1
|
Fu H, Yang T, Ni H, Li J, Liu F, Liu J, Yin Y. A low-protein soybean-free diet improves carcass traits and meat quality and modulates the colonic microbiota in Daweizi pigs. Front Vet Sci 2025; 11:1516198. [PMID: 39981135 PMCID: PMC11841500 DOI: 10.3389/fvets.2024.1516198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
Introduction Soybean meal is an excellent protein source and is widely used in pig feed. However, the Americas account for more than 80% of global soybean production, so European and Asia swine production largely depends on soybean imports. The use of safe and functional unconventional feed sources can effectively alleviate worldwide protein shortage problems. Methods Here, we formulated a low-protein soybean-free diet (LPNS) for growing and fattening pigs using rice, potatoes, tea, and other unconventional feed sources. Thirty-six healthy Daweizi pigs (average body weight 23.60 ± 1.34 kg) were raised under the same conditions and randomly assigned to two dietary treatments: (1) Con group, corn-soybean base meal; (2) LPNS group. When the average weight of pigs in the group reached 85 kg, two pigs per pen were randomly selected and euthanized for collection of the colonic digesta and carcass traits and for meat quality determination. Results Compared with the corn-soybean based diet, the LPNS diet decreased the average daily gain (ADG) and feed conversion ratio (FCR) of Daweizi pigs but had a lower cost per kilogram of gain. In addition, the LPNS diet significantly increased leanness and decreased the fat-skin rate and bone rate of Daweizi pigs. The cooking loss of meat decreased, and unsaturated fatty acids such as C22:6 and n-3 PUFA significantly increased in the LPNS group. Moreover, the purine content in the meat substantially decreased with the LPNS diet. The 16S rDNA analysis revealed that the LPNS diet greatly modified the composition of the colonic microbiota community, with a decrease in the Firmicutes/Bacteroidetes ratio and an increase in the abundance of Lactobacillus spp. Discussion The use of functional herbs along with a low-protein diet helped to regulate fat and purine metabolism in fatty-type pigs. The LPNS diet formulated with unconventional-feed sources not only helps reduce the feed cost in swine production but also improves the carcass traits and meat quality of pigs, which is more suitable for small-scale pig farming.
Collapse
Affiliation(s)
- Haohua Fu
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Taoming Yang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Hengjia Ni
- Department of Animal Science, Hunan Agriculture University, Changsha, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jing Li
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Fenfen Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yulong Yin
- Department of Animal Science, Hunan Agriculture University, Changsha, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
2
|
Senior AM, Raubenheimer D, Couteur DGL, Simpson SJ. The Geometric Framework for Nutrition and Its Application to Rodent Models. Annu Rev Anim Biosci 2025; 13:389-410. [PMID: 39546416 DOI: 10.1146/annurev-animal-111523-102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Rodents have been the primary model for mammalian nutritional physiology for decades. Despite an extensive body of literature, controversies remain around the effects of specific nutrients and total energy intake on several aspects of nutritional biology, even in this well-studied model. One approach that is helping to bring clarity to the field is the geometric framework for nutrition (GFN). The GFN is a multidimensional paradigm that can be used to conceptualize nutrition and nutritional effects, design experiments, and interpret results. To date, more than 30 publications have applied the GFN to data from rodent models of nutrition. Here we review the major conclusions from these studies. We pay particular attention to the effects of macronutrients on satiety, glucose metabolism, lifespan and the biology of aging, reproductive function, immune function, and the microbiome. We finish by highlighting several knowledge gaps that became evident upon reviewing this literature.
Collapse
Affiliation(s)
- Alistair M Senior
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David Raubenheimer
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David G Le Couteur
- ANZAC Research Institute, The Concord Hospital, Concord, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - Stephen J Simpson
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| |
Collapse
|
3
|
Diniz F, Edgington-Giordano F, Ngo NYN, Caspi G, El-Dahr SS, Tortelote GG. Morphometric analysis of the intergenerational effects of protein restriction on nephron endowment in mice. Heliyon 2024; 10:e39552. [PMID: 39498088 PMCID: PMC11533620 DOI: 10.1016/j.heliyon.2024.e39552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Background Parental nutritional status is crucial in shaping offspring's kidney development. However, the association between a protein-restrictive diet and its intergenerational impact on kidney development remains unclear. Methods We conducted multigenerational morphometric measurements to investigate the effects of parental protein deprivation on offspring kidney development across four generations. F0 mice were divided into two groups and fed a normal protein diet (NPD) or a low-protein diet (LPD) for three weeks before mating and continued these diets throughout gestation and lactation. Body weight (BW), kidney weight (KW), KW/BW ratio, nephron counts, and blood pressure were assessed in F1 pups. To examine paternal effects, we bred CD1 females on an NPD with males on an LPD. BW, KW, KW/BW, and nephron counts were measured at P20. To measure the transgenerational effect of parental LPD on kidney development, F1 offspring (from parents on LPD) were fed NPD upon weaning. These F1 offspring were bred at 6 weeks of age to produce F2, F3 and F4 generations. Kidney metrics were evaluated across generations. Results The average body weight of P0 pups from parents on NPD was 1.61g, while pups from parental LPD weighed an average of 0.869g, a decrease of 54 % (p = 6.9e-11, Wilcoxon test). F1 from parental LPD have significantly smaller kidneys than the control, with an average combined kidney weight of 0.0082g versus 0.0129g, a 37 % decrease (p = 3.2e-02, Wilcoxon test). P20 BW and KW remained low in LPD offspring. These effects persisted for 4 generations (F1 to F4) with an average glomerular count reduction of roughly 20 %. F3 and F4 showed wider variability in glomerular counts but were not statistically significant compared to controls. Conclusions Both maternal and paternal LPD significantly affected offspring nephron endowment. Our study underscores the complex nature of nutritional transgenerational effects on kidney development, emphasizing the importance of both maternal and paternal dietary impacts on kidney development and the developmental origin of adult disease.
Collapse
Affiliation(s)
- Fabiola Diniz
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Francesca Edgington-Giordano
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nguyen Yen Nhi Ngo
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Gal Caspi
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Samir S. El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Giovane G. Tortelote
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
4
|
Mishra M, Wu J, Kane AE, Howlett SE. The intersection of frailty and metabolism. Cell Metab 2024; 36:893-911. [PMID: 38614092 PMCID: PMC11123589 DOI: 10.1016/j.cmet.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
On average, aging is associated with unfavorable changes in cellular metabolism, which are the processes involved in the storage and expenditure of energy. However, metabolic dysregulation may not occur to the same extent in all older individuals as people age at different rates. Those who are aging rapidly are at increased risk of adverse health outcomes and are said to be "frail." Here, we explore the links between frailty and metabolism, including metabolic contributors and consequences of frailty. We examine how metabolic diseases may modify the degree of frailty in old age and suggest that frailty may predispose toward metabolic disease. Metabolic interventions that can mitigate the degree of frailty in people are reviewed. New treatment strategies developed in animal models that are poised for translation to humans are also considered. We suggest that maintaining a youthful metabolism into older age may be protective against frailty.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Judy Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Alice E Kane
- Institute for Systems Biology, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
Sutton J, Habibi M, Shili CN, Beker A, Salak-Johnson JL, Foote A, Pezeshki A. Low-Protein Diets Differentially Regulate Energy Balance during Thermoneutral and Heat Stress in Cobb Broiler Chicken ( Gallus domesticus). Int J Mol Sci 2024; 25:4369. [PMID: 38673954 PMCID: PMC11050574 DOI: 10.3390/ijms25084369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The objective was to assess whether low-protein (LP) diets regulate food intake (FI) and thermogenesis differently during thermoneutral (TN) and heat stress (HS) conditions. Two-hundred-day-old male broiler chicks were weight-matched and assigned to 36 pens with 5-6 chicks/pen. After 2 weeks of acclimation, birds were subjected into four groups (9 pens/group) including (1) a normal-protein diet under TN (ambient temperature), (2) an LP diet under TN, (3) a normal-protein diet under HS (35 °C for 7 h/day), and (4) an LP diet under HS, for 4 weeks. During HS, but not TN, LP tended to decrease FI, which might be associated with a lower mRNA abundance of duodenal ghrelin and higher GIP during HS. The LP group had a higher thermal radiation than NP under TN, but during HS, the LP group had a lower thermal radiation than NP. This was linked with higher a transcript of muscle β1AR and AMPKα1 during TN, but not HS. Further, LP increased the gene expression of COX IV during TN but reduced COX IV and the sirtuin 1 abundance during HS. The dietary protein content differentially impacted plasma metabolome during TN and HS with divergent changes in amino acids such as tyrosine and tryptophan. Compared to NP, LP had increased abundances of p_Tenericutes, c_Mollicutes, c_Mollicutes_RF9, and f_tachnospiraceae under HS. Overall, LP diets may mitigate the negative outcome of heat stress on the survivability of birds by reducing FI and heat production. The differential effect of an LP diet on energy balance during TN and HS is likely regulated by gut and skeletal muscle and alterations in plasma metabolites and cecal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.S.); (M.H.); (C.N.S.); (A.B.); (J.L.S.-J.); (A.F.)
| |
Collapse
|
6
|
Chege BM, Mwangi PW, Githinji CG, Bukachi F. Dietary regimens appear to possess significant effects on the development of combined antiretroviral therapy (cART)-associated metabolic syndrome. PLoS One 2024; 19:e0298752. [PMID: 38416754 PMCID: PMC10901320 DOI: 10.1371/journal.pone.0298752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 03/01/2024] Open
Abstract
INTRODUCTION This study investigated the interactions between a low protein high calorie (LPHC) diet and an integrase inhibitor-containing antiretroviral drug regimen (INI-CR)in light of evidence suggesting that the initiation of cART in patients with poor nutritional status is a predictor of mortality independent of immune status. METHODS Freshly weaned Sprague Dawley rats (120) were randomized into the standard, LPHC and normal protein high calorie (NPHC) diet groups (n = 40/group) initially for 15 weeks. Thereafter, experimental animals in each diet group were further randomized into four treatment sub-groups (n = 10/group) Control (normal saline), group 1(TDF+3TC+DTG and Tesamorelin), group 2 (TDF+3TC+DTG), and Positive control (AZT+3TC+ATV/r) with treatment and diets combined for 9 weeks. Weekly body weights, fasting blood glucose (FBG), oral glucose tolerance test (OGTT); lipid profiles, liver weights, hepatic triglycerides and adiposity were assessed at week 24. RESULTS At week 15, body weights increased between the diet group in phase 1(standard 146 ± 1.64 vs. 273.1 ± 1.56 g), (NPHC, 143.5 ± 2.40 vs. 390.2 ± 4.94 g) and (LPHC, 145.5 ± 2.28 g vs. 398.3 ± 4.89 g) (p< 0.0001). A similar increase was noted in the FBG and OGTT (p< 0.0001). In phase 2, there was an increase in FBG, OGTT, body weights, lipid profile, liver weights, hepatic triglycerides, adiposity and insulin levels in group 2 and positive control in both NPHC and LPHC diet groups (p<0.0001). Growth hormone levels were decreased in Tesamorelin-free group 2 and positive control in both NPHC and LPHC (p< 0.0001). CONCLUSIONS The obesogenic activities of the LPHC diet exceeded that of the NPHC diet and interacted with both integrase-containing and classical cART drug regimens to reproduce cART associated metabolic dysregulation. The effects were however reversed by co-administration with tesamorelin, a synthetic growth hormone releasing hormone analogue.
Collapse
Affiliation(s)
- Boniface M Chege
- School of Health Sciences, Dedan Kimathi University of Technology, Nyeri, Kenya
- Department of Human Anatomy and Medical Physiology, University of Nairobi, Nairobi, Kenya
| | - Peter W Mwangi
- Department of Human Anatomy and Medical Physiology, University of Nairobi, Nairobi, Kenya
| | - Charles G Githinji
- Department of Human Anatomy and Medical Physiology, University of Nairobi, Nairobi, Kenya
| | - Frederick Bukachi
- Department of Human Anatomy and Medical Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
7
|
Na K, Park YJ. Protein Restriction in Metabolic Health: Lessons from Rodent Models. Nutrients 2024; 16:229. [PMID: 38257122 PMCID: PMC10819042 DOI: 10.3390/nu16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Consumption of protein-rich diets and supplements has been increasingly advocated by individuals seeking to optimize metabolic health and mitigate the effects of aging. Protein intake is postulated to support muscle mass retention and enhance longevity, underscoring its perceived benefits in age-related metabolic regulation. However, emerging evidence presents a paradox; while moderate protein consumption contributes to health maintenance, an excessive intake is associated with an elevated risk of chronic diseases, notably obesity and diabetes. Furthermore, recent studies suggest that reducing the ratio of protein intake to macronutrients improves metabolic parameters and extends lifespan. The aim of this study is to review the current evidence concerning the metabolic effects of protein-restricted diets and their potential mechanisms. Utilizing rodent models, investigations have revealed that protein-restricted diets exert a notable influence over food intake and energy consumption, ultimately leading to body weight loss, depending on the degree of dietary protein restriction. These phenotypic alterations are primarily mediated by the FGF21 signaling pathway, whose activation is likely regulated by ATF4 and the circadian clock. The evidence suggests that protein-restricted diets as an alternative approach to calorie-restricted regimes, particularly in overweight or obese adults. However, more research is needed to determine the optimal level of restriction, duration, and long-term effects of such interventions.
Collapse
Affiliation(s)
- Khuhee Na
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea;
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea;
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Solon-Biet SM, Clark X, Bell-Anderson K, Rusu PM, Perks R, Freire T, Pulpitel T, Senior AM, Hoy AJ, Aung O, Le Couteur DG, Raubenheimer D, Rose AJ, Conigrave AD, Simpson SJ. Toward reconciling the roles of FGF21 in protein appetite, sweet preference, and energy expenditure. Cell Rep 2023; 42:113536. [PMID: 38060447 DOI: 10.1016/j.celrep.2023.113536] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), an endocrine signal robustly increased by protein restriction independently of an animal's energy status, exerts profound effects on feeding behavior and metabolism. Here, we demonstrate that considering the nutritional contexts within which FGF21 is elevated can help reconcile current controversies over its roles in mediating macronutrient preference, food intake, and energy expenditure. We show that FGF21 is primarily a driver of increased protein intake in mice and that the effect of FGF21 on sweet preference depends on the carbohydrate balance of the animal. Under no-choice feeding, FGF21 infusion either increased or decreased energy expenditure depending on whether the animal was fed a high- or low-energy diet, respectively. We show that while the role of FGF21 in mediating feeding behavior is complex, its role in promoting protein appetite is robust and that the effects on sweet preference and energy expenditure are macronutrient-state-dependent effects of FGF21.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; School of Medicine, The University of Notre Dame, Darlinghurst, NSW 2010, Australia.
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kim Bell-Anderson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patricia M Rusu
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ruth Perks
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Therese Freire
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J Hoy
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Okka Aung
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord, NSW 2139, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Arthur D Conigrave
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
9
|
Da Eira D, Jani S, Stefanovic M, Ceddia RB. The ketogenic diet promotes triacylglycerol recycling in white adipose tissue and uncoupled fat oxidation in brown adipose tissue, but does not reduce adiposity in rats. J Nutr Biochem 2023; 120:109412. [PMID: 37422170 DOI: 10.1016/j.jnutbio.2023.109412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The purpose of this study was to determine whether the weight-reducing and fat burning effects of the ketogenic diet (KD) could be attributed to alterations in the energy dissipating pathways of brown adipose tissue (BAT) uncoupled oxidation, and white adipose tissue (WAT) browning and triacylglycerol (TAG) recycling. To investigate this, male Wistar rats were fed one of the following three diets for either 8 or 16 weeks: a standard chow (SC), a high-fat, sucrose-enriched (HFS) obesogenic diet, or a KD. At the end of the intervention, subcutaneous inguinal (Sc Ing) and epididymal (Epid) fat, and interscapular and aortic BAT (iBAT and aBAT, respectively) were extracted. These tissues were used for the analysis of proteins involved in WAT browning and thermogenesis. Isolated adipocytes from WAT were assayed for basal and isoproterenol (Iso)-stimulated lipolysis and basal and insulin-stimulated lipogenesis, and BAT adipocytes were assayed for the determination of coupled and uncoupled glucose and palmitate oxidation. Adiposity similarly increased in HFS- and KD-fed rats at weeks 8 and 16. However, in HFS-fed animals insulin-stimulated lipogenesis and Iso-stimulated lipolysis were impaired in WAT adipocytes, whereas in KD-fed animals these pathways remained intact. The KD also significantly elevated WAT glycerol kinase levels, and favored TAG recycling under conditions of enhanced lipolysis. In BAT, the KD significantly increased uncoupling protein-1 levels and uncoupled fat oxidation. In summary, the KD preserved insulin sensitivity and lipolytic capacity in WAT and also upregulated energy-dissipating pathways in BAT, but it was not sufficient to prevent an increase in adiposity.
Collapse
Affiliation(s)
- Daniel Da Eira
- Muscle Health Research Centre - School of Kinesiology and Health Science, York University, North York, ON, Canada
| | - Shailee Jani
- Muscle Health Research Centre - School of Kinesiology and Health Science, York University, North York, ON, Canada
| | - Mateja Stefanovic
- Muscle Health Research Centre - School of Kinesiology and Health Science, York University, North York, ON, Canada
| | - Rolando B Ceddia
- Muscle Health Research Centre - School of Kinesiology and Health Science, York University, North York, ON, Canada.
| |
Collapse
|
10
|
Kondo Y, Aoki H, Masuda M, Nishi H, Noda Y, Hakuno F, Takahashi SI, Chiba T, Ishigami A. Moderate protein intake percentage in mice for maintaining metabolic health during approach to old age. GeroScience 2023; 45:2707-2726. [PMID: 37118349 PMCID: PMC10651611 DOI: 10.1007/s11357-023-00797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Nutritional requirements for maintaining metabolic health may vary with each life stage, such as young, middle, and old age. To investigate the appropriate ratio of nutrients, particularly proteins, for maintaining metabolic health while approaching old age, young (6-month-old) and middle-aged (16-month-old) mice were fed isocaloric diets with varying protein percentages (5%, 15%, 25%, 35%, and 45% by calorie ratio) for two months. The low-protein diet developed mild fatty liver, with middle-aged mice showing more lipids than young mice, whereas the moderate-protein diet suppressed lipid contents and lowered the levels of blood glucose and lipids. Self-organizing map (SOM) analysis revealed that plasma amino acid profiles differed depending on age and difference in protein diet and were associated with hepatic triglyceride and cholesterol levels. Results indicate that the moderate protein intake percentages (25% and 35%) are required for maintaining metabolic health in middle-aged mice, which is similar to that in young mice.
Collapse
Affiliation(s)
- Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Hitoshi Aoki
- Research and Development Division, Nichirei Foods Inc, Chiba, 261-0002, Japan
| | - Masato Masuda
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroki Nishi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Noda
- Department of Animal Facility, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
11
|
Munoz MD, Zamudio A, McCann M, Gil V, Xu P, Liew CW. Activation of brown adipose tissue by a low-protein diet ameliorates hyperglycemia in a diabetic lipodystrophy mouse model. Sci Rep 2023; 13:11808. [PMID: 37479751 PMCID: PMC10362023 DOI: 10.1038/s41598-023-37482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023] Open
Abstract
Long-term ad libitum dietary restrictions, such as low-protein diets (LPDs), improve metabolic health and extend the life span of mice and humans. However, most studies conducted thus far have focused on the preventive effects of LPDs on metabolic syndromes. To test the therapeutic potential of LPD, we treated a lipodystrophy mouse model IRFKO (adipose-specific insulin receptor knockout) in this study. We have previously shown that IRFKO mice have profound insulin resistance, hyperglycemia, and whitening of interscapular brown adipose tissue (BAT), closely mimicking the phenotypes in lipoatrophic diabetic patients. Here, we demonstrate that 14-day of LPD (5.1% kcal from protein) feeding is sufficient to reduce postprandial blood glucose, improve insulin resistance, and normalize glucose tolerance in the IRFKO mice. This profound metabolic improvement is associated with BAT activation and increase in whole body energy expenditure. To confirm, we showed that surgical denervation of BAT attenuated the beneficial metabolic effects of LPD feeding in IRFKO mice, including the 'browning' effects on BAT and the glucose-ameliorating results. However, BAT denervation failed to affect the body weight-lowering effects of LPD. Together, our results imply a therapeutic potential to use LPD for the treatment of lipoatrophic diabetes.
Collapse
Affiliation(s)
- Marcos David Munoz
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alexa Zamudio
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Maximilian McCann
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Victoria Gil
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Pingwen Xu
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA.
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
Wu L, An R, Xi Y, Tang Z, Li T, Xu Y, Pang J, Peng X, Sun W, Sun Z. Immunomodulatory Effect of Isocaloric Diets with Different Protein Contents on Young Adult Sprague Dawley Rats. Foods 2023; 12:foods12081597. [PMID: 37107392 PMCID: PMC10138247 DOI: 10.3390/foods12081597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
To understand the potential mechanisms of dietary protein on intestinal and host health, we studied the immunomodulatory effects of isocaloric diets with high or low crude protein (CP) contents on young adult Sprague Dawley (SD) rats. A total of 180 healthy male rats were randomly assigned to six groups (six replicate pens per treatment with five rats per pen) and fed diets with 10% CP, 14% CP, 20% CP (control), 28% CP, 38% CP, and 50% CP. Compared with the control diet, the rats fed the 14% CP diet significantly elevated lymphocyte cell counts in the peripheral blood and ileum, whereas the 38% CP diet significantly activated the expression of the TLR4/NF-κB signaling pathway in the colonic mucosa (p < 0.05). Moreover, the 50% CP diet reduced growth performance and fat deposition and increased the percentages of CD4+ T, B, and NK cells in the peripheral blood and the colonic mucosal expression of IL-8, TNF-α, and TGF-β. Overall, rats fed the 14% CP diet enhanced host immunity by increasing the numbers of immune cells, and the immunological state and growth of SD rats were negatively impacted by the diet containing 50% CP.
Collapse
Affiliation(s)
- Liuting Wu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Rui An
- Institute of Animal Husbandry Science, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yuyue Xi
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Tiejun Li
- Institute of Subtropical Agriculture, The Academy of Chinese Natural Sciences, Changsha 410125, China
| | - Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Hope DCD, Tan TMM. Glucagon and energy expenditure; Revisiting amino acid metabolism and implications for weight loss therapy. Peptides 2023; 162:170962. [PMID: 36736539 DOI: 10.1016/j.peptides.2023.170962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Glucagon receptor (GCGR)-targeted multi-agonists are being developed for the treatment of obesity and metabolic disease. GCGR activity is utilised for its favourable weight loss and metabolic properties, including increased energy expenditure (EE) and hepatic lipid metabolism. GLP1R and GIPR activities are increasingly present in a multi-agonist strategy. Due to the compound effect of increased satiety, reduced food intake and increased energy expenditure, the striking weight loss effects of these multi-agonists has been demonstrated in pre-clinical models of obesity. The precise contribution and mechanism of GCGR activity to enhanced energy expenditure and weight loss in both rodents and humans is not fully understood. In this review, our understanding of glucagon-mediated EE is explored, and an amino acid-centric paradigm contributing to this phenomenon is presented. The current progress of GCGR-targeted multi-agonists in development is also highlighted with a focus on the implications of glucagon-stimulated hypoaminoacidemia.
Collapse
Affiliation(s)
- D C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - T M-M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
14
|
Munoz M, Zamudio A, McCann M, Gil V, Xu P, Liew CW. Activation of brown adipose tissue by a low-protein diet ameliorates hyperglycemia in a diabetic lipodystrophy mouse model. RESEARCH SQUARE 2023:rs.3.rs-2701883. [PMID: 37034803 PMCID: PMC10081364 DOI: 10.21203/rs.3.rs-2701883/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Long-term ad libitum dietary restrictions, such as low-protein diets (LPDs), improve metabolic health and extend the life span of mice and humans. However, most studies conducted thus far have focused on the preventive effects of LPDs on metabolic syndromes. To test the therapeutic potential of LPD, we treated a lipodystrophy mouse model IR FKO (adipose-specific insulin receptor knockout) in this study. We have previously shown that IR FKO mice have profound insulin resistance, hyperglycemia, and whitenng of interscapular brown adipose tissue (BAT), closely mimicking the phenotypes in lipoatrophic diabetic patients. Here, we demonstrate that 14-day of LPD (5.1% kcal from protein) feeding is sufficient to reduce postprandial blood glucose, improve insulin resistance, and normalize glucose tolerance in the IR FKO mice. This profound metabolic improvement is associated with BAT activation and increase in whole body energy expenditure. To confirm, we showed that surgical denervation of BAT attenuated the beneficial metabolic effects of LPD feeding in IR FKO mice, including the 'browning' effects on BAT and the glucose-ameliorating results. However, BAT denervation failed to affect the body weight-lowering effects of LPD. Together, our results imply a therapeutic potential to use LPD for the treatment of lipoatrophic diabetes.
Collapse
|
15
|
Hope DCD, Hinds CE, Lopes T, Vincent ML, Shrewsbury JV, Yu ATC, Davies I, Scott R, Jones B, Murphy KG, Minnion JS, Sardini A, Carling D, Lutz TA, Bloom SR, Tan TMM, Owen BM. Hypoaminoacidemia underpins glucagon-mediated energy expenditure and weight loss. Cell Rep Med 2022; 3:100810. [PMID: 36384093 PMCID: PMC9729826 DOI: 10.1016/j.xcrm.2022.100810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Glucagon analogs show promise as components of next-generation, multi-target, anti-obesity therapeutics. The biology of chronic glucagon treatment, in particular, its ability to induce energy expenditure and weight loss, remains poorly understood. Using a long-acting glucagon analog, G108, we demonstrate that glucagon-mediated body weight loss is intrinsically linked to the hypoaminoacidemia associated with its known amino acid catabolic action. Mechanistic studies reveal an energy-consuming response to low plasma amino acids in G108-treated mice, prevented by dietary amino acid supplementation and mimicked by a rationally designed low amino acid diet. Therefore, low plasma amino acids are a pre-requisite for G108-mediated energy expenditure and weight loss. However, preventing hypoaminoacidemia with additional dietary protein does not affect the ability of G108 to improve glycemia or hepatic steatosis in obese mice. These studies provide a mechanism for glucagon-mediated weight loss and confirm the hepatic glucagon receptor as an attractive molecular target for metabolic disease therapeutics.
Collapse
Affiliation(s)
- David C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Charlotte E Hinds
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tatiana Lopes
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Matthew L Vincent
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jed V Shrewsbury
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Arthur T C Yu
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Rebecca Scott
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ben Jones
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Kevin G Murphy
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - James S Minnion
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alessandro Sardini
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Bryn M Owen
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
16
|
A Mixture of Valine and Isoleucine Restores the Growth of Protein-Restricted Pigs Likely through Improved Gut Development, Hepatic IGF-1 Pathway, and Plasma Metabolomic Profile. Int J Mol Sci 2022; 23:ijms23063300. [PMID: 35328720 PMCID: PMC8955368 DOI: 10.3390/ijms23063300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Valine (Val) alone or in combination with isoleucine (Ile) improves the growth under severe protein restriction; however, the underlying mechanisms remain unknown. In this study, we assessed whether Val/Ile-induced growth in protein-restricted pigs is associated with changes in gut development, hepatic insulin-like growth factor 1 (IGF-1) production, and blood metabolomics. Forty piglets were assigned to five dietary groups: positive control (PC) with standard protein content; low protein (LP) with very low protein content; and LP supplemented with Val (LPV), Ile (LPI), and Val and Ile (LPVI). LPVI reversed the negative effects of VLP diets on growth and gut morphology. Both LPV and LPVI restored the reduced transcript of IGF-1 while decreasing the transcript of insulin-like growth factor binding protein 1 (IGFBP1) in the liver. LPV and LPVI recovered the reduced plasma Val, glycine, and leucine concentrations, which were positively correlated with improved gut morphology and the hepatic IGF-1 gene expression and negatively correlated with hepatic IGFBP1 mRNA abundance. In conclusion, supplementation with a combination of Val and Ile into the VLP diets restored the decreased growth performance of pigs fed with these diets likely through improved gut development, hepatic IGF-1 expression and bioavailability, and plasma metabolomics profile.
Collapse
|
17
|
Abstract
BACKGROUND Obesity develops due to an imbalance in energy homeostasis, wherein energy intake exceeds energy expenditure. Accumulating evidence shows that manipulations of dietary protein and their component amino acids affect the energy balance, resulting in changes in fat mass and body weight. Amino acids are not only the building blocks of proteins but also serve as signals regulating multiple biological pathways. SCOPE OF REVIEW We present the currently available evidence regarding the effects of dietary alterations of a single essential amino acid (EAA) on energy balance and relevant signaling mechanisms at both central and peripheral levels. We summarize the association between EAAs and obesity in humans and the clinical use of modifying the dietary EAA composition for therapeutic intervention in obesity. Finally, similar mechanisms underlying diets varying in protein levels and diets altered of a single EAA are described. The current review would expand our understanding of the contribution of protein and amino acids to energy balance control, thus helping discover novel therapeutic approaches for obesity and related diseases. MAJOR CONCLUSIONS Changes in circulating EAA levels, particularly increased branched-chain amino acids (BCAAs), have been reported in obese human and animal models. Alterations in dietary EAA intake result in improvements in fat and weight loss in rodents, and each has its distinct mechanism. For example, leucine deprivation increases energy expenditure, reduces food intake and fat mass, primarily through regulation of the general control nonderepressible 2 (GCN2) and mammalian target of rapamycin (mTOR) signaling. Methionine restriction by 80% decreases fat mass and body weight while developing hyperphagia, primarily through fibroblast growth factor 21 (FGF-21) signaling. Some effects of diets with different protein levels on energy homeostasis are mediated by similar mechanisms. However, reports on the effects and underlying mechanisms of dietary EAA imbalances on human body weight are few, and more investigations are needed in future.
Collapse
Affiliation(s)
- Fei Xiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China; Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China.
| |
Collapse
|
18
|
Gietzen DW. Brain Signaling of Indispensable Amino Acid Deficiency. J Clin Med 2021; 11:191. [PMID: 35011932 PMCID: PMC8745678 DOI: 10.3390/jcm11010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Our health requires continual protein synthesis for maintaining and repairing tissues. For protein synthesis to function, all the essential (indispensable) amino acids (IAAs) must be available in the diet, along with those AAs that the cells can synthesize (the dispensable amino acids). Here we review studies that have shown the location of the detector for IAA deficiency in the brain, specifically for recognition of IAA deficient diets (IAAD diets) in the anterior piriform cortex (APC), with subsequent responses in downstream brain areas. The APC is highly excitable, which makes is uniquely suited to serve as an alarm for reductions in IAAs. With a balanced diet, these neurons are kept from over-excitation by GABAergic inhibitory neurons. Because several transporters and receptors on the GABAergic neurons have rapid turnover times, they rely on intact protein synthesis to function. When an IAA is missing, its unique tRNA cannot be charged. This activates the enzyme General Control Nonderepressible 2 (GCN2) that is important in the initiation phase of protein synthesis. Without the inhibitory control supplied by GABAergic neurons, excitation in the circuitry is free to signal an urgent alarm. Studies in rodents have shown rapid recognition of IAA deficiency by quick rejection of the IAAD diet.
Collapse
Affiliation(s)
- Dorothy W Gietzen
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
19
|
Chronic Effects of Maternal Low-Protein and Low-Quality Protein Diets on Body Composition, Glucose-Homeostasis and Metabolic Factors, Followed by Reversible Changes upon Rehabilitation in Adult Rat Offspring. Nutrients 2021; 13:nu13114129. [PMID: 34836384 PMCID: PMC8624605 DOI: 10.3390/nu13114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Several studies suggest that the maternal protein content and source can affect the offspring's health. However, the chronic impact of maternal quality and quantity protein restriction, and reversible changes upon rehabilitation, if any, in the offspring, remains elusive. This study examined the effects of maternal low-quality protein (LQP) and low-protein (LP) intake from preconception to post-weaning, followed by rehabilitation from weaning, on body composition, glucose-homeostasis, and metabolic factors in rat offspring. Wistar rats were exposed to normal protein (NP; 20% casein), LQP (20% wheat gluten) or LP (8% casein) isocaloric diets for 7 weeks before pregnancy until lactation. After weaning, the offspring were exposed to five diets: NP, LQP, LQPR (LQP rehabilitated with NP), LP, and LPR (LP rehabilitated with NP) for 16 weeks. Body composition, glucose-homeostasis, lipids, and plasma hormones were investigated. The LQP and LP offspring had lower bodyweight, fat and lean mass, insulin and HOMA-IR than the NP. The LQP offspring had higher cholesterol, T3 and T4, and lower triacylglycerides and glucose, while these were unaltered in LP compared to NP. The majority of the above outcomes were reversed upon rehabilitation. These results suggest that the chronic exposure of rats to maternal LQP and LP diets induced differential adverse effects by influencing body composition and metabolism, which were reversed upon rehabilitation.
Collapse
|