1
|
Wang Y, Chen Y, Liang X, Zhu L, Wen X. Network pharmacology and transcriptomics explore the therapeutic effects of Ermiao Wan categorized formulas for diabetes in mice. Sci Rep 2024; 14:27014. [PMID: 39506066 PMCID: PMC11541784 DOI: 10.1038/s41598-024-78364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Ermiao wan (EMW) is a classical traditional Chinese medicine formula, with two modified versions including Sanmiao wan (SMW) and Simiao wan (FMW). These Ermiao wan categorized formulas (ECFs) are traditionally used to treat gouty arthritis and hyperuricemia. However, their potential benefits and mechanisms on diabetes remain to be explored. This study aims to investigate the overall effects and biological differences of ECFs in high fat diet (HFD)-fed mice based on network pharmacology and transcriptomics. ECFs significantly reduced body weight, improved oral glucose tolerance, decreased fat accumulation, and lowered serum insulin and inflammatory cytokine levels in HFD-fed mice. FMW had better efficacy than EMW and SMW. Network pharmacology analysis revealed that ECFs targeted functional modules associated with chronic inflammation, lipid metabolism, and glucose metabolism. Transcriptome results also showed ECFs could inhibit genes associated with inflammation and upregulated some genes in lipid metabolism. Comprehensive analysis and QPCR verification indicated the beneficial effects of ECFs on diabetes might be attributed to the regulation of Ddit3, Ccl2, Esr1, and Cyp7a1. This study provides a theoretical basis for the clinical use of ECFs.
Collapse
Affiliation(s)
- Yuping Wang
- Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Yimeng Chen
- Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Xinyi Liang
- Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Lijuan Zhu
- Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Xiaodong Wen
- Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, China Pharmaceutical University, 639 Longmian road, Nanjing, China.
| |
Collapse
|
2
|
Wang Z, Li R, Chen X, Ren H, Wang C, Min R, Zhang X. Network pharmacology, molecular docking and experimental validation to elucidate the anti-T2DM mechanism of Lanxangia tsaoko. Fitoterapia 2024; 178:106117. [PMID: 38996878 DOI: 10.1016/j.fitote.2024.106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Lanxangia tsaoko (L. tsaoko) is a natural medicine which could be used to treat type 2 diabetes mellitus (T2DM). However, there is no systematic and comprehensive research on the its active compounds and mechanism. This study aimed to investigate the active ingredients and potential mechanism of L. tsaoko for the treatment of T2DM. The chemical constituents of L. tsaoko were identified by UPLC-Q-Exactive Orbitrap/MS. The active compounds and mechanism of L. tsaoko were predicted by network pharmacology. Then the docking modes of key components and core targets were analyzed by molecular docking. Finally, animal experiments were conducted to verify the efficacy and targets of L. tsaoko in T2DM treatment. 70 compounds from L. tsaoko were identified. We obtained 37 active components, including quercetin, genistein and kaempferol, 5 core targets were AKT1, INS, TP53, TNF and IL-6. Mainly involved in PI3K/Akt, MAPK, RAGE/AGE, HIF-1, FoxO signaling pathways. Molecular docking results showed that the L. tsaoko had good binding potential to TNF. Therefore, we took the inflammatory mechanism as the prediction target for experimental verification. Animal experiments showed that L. tsaoko could alleviated colon injury of T2DM mice, improve glucose metabolism and decrease inflammatory levels. L. tsaoko exerted therapeutic effects on T2DM through multi-component, multi-target and multi-pathway regulation. Its action mechanisms were related to PI3K/Akt, MAPK, RAGE/AGE, HIF-1 and FoxO signaling pathways. This study provided new insights for the clinical treatment of T2DM.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Huilin Ren
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Caixia Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Ruixue Min
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Yang L, Sun Y, Wei S, Wen H, Liu R, Wang X. Chemical profiling of Simiao pill and quantification of main effective constituents in it by ultra-high-performance liquid chromatography coupled with Q Exactive Orbitrap and triple quadrupole mass spectrometry. J Sep Sci 2024; 47:e2300615. [PMID: 38234033 DOI: 10.1002/jssc.202300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
Simiao pill is one of the most commonly used prescriptions in traditional Chinese medicine for the treatment of hyperuricemia and gout. However, methods based on more accurate and comprehensive qualitative and quantitative analyses of the active ingredients are not yet perfect due to limited methodology. This not only hinders the elucidation of the pharmacological mechanism of Simiao pill, but also its comprehensive clinical development and utilization. In this study, we employed ultra-high-performance liquid chromatography-Q Exactive Orbitrap-mass spectrometry technology to perform rapid analysis and identification of the chemical constituents in Simiao pill. A total of 101 chemical components were identified, including 26 alkaloids, 15 terpenoids, 11 flavonoids, eight steroids, six fatty acids, five limonoids, four saponins, five phenylpropanoids, and 21 other compounds. In addition, we established a new method by high-throughput ultra-high-performance liquid chromatography-Q Exactive Orbitrap-mass spectrometry combined with ultra-high-performance liquid chromatography-triple quadrupole-tandem mass spectrometry technology for quantification of 14 main active ingredients, such as adenosine (1), phellodendrine (2), mangnoflorine (3), β-ecdysterone (4), 25R-inokosterone (5), 25S-inokosterone (6), jatrorrhizine (7), palmatine (8), chikusetsu saponin IVa (9), limonin (10), atractylenolide III (11), atractylenolide I (12), obacunone (13), and atractylenolide II (14) in Simiao pill. This work laid a foundation for further analysis and quality control of effective components in Simiao pill.
Collapse
Affiliation(s)
- Le Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Shuyun Wei
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Hao Wen
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Ruicheng Liu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Xijun Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| |
Collapse
|
4
|
Teaney NA, Cyr NE. FoxO1 as a tissue-specific therapeutic target for type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1286838. [PMID: 37941908 PMCID: PMC10629996 DOI: 10.3389/fendo.2023.1286838] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Forkhead box O (FoxO) proteins are transcription factors that mediate many aspects of physiology and thus have been targeted as therapeutics for several diseases including metabolic disorders such as type 2 diabetes mellitus (T2D). The role of FoxO1 in metabolism has been well studied, but recently FoxO1's potential for diabetes prevention and therapy has been debated. For example, studies have shown that increased FoxO1 activity in certain tissue types contributes to T2D pathology, symptoms, and comorbidities, yet in other tissue types elevated FoxO1 has been reported to alleviate symptoms associated with diabetes. Furthermore, studies have reported opposite effects of active FoxO1 in the same tissue type. For example, in the liver, FoxO1 contributes to T2D by increasing hepatic glucose production. However, FoxO1 has been shown to either increase or decrease hepatic lipogenesis as well as adipogenesis in white adipose tissue. In skeletal muscle, FoxO1 reduces glucose uptake and oxidation, promotes lipid uptake and oxidation, and increases muscle atrophy. While many studies show that FoxO1 lowers pancreatic insulin production and secretion, others show the opposite, especially in response to oxidative stress and inflammation. Elevated FoxO1 in the hypothalamus increases the risk of developing T2D. However, increased FoxO1 may mitigate Alzheimer's disease, a neurodegenerative disease strongly associated with T2D. Conversely, accumulating evidence implicates increased FoxO1 with Parkinson's disease pathogenesis. Here we review FoxO1's actions in T2D conditions in metabolic tissues that abundantly express FoxO1 and highlight some of the current studies targeting FoxO1 for T2D treatment.
Collapse
Affiliation(s)
- Nicole A. Teaney
- Stonehill College, Neuroscience Program, Easton, MA, United States
| | - Nicole E. Cyr
- Stonehill College, Neuroscience Program, Easton, MA, United States
- Stonehill College, Department of Biology, Easton, MA, United States
| |
Collapse
|