonist inhibited NMU-induced self-grooming behavior in mice exposed to olfactory social-cues. Moreover, dopamine in the mesocorticolimbic system is known to be a key regulator of self-grooming behavior. In line with this, we proved that infusion of NMU into nucleus accumbens increased self-grooming behavior in mice confronted with an olfactory social-cue and that this behavior was inhibited by antagonism of dopamine D2, but not D1/D5, receptors. Moreover repeated NMU treatment enhanced ex vivo dopamine levels and decreased the expression of dopamine D2 receptors in nucleus accumbens in socially housed mice. On the other hand, the olfactory stimuli-dependent NMU-induced self-grooming was not affected by a corticotrophin-releasing hormone antagonist, and NMU-treatment did not influence repetitive behaviors in the marble burying test. In conclusion, our results suggest that NMU treatment and, social cues - potentially triggering oxytocin release - together induce excessive grooming behavior in male mice. The mesolimbic dopamine system, including accumbal dopamine D2 receptors, was identified as a crucial downstream mechanism.
Collapse
Affiliation(s)
- Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Aimilia Lydia Kalafateli
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Studer
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Westberg
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
36
|
Neural circuits in goal-directed and habitual behavior: Implications for circuit dysfunction in obsessive-compulsive disorder. Neurochem Int 2019; 129:104464. [DOI: 10.1016/j.neuint.2019.104464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 01/04/2023]
|
37
|
Stein DJ, Costa DLC, Lochner C, Miguel EC, Reddy YCJ, Shavitt RG, van den Heuvel OA, Simpson HB. Obsessive-compulsive disorder. Nat Rev Dis Primers 2019; 5:52. [PMID: 31371720 PMCID: PMC7370844 DOI: 10.1038/s41572-019-0102-3] [Citation(s) in RCA: 378] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/15/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a highly prevalent and chronic condition that is associated with substantial global disability. OCD is the key example of the 'obsessive-compulsive and related disorders', a group of conditions which are now classified together in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, and the International Classification of Diseases, 11th Revision, and which are often underdiagnosed and undertreated. In addition, OCD is an important example of a neuropsychiatric disorder in which rigorous research on phenomenology, psychobiology, pharmacotherapy and psychotherapy has contributed to better recognition, assessment and outcomes. Although OCD is a relatively homogenous disorder with similar symptom dimensions globally, individualized assessment of symptoms, the degree of insight, and the extent of comorbidity is needed. Several neurobiological mechanisms underlying OCD have been identified, including specific brain circuits that underpin OCD. In addition, laboratory models have demonstrated how cellular and molecular dysfunction underpins repetitive stereotyped behaviours, and the genetic architecture of OCD is increasingly understood. Effective treatments for OCD include serotonin reuptake inhibitors and cognitive-behavioural therapy, and neurosurgery for those with intractable symptoms. Integration of global mental health and translational neuroscience approaches could further advance knowledge on OCD and improve clinical outcomes.
Collapse
Affiliation(s)
- Dan J Stein
- Department of Psychiatry, University of Cape Town and SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa.
| | - Daniel L C Costa
- OCD Research Program, Instituto de Psiquiatria, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Christine Lochner
- Department of Psychiatry, Stellenbosch University and SA MRC Unit on Risk & Resilience in Mental Disorders, Stellenbosch, South Africa
| | - Euripedes C Miguel
- OCD Research Program, Instituto de Psiquiatria, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Y C Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Roseli G Shavitt
- OCD Research Program, Instituto de Psiquiatria, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - H Blair Simpson
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
38
|
Williams K, Shorser-Gentile L, Sarvode Mothi S, Berman N, Pasternack M, Geller D, Walter J. Immunoglobulin A Dysgammaglobulinemia Is Associated with Pediatric-Onset Obsessive-Compulsive Disorder. J Child Adolesc Psychopharmacol 2019; 29:268-275. [PMID: 30892924 PMCID: PMC7227412 DOI: 10.1089/cap.2018.0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background: Inflammation and immune dysregulation have been implicated in the pathogenesis of pediatric-onset obsessive-compulsive disorder (OCD) and tic disorders such as Tourette syndrome (TS). Though few replicated studies have identified markers of immune dysfunction in this population, preliminary studies suggest that serum immunoglobulin A (IgA) concentrations may be abnormal in these children with these disorders. Methods: This observational retrospective cohort study, conducted using electronic health records (EHRs), identified 206 children with pediatric-onset OCD and 1024 adults diagnosed with OCD who also had testing for serum levels of IgA. IgA deficiency and serum IgA levels in pediatric OCD were compared with IgA levels from children diagnosed with autism spectrum disorders (ASD; n = 524), tic disorders (n = 157), attention-deficit/hyperactivity disorder (ADHD; n = 534), anxiety disorders (n = 1206), and celiac disease, a condition associated with IgA deficiency (n = 624). Results: Compared with ASD and anxiety disorder cohorts, the pediatric OCD cohort displayed a significantly higher likelihood of IgA deficiency (OR = 1.93; 95% CI = 1.18-3.16, and OR = 1.98; 95% CI = 1.28-3.06, respectively), though no difference was observed between pediatric OCD and TS cohorts. Furthermore, the pediatric OCD cohort displayed similar rates of IgA deficiency and serum IgA levels when compared with the celiac disease cohort. The pediatric OCD cohort also displayed the highest percentage of IgA deficiency (15%,) when compared with TS (14%), celiac disease (14%), ADHD (13%), ASD (8%), and anxiety disorder (8%) cohorts. When segregated by sex, boys with OCD displayed a significantly higher likelihood of IgA deficiency when compared with all comparison cohorts except for celiac disease and tic disorders; no significant difference in IgA deficiency was observed between female cohorts. Pediatric OCD subjects also displayed significantly lower adjusted serum IgA levels than the ASD and anxiety disorder cohorts. Adults with OCD were also significantly less likely than children with OCD to display IgA deficiency (OR = 2.71; 95% CI = 1.71-4.28). When compared with children with celiac disease, no significant difference in IgA levels or rates of IgA deficiency were observed in the pediatric OCD cohort. Conclusions: We provide further evidence of IgA abnormalities in pediatric-onset OCD. These results require further investigation to determine if these abnormalities impact the clinical course of OCD in children.
Collapse
Affiliation(s)
- Kyle Williams
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Address correspondence to: Kyle Williams, MD, PhD, Department of Psychiatry, Massachusetts General Hospital, Simches Research Building, Suite 2000, 185 Cambridge Street, Boston, MA 02114
| | | | - Suraj Sarvode Mothi
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Noah Berman
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark Pasternack
- Pediatric Infectious Disease Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel Geller
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jolan Walter
- Allergy, Immunology, and Infectious Disease Program, University of South Florida, St. Petersburg, Florida
| |
Collapse
|
39
|
Pujol J, Blanco-Hinojo L, Maciá D, Alonso P, Harrison BJ, Martínez-Vilavella G, Deus J, Menchón JM, Cardoner N, Soriano-Mas C. Mapping Alterations of the Functional Structure of the Cerebral Cortex in Obsessive–Compulsive Disorder. Cereb Cortex 2019; 29:4753-4762. [DOI: 10.1093/cercor/bhz008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
AbstractWe mapped alterations of the functional structure of the cerebral cortex using a novel imaging approach in a sample of 160 obsessive–compulsive disorder (OCD) patients. Whole-brain functional connectivity maps were generated using multidistance measures of intracortical neural activity coupling defined within isodistant local areas. OCD patients demonstrated neural activity desynchronization within the orbitofrontal cortex and in primary somatosensory, auditory, visual, gustatory, and olfactory areas. Symptom severity was significantly associated with the degree of functional structure alteration in OCD-relevant brain regions. By means of a novel imaging perspective, we once again identified brain alterations in the orbitofrontal cortex, involving areas purportedly implicated in the pathophysiology of OCD. However, our results also indicated that weaker intracortical activity coupling is also present in each primary sensory area. On the basis of previous neurophysiological studies, such cortical activity desynchronization may best be interpreted as reflecting deficient inhibitory neuron activity and altered sensory filtering.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Dídac Maciá
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Pino Alonso
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Spain
| | - Ben J Harrison
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
| | | | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Department of Clinical and Health Psychology, Autonomous University of Barcelona, Spain
| | - José M Menchón
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Spain
| | - Narcís Cardoner
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Mental Health Department, Parc Taulí Sabadell University Hospital, Institut d’Investigació i Innovació Sanitària Parc Taulí (I3PT), Barelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
| | - Carles Soriano-Mas
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
40
|
Wood J, LaPalombara Z, Ahmari SE. Monoamine abnormalities in the SAPAP3 knockout model of obsessive-compulsive disorder-related behaviour. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0023. [PMID: 29352023 DOI: 10.1098/rstb.2017.0023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 01/05/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a leading cause of illness-related disability, but the neural mechanisms underlying OCD symptoms are unclear. One potential mechanism of OCD pathology is monoamine dysregulation. Because of the difficulty of studying monoamine signalling in patients, animal models offer a viable alternative to understanding this aspect of OCD pathophysiology. We used HPLC to characterize post-mortem monoamine levels in lateral orbitofrontal cortex (OFC), medial OFC, medial prefrontal cortex and dorsal and ventral striatum of SAPAP-3 knockout (KO) mice, a well-validated model of compulsive-like behaviours in OCD. As predicted from previous studies, excessive grooming was significantly increased in SAPAP-3 KO mice. Overall levels of the serotonin metabolite 5-hydroxyindoleacetic acid (HIAA) and the ratio of 5HIAA/serotonin (serotonin turnover) were increased in all cortical and striatal regions examined. In addition, dihydroxyphenylacetic acid/dopamine ratio was increased in lateral OFC, and HVA/dopamine ratio was increased in lateral and medial OFC. No baseline differences in serotonin or dopamine tissue content were observed. These data provide evidence of monoaminergic dysregulation in a translational model of OCD symptoms and are consistent with aberrant cortical and striatal serotonin and dopamine release/metabolism in SAPAP-3 KO mice. These results are guiding ongoing experiments using circuit and cell-type specific manipulations of dopamine and serotonin to determine the contributions of these monoaminergic systems to compulsive behaviours, and serve here as a touchstone for an expanded discussion of these techniques for precise circuit dissection.This article is part of the discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Jesse Wood
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA.,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA
| | - Zoe LaPalombara
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA.,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA .,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA
| |
Collapse
|
41
|
Deeb W, Malaty IA, Mathews CA. Tourette disorder and other tic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2019; 165:123-153. [PMID: 31727209 DOI: 10.1016/b978-0-444-64012-3.00008-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Mier D, Schirmbeck F, Stoessel G, Esslinger C, Rausch F, Englisch S, Eisenacher S, de Haan L, Meyer-Lindenberg A, Kirsch P, Zink M. Reduced activity and connectivity of left amygdala in patients with schizophrenia treated with clozapine or olanzapine. Eur Arch Psychiatry Clin Neurosci 2019; 269:931-940. [PMID: 30539230 PMCID: PMC6841919 DOI: 10.1007/s00406-018-0965-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/06/2018] [Indexed: 01/01/2023]
Abstract
Obsessive-compulsive symptoms (OCS) in patients with schizophrenia are a common co-occurring condition, often associated with additional impairments. A subgroup of these patients develops OCS during treatment with second-generation antipsychotics (SGAs), most importantly clozapine and olanzapine. So far, little is known about possible neural mechanism of these SGAs, which seem to aggravate or induce OCS. To investigate the role of SGA treatment on neural activation and connectivity during emotional processing, patients were stratified according to their monotherapy into two groups (group I: clozapine or olanzapine, n = 20; group II: amisulpride or aripiprazole, n = 20). We used an fMRI approach, applying an implicit emotion recognition task. Group comparisons showed significantly higher frequency and severity of comorbid OCS in group I than group II. Task specific activation was attenuated in group I in the left amygdala. Furthermore, functional connectivity from left amygdala to right ventral striatum was reduced in group I. Reduced amygdala activation was associated with OCS severity. Recent literature suggests an involvement of an amygdala-cortico-striatal network in the pathogenesis of obsessive-compulsive disorder. The observed differential activation and connectivity pattern of the amygdala might thus indicate a neural mechanism for the development of SGA-associated OCS in patients with schizophrenia. Further neurobiological research and interventional studies are needed for causal inferences.
Collapse
Affiliation(s)
- Daniela Mier
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany ,Department of Psychology, University of Konstanz, Constance, Germany
| | - Frederike Schirmbeck
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Psychiatry, Arkin Institute for Mental Health, Amsterdam, The Netherlands.
| | - Gabriela Stoessel
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Christine Esslinger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Franziska Rausch
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Susanne Englisch
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Sarah Eisenacher
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Lieuwe de Haan
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands ,Department of Psychiatry, Arkin Institute for Mental Health, Amsterdam, The Netherlands
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Mathias Zink
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany ,Department of Psychiatry, Psychotherapy and Psychosomatics, District Hospital Ansbach, Ansbach, Germany
| |
Collapse
|
43
|
Basu I, Crocker B, Farnes K, Robertson MM, Paulk AC, Vallejo DI, Dougherty DD, Cash SS, Eskandar EN, Kramer MM, Widge AS. A neural mass model to predict electrical stimulation evoked responses in human and non-human primate brain. J Neural Eng 2018; 15:066012. [PMID: 30211694 PMCID: PMC6757338 DOI: 10.1088/1741-2552/aae136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is a valuable tool for ameliorating drug resistant pathologies such as movement disorders and epilepsy. DBS is also being considered for complex neuro-psychiatric disorders, which are characterized by high variability in symptoms and slow responses that hinder DBS setting optimization. The objective of this work was to develop an in silico platform to examine the effects of electrical stimulation in regions neighboring a stimulated brain region. APPROACH We used the Jansen-Rit neural mass model of single and coupled nodes to simulate the response to a train of electrical current pulses at different frequencies (10-160 Hz) of the local field potential recorded in the amygdala and cortical structures in human subjects and a non-human primate. RESULTS We found that using a single node model, the evoked responses could be accurately modeled following a narrow range of stimulation frequencies. Including a second coupled node increased the range of stimulation frequencies whose evoked responses could be efficiently modeled. Furthermore, in a chronic recording from a non-human primate, features of the in vivo evoked response remained consistent for several weeks, suggesting that model re-parameterization for chronic stimulation protocols would be infrequent. SIGNIFICANCE Using a model of neural population activity, we reproduced the evoked response to cortical and subcortical stimulation in human and non-human primate. This modeling framework provides an environment to explore, safely and rapidly, a wide range of stimulation settings not possible in human brain stimulation studies. The model can be trained on a limited dataset of stimulation responses to develop an optimal stimulation strategy for an individual patient.
Collapse
Affiliation(s)
- Ishita Basu
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America. Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Individual white matter bundle trajectories are associated with deep brain stimulation response in obsessive-compulsive disorder. Brain Stimul 2018; 12:353-360. [PMID: 30522916 DOI: 10.1016/j.brs.2018.11.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/16/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The ventral anterior limb of the internal capsule (vALIC) is a target for deep brain stimulation (DBS) in obsessive-compulsive disorder (OCD). Conventional surgical planning is based on anatomical landmarks. OBJECTIVE/HYPOTHESIS We hypothesized that treatment response depends on the location of the active DBS contacts with respect to individual white matter bundle trajectories. This study thus aimed to elucidate whether vALIC DBS can benefit from bundle-specific targeting. METHODS We performed tractography analysis of two fiber bundles, the anterior thalamic radiation (ATR) and the supero-lateral branch of the medial forebrain bundle (MFB), using diffusion-weighted magnetic resonance imaging (DWI) data. Twelve patients (10 females) who had received bilateral vALIC DBS for at least 12 months were included. We related the change in OCD symptom severity on the Yale-Brown obsessive-compulsive scale (Y-BOCS) between baseline and one-year follow-up with the distances from the active contacts to the ATR and MFB. We further analyzed the relation between treatment response and stimulation sites in standard anatomical space. RESULTS We found that active stimulation of the vALIC closer to the MFB than the ATR was associated with better treatment outcome (p = 0.04; r2 = 0.34). In standard space, stimulation sites were largely overlapping between treatment (non)responders, suggesting response is independent of the anatomically defined electrode position. CONCLUSION These findings suggest that vALIC DBS for OCD may benefit from MFB-specific implantation and highlight the importance of corticolimbic connections in OCD response to DBS. Prospective investigation is necessary to validate the clinical use of MFB targeting.
Collapse
|
45
|
Xie C, Ma L, Jiang N, Huang R, Li L, Gong L, He C, Xiao C, Liu W, Xu S, Zhang Z. Imbalanced functional link between reward circuits and the cognitive control system in patients with obsessive-compulsive disorder. Brain Imaging Behav 2018; 11:1099-1109. [PMID: 27553440 DOI: 10.1007/s11682-016-9585-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Altered reward processing and cognitive deficits are often observed in patients with obsessive-compulsive disorder (OCD); however, whether the imbalance in activity between reward circuits and the cognitive control (CC) system is associated with compulsive behavior remains unknown. Sixty-eight OCD patients and 33 cognitively normal (CN) healthy subjects participated in this resting-state functional magnetic resonance imaging study. Alterations in the functional connectivity between reward circuits and the CC system were quantitatively assessed and compared between the groups. A Granger causality analysis was used to determine the causal informational influence between and within reward circuits and the CC system across all subjects. OCD patients showed a dichotomous pattern of enhanced functional coupling in their reward circuits and a weakened functional coupling in their CC system when compared to CN subjects. Neural correlates of compulsive behavior were primarily located in the reward circuits and CC system in OCD patients. Importantly, the CC system exerted a reduced interregional causal influence over the reward system in OCD patients relative to its effect in CN subjects. The limitations of this study are that it was a cross-sectional study and the potential effects of environmental and genetic factors were not explored. OCD patients showed an imbalance in the functional link between reward circuits and the CC system at rest. This bias toward a loss of control may define a pathological state in which subjects are more vulnerable to engaging in compulsive behaviors.
Collapse
Affiliation(s)
- Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, Medical School, Southeast University, No. 87 DingJiaQiao Road, Nanjing, People's Republic of China, 210009.
| | - Lisha Ma
- Department of Psychology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, People's Republic of China, 210029
| | - Nan Jiang
- Department of Pharmacy, PLA Army General Hospital, Beijing, People's Republic of China
| | - Ruyan Huang
- Department of Psychology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, People's Republic of China, 210029
| | - Li Li
- Advanced Health Center, Affiliated Zhangda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Liang Gong
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, Medical School, Southeast University, No. 87 DingJiaQiao Road, Nanjing, People's Republic of China, 210009
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, Medical School, Southeast University, No. 87 DingJiaQiao Road, Nanjing, People's Republic of China, 210009
| | - Chaoyong Xiao
- Department of Psychology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, People's Republic of China, 210029
| | - Wen Liu
- Department of Radiology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shu Xu
- Department of Psychology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, People's Republic of China, 210029.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, Medical School, Southeast University, No. 87 DingJiaQiao Road, Nanjing, People's Republic of China, 210009
| |
Collapse
|
46
|
Modi ME, Brooks JM, Guilmette ER, Beyna M, Graf R, Reim D, Schmeisser MJ, Boeckers TM, O'Donnell P, Buhl DL. Hyperactivity and Hypermotivation Associated With Increased Striatal mGluR1 Signaling in a Shank2 Rat Model of Autism. Front Mol Neurosci 2018; 11:107. [PMID: 29970986 PMCID: PMC6018399 DOI: 10.3389/fnmol.2018.00107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/19/2018] [Indexed: 12/02/2022] Open
Abstract
Mutations in the SHANK family of genes have been consistently identified in genetic and genomic screens of autism spectrum disorder (ASD). The functional overlap of SHANK with several other ASD-associated genes suggests synaptic dysfunction as a convergent mechanism of pathophysiology in ASD. Although many ASD-related mutations result in alterations to synaptic function, the nature of those dysfunctions and the consequential behavioral manifestations are highly variable when expressed in genetic mouse models. To investigate the phylogenetic conservation of phenotypes resultant of Shank2 loss-of-function in a translationally relevant animal model, we generated and characterized a novel transgenic rat with a targeted mutation of the Shank2 gene, enabling an evaluation of gene-associated phenotypes, the elucidation of complex behavioral phenotypes, and the characterization of potential translational biomarkers. The Shank2 loss-of-function mutation resulted in a notable phenotype of hyperactivity encompassing hypermotivation, increased locomotion, and repetitive behaviors. Mutant rats also expressed deficits in social behavior throughout development and in the acquisition of operant tasks. The hyperactive phenotype was associated with an upregulation of mGluR1 expression, increased dendritic branching, and enhanced long-term depression (LTD) in the striatum but opposing morphological and cellular alterations in the hippocampus (HP). Administration of the mGluR1 antagonist JNJ16259685 selectively normalized the expression of striatally mediated repetitive behaviors and physiology but had no effect on social deficits. Finally, Shank2 mutant animals also exhibited alterations in electroencephalography (EEG) spectral power and event-related potentials, which may serve as translatable EEG biomarkers of synaptopathic alterations. Our results show a novel hypermotivation phenotype that is unique to the rat model of Shank2 dysfunction, in addition to the traditional hyperactive and repetitive behaviors observed in mouse models. The hypermotivated and hyperactive phenotype is associated with striatal dysfunction, which should be explored further as a targetable mechanism for impairment in ASD.
Collapse
Affiliation(s)
- Meera E Modi
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Julie M Brooks
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Edward R Guilmette
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Mercedes Beyna
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Radka Graf
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Dominik Reim
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Division of Neuroanatomy, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Patricio O'Donnell
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Derek L Buhl
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| |
Collapse
|
47
|
Bey AL, Wang X, Yan H, Kim N, Passman RL, Yang Y, Cao X, Towers AJ, Hulbert SW, Duffney LJ, Gaidis E, Rodriguiz RM, Wetsel WC, Yin HH, Jiang YH. Brain region-specific disruption of Shank3 in mice reveals a dissociation for cortical and striatal circuits in autism-related behaviors. Transl Psychiatry 2018; 8:94. [PMID: 29700290 PMCID: PMC5919902 DOI: 10.1038/s41398-018-0142-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
We previously reported a new line of Shank3 mutant mice which led to a complete loss of Shank3 by deleting exons 4-22 (Δe4-22) globally. Δe4-22 mice display robust ASD-like behaviors including impaired social interaction and communication, increased stereotypical behavior and excessive grooming, and a profound deficit in instrumental learning. However, the anatomical and neural circuitry underlying these behaviors are unknown. We generated mice with Shank3 selectively deleted in forebrain, striatum, and striatal D1 and D2 cells. These mice were used to interrogate the circuit/brain-region and cell-type specific role of Shank3 in the expression of autism-related behaviors. Whole-cell patch recording and biochemical analyses were used to study the synaptic function and molecular changes in specific brain regions. We found perseverative exploratory behaviors in mice with deletion of Shank3 in striatal inhibitory neurons. Conversely, self-grooming induced lesions were observed in mice with deletion of Shank3 in excitatory neurons of forebrain. However, social, communicative, and instrumental learning behaviors were largely unaffected in these mice, unlike what is seen in global Δe4-22 mice. We discovered unique patterns of change for the biochemical and electrophysiological findings in respective brain regions that reflect the complex nature of transcriptional regulation of Shank3. Reductions in Homer1b/c and membrane hyper-excitability were observed in striatal loss of Shank3. By comparison, Shank3 deletion in hippocampal neurons resulted in increased NMDAR-currents and GluN2B-containing NMDARs. These results together suggest that Shank3 may differentially regulate neural circuits that control behavior. Our study supports a dissociation of Shank3 functions in cortical and striatal neurons in ASD-related behaviors, and it illustrates the complexity of neural circuit mechanisms underlying these behaviors.
Collapse
Affiliation(s)
- Alexandra L. Bey
- 0000 0004 1936 7961grid.26009.3dDepartments of Neurobiology, Duke University, Durham, NC 27710 USA
| | - Xiaoming Wang
- 0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA
| | - Haidun Yan
- 0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA
| | - Namsoo Kim
- 0000 0004 1936 7961grid.26009.3dPsychology and Neuroscience, Duke University, Durham, NC 27710 USA
| | - Rebecca L. Passman
- 0000 0004 1936 7961grid.26009.3dBiology, Duke University, Durham, NC 27710 USA
| | - Yilin Yang
- 0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA
| | - Xinyu Cao
- 0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA
| | - Aaron J. Towers
- 0000 0004 1936 7961grid.26009.3dGenomics and Genetics Graduate Program, Duke University, Durham, NC 27710 USA
| | - Samuel W. Hulbert
- 0000 0004 1936 7961grid.26009.3dDepartments of Neurobiology, Duke University, Durham, NC 27710 USA
| | - Lara J. Duffney
- 0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA
| | - Erin Gaidis
- 0000 0004 1936 7961grid.26009.3dPsychology and Neuroscience, Duke University, Durham, NC 27710 USA
| | - Ramona M. Rodriguiz
- 0000 0004 1936 7961grid.26009.3dPsychiatry and Behavioral Sciences, Duke University, Durham, NC 27710 USA
| | - William C. Wetsel
- 0000 0004 1936 7961grid.26009.3dDepartments of Neurobiology, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dPsychiatry and Behavioral Sciences, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dCell Biology, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dDuke Institute for Brain Sciences, Duke University, Durham, NC 27710 USA
| | - Henry H. Yin
- 0000 0004 1936 7961grid.26009.3dDepartments of Neurobiology, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dPsychology and Neuroscience, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dDuke Institute for Brain Sciences, Duke University, Durham, NC 27710 USA
| | - Yong-hui Jiang
- 0000 0004 1936 7961grid.26009.3dDepartments of Neurobiology, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dGenomics and Genetics Graduate Program, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dDuke Institute for Brain Sciences, Duke University, Durham, NC 27710 USA
| |
Collapse
|
48
|
Fontenelle LF, Frydman I, Hoefle S, Oliveira-Souza R, Vigne P, Bortolini TS, Suo C, Yücel M, Mattos P, Moll J. Decoding moral emotions in obsessive-compulsive disorder. Neuroimage Clin 2018; 19:82-89. [PMID: 30035005 PMCID: PMC6051311 DOI: 10.1016/j.nicl.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/07/2018] [Accepted: 04/01/2018] [Indexed: 11/20/2022]
Abstract
Background Patients with obsessive-compulsive disorder (OCD) exhibit abnormal neural responses when they experience particular emotions or when they evaluate stimuli with emotional value. Whether these brain responses are sufficiently distinctive to discriminate between OCD patients and healthy controls is unknown. The present study is the first to investigate the discriminative power of multivariate pattern analysis of regional fMRI responses to moral and non-moral emotions. Method To accomplish this goal, we performed a searchlight-based multivariate pattern analysis to unveil brain regions that could discriminate 18 OCD patients from 18 matched healthy controls during provoked guilt, disgust, compassion, and anger. We also investigated the existence of distinctive neural patterns while combining those four emotions (herein termed multiemotion analysis). Results We found that different frontostriatal regions discriminated OCD patients from controls based on individual emotional experiences. Most notably, the left nucleus accumbens (NAcc) discriminated OCD patients from controls during both disgust and the multiemotion analysis. Among other regions, the angular gyrus responses to anger and the lingual and the middle temporal gyri in the multi-emotion analysis were highly discriminant between samples. Additional BOLD analyses supported the directionality of these findings. Conclusions In line with previous studies, differential activity in regions beyond the frontostriatal circuitry differentiates OCD from healthy volunteers. The finding that the response of the left NAcc to different basic and moral emotions is highly discriminative for a diagnosis of OCD confirms current pathophysiological models and points to new venues of research.
Collapse
Affiliation(s)
- Leonardo F Fontenelle
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia; Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil.
| | - Ilana Frydman
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil
| | - Sebastian Hoefle
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Paula Vigne
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil
| | - Tiago S Bortolini
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Chao Suo
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
| | - Murat Yücel
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
| | - Paulo Mattos
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Jorge Moll
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Thorsen AL, Hagland P, Radua J, Mataix-Cols D, Kvale G, Hansen B, van den Heuvel OA. Emotional Processing in Obsessive-Compulsive Disorder: A Systematic Review and Meta-analysis of 25 Functional Neuroimaging Studies. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:563-571. [PMID: 29550459 DOI: 10.1016/j.bpsc.2018.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 01/11/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Patients with obsessive-compulsive disorder (OCD) experience aversive emotions in response to obsessions, motivating avoidance and compulsive behaviors. However, there is considerable ambiguity regarding the brain circuitry involved in emotional processing in OCD, especially whether activation is altered in the amygdala. METHODS We conducted a systematic literature review and performed a meta-analysis-seed-based d mapping-of 25 whole-brain neuroimaging studies (including 571 patients and 564 healthy control subjects) using functional magnetic resonance imaging or positron emission tomography, comparing brain activation of patients with OCD and healthy control subjects during presentation of emotionally valenced versus neutral stimuli. Meta-regressions were employed to investigate possible moderators. RESULTS Patients with OCD, compared with healthy control subjects, showed increased activation in the bilateral amygdala, right putamen, orbitofrontal cortex extending into the anterior cingulate and ventromedial prefrontal cortex, and middle temporal and left inferior occipital cortices during emotional processing. Right amygdala hyperactivation was most pronounced in unmedicated patients. Symptom severity was related to increased activation in the orbitofrontal and anterior cingulate cortices and precuneus. Greater comorbidity with mood and anxiety disorders was associated with higher activation in the right amygdala, putamen, and insula as well as with lower activation in the left amygdala and right ventromedial prefrontal cortex. CONCLUSIONS Patients with OCD show increased emotional processing-related activation in limbic, frontal, and temporal regions. Previous mixed evidence regarding the role of the amygdala in OCD has likely been influenced by patient characteristics (such as medication status) and low statistical power.
Collapse
Affiliation(s)
- Anders Lillevik Thorsen
- Obsessive-Compulsive Disorder (OCD) team, Haukeland University Hospital, Bergen, Norway; Department of Clinical Psychology, University of Bergen, Bergen, Norway.
| | - Pernille Hagland
- Obsessive-Compulsive Disorder (OCD) team, Haukeland University Hospital, Bergen, Norway; Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Joaquim Radua
- FIDMAG Germanes Hospitalàries, Centre for Biomedical Research in Mental Health Network (CIBERSAM), Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Gerd Kvale
- Obsessive-Compulsive Disorder (OCD) team, Haukeland University Hospital, Bergen, Norway; Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Bjarne Hansen
- Obsessive-Compulsive Disorder (OCD) team, Haukeland University Hospital, Bergen, Norway; Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Odile A van den Heuvel
- Obsessive-Compulsive Disorder (OCD) team, Haukeland University Hospital, Bergen, Norway; Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands; Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
50
|
OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency. Mol Psychiatry 2018; 23:444-458. [PMID: 28070119 PMCID: PMC5794898 DOI: 10.1038/mp.2016.232] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 01/02/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a common neuropsychiatric disease affecting about 2% of the general population. It is characterized by persistent intrusive thoughts and repetitive ritualized behaviors. While gene variations, malfunction of cortico-striato-thalamo-cortical (CSTC) circuits, and dysregulated synaptic transmission have been implicated in the pathogenesis of OCD, the underlying mechanisms remain largely unknown. Here we show that OCD-like behavior in mice is caused by deficiency of SPRED2, a protein expressed in various brain regions and a potent inhibitor of Ras/ERK-MAPK signaling. Excessive self-grooming, reflecting OCD-like behavior in rodents, resulted in facial skin lesions in SPRED2 knockout (KO) mice. This was alleviated by treatment with the selective serotonin reuptake inhibitor fluoxetine. In addition to the previously suggested involvement of cortico-striatal circuits, electrophysiological measurements revealed altered transmission at thalamo-amygdala synapses and morphological differences in lateral amygdala neurons of SPRED2 KO mice. Changes in synaptic function were accompanied by dysregulated expression of various pre- and postsynaptic proteins in the amygdala. This was a result of altered gene transcription and triggered upstream by upregulated tropomyosin receptor kinase B (TrkB)/ERK-MAPK signaling in the amygdala of SPRED2 KO mice. Pathway overactivation was mediated by increased activity of TrkB, Ras, and ERK as a specific result of SPRED2 deficiency and not elicited by elevated brain-derived neurotrophic factor levels. Using the MEK inhibitor selumetinib, we suppressed TrkB/ERK-MAPK pathway activity in vivo and reduced OCD-like grooming in SPRED2 KO mice. Altogether, this study identifies SPRED2 as a promising new regulator, TrkB/ERK-MAPK signaling as a novel mediating mechanism, and thalamo-amygdala synapses as critical circuitry involved in the pathogenesis of OCD.
Collapse
|