1
|
Syngkli S, Singh SK, Rani RM, Das B. Functional and Biochemical Analyses of Glycerol Kinase and Glycerol 3-phosphate Dehydrogenase in HEK293 Cells. Protein J 2025; 44:231-244. [PMID: 39987391 DOI: 10.1007/s10930-025-10252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder and its concurrent presence with chronic kidney disease (CKD) is a significant concern. Glycerol kinase (GK) and glycerol 3-phosphate shuttle enzymes (cGPDH and mGPDH) facilitate the regulation of endogenous glucose production in many cell lines. This research investigates the functions of GK, cGPDH, and mGPDH in HEK293 cells. Standard protocols were employed to assess enzyme activity, mRNA- and protein-expression, glucose uptake, and production. Homology modeling and molecular docking were employed to elucidate interactions of genistein and metformin with these enzymes. The secondary structures of GK, cGPDH and mGPDH and the thermal stability of cGPDH and mGPDH were analyzed by CD spectra. Genistein inhibited GK activity by 40%, while metformin decreased cGPDH and mGPDH activity by 58% and 55%, respectively, in HEK293 cells. Nonetheless, the expression levels of mRNA and protein remained unaltered. Genistein and metformin inhibited HEK293 glucose production by 0.46-fold and 0.63-fold, respectively. Genistein reduced glucose uptake by 0.26-fold, while metformin increased it by 0.51-fold. Genistein allosterically interacted with GK with a CDocker energy of -27.71, while metformin interacted with Gln295 and Lys296 of the catalytic loop of cGPDH and the FAD+ binding domain of mGPDH, yielding CDocker energies of -11.12 and -13.34, respectively. This study indicated the role of genistein and metformin on GK, cGPDH, and mGPDH in HEK293 cells.
Collapse
Affiliation(s)
- Superior Syngkli
- Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Sumit K Singh
- Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Riva M Rani
- Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Bidyadhar Das
- Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
2
|
El-Mernissi R, El Menyiy N, Metouekel A, Zouhri A, El-Mernissi Y, Siddique F, Nadeem S, Amhamdi H, Abboussi O, Alsahli AA, Bourhia M, Dauelbait M, Shazly GA, Hajji L. Characterization of phenolic compounds and evaluation of anti-diabetic potential in Cannabis sativa L. seeds: In vivo, in vitro, and in silico studies. Open Life Sci 2024; 19:20221024. [PMID: 39822379 PMCID: PMC11736388 DOI: 10.1515/biol-2022-1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025] Open
Abstract
Moroccan Cannabis sativa L. seeds were investigated for their phenolic profile and antidiabetic potential. Ultra-high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry analysis revealed a rich phenolic composition, including benzoic acid, cannabisin B, genistein, and epicatechin. In vitro, the seed extract exhibited potent α-amylase inhibitory activity (half-maximal inhibitory concentration = 25.02 ± 4.03 μg/mL). In vivo studies in diabetic rats demonstrated significant hypoglycemic, hypolipidemic, hepatoprotective, and nephroprotective effects. Molecular docking studies further supported these findings, revealing strong interactions between identified phenolic and the α-amylase enzyme. These results highlight the potential of C. sativa seeds as a natural source of bioactive compounds for diabetes management.
Collapse
Affiliation(s)
- Rafik El-Mernissi
- Bioactive and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University,
Meknes, B.P. 11201, Morocco
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University,
Rabat, Morocco
- Laboratory of Pharmacology, National Agency for Medicinal and Aromatic Plants, Taounate, 34025,
Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency for Medicinal and Aromatic Plants, Taounate, 34025,
Morocco
| | - Amira Metouekel
- University of Technology of Compiègne, EA 4297 TIMR, 60205Compiègne Cedex, France
| | - Aziz Zouhri
- Bioactive and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University,
Meknes, B.P. 11201, Morocco
| | - Yahya El-Mernissi
- Applied Chemistry Research Unit, Faculty of Science and Techniques, Abdelmalek Essaadi University, Al-Hoceima, Tetouan, Morocco
| | - Farhan Siddique
- School of Pharmaceutical Science and Technology, Tianjin University,
Tianjin, P.R. China
| | - Sumaira Nadeem
- Department of Pharmacy, The Women University,
Multan, 60800, Pakistan
| | - Hassan Amhamdi
- Applied Chemistry Research Unit, Faculty of Science and Techniques, Abdelmalek Essaadi University, Al-Hoceima, Tetouan, Morocco
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University,
Rabat, Morocco
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University,
80060, Agadir, Morocco
| | - Musaab Dauelbait
- University of Bahr el Ghazal, Freedom Street, Wau, 91113, South Sudan
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University,
Riyadh11451, Saudi Arabia
| | - Lhoussain Hajji
- Bioactive and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University,
Meknes, B.P. 11201, Morocco
| |
Collapse
|
3
|
Wang Y, Wang C, Shi J, Zhang Y. Effects of derivatization and probiotic transformation on the antioxidative activity of fruit polyphenols. Food Chem X 2024; 23:101776. [PMID: 39280222 PMCID: PMC11402117 DOI: 10.1016/j.fochx.2024.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
Fruits contain numerous polyphenols in the form of conjugates, which exhibit low antioxidant activity. Probiotic fermentation is a strategy to improve the antioxidant activity of these conjugated polyphenols by modifying their structure. However, the mechanisms underlying the effects of functional groups and derivatizations on the antioxidative activities of polyphenols and the antioxidation enhancement by probiotic biotransformation haven't been comprehensively explored. This review aimed to explore the structure-antioxidant activity relationships of four functional groups and three derivatizations in flavonoids and phenolic acids. Further, the review elucidated the antioxidant mechanisms underlying the biotransformation of flavonoids and phenolic acids as glycoside, methylated, and ester conjugates by probiotic biotransformation. Deglycosylation, demethylation, and hydrolysis catalyzed by enzymes produced by Bifidobacterium and Lactobacillus facilitated the conversion of conjugated polyphenols into flavonoids and phenolic acids with hydrolyzed forms and highly active functional groups, thereby increasing hydrogen supply and electron transfer capacity to enhance the antioxidant activity.
Collapse
Affiliation(s)
- Yixuan Wang
- School of food science and technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China
| | - Chenxi Wang
- School of food science and technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, Xi'an Province 710072, People's Republic of China
| | - Yan Zhang
- School of food science and technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China
| |
Collapse
|
4
|
Sokal-Dembowska A, Jarmakiewicz-Czaja S, Filip R. Flavonoids and Their Role in Preventing the Development and Progression of MAFLD by Modifying the Microbiota. Int J Mol Sci 2024; 25:11187. [PMID: 39456969 PMCID: PMC11508831 DOI: 10.3390/ijms252011187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
With the increasing prevalence and serious health consequences of metabolic-associated fatty liver disease (MAFLD), early diagnosis and intervention are key to effective treatment. Recent studies highlight the important role of dietary factors, including the use of flavonoids, in improving liver health. These compounds possess anti-inflammatory, antioxidant, and liver-protective properties. Flavonoids have been shown to affect the gut microbiota, which plays a key role in liver function and disease progression. Therefore, their role in preventing the development and progression of MAFLD through modulation of the microbiome seems to be of interest. This narrative review aims to consolidate the current evidence on the effects of selected flavonoids on MAFLD progression, their potential mechanisms of action, and the implications for the development of personalized dietary interventions for the management of liver disease.
Collapse
Affiliation(s)
- Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland.; (S.J.-C.)
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland.; (S.J.-C.)
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
5
|
Saurabh NK, Khan MM, Kirabo A. A Future Avenue of Treatment Ulcerative Colitis Targeting Macrophage Polarization: A Phytochemical Application. CROHN'S & COLITIS 360 2024; 6:otae070. [PMID: 39668979 PMCID: PMC11635166 DOI: 10.1093/crocol/otae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 12/14/2024] Open
Abstract
Background Ulcerative colitis (UC) is a prevalent inflammatory bowel disease primarily impacting the mucosa of the colon. It is characterized by recurring and incurable symptoms and causes immense suffering and significant economic burden due to limited treatment options. Typical symptoms of UC include diarrhea, alterations in bowel patterns, bleeding from the rectum, rectal pain or urgency, anemia, and tiredness. Therefore, developing novel and effective treatment strategies for UC is imperative. Purpose This review aimed to explain how macrophage polarization contributes to UC development and compiled information on natural compounds with promising therapeutic potential that can target the macrophage phenotype and shed light on its potential mode of action. Results The phenotypic alteration of macrophages profoundly affects the development of UC, and these cells are essential for preserving intestinal immunological homeostasis. Evidence from research suggests that one effective method for UC prevention and therapy is to guide macrophage polarization toward the M2 phenotype. Phytochemicals, which are compounds extracted from plants, possess a wide array of biological activities. For example: Ginsenoside Rg1 emerges as a crucial regulator of macrophage polarization, promoting the M2 phenotype while inhibiting the M1 phenotype. Notably, their low toxicity and high effectiveness render them promising candidates for therapeutic interventions. These compounds have demonstrated encouraging protective effects against inflammation in the colon. Conclusions Exploring phytochemicals as a therapeutic avenue targeting macrophage polarization presents an innovative approach to treating UC.
Collapse
Affiliation(s)
- Nishant Kumar Saurabh
- Division of Molecular Biology, National Institute of Cancer Prevention & Research (ICMR-NICPR), I-7, Sector-39, Noida 201301, India
| | - Mohd Mabood Khan
- Department of Medicine, Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| | - Annet Kirabo
- Department of Medicine, Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| |
Collapse
|
6
|
Feng J, Chen W, Li S, Fang Q, Chen X, Bai G, Tian M, Huang Y, Xu P, Wang Z, Ma Y. PACAP ameliorates obesity-induced insulin resistance through FAIM/Rictor/AKT axis. FEBS J 2024; 291:4096-4110. [PMID: 39041617 DOI: 10.1111/febs.17228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/17/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Obesity and obesity-related insulin resistance have been a research hotspot. Pituitary adenylate cyclase activating polypeptide (PACAP) has emerged as playing a significant role in energy metabolism, holding promising potential for attenuating insulin resistance. However, the precise mechanism is not fully understood. Palmitic acid and a high-fat diet (HFD) were used to establish insulin resistance model in Alpha mouse liver 12 cell line and C57BL/6 mice, respectively. Subsequently, we assessed the effects of PACAP both in vivo and in vitro. Lentivirus vectors were used to explore the signaling pathway through which PACAP may ameliorate insulin resistance. PACAP was found to selectively bind to the PACAP type I receptor receptor and ameliorate insulin resistance, which was characterized by increased glycogen synthesis and the suppression of gluconeogenesis in the insulin-resistant cell model and HFD-fed mice. These effects were linked to the activation of the Fas apoptotic inhibitory molecule/rapamycin-insensitive companion of mammalian target of rapamycin/RAC-alpha serine/threonine-protein kinase (FAIM/Rictor/AKT) axis. Furthermore, PACAP ameliorated insulin resistance by increasing solute carrier family 2, facilitated glucose transporter members 2/4 and inhibiting gluconeogenesis-related proteins glucose 6-phosphatase catalytic subunit 1 and phosphoenolpyruvate carboxykinase 2 expression. Meanwhile, the phosphorylation of hepatic AKT/glycogen synthase kinase 3β was promoted both in vivo and in vitro by PACAP. Additionally, PACAP treatment decreased body weight, food intake and blood glucose levels in obese mice. Our study shows that PACAP ameliorated insulin resistance through the FAIM/Rictor/AKT axis, presenting it as a promising drug candidate for the treatment of obesity-related insulin resistance.
Collapse
Affiliation(s)
- Jia Feng
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wenhui Chen
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shanshan Li
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qianchen Fang
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xingwu Chen
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ge Bai
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Meng Tian
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yongmei Huang
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pei Xu
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zixian Wang
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Sardarabadi H, Darvishi MH, Zohrab F, Javadi H. Nanophytomedicine: A promising practical approach in phytotherapy. Phytother Res 2024; 38:3607-3644. [PMID: 38725270 DOI: 10.1002/ptr.8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
The long and rich history of herbal therapeutic nutrients is fascinating. It is incredible to think about how ancient civilizations used plants and herbs to treat various ailments and diseases. One group of bioactive phytochemicals that has gained significant attention recently is dietary polyphenols. These compounds are commonly found in a variety of fruits, vegetables, spices, nuts, drinks, legumes, and grains. Despite their incredible therapeutic properties, one challenge with polyphenols is their poor water solubility, stability, and bioavailability. This means that they are not easily absorbed by the body when consumed in essential diets. Because of structural complexity, polyphenols with high molecular weight cannot be absorbed in the small intestine and after arriving in the colon, they are metabolized by gut microbiota. However, researchers are constantly working on finding solutions to enhance the bioavailability and absorption of these compounds. This study aims to address this issue by applying nanotechnology approaches to overcome the challenges of the therapeutic application of dietary polyphenols. This combination of nanotechnology and phytochemicals could cause a completely new field called nanophytomedicine or herbal nanomedicine.
Collapse
Affiliation(s)
- Hadi Sardarabadi
- Department of Physiology and Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zohrab
- Department of Medical Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Hamidreza Javadi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Xu J, Jia W, Zhang G, Liu L, Wang L, Wu D, Tao J, Yue H, Zhang D, Zhao X. Extract of Silphium perfoliatum L. improve lipid accumulation in NAFLD mice by regulating AMPK/FXR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118054. [PMID: 38484950 DOI: 10.1016/j.jep.2024.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Globally, the incidence rate and number of patients with nonalcoholic fatty liver disease are increasing, which has become one of the greatest threats to human health. However, there is still no effective therapy and medicine so far. Silphium perfoliatum L. is a perennial herb native to North America, which is used to improve physical fitness and treat liver and spleen related diseases in the traditional medicinal herbs of Indian tribes. This herb is rich in chlorogenic acids, which have the functions of reducing blood lipids, losing weight and protecting liver. However, the effect of these compounds on nonalcoholic fatty liver disease remains unclear. AIM OF THE STUDY Clarify the therapeutic effects and mechanism of the extract (CY-10) rich in chlorogenic acid and its analogues from Silphium perfoliatum L. on non-alcoholic fatty liver disease, and to determine the active compounds. MATERIALS AND METHODS A free fatty acid-induced steatosis model of HepG2 cells was established to evaluate the in vitro activity of CY-10 in promoting lipid metabolism. Further, a high-fat diet-induced NAFLD model in C57BL/6 mice was established to detect the effects of CY-10 on various physiological and biochemical indexes in mice, and to elucidate the in vivo effects of the extract on regulating lipid metabolism, anti-inflammation and hepatoprotection, and nontarget lipid metabolomics was performed to analyze differential metabolites of fatty acids in the liver. Subsequently, western blotting and immunohistochemistry were used to analyze the target of the extract and elucidate its mechanism of action. Finally, the active compounds in CY-10 were elucidated through in vitro activity screening. RESULTS The results indicated that CY-10 significantly attenuated lipid droplet deposition in HepG2 cells. The results of in vivo experiments showed that CY-10 significantly reduce HFD-induced mouse body weight and organ index, improve biochemical indexes, oxidation levels and inflammatory responses in the liver and serum, thereby protecting the liver tissue. It can promote the metabolism of unsaturated fatty acids in the liver and reduce the generation of saturated fatty acids. Furthermore, it is clarified that CY-10 can promote lipid metabolism balance by regulating AMPK/FXR/SREPB-1c/PPAR-γ signal pathway. Ultimately, the main active compound was proved to be cryptochlorogenic acid, which has a strong promoting effect on the metabolism of fatty acids in cells. Impressively, the activities of CY-10 and cryptochlorogenic acid were stronger than simvastatin in vitro and in vivo. CONCLUSION For the first time, it is clarified that the extract rich in chlorogenic acids and its analogues in Silphium perfoliatum L. have good therapeutic effects on non-alcoholic fatty liver disease. It is confirmed that cryptochlorogenic acid is the main active compound and has good potential for medicine.
Collapse
Affiliation(s)
- Jiyu Xu
- College of Ecological Environmental Engineering, Qinghai University, China.
| | - Wenjing Jia
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China; University of Chinese Academy of Sciences, China.
| | - Guoying Zhang
- College of Ecological Environmental Engineering, Qinghai University, China.
| | - Liying Liu
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China; University of Chinese Academy of Sciences, China.
| | - Luya Wang
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China; University of Chinese Academy of Sciences, China.
| | - Di Wu
- College of Ecological Environmental Engineering, Qinghai University, China.
| | - Jihong Tao
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China.
| | - Huilan Yue
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China.
| | - Dejun Zhang
- College of Ecological Environmental Engineering, Qinghai University, China.
| | - Xiaohui Zhao
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China.
| |
Collapse
|
9
|
Syngkli S, Singh SK, Rani RM, Das B. Genistein and metformin regulate glycerol kinase and the enzymes of glycerol 3-phosphate shuttle in a differential manner in myocytes, hepatocytes and adipocytes. Int J Biol Macromol 2024; 270:132296. [PMID: 38740159 DOI: 10.1016/j.ijbiomac.2024.132296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Glycerol kinase (GK) and glycerol 3-phosphate dehydrogenase (GPDH) are critical in glucose homeostasis. The role of genistein and metformin on these enzymes and glucose production was investigated in C2C12, HepG2, and 3T3-L1 cells. Enzyme kinetics, Real-Time PCR and western blots were performed to determine enzyme activities and expressions of mRNAs and proteins. Glucose production and uptake were also measured in these cells. siRNAs were used to assess their impact on the enzymes and glucose production. Ki values for the compounds were determined using purified GK and GPDH. Genistein decreased GK activity by ∼45 %, while metformin reduced cGPDH and mGPDH activities by ∼32 % and ∼43 %, respectively. Insignificant changes in expressions (mRNAs and proteins) of the enzymes were observed. The compounds showed dose-dependent alterations in glucose production and uptake in these cells. Genistein non-competitively inhibited His-GK activity (Ki 19.12 μM), while metformin non-competitively inhibited His-cGPDH (Ki 75.52 μM) and mGPDH (Ki 54.70 μM) activities. siRNAs transfection showed ∼50 % and ∼35 % decrease in activities of GK and mGPDH and a decrease in glucose production (0.38-fold and 0.42-fold) in 3T3-L1 cells. Considering the differential effects of the compounds, this study may provide insights into the potential therapeutic strategies for type II diabetes mellitus.
Collapse
Affiliation(s)
- Superior Syngkli
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Sumit K Singh
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Riva M Rani
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Bidyadhar Das
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
10
|
Hota D, Padhy BM, Maiti R, Bisoi D, Sahoo JP, Patro BK, Kumar P, Goel A, Banik SP, Chakraborty S, Rungta M, Bagchi M, Bagchi D. A Placebo-Controlled, Double-Blind Clinical Investigation to Evaluate the Efficacy of a Patented Trigonella foenum-graecum Seed Extract "Fenfuro®" in Type 2 Diabetics. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:147-156. [PMID: 37459747 DOI: 10.1080/27697061.2023.2233008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/30/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Trigonella foenum-graecum (Fenugreek) is an extensively researched phytotherapeutic for the management of Type 2 diabetes without any associated side effects. The major anti-diabetic bioactive constituents present in the plant are furostanolic saponins, which are more abundantly available in the seed of the plant. However, the bioavailability of these components depends on the method of extraction and hence formulation of the phytotherapeutic constitutes a critical step for its success. OBJECTIVE The present study reports the efficacy of a novel, patented fenugreek seed extract, Fenfuro®, containing significant amount of furostanolic saponins, in an open-labelled, two-armed, single centric study on a group of 204 patients with Type 2 diabetes mellitus over a period of twelve consecutive weeks. RESULTS Administration of Fenfuro® in the dosage of 500 mg twice daily along with metformin and/or sulfonylurea-based prescribed antidiabetic drug resulted in a reduction of post-prandial glucose by more than 33% along with significant reduction in fasting glucose, both of which were greater than what resulted for the patient group receiving only Metformin and/or Sulfonylurea therapy. Fenfuro® also resulted in reduction in mean baseline HOMA index from 4.27 to 3.765, indicating restoration of insulin sensitivity which was also supported by a significant decrease in serum insulin levels by >10% as well as slight reduction in the levels of C-peptide. However, in the case of the Metformin and/or Sulfonylurea group, insulin levels were found to increase by more than 14%, which clearly indicated that drug-induced suppression of glucose levels instead of restoration of glucose homeostasis. Administration of the formulation was also found to be free from any adverse side effects as there were no changes in hematological profile, liver function and renal function. CONCLUSION The study demonstrated the promising potential of this novel phytotherapeutic, Fenfuro®, in long-term holistic management of type-2 diabetes.
Collapse
Affiliation(s)
- Debasish Hota
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Biswa M Padhy
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Debasis Bisoi
- Department of Pharmacology, AIIMS, Bibinagar, Hyderabad, India
| | - Jyoti Prakash Sahoo
- Department of Pharmacology, SCB Medical College & Hospital, Cuttack, Orissa, India
| | - Binod K Patro
- Department of Community and Family Medicine, AIIMS, Bhubaneswar, Orissa, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, New York, USA
| | - Mehul Rungta
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Manashi Bagchi
- Department of R&D, Dr. Herbs LLC, Concord, California, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, New York, USA
| |
Collapse
|
11
|
Zhou Y, Qin S, Zhu Y, Xu P, Gu K. Inverse association between isoflavones and prediabetes risk: evidence from NHANES 2007-2010 and 2017-2018. Front Nutr 2023; 10:1288416. [PMID: 38115881 PMCID: PMC10728643 DOI: 10.3389/fnut.2023.1288416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Prediabetes is a metabolic condition characterized by blood glucose levels that are higher than normal but do not meet the threshold for a diabetes diagnosis. Individuals with prediabetes are at an increased risk of developing type 2 diabetes and associated complications. However, limited epidemiological studies have investigated the association between flavonoids from plant-based diets and the risk of prediabetes, and the existing evidence from these studies is inconsistent. Methods Therefore, we utilized data from 19,021 participants (mean age: 32.03 years) in the National Health and Nutrition Examination Survey (NHANES) conducted during 2007-2010 and 2017-2018 to investigate the potential association between dietary flavonoid intake and prediabetes risk by weighted logistic regression analysis. Furthermore, the data from 3,706 participants (mean age: 35.98 years) from NHANES 2007-2010 were used to assess the correlation between concentrations of isoflavones and their metabolites in urine and prediabetes risk by weighted logistic regression analysis. Results Our findings revealed an inverse association between the intake of glycitein (OR: 0.88; 95% CI: 0.82-0.96; p = 0.003), genistein (OR: 0.98; 95% CI: 0.97-0.99; p = 0.004), daidzein (OR: 0.98; 95% CI: 0.96-0.99; p = 0.009), and total isoflavones (OR: 0.99; 95% CI: 0.98-1.00; p = 0.005) with the risk of prediabetes. Moreover, we observed an inverse association between the concentration of daidzein in urine (OR: 0.84; 95% CI: 0.73-0.96; p = 0.012) and the concentration of genistein in urine (OR:0.83; 95% CI: 0.75-0.93; p = 0.003) with the risk of prediabetes using weighted logistic regression. Conclusion In conclusion, our findings suggest a potential protective effect of isoflavones against the development of prediabetes.
Collapse
Affiliation(s)
- Yanjun Zhou
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Shaolei Qin
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Zhu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Xu
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Wang K, Mao T, Lu X, Wang M, Yun Y, Jia Z, Shi L, Jiang H, Li J, Shi R. A potential therapeutic approach for ulcerative colitis: targeted regulation of macrophage polarization through phytochemicals. Front Immunol 2023; 14:1155077. [PMID: 37197668 PMCID: PMC10183582 DOI: 10.3389/fimmu.2023.1155077] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 05/19/2023] Open
Abstract
Ulcerative colitis (UC), a type of inflammatory bowel disease characterized by recurring and incurable symptoms, causes immense suffering and economic burden for patients due to the limited treatment options available. Therefore, it is imperative to develop novel and promising strategies, as well as safe and effective drugs, for the clinical management of UC. Macrophages play a critical role as the initial line of defense in maintaining intestinal immune homeostasis, and their phenotypic transformation significantly influences the progression of UC. Scientific studies have demonstrated that directing macrophage polarization toward the M2 phenotype is an effective strategy for the prevention and treatment of UC. Phytochemicals derived from botanical sources have garnered the interest of the scientific community owing to their distinct bioactivity and nutritional value, which have been shown to confer beneficial protective effects against colonic inflammation. In this review, we explicated the influence of macrophage polarization on the development of UC and collated data on the significant potential of natural substances that can target the macrophage phenotype and elucidate the possible mechanism of action for its treatment. These findings may provide novel directions and references for the clinical management of UC.
Collapse
Affiliation(s)
- Ke Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Lu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Muyuan Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yifei Yun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Jia
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Shi
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoxi Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Junxiang Li, ; Rui Shi,
| | - Rui Shi
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Junxiang Li, ; Rui Shi,
| |
Collapse
|