1
|
Zhao A, Li J, Peterson M, Black M, Gaulke CA, Jeffery EH, Miller MJ. Cooked Broccoli Alters Cecal Microbiota and Impacts Microbial Metabolism of Glucoraphanin in Lean and Obese Mice. Mol Nutr Food Res 2025; 69:e202400813. [PMID: 39962804 PMCID: PMC11924887 DOI: 10.1002/mnfr.202400813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 03/21/2025]
Abstract
SCOPE Brassica vegetables contain unique compounds known as glucosinolates (GSLs), which, when hydrolyzed by plant or microbial myrosinase, form bioactive isothiocyanates (ITCs) that offer health benefits to the host. The present study evaluated the impact of cooked broccoli (broccoli myrosinase inactivated) consumption on cecal microbial metabolism of glucoraphanin (GRP) in lean and obese mice and characterized the changes in cecal microbiota following broccoli-containing diets. METHODS AND RESULTS Twenty lean and 20 diet-induced obese (DIO) mice were randomized to consume control or cooked broccoli supplemented diets for 7 days. Cooked broccoli consumption increased ex vivo microbial GRP hydrolysis by cecal contents collected from lean and obese mice, led to increased production of sulforaphane (SF), sulforaphane-cysteine (SF-CYS), total ITC, and colonic NAD(P)H: Quinone Oxidoreductase (NQO1) activity. Further investigation revealed increased abundance of health-promoting gut microbiota, including Lachnospiraceae NK4A136 group and Dubosiella newyorkensis, following broccoli-containing diets. The Peptococcaseae family, the Blautia genus, and an amplicon sequence variation (ASV) from the Oscillospiraceae family exhibited negative correlation with total ITC production. CONCLUSION These finding suggest that cooked broccoli consumption enhances microbial GRP hydrolysis to produce more bioactive ITCs and inform future strategies toward altering microbial GSL metabolism to promote gut health in both lean and obese individuals.
Collapse
Affiliation(s)
- Anqi Zhao
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
| | - Jiaxuan Li
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | - Mark Peterson
- College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Molly Black
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | | | - Elizabeth H Jeffery
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | - Michael J Miller
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
2
|
Beaver LM, Jamieson PE, Wong CP, Hosseinikia M, Stevens JF, Ho E. Promotion of Healthy Aging Through the Nexus of Gut Microbiota and Dietary Phytochemicals. Adv Nutr 2025; 16:100376. [PMID: 39832641 PMCID: PMC11847308 DOI: 10.1016/j.advnut.2025.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Aging is associated with the decline of tissue and cellular functions, which can promote the development of age-related diseases like cancer, cardiovascular disease, neurodegeneration, and disorders of the musculoskeletal and immune systems. Healthspan is the length of time an individual is in good health and free from chronic diseases and disabilities associated with aging. Two modifiable factors that can influence healthspan, promote healthy aging, and prevent the development of age-related diseases, are diet and microbiota in the gastrointestinal tract (gut microbiota). This review will discuss how dietary phytochemicals and gut microbiota can work in concert to promote a healthy gut and healthy aging. First, an overview is provided of how the gut microbiota influences healthy aging through its impact on gut barrier integrity, immune function, mitochondria function, and oxidative stress. Next, the mechanisms by which phytochemicals effect gut health, inflammation, and nurture a diverse and healthy microbial composition are discussed. Lastly, we discuss how the gut microbiota can directly influence health by producing bioactive metabolites from phytochemicals in food like urolithin A, equol, hesperetin, and sulforaphane. These and other phytochemical-derived microbial metabolites that may promote healthspan are discussed. Importantly, an individual's capacity to produce health-promoting microbial metabolites from cruciferous vegetables, berries, nuts, citrus, and soy products will be dependent on the specific bacteria present in the individual's gut.
Collapse
Affiliation(s)
- Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Paige E Jamieson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Carmen P Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Mahak Hosseinikia
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
3
|
Dmytriv TR, Lushchak O, Lushchak VI. Glucoraphanin conversion into sulforaphane and related compounds by gut microbiota. Front Physiol 2025; 16:1497566. [PMID: 39995480 PMCID: PMC11847849 DOI: 10.3389/fphys.2025.1497566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Glucosinolate glucoraphanin, common in cruciferous vegetables, is a biologically stable precursor of isothiocyanates, such as sulforaphane and erucin, potent activators of Nrf2 signaling coordinating an adaptive response to oxidative stress. Sulforaphane is formed by the hydrolysis of glucoraphanin by a plant enzyme called myrosinase, which is inactivated in the stomach of mammals. Since the latter do not have enzymes possessing myrosinase-like activity, glucoraphanin can be metabolized by the gut microbiota, to sulforaphane, sulforaphane-nitrile, glucoerucin, erucin, and erucin-nitrile. Emerging evidence suggests that variations in gut microbiota composition significantly influence the efficiency and outcome of glucoraphanin metabolism, while sulforaphane itself may reciprocally modulate gut microbiota composition and functionality. This review examines the bidirectional interactions between glucoraphanin, sulforaphane, and gut microbiota. We assume that sulforaphane alleviates intestinal inflammation and oxidative stress maintaining intestinal homeostasis and gut barrier integrity. Besides, the role of sulforaphane in breaking the vicious cycle of oxidative stress and gut dysbiosis is reported, demonstrating the potential of dietary isothiocyanates to support gut barrier function.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
4
|
Lee SY, Michell KA, Butler MM, Smith BT, Woolf EK, Holmes SC, Grabos LE, Vazquez AR, Isweiri H, Bunning M, Uchanski ME, Rao S, Newman SE, Weir TL, Johnson SA. Feasibility and Tolerability of Daily Microgreen Consumption in Healthy Middle-Aged/Older Adults: A Randomized, Open-Label, Controlled Crossover Trial. Nutrients 2025; 17:467. [PMID: 39940327 PMCID: PMC11820112 DOI: 10.3390/nu17030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Microgreens are rich in nutrients and phytochemicals that can support healthy aging, including attenuation of cardiovascular disease risk. The nutrient and phytochemical contents of red beet (i.e., bull's blood' beet, Beta vulgaris) and red cabbage (Brassica oleracea var capitate) microgreens, as well as existing preclinical evidence suggest their cardioprotective effects, but the feasibility, gastrointestinal tolerability, and human health effects of daily microgreen consumption are unknown. This study aimed to evaluate the feasibility and gastrointestinal tolerability of 2 weeks of daily microgreen consumption in healthy middle-aged/older (MA/O) adults. A secondary aim was to characterize potential health effects. Methods: Healthy MA/O adults (initial n = 26) were randomized to consume either 2 cups of 'bull's blood' beet or red cabbage microgreens daily for 2 weeks in a crossover design, with each treatment period separated by 2 weeks. Feasibility was determined through participant retention and intervention compliance (i.e., total doses consumed divided by 14 days), while gastrointestinal tolerability was determined by a gastrointestinal health questionnaire and bowel movement log. Impacts of microgreen consumption on brachial and aortic hemodynamic parameters, and gut microbiota composition were evaluated. Results: Daily consumption for 2 weeks of 'bull's blood' beet and red cabbage microgreens was found to be feasible as indicated by high participant retention (final n = 24) and overall treatment compliance of 95.6%. Gastrointestinal symptom severity was not impacted overall, though an improvement in gastrointestinal inflammation-associated symptom severity scores following the red cabbage microgreen intervention (p = 0.047) was observed. There were no changes in bowel movement quality, hemodynamic parameters, or on alpha or beta diversity of the gut microbiota. Conclusions: Daily consumption of 'bull's blood' beet and red cabbage microgreens is feasible and tolerable in healthy MA/O adults. Future studies designed to evaluate their health impacts are needed.
Collapse
Affiliation(s)
- Sylvia Y. Lee
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (S.Y.L.); (K.A.M.); (E.K.W.); (T.L.W.)
| | - Kiri A. Michell
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (S.Y.L.); (K.A.M.); (E.K.W.); (T.L.W.)
| | - Michelle M. Butler
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (S.Y.L.); (K.A.M.); (E.K.W.); (T.L.W.)
| | - Brayden T. Smith
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (S.Y.L.); (K.A.M.); (E.K.W.); (T.L.W.)
| | - Emily K. Woolf
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (S.Y.L.); (K.A.M.); (E.K.W.); (T.L.W.)
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Sydney C. Holmes
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (S.Y.L.); (K.A.M.); (E.K.W.); (T.L.W.)
| | - Lauren E. Grabos
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (S.Y.L.); (K.A.M.); (E.K.W.); (T.L.W.)
| | - Allegra R. Vazquez
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (S.Y.L.); (K.A.M.); (E.K.W.); (T.L.W.)
| | - Hanan Isweiri
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA (M.E.U.)
- Department of Biology, University of Benghazi, Benghazi 16063, Libya
| | - Marisa Bunning
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (S.Y.L.); (K.A.M.); (E.K.W.); (T.L.W.)
| | - Mark E. Uchanski
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA (M.E.U.)
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Steven E. Newman
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA (M.E.U.)
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (S.Y.L.); (K.A.M.); (E.K.W.); (T.L.W.)
| | - Sarah A. Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (S.Y.L.); (K.A.M.); (E.K.W.); (T.L.W.)
| |
Collapse
|
5
|
Kacemi R, Campos MG. Bee Pollen Phytochemicals and Nutrients as Unequaled Pool of Epigenetic Regulators: Implications for Age-Related Diseases. Foods 2025; 14:347. [PMID: 39941940 PMCID: PMC11816923 DOI: 10.3390/foods14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Bee pollen is characterized by an exceptional diversity and abundance of micronutrients and bioactive phytochemicals. This richness remains very sparsely investigated, but accumulating evidence strongly supports a promising future for bee pollen in human nutrition and medicine. Epigenetic regulation is among the most compelling biomedical topics that remain completely untapped in bee pollen and bee derivative research. In our current research, we identified numerous ubiquitous compounds that are consistently present in this matrix, regardless of its botanical and geographical origins, and that have been well studied and documented as epigenetic regulators in recent years. Given the relative newness of both bee pollen biomedical research and epigenetic studies within nutritional, pharmaceutical, and medical sciences, this review aims to bridge these valuable fields and advance related experimental investigations. To the best of our knowledge, this is the first work that has aimed to comprehensively investigate the epigenetic modulatory potential of bee pollen compounds. Our findings have also unveiled several intriguing phenomena, such as a dual effect of the same compound depending on the cellular context or the effect of some compounds on the cross-generational heritability of epigenetic traits. Although experimental studies of epigenetic regulation by bee pollen as a whole or by its extract are still lacking, our current study clearly indicates that this research avenue is very promising and worth further investigations. We hope that our current work constitutes a foundational cornerstone of future investigations for this avenue of research.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
6
|
Clack G, Moore C, Ruston L, Wilson D, Koch A, Webb D, Mallard N. A Phase 1 Randomized, Placebo-Controlled Study Evaluating the Safety, Tolerability, and Pharmacokinetics of Enteric-Coated Stabilized Sulforaphane (SFX-01) in Male Participants. Adv Ther 2025; 42:216-232. [PMID: 39520658 PMCID: PMC11782309 DOI: 10.1007/s12325-024-03018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Sulforaphane (SFN) is a naturally occurring isothiocyanate associated with various health benefits, including reduced cancer risk, and has been extensively explored as a potential therapeutic. However, its inherent instability presents challenges in formulation, storage, and administration as a medicinal product. SFX-01 (Sulforadex®) is a patented synthetic form of d,l-SFN stabilized within a biologically inert alpha-cyclodextrin complex. METHODS The safety, tolerability, and pharmacokinetics of an enteric-coated tablet formulation of SFX-01 were evaluated in a randomized, double-blind, placebo-controlled, dose-escalation study [300 mg once daily (46.2 mg SFN), 300 mg twice daily or 600 mg once daily (92.4 mg SFN)] over 7 days in healthy male participants. RESULTS Treatment-emergent adverse events (TEAEs) occurred in 94% of participants who received SFX-01 and were most commonly gastrointestinal events, which were mild in severity and related to treatment. Following ingestion of SFX-01 tablets, SFN was rapidly absorbed, with a timescale consistent with the enteric coating, and subsequently metabolized. The observed peak blood concentration (Cmax) for the sum of SFN and metabolites (total thiol) across all treatment cohorts ranged from 0.43 to 2.12 µmol/L in 3-6 h. Cmax data were considered inconclusive with respect to dose-proportionality and there was minimal evidence of accumulation of SFN and metabolites. Urinary excretion of SFN and individual metabolites ranged from < 1 to 41%, and the proportion excreted did not appear to be influenced by the dose. CONCLUSION This study demonstrated the safety and tolerability of SFX-01 over 7 days and indicated that the pharmacokinetic behavior of SFX-01 enteric-coated tablets was in line with expectations. TRIAL REGISTRATION European Union Drug Regulating Authorities Clinical Trials Database (EudraCT) number: 2022-001601-43; ISRCTN Study Registration number: ISRCTN9628565.
Collapse
Affiliation(s)
- Glen Clack
- TheraCryf PLC (Formerly Evgen Pharma PLC), Block 24, Alderley Park, Congleton Road, Nether Alderley, Cheshire, SK10 4TG, UK.
| | | | | | | | | | | | - Nicholas Mallard
- TheraCryf PLC (Formerly Evgen Pharma PLC), Block 24, Alderley Park, Congleton Road, Nether Alderley, Cheshire, SK10 4TG, UK
| |
Collapse
|
7
|
Lang W, Shu D, Liu S, Sun C, Liu H, Huang Q, Mao G, Yang S, Xing B. Enzyme-Responsive Fluorescent Labeling Strategy for In Vivo Imaging of Gut Bacteria. J Org Chem 2024; 89:14641-14649. [PMID: 38607989 DOI: 10.1021/acs.joc.3c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Myrosinase (Myr), as a unique β-thioglucosidase enzyme capable of converting natural and gut bacterial metabolite glucosinolates into bioactive agents, has recently attracted a great deal of attention because of its essential functions in exerting homeostasis dynamics and promoting human health. Such nutraceutical and biomedical significance demands unique and reliable strategies for specific identification of Myr enzymes of gut bacterial origin in living systems, whereas the dearth of methods for bacterial Myr detection and visualization remains a challenging concern. Herein, we present a series of unique molecular probes for specific identification and imaging of Myr-expressing gut bacterial strains. Typically, an artificial glucosinolate with an azide group in aglycone was synthesized and sequentially linked with the probe moieties of versatile channels through simple click conjugation. Upon gut bacterial enzymatic cleavage, the as-prepared probe molecules could be converted into reactive isothiocyanate forms, which can further act as reactive electrophiles for the covalent labeling of gut bacteria, thus realizing their localized fluorescent imaging within a wide range of wavelength channels in live bacterial strains and animal models. Overall, our proposed method presents a novel technology for selective gut bacterial Myr enzyme labeling in vitro and in vivo. We envision that such a rational probe design would serve as a promising solution for chemoprevention assessment, microflora metabolic mechanistic study, and gut bacterium-mediated physiopathological exploration.
Collapse
Affiliation(s)
- Wenchao Lang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Dunji Shu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Songhan Liu
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Caixia Sun
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Huihong Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qianqian Huang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Sheng Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| |
Collapse
|
8
|
Zhang Y, Zhang W, Zhao Y, Peng R, Zhang Z, Xu Z, Simal-Gandara J, Yang H, Deng J. Bioactive sulforaphane from cruciferous vegetables: advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38841734 DOI: 10.1080/10408398.2024.2354937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Renjie Peng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Yuan Y, Wang Y, Zhang Y, Yan H. Development and Application of a Selective Analytical Method for Indole Metabolites in Urine: Dietary Exposure Biomarkers for Broccoli Consumption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12822-12831. [PMID: 38803050 DOI: 10.1021/acs.jafc.3c08452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The identification of dietary exposure biomarkers is crucial for advancing our understanding of the health benefits of specific foods. Broccoli, a vegetable with well-known anticancer properties, contains active ingredients, such as isothiocyanates with indole side chains. Hence, indole metabolites related to broccoli consumption have the potential to serve as biomarkers of dietary exposure. In this work, we developed a new analytical method for indole metabolites in urine using a poly(deep eutectic solvents)-molecularly imprinted polymer/vinyl-functionalized graphene oxide (PDESs-MIP/VGO) in miniaturized centrifugal pipet-tip solid-phase extraction (CPT-SPE) coupled with liquid chromatography. This method integrates the strengths of PDESs-MIP/VGO, including rich adsorption interactions, high adsorption capacity, and excellent selectivity, with the simplicity and cost-effectiveness of CPT-SPE. The proposed method demonstrated low limits of quantification (1.2-2.5 ng mL-1), high accuracy (91.7-104.8%), and good precision (relative standard deviation ≤4.4%). By applying this method to analyze indole metabolites in urine, our results suggested that indole-3-carbinol and indole-3-acetonitrile have the potential to emerge as reliable dietary exposure biomarkers for broccoli intake. Furthermore, highly selective analytical methods based on molecular imprinting technology are advantageous for precise screening and analysis of dietary exposure biomarkers associated with food consumption.
Collapse
Affiliation(s)
- Yanan Yuan
- Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
- Hebei Key Laboratory of Analytical Science and Technology, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yibo Wang
- Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Yanfei Zhang
- Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
- Hebei Key Laboratory of Analytical Science and Technology, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
10
|
Kase BE, Liese AD, Zhang J, Murphy EA, Zhao L, Steck SE. The Development and Evaluation of a Literature-Based Dietary Index for Gut Microbiota. Nutrients 2024; 16:1045. [PMID: 38613077 PMCID: PMC11013161 DOI: 10.3390/nu16071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of the study was to develop and evaluate a novel dietary index for gut microbiota (DI-GM) that captures dietary composition related to gut microbiota profiles. We conducted a literature review of longitudinal studies on the association of diet with gut microbiota in adult populations and extracted those dietary components with evidence of beneficial or unfavorable effects. Dietary recall data from the National Health and Nutrition Examination Survey (NHANES, 2005-2010, n = 3812) were used to compute the DI-GM, and associations with biomarkers of gut microbiota diversity (urinary enterodiol and enterolactone) were examined using linear regression. From a review of 106 articles, 14 foods or nutrients were identified as components of the DI-GM, including fermented dairy, chickpeas, soybean, whole grains, fiber, cranberries, avocados, broccoli, coffee, and green tea as beneficial components, and red meat, processed meat, refined grains, and high-fat diet (≥40% of energy from fat) as unfavorable components. Each component was scored 0 or 1 based on sex-specific median intakes, and scores were summed to develop the overall DI-GM score. In the NHANES, DI-GM scores ranged from 0-13 with a mean of 4.8 (SE = 0.04). Positive associations between DI-GM and urinary enterodiol and enterolactone were observed. The association of the novel DI-GM with markers of gut microbiota diversity demonstrates the potential utility of this index for gut health-related studies.
Collapse
Affiliation(s)
- Bezawit E. Kase
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Angela D. Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Elizabeth Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Susan E. Steck
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| |
Collapse
|
11
|
Neufeld LM, Ho E, Obeid R, Tzoulis C, Green M, Huber LG, Stout M, Griffiths JC. Advancing nutrition science to meet evolving global health needs. Eur J Nutr 2023; 62:1-16. [PMID: 38015211 PMCID: PMC10684707 DOI: 10.1007/s00394-023-03276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 11/29/2023]
Abstract
Populations in crisis!A global overview of health challenges and policy efforts within the scope of current nutrition issues, from persistent forms of undernutrition, including micronutrient deficiency, to diet-related chronic diseases. Nutrition science has evolved from a therapeutic and prevention emphasis to include a focus on diets and food systems. Working and consensus definitions are needed, as well as guidance related to healthy diets and the emerging issues that require further research and consensus building. Between nutrient deficiency and chronic disease, nutrition has evolved from focusing exclusively on the extremes of overt nutrient deficiency and chronic disease prevention, to equipping bodies with the ability to cope with physiologic, metabolic, and psychological stress. Just what is 'optimal nutrition', is that a valid public health goal, and what terminology is being provided by the nutrition science community? Nutrition research on 'healthspan', resilience, and intrinsic capacity may provide evidence to support optimal nutrition. Finally, experts provide views on ongoing challenges of achieving consensus or acceptance of the various definitions and interventions for health promotion, and how these can inform government health policies.Nutrition topics that receive particular focus in these proceedings include choline, NAD-replenishment in neurodegenerative diseases, and xanthophyll carotenoids. Choline is a crucial nutrient essential for cellular metabolism, requiring consumption from foods or supplements due to inadequate endogenous synthesis. Maternal choline intake is vital for fetal and infant development to prevent neural tube defects. Neurodegenerative diseases pose a growing health challenge, lacking effective therapies. Nutrition, including NAD-replenishing nutrients, might aid prevention. Emerging research indicates xanthophyll carotenoids enhance vision and cognition, potentially impacting age-related diseases.
Collapse
Affiliation(s)
- Lynnette M Neufeld
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Emily Ho
- Linus Pauling Institute and College of Health, Oregon State University, Corvallis, OR, USA
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital of the Saarland, Homburg, Germany
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Marina Green
- Nutrition Research Centre Ireland, South East Technological University, Waterford, Ireland
| | - Luke G Huber
- Council for Responsible Nutrition, Washington, DC, USA
| | | | - James C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
12
|
Bouranis JA, Wong CP, Beaver LM, Uesugi SL, Papenhausen EM, Choi J, Davis EW, Da Silva AN, Kalengamaliro N, Chaudhary R, Kharofa J, Takiar V, Herzog TJ, Barrett W, Ho E. Sulforaphane Bioavailability in Healthy Subjects Fed a Single Serving of Fresh Broccoli Microgreens. Foods 2023; 12:3784. [PMID: 37893677 PMCID: PMC10606698 DOI: 10.3390/foods12203784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cruciferous vegetable consumption is associated with numerous health benefits attributed to the phytochemical sulforaphane (SFN) that exerts antioxidant and chemopreventive properties, among other bioactive compounds. Broccoli sprouts, rich in SFN precursor glucoraphanin (GRN), have been investigated in numerous clinical trials. Broccoli microgreens are similarly rich in GRN but have remained largely unexplored. The goal of this study was to examine SFN bioavailability and the microbiome profile in subjects fed a single serving of fresh broccoli microgreens. Eleven subjects participated in a broccoli microgreens feeding study. Broccoli microgreens GRN and SFN contents and stability were measured. Urine and stool SFN metabolite profiles and microbiome composition were examined. Broccoli microgreens had similar GRN content to values previously reported for broccoli sprouts, which was stable over time. Urine SFN metabolite profiles in broccoli microgreens-fed subjects were similar to those reported previously in broccoli sprouts-fed subjects, including the detection of SFN-nitriles. We also reported the detection of SFN metabolites in stool samples for the first time. A single serving of broccoli microgreens did not significantly alter microbiome composition. We showed in this study that broccoli microgreens are a significant source of SFN. Our work provides the foundation for future studies to establish the health benefits of broccoli microgreens consumption.
Collapse
Affiliation(s)
- John A. Bouranis
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Laura M. Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Sandra L. Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Ethan M. Papenhausen
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Edward W. Davis
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | | | | | - Rekha Chaudhary
- Department of Medical Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Jordan Kharofa
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Thomas J. Herzog
- Department of OB/GYN, Division of Gynecologic Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - William Barrett
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
13
|
Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, Gutiérrez-Ruíz SC, Hernández-Parra H, Romero-Montero A, Del Prado-Audelo ML, Bernal-Chavez SA, Cortés H, Peña-Corona SI, Kiyekbayeva L, Ateşşahin DA, Goloshvili T, Leyva-Gómez G, Sharifi-Rad J. 3,3'-Diindolylmethane and indole-3-carbinol: potential therapeutic molecules for cancer chemoprevention and treatment via regulating cellular signaling pathways. Cancer Cell Int 2023; 23:180. [PMID: 37633886 PMCID: PMC10464192 DOI: 10.1186/s12935-023-03031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023] Open
Abstract
Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.
Collapse
Affiliation(s)
- Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | | | | | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, Ciudad de México, 14380, Mexico
| | - Sergio Alberto Bernal-Chavez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lashyn Kiyekbayeva
- Pharmaceutical School, Department of Pharmaceutical Technology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Public Health and Nursing, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, Elazıg, 23100, Turkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic Resources, Institute of Botany, Ilia State University, Tbilisi, 0162, Georgia
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | | |
Collapse
|
14
|
Montenegro J, Armet AM, Willing BP, Deehan EC, Fassini PG, Mota JF, Walter J, Prado CM. Exploring the Influence of Gut Microbiome on Energy Metabolism in Humans. Adv Nutr 2023; 14:840-857. [PMID: 37031749 PMCID: PMC10334151 DOI: 10.1016/j.advnut.2023.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
The gut microbiome has a profound influence on host physiology, including energy metabolism, which is the process by which energy from nutrients is transformed into other forms of energy to be used by the body. However, mechanistic evidence for how the microbiome influences energy metabolism is derived from animal models. In this narrative review, we included human studies investigating the relationship between gut microbiome and energy metabolism -i.e., energy expenditure in humans and energy harvest by the gut microbiome. Studies have found no consistent gut microbiome patterns associated with energy metabolism, and most interventions were not effective in modulating the gut microbiome to influence energy metabolism. To date, cause-and-effect relationships and mechanistic evidence on the impact of the gut microbiome on energy expenditure have not been established in humans. Future longitudinal observational studies and randomized controlled trials utilizing robust methodologies and advanced statistical analysis are needed. Such knowledge would potentially inform the design of therapeutic avenues and specific dietary recommendations to improve energy metabolism through gut microbiome modulation.
Collapse
Affiliation(s)
- Julia Montenegro
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Anissa M Armet
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Edward C Deehan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States; Nebraska Food for Health Center, University of Nebraska, Lincoln, Nebraska, United States
| | - Priscila G Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João F Mota
- School of Nutrition, Federal University of Goiás, Goiânia, Goiás, Brazil; APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork - National University of Ireland, Cork, Ireland
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork - National University of Ireland, Cork, Ireland.
| | - Carla M Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Kato LS, Lelis CA, da Silva BD, Galvan D, Conte-Junior CA. Micro- and nanoencapsulation of natural phytochemicals: Challenges and recent perspectives for the food and nutraceuticals industry applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:77-137. [PMID: 37236735 DOI: 10.1016/bs.afnr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Worldwide, there has been growing interest in the research, development, and commercialization of functional bioactive components and nutraceuticals. As a result of consumer awareness of the relationship between diet, health, and disease, the consumption of plant-derived bioactive components has recently increased in the past two decades. Phytochemicals are bioactive nutrient plant chemicals in fruits, vegetables, grains, and other plant foods that may provide desirable health benefits beyond essential nutrition. They may reduce the risk of major chronic diseases, cardiovascular diseases, cancer, osteoporosis, diabetes, high blood pressure, and psychotic diseases and have antioxidant, antimicrobial, and antifungal properties, cholesterol-lowering, antithrombotic, or anti-inflammatory effects. Phytochemicals have been recently studied and explored for various purposes, such as pharmaceuticals, agrochemicals, flavors, fragrances, coloring agents, biopesticides, and food additives. These compounds are known as secondary metabolites and are commonly classified as polyphenols, terpenoids (terpenes), tocotrienols and tocopherols, carotenoids, alkaloids and other nitrogen-containing metabolites, stilbenes and lignans, phenolic acids, and glucosinates. Thus, this chapter aims to define the general chemistry, classification, and essential sources of phytochemicals, as well as describe the potential application of phytochemicals in the food and nutraceuticals industry, explaining the main properties of interest of the different compounds. Finally, the leading technologies involving micro and nanoencapsulation of phytochemicals are extensively detailed to protect them against degradation and enhance their solubility, bioavailability, and better applicability in the pharmaceutical, food, and nutraceutical industry. The main challenges and perspectives are detailed.
Collapse
Affiliation(s)
- Lilian Seiko Kato
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carini Aparecida Lelis
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bruno Dutra da Silva
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil; Residue Analysis Laboratory (LAB RES), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
16
|
Meredith JD, Gray MJ. Hypothiocyanite and host-microbe interactions. Mol Microbiol 2023; 119:302-311. [PMID: 36718113 DOI: 10.1111/mmi.15025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023]
Abstract
The pseudohypohalous acid hypothiocyanite/hypothiocyanous acid (OSCN- /HOSCN) has been known to play an antimicrobial role in mammalian immunity for decades. It is a potent oxidant that kills bacteria but is non-toxic to human cells. Produced from thiocyanate (SCN- ) and hydrogen peroxide (H2 O2 ) in a variety of body sites by peroxidase enzymes, HOSCN has been explored as an agent of food preservation, pathogen killing, and even improved toothpaste. However, despite the well-recognized antibacterial role HOSCN plays in host-pathogen interactions, little is known about how bacteria sense and respond to this oxidant. In this work, we will summarize what is known and unknown about HOSCN in innate immunity and recent advances in understanding the responses that both pathogenic and non-pathogenic bacteria mount against this antimicrobial agent, highlighting studies done with three model organisms, Escherichia coli, Streptococcus spp., and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Julia D Meredith
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
17
|
Vrânceanu M, Galimberti D, Banc R, Dragoş O, Cozma-Petruţ A, Hegheş SC, Voştinaru O, Cuciureanu M, Stroia CM, Miere D, Filip L. The Anticancer Potential of Plant-Derived Nutraceuticals via the Modulation of Gene Expression. PLANTS 2022; 11:plants11192524. [PMID: 36235389 PMCID: PMC9571524 DOI: 10.3390/plants11192524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Current studies show that approximately one-third of all cancer-related deaths are linked to diet and several cancer forms are preventable with balanced nutrition, due to dietary compounds being able to reverse epigenetic abnormalities. An appropriate diet in cancer patients can lead to changes in gene expression and enhance the efficacy of therapy. It has been demonstrated that nutraceuticals can act as powerful antioxidants at the cellular level as well as anticarcinogenic agents. This review is focused on the best studies on worldwide-available plant-derived nutraceuticals: curcumin, resveratrol, sulforaphane, indole-3-carbinol, quercetin, astaxanthin, epigallocatechin-3-gallate, and lycopene. These compounds have an enhanced effect on epigenetic changes such as histone modification via HDAC (histone deacetylase), HAT (histone acetyltransferase) inhibition, DNMT (DNA methyltransferase) inhibition, and non-coding RNA expression. All of these nutraceuticals are reported to positively modulate the epigenome, reducing cancer incidence. Furthermore, the current review addresses the issue of the low bioavailability of nutraceuticals and how to overcome the drawbacks related to their oral administration. Understanding the mechanisms by which nutraceuticals influence gene expression will allow their incorporation into an “epigenetic diet” that could be further capitalized on in the therapy of cancer.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Damiano Galimberti
- Italian Association of Anti-Ageing Physicians, Via Monte Cristallo, 1, 20159 Milan, Italy
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Ovidiu Dragoş
- Department of Kinetotheraphy and Special Motricity, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 Universităţii Street, 700115 Iași, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Zhao A, Jeffery EH, Miller MJ. Is Bitterness Only a Taste? The Expanding Area of Health Benefits of Brassica Vegetables and Potential for Bitter Taste Receptors to Support Health Benefits. Nutrients 2022; 14:nu14071434. [PMID: 35406047 PMCID: PMC9002472 DOI: 10.3390/nu14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
The list of known health benefits from inclusion of brassica vegetables in the diet is long and growing. Once limited to cancer prevention, a role for brassica in prevention of oxidative stress and anti-inflammation has aided in our understanding that brassica provide far broader benefits. These include prevention and treatment of chronic diseases of aging such as diabetes, neurological deterioration, and heart disease. Although animal and cell culture studies are consistent, clinical studies often show too great a variation to confirm these benefits in humans. In this review, we discuss causes of variation in clinical studies, focusing on the impact of the wide variation across humans in commensal bacterial composition, which potentially result in variations in microbial metabolism of glucosinolates. In addition, as research into host-microbiome interactions develops, a role for bitter-tasting receptors, termed T2Rs, in the gastrointestinal tract and their role in entero-endocrine hormone regulation is developing. Here, we summarize the growing literature on mechanisms of health benefits by brassica-derived isothiocyanates and the potential for extra-oral T2Rs as a novel mechanism that may in part describe the variability in response to brassica among free-living humans, not seen in research animal and cell culture studies.
Collapse
Affiliation(s)
- Anqi Zhao
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Elizabeth H. Jeffery
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
| | - Michael J. Miller
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
- Correspondence:
| |
Collapse
|
19
|
Çakır I, Lining Pan P, Hadley CK, El-Gamal A, Fadel A, Elsayegh D, Mohamed O, Rizk NM, Ghamari-Langroudi M. Sulforaphane reduces obesity by reversing leptin resistance. eLife 2022; 11:67368. [PMID: 35323110 PMCID: PMC8947770 DOI: 10.7554/elife.67368] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
The ascending prevalence of obesity in recent decades is commonly associated with soaring morbidity and mortality rates, resulting in increased health-care costs and decreased quality of life. A systemic state of stress characterized by low-grade inflammation and pathological formation of reactive oxygen species (ROS) usually manifests in obesity. The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) is the master regulator of the redox homeostasis and plays a critical role in the resolution of inflammation. Here, we show that the natural isothiocyanate and potent NRF2 activator sulforaphane reverses diet-induced obesity through a predominantly, but not exclusively, NRF2-dependent mechanism that requires a functional leptin receptor signaling and hyperleptinemia. Sulforaphane does not reduce the body weight or food intake of lean mice but induces an anorectic response when coadministered with exogenous leptin. Leptin-deficient Lepob/ob mice and leptin receptor mutant Leprdb/db mice display resistance to the weight-reducing effect of sulforaphane, supporting the conclusion that the antiobesity effect of sulforaphane requires functional leptin receptor signaling. Furthermore, our results suggest the skeletal muscle as the most notable site of action of sulforaphane whose peripheral NRF2 action signals to alleviate leptin resistance. Transcriptional profiling of six major metabolically relevant tissues highlights that sulforaphane suppresses fatty acid synthesis while promoting ribosome biogenesis, reducing ROS accumulation, and resolving inflammation, therefore representing a unique transcriptional program that leads to protection from obesity. Our findings argue for clinical evaluation of sulforaphane for weight loss and obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Işın Çakır
- Life Sciences Institute, University of Michigan
- Department of Molecular Physiology & Biophysics, Vanderbilt University
| | | | - Colleen K Hadley
- Life Sciences Institute, University of Michigan
- College of Literature, Science, and the Arts, University of Michigan
| | - Abdulrahman El-Gamal
- Biomedical Sciences Department, College of Health Sciences, Qu- Health, Qatar University
| | - Amina Fadel
- Biomedical Research Center, Qatar University
| | | | | | - Nasser M Rizk
- Biomedical Sciences Department, College of Health Sciences, Qu- Health, Qatar University
- Biomedical Research Center, Qatar University
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology & Biophysics, Vanderbilt University
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University
| |
Collapse
|
20
|
García-Caballero M, Torres-Vargas JA, Marrero AD, Martínez-Poveda B, Medina MÁ, Quesada AR. Angioprevention of Urologic Cancers by Plant-Derived Foods. Pharmaceutics 2022; 14:pharmaceutics14020256. [PMID: 35213989 PMCID: PMC8875200 DOI: 10.3390/pharmaceutics14020256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The number of cancer cases worldwide keeps growing unstoppably, despite the undeniable advances achieved by basic research and clinical practice. Urologic tumors, including some as prevalent as prostate, bladder or kidney tumors, are no exceptions to this rule. Moreover, the fact that many of these tumors are detected in early stages lengthens the duration of their treatment, with a significant increase in health care costs. In this scenario, prevention offers the most cost-effective long-term strategy for the global control of these diseases. Although specialized diets are not the only way to decrease the chances to develop cancer, epidemiological evidence support the role of certain plant-derived foods in the prevention of urologic cancer. In many cases, these plants are rich in antiangiogenic phytochemicals, which could be responsible for their protective or angiopreventive properties. Angiogenesis inhibition may contribute to slow down the progression of the tumor at very different stages and, for this reason, angiopreventive strategies could be implemented at different levels of chemoprevention, depending on the targeted population. In this review, epidemiological evidence supporting the role of certain plant-derived foods in urologic cancer prevention are presented, with particular emphasis on their content in bioactive phytochemicals that could be used in the angioprevention of cancer.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - José Antonio Torres-Vargas
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - Ana Dácil Marrero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - Beatriz Martínez-Poveda
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), E-28019 Madrid, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Malaga, Spain
| | - Ana R. Quesada
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Malaga, Spain
- Correspondence:
| |
Collapse
|