1
|
Chen Y, Wang Y, Shen T, Wang N, Bai X, Li Q, Fang S, He Z, Sun C, Feng R. Serum metabolic signatures and MetalnFF diagnostic score for mild and moderate metabolic dysfunction-associated steatotic liver disease. J Pharm Biomed Anal 2025; 260:116772. [PMID: 40048991 DOI: 10.1016/j.jpba.2025.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 04/01/2025]
Abstract
To explore serum metabolic changes in metabolic dysfunction-associated steatotic liver disease (MASLD) with mild or moderate steatosis and develop a diagnostic index based on liver fat content to differentiate these stages. A total of 149 participants were enrolled from the Nutrition Health Atlas Project in 2019 (Stage 1, n = 92) and 2022 (Stage 2, n = 57). Serum levels of amino acids, free fatty acids (FFAs) and other organic acids were quantified using liquid or gas chromatography-mass spectrometry. The relationships between serum metabolites and magnetic resonance imaging proton density hepatic fat fraction were analyzed and a predictive model fitting fat fraction was constructed in Stage 1 and validated in Stage 2. Patients with moderate MASLD had significantly higher pyruvic acid, 2-ketoglutaric acid, malic acid, 2-hydroxyisocaproic acid and FFA(C14:0) than mild MASLD. Pathway analysis indicated that liver fat accumulation is associated with alterations in amino acid, FFA metabolism and tricarboxylic acid cycle (TCA). The MetalnFF score was developed to discriminate among three groups, achieving an area under the curve (AUC) of 0.956 (95 %CI:0.905, 1.00) for MASLD and 0.857 (95 %CI:0.745, 0.968) for moderate MASLD in Stage 1, and was further validated in Stage 2 with an AUC of 0.986 (95 %CI: 0.951, 1.00) and 0.759 (95 %CI:0.607, 0.921), respectively. In the early stages of MASLD, disrupted amino acid, FFAs metabolism and TCA cycle have occurred. As the disease progresses, metabolic disturbances in pyruvate metabolism become more severe. These findings enhance a deeper understanding of pathogenesis and propose MetalnFF score as a potential diagnostic tool.
Collapse
Affiliation(s)
- Yang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China; NHC Specialty Laboratory Cooperation Unit of Food Safety Risk Assessment and Standard Development, Heilongjiang, China
| | - Yiran Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Institute of Cancer Prevention and Treatment, Harbin Medical University, Heilongjiang, China
| | - Tianjiao Shen
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, US
| | - Nan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Xiao Bai
- Haxi New Area Community Health Service Center, Nangang District, Heilongjiang, China
| | - Qiyang Li
- Imaging Center, Harbin Medical University Cancer Hospital, Heilongjiang, China
| | - Siyue Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Zhe He
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China; NHC Specialty Laboratory Cooperation Unit of Food Safety Risk Assessment and Standard Development, Heilongjiang, China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China; NHC Specialty Laboratory Cooperation Unit of Food Safety Risk Assessment and Standard Development, Heilongjiang, China.
| |
Collapse
|
2
|
Dey P. Comparable hepatocellular metabolomic signatures under glucose and palmitic acid treatment relative to butyrate in relation to metabolic dysfunction-associated fatty liver disease. Arch Physiol Biochem 2025:1-11. [PMID: 40372011 DOI: 10.1080/13813455.2025.2500651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Among the dietary factors, glucose, and fatty acids are known to trigger fatty liver disease, while butyrate attenuates steatosis. OBJECTIVE To decipher the hepatocellular altered metabolome under nutrient perturbation relevant to fatty liver disease. METHODS HepG2 cells were cultured under the influence of sub-lethal doses of glucose, palmitic acid (PA), and butyrate. Following the treatment, intracellular metabolites were extracted and derivatized for GCMS analysis. Chemical class enrichment, metabolic pathway analysis, and metabolomic interactome analysis were undertaken. RESULTS Glucose, PA and butyrate caused loss of cell viability at 160 mM, 1600 µM, and 40 mM concentration, respectively. A total of 39, 47, 52, and 51 metabolites were identified in control, glucose, PA, and butyrate, respectively, among which 2-ethylhexanoic acid in control and 2-ethylhexan-1-ol in glucose, PA and butyrate were the most abundant metabolites. Pathways related to the mitochondrial electron transport chain were highly enriched in glucose and PA treatments, leading to increased free radicals. The metabolites identified under glucose and PA treatment were linked to the metabolomic markers of metabolic liver diseases. CONCLUSION Our data showed that the hepatocellular metabolome of HepG2 cells under glucose and PA treatment is closely related, while the metabolome and pathways associated with butyrate treatment are associated with energy metabolism and alleviation of fatty liver.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
3
|
Huang M, Zhang Y, Xu X, Duan R, Yang H. Chronic chlorothalonil exposure inhibits locomotion and interferes with the gut-liver axis in Pelophylax nigromaculatus tadpoles. Sci Rep 2025; 15:14573. [PMID: 40280937 PMCID: PMC12032272 DOI: 10.1038/s41598-025-98081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Chlorothalonil is a widely used fungicide that has a negative effect on individual movement, but its impact pathway needs further refinement. Here, the effects of exposure to chlorothalonil on the locomotion behavior of Pelophylax nigromaculatus tadpoles (GS23) were measured at three different levels (0 µg/L, 10 µg/L, and 50 µg/L), and the possible pathways of its effects were analyzed from the gut-liver axis. Chlorothalonil exposure levels of 10 µg/L and 50 µg/L significantly reduced the average speed of P. nigromaculatus tadpoles by 26% and 32.7%, respectively, and significantly decreased the locomotor frequency by 27.1% and 58.6%, respectively. Gut microbiota analysis revealed chlorothalonil exposure significantly increased the abundance of Firmicutes, while significantly decreased the abundance of Actinobacteriota, Pseudomonas, and Rhodococcus. Metabolomics analysis identified that chlorothalonil treatment changed amino acid-related metabolism pathways in the gut and liver and altered the glycerophospholipid metabolism pathway in the liver. This study indicated that chlorothalonil can affect individual locomotor abilities and interfering with the gut-liver axis of aquatic animals. These findings establish that chlorothalonil compromises aquatic organism motility through a multi-target mechanism involving gut microbiota modulation, amino acid metabolic interference, and hepatic lipid pathway disruption.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
- Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China
| | - Yuhao Zhang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Xiang Xu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
- Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China.
| | - Hui Yang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| |
Collapse
|
4
|
Cooper G, North R, Hunt-Smith T, Larson J, Rennie M, Bailey ML, Scarlata S, Merzdorf CS, Bothner B. Persistent Metabolic Changes Are Induced by 24 h Low-Dose Lead (Pb) Exposure in Zebrafish Embryos. Int J Mol Sci 2025; 26:1050. [PMID: 39940818 PMCID: PMC11817773 DOI: 10.3390/ijms26031050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Lead (Pb) is a heavy metal associated with a range of toxic effects. Relatively few studies attempt to understand the impact of lead on development from a mechanistic perspective. Danio rerio (zebrafish) embryos are a model organism for studying the developmental consequences of exposure to chemical agents. This study examined the metabolome of developing zebrafish embryos exposed to 5 ppb, 15 ppb, 150 ppb, and 1500 ppb Pb concentrations during the first 24 h post fertilization, followed by 24 h of unexposed development and harvest at 48 h. Untargeted metabolomics and multivariate analysis revealed that various Pb exposures differentially affected the embryonic metabolome. Pathway analyses showed the dysregulation of biopterin, purine, alanine, and aspartate metabolism. Inductively coupled plasma mass spectrometry demonstrated Pb accumulation in embryos. Additionally, decreases in oxidation-reduction ratios were observed in 5-150 ppb groups but not in the 1500 ppb exposure group. This finding, along with several metabolite abundances, suggests a hormetic effect of Pb concentrations on the developing zebrafish metabolome. Together, these data reveal persistent global changes in the embryonic metabolome, pin-point biomarkers for Pb exposure, unveil dose-dependent relationships, and reflect Pb-induced changes in cellular energy. This work highlights aberrant processes and persistent changes underlying low-dose heavy metal exposure during early development.
Collapse
Affiliation(s)
- Gwendolyn Cooper
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.); (J.L.); (M.L.B.)
| | - Ryan North
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (R.N.); (T.H.-S.)
| | - Tyler Hunt-Smith
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (R.N.); (T.H.-S.)
| | - James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.); (J.L.); (M.L.B.)
| | - Madison Rennie
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (M.R.); (S.S.)
| | - Marguerite L. Bailey
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.); (J.L.); (M.L.B.)
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (M.R.); (S.S.)
| | - Christa S. Merzdorf
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (R.N.); (T.H.-S.)
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.); (J.L.); (M.L.B.)
| |
Collapse
|
5
|
Liang X, Zhang T, Cheng X, Yuan H, Yang N, Yi Y, Li X, Zhang F, Sun J, Li Z, Wang X. Sesamin alleviates lipid accumulation induced by elaidic acid in L02 cells through TFEB regulated autophagy. Front Nutr 2024; 11:1511682. [PMID: 39758315 PMCID: PMC11695222 DOI: 10.3389/fnut.2024.1511682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) is a common chronic disease seriously threatening human health, with limited treatment means, however. Sesamin, a common lignan in sesame seed oil, exhibits anti-inflammatory, antioxidant, and anticancer properties. Our previous studies have shown an ameliorative effect of sesamin on lipid accumulation in human hepatocellular carcinoma (HePG2) induced by oleic acid, with its protective effects unclear in the case of 9-trans-C18:1 elaidic acid (9-trans-C18,1). Methods L02 cells, an important tool in scientific researches due to its high proliferation ability, preserved hepatocyte function, and specificity in response to exogenous factors, were incubated with 9-trans-C18:1 to establish an in vitro model of NAFLD in our study. The lipid accumulation in cells and the morphology of mitochondria and autolysosomes were observed by Oil Red O staining and transmission electron microscopy. The effects of sesamin on oxidative stress, apoptosis, mitochondrial function, autophagy as well as related protein levels in L02 cells were also investigated in the presence of 9-trans-C18:1. Results The results showed that sesamin significantly accelerated the autophagy flux of L02 cells induced by 9-trans-C18:1 as well as elevated protein levels of transcription factor EB (TFEB) and its downstream target lysosome-associated membrane protein 1(LAMP1), along with up-regulated levels of TFEB and LAMP1 in the nucleus indicated by Immunofluorescence. In addition, PTEN-induced putative kinase 1 and Parkin mediated mitophagy was activated by sesamin. The direct inhibitor Eltrombopag and indirect inhibitor MHY1485 of TFEB reversed the protective effect of sesamin, suggesting the involvement of autophagy in the lipid-lowering process of sesamin. Discussion This work suggests that sesamin regulates autophagy through TFEB to alleviate lipid accumulation in L02 cells induced by 9-trans-C18:1, providing a potential target for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xueli Liang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Tianliang Zhang
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xinyi Cheng
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Hang Yuan
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Ning Yang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yanlei Yi
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Xiaozhou Li
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Fengxiang Zhang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jinyue Sun
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Zhenfeng Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xia Wang
- School of Public Health, Shandong Second Medical University, Weifang, China
| |
Collapse
|
6
|
Jian H, Li R, Huang X, Li J, Li Y, Ma J, Zhu M, Dong X, Yang H, Zou X. Branched-chain amino acids alleviate NAFLD via inhibiting de novo lipogenesis and activating fatty acid β-oxidation in laying hens. Redox Biol 2024; 77:103385. [PMID: 39426289 PMCID: PMC11536022 DOI: 10.1016/j.redox.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The adverse metabolic impacts of branched-chain amino acids (BCAA) have been elucidated are mediated by isoleucine and valine. Dietary restriction of isoleucine promotes metabolic health and increases lifespan. However, a high protein diet enriched in BCAA is presently the most useful therapeutic strategy for nonalcoholic fatty liver disease (NAFLD), yet, its underlying mechanism remains largely unknown. Fatty liver hemorrhagic syndrome (FLHS), a specialized laying hen NAFLD model, can spontaneously develop fatty liver and hepatic steatosis under a high-energy and high-protein dietary background that the pathogenesis of FLHS is similar to human NAFLD. The mechanism underlying dietary BCAA control of NAFLD development in laying hens remains unclear. Herein, we demonstrate that dietary supplementation with 67 % High BCAA has unique mitigative impacts on NAFLD in laying hens. A High BCAA diet alleviates NAFLD, by inhibiting the tryptophan-ILA-AHR axis and MAPK9-mediated de novo lipogenesis (DNL), promoting ketogenesis and energy metabolism, and activating PPAR-RXR and pexophagy to promote fatty acid β-oxidation. Furthermore, we uncover that High BCAA strongly activates ubiquitin-proteasome autophagy via downregulating UFMylation to trigger MAPK9-mediated DNL, fatty acid elongation and lipid droplet formation-related proteins ubiquitination degradation, activating PPAR-RXR and pexophagy mediated fatty acid β-oxidation and lipolysis. Together, our data highlight moderating intake of high BCAA by inhibiting the AHR/MAPK9 are promising new strategies in NAFLD and FLHS treatment.
Collapse
Affiliation(s)
- Huafeng Jian
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Ru Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Xuan Huang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Jiankui Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Yan Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | | | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xinyang Dong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Hua Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiaoting Zou
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Huang M, Ma Y, Che S, Shen L, Wan Z, Su S, Ding S, Li X. Nanopolystyrene and phoxim pollution: A threat to hepatopancreas toxicity in Chinese mitten crab (Eriocheir sinensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107124. [PMID: 39423743 DOI: 10.1016/j.aquatox.2024.107124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Significant concerns have been raised by the widespread pollutants phoxim (PHO) and nanopolystyrene (NP) in the natural environment. This study evaluated the toxicity effects on the hepatopancreas of Eriocheir sinensis caused by NP and/or PHO at concentrations found in the environment. Subchronic exposure to NP and/or PHO triggered hepatopancreas histological damage within a 21-day exposure period. The NP, PHO, and co-exposure (NPO) groups exhibited fewer blister-like (B) cells, along with the appearance of vacuolation. Furthermore, these exposures induced impairment in the hepatic tubule mucus barrier and mechanical barrier, as evidenced by altered expression of oxidative stress-related genes, mucin-related genes, and TJ-related genes. Additionally, alterations in immunity-related genes and inflammatory cytokine genes expression were observed. The findings showed that hepatopancreas inflammation was caused by both individual and combined exposure to NP and PHO and that the inflammatory response was exacerbated by the co-exposure. The possible pathways of hepatopancreas toxicity were further investigated by transcriptomic analysis. Hepatopancreas inflammation was brought on by subchronic exposure to PHO and co-exposure; this inflammation was exacerbated by co-exposure and was backed by the activation of NF-κB signaling pathway via targeting-related genes. In summary, this research represents the initial documentation, to the best of our understanding of the detrimental effects of exposured to NP and/or PHO at levels found in the environment disrupt the hepatopancreas mucus and mechanical barrier in crustaceans, triggering inflammatory responses. These findings highlight the significance of NP and/or PHO pollution for hepatopancreas health.
Collapse
Affiliation(s)
- Mengting Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shunli Che
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Longteng Shen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhicheng Wan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shuquan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Xiao Q, Zhang Y, Ni H, Yin Y, Gao A, Cui B, Zhang W, Li Y, Yang Y. Core competing endogenous RNA network based on mRNA and non-coding RNA expression profiles in chicken fatty liver. Anim Genet 2024; 55:772-778. [PMID: 39164964 DOI: 10.1111/age.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
Fatty liver disease is a common metabolic disease in chickens. This disease can lead to a decrease in egg production and increase the risk of death in chickens. Long non-coding RNAs (lncRNAs) are involved in fatty liver formation by directly targeting genes or regulating gene expression by competitively binding microRNAs. However, a large proportion of competing endogenous RNA (ceRNA) networks in fatty liver diseases are still unclear. The total of 300 Jingxing-Huang chickens were used for fatty liver model construction. Then, differentially expressed (DE) genes (DEGs) identified through whole-transcriptome sequencing from four chickens with fatty liver and four chickens without fatty liver were chosen from the F1 generation. A total of 953 DEGs were identified between the fatty liver group and the control group, including 26 DE micro (mi)RNAs and 56 DE lncRNAs. Differential expression heatmaps and volcano plots were obtained after clustering expression analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that these DEGs were involved in many biological processes and signaling pathways related to fatty acid metabolism and lipid synthesis. Furthermore, cytoscape was used to construct a ceRNA network of the DE miRNAs, DE mRNAs, and DE lncRNAs. Eleven DE lncRNAs, seven DE miRNAs, and 13 DE mRNAs were found to be associated with the pathogenesis of fatty liver disease. An lncRNA-miRNA-mRNA ceRNA network was constructed to elucidate the mechanisms of fatty liver diseases, and the ENSGALT00000079786-miR-140/miR-143/miR-1a/miR-22/miR-375 network was identified. These results provide a valuable resource for further elucidating the posttranscriptional regulatory mechanisms of chicken liver and adipose fat development or deposition.
Collapse
Affiliation(s)
- Qingxing Xiao
- College of Animal Science, Jilin University, Changchun, China
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun, China
| | - Hongyu Ni
- College of Animal Science, Jilin University, Changchun, China
| | - Yijing Yin
- College of Animal Science, Jilin University, Changchun, China
| | - Anchong Gao
- College of Animal Science, Jilin University, Changchun, China
| | - Benhai Cui
- Jiuzhou Flying Goose Husbandry & Technology Co., Ltd., Baicheng, China
| | - Wei Zhang
- Animal Disease Prevention and Control Center, Baicheng, China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun, China
| | - Yuwei Yang
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
9
|
Liu D, Yang A, Li Y, Li Z, You P, Zhang H, Quan S, Sun Y, Zeng Y, Ma S, Xiong J, Hao Y, Li G, Liu B, Zhang H, Jiang Y. Targeted delivery of rosuvastatin enhances treatment of hyperhomocysteinemia-induced atherosclerosis using macrophage membrane-coated nanoparticles. J Pharm Anal 2024; 14:100937. [PMID: 39345941 PMCID: PMC11437771 DOI: 10.1016/j.jpha.2024.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 10/01/2024] Open
Abstract
Rosuvastatin (RVS) is an excellent drug with anti-inflammatory and lipid-lowering properties in the academic and medical fields. However, this drug faces a series of challenges when used to treat atherosclerosis caused by hyperhomocysteinemia (HHcy), including high oral dosage, poor targeting, and long-term toxic side effects. In this study, we applied nanotechnology to construct a biomimetic nano-delivery system, macrophage membrane (Møm)-coated RVS-loaded Prussian blue (PB) nanoparticles (MPR NPs), for improving the bioavailability and targeting capacity of RVS, specifically to the plaque lesions associated with HHcy-induced atherosclerosis. In vitro assays demonstrated that MPR NPs effectively inhibited the Toll-like receptor 4 (TLR4)/hypoxia-inducible factor-1α (HIF-1α)/nucleotide-binding and oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) signaling pathways, reducing pyroptosis and inflammatory response in macrophages. Additionally, MPR NPs reversed the abnormal distribution of adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)/ATP binding cassette transporter G1 (ABCA1)/ATP binding cassette transporter G1 (ABCG1) caused by HIF-1α, promoting cholesterol efflux and reducing lipid deposition. In vivo studies using apolipoprotein E knockout (ApoE -/-) mice confirmed the strong efficacy of MPR NPs in treating atherosclerosis with favorable biosecurity, and the mechanism behind this efficacy is believed to involve the regulation of serum metabolism and the remodeling of gut microbes. These findings suggest that the synthesis of MPR NPs provides a promising nanosystem for the targeted therapy of HHcy-induced atherosclerosis.
Collapse
Affiliation(s)
- Dayue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Anning Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yulin Li
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhenxian Li
- Hunan University of Chinese Medicine, First Clinical College of Traditional Chinese Medicine, Changsha, 410007, China
| | - Peidong You
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Hongwen Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Shangkun Quan
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Yue Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yaling Zeng
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Shengchao Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiantuan Xiong
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Guizhong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Bin Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- College of Biology, Hunan University, Changsha, 410082, China
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410000, China
| | - Huiping Zhang
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- College of Biology, Hunan University, Changsha, 410082, China
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410000, China
| | - Yideng Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| |
Collapse
|
10
|
Niu MY, Dong GT, Li Y, Luo Q, Cao L, Wang XM, Wang QW, Wang YT, Zhang Z, Zhong XW, Dai WB, Li LY. Fanlian Huazhuo Formula alleviates high-fat diet-induced non-alcoholic fatty liver disease by modulating autophagy and lipid synthesis signaling pathway. World J Gastroenterol 2024; 30:3584-3608. [PMID: 39193572 PMCID: PMC11346146 DOI: 10.3748/wjg.v30.i30.3584] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/08/2024] Open
Abstract
BACKGROUND Fanlian Huazhuo Formula (FLHZF) has the functions of invigorating spleen and resolving phlegm, clearing heat and purging turbidity. It has been identified to have therapeutic effects on type 2 diabetes mellitus (T2DM) in clinical application. Non-alcoholic fatty liver disease (NAFLD) is frequently diagnosed in patients with T2DM. However, the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation. AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro. METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model. Subsequently, experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours. C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD, and then treated with the different concentrations of FLHZF for 10 weeks. RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro. Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress, regulating the AMPKα/SREBP-1C signaling pathway, activating autophagy, and inhibiting hepatocyte apoptosis. CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species, autophagy, apoptosis, and lipid synthesis signaling pathways, indicating its potential for clinical application in NAFLD.
Collapse
Affiliation(s)
- Meng-Yuan Niu
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Geng-Ting Dong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi Li
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qing Luo
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Liu Cao
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Min Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qi-Wen Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi-Ting Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Zhe Zhang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Wen Zhong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Wei-Bo Dai
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Le-Yu Li
- Department of Endocrinology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| |
Collapse
|
11
|
Wang Y, Chen S, Xue M, Ma J, Yi X, Li X, Lu X, Zhu M, Peng J, Tang Y, Zhu Y. Epigenetic regulation of key gene of PCK1 by enhancer and super-enhancer in the pathogenesis of fatty liver hemorrhagic syndrome. Anim Biosci 2024; 37:1317-1332. [PMID: 38665091 PMCID: PMC11222861 DOI: 10.5713/ab.23.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. METHODS Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. RESULTS In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. CONCLUSION Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Shuwen Chen
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Min Xue
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Jinhu Ma
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Xinrui Yi
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Xinyu Li
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Xuejin Lu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Meizi Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Jin Peng
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Yunshu Tang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, 230032,
China
| | - Yaling Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, 230032,
China
| |
Collapse
|
12
|
Wu L, Hu Z, Lv Y, Ge C, Luo X, Zhan S, Huang W, Shen X, Yu D, Liu B. Hericium erinaceus polysaccharides ameliorate nonalcoholic fatty liver disease via gut microbiota and tryptophan metabolism regulation in an aged laying hen model. Int J Biol Macromol 2024; 273:132735. [PMID: 38825293 DOI: 10.1016/j.ijbiomac.2024.132735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polysaccharides extracted from Hericium erinaceus (HEP) exhibit hepatoprotective activity in the alleviation of non-alcoholic fatty liver disease (NAFLD); however, the mechanisms underlying whether and how HEP regulation of the gut microbiota to alleviate liver-associated metabolic disorders are not well understood. This study used an aged laying hen model to explore the mechanisms through which HEP alleviates NAFLD, with a focus on regulatory function of HEP in the gut microbiome. The results showed that HEP ameliorated hepatic damage and metabolic disorders by improving intestinal barrier function and shaping the gut microbiota and tryptophan metabolic profiles. HEP increased the abundance of Lactobacillus and certain tryptophan metabolites, including indole-3-carboxylic acid, kynurenic acid, and tryptamine in the cecum. These metabolites upregulated the expression of ZO-1 and Occludin by activating the AhR and restoring the intestinal barrier integrity. The increased intestinal barrier functions decreased LPS transferring from the intestine to the liver, inhibited hepatic LPS/TLR4/MyD88/NF-κB pathway activation, and reduced hepatic inflammatory response and apoptosis. Fecal microbiota transplantation experiments further confirmed that the hepatoprotective effect is likely mediated by HEP-altered gut microbiota and their metabolites. Overall, dietary HEP could ameliorate the hepatic damage and metabolic disorders of NAFLD through regulating the "gut-liver" axis.
Collapse
Affiliation(s)
- Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang 312500, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang 312500, China.
| |
Collapse
|
13
|
Hu H, Li A, Shi C, Chen L, Zhao Z, Yin X, Zhang Q, Huang Y, Pan H. Mulberry branch fiber improved lipid metabolism and egg yolk fatty acid composition of laying hens via the enterohepatic axis. MICROBIOME 2024; 12:73. [PMID: 38605412 PMCID: PMC11010431 DOI: 10.1186/s40168-024-01788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The utilization of mulberry branch fiber (MF), the largest by-product of the sericulture industry, is an important issue. Supplementation with MF as a dietary fiber for poultry may serve as a useful application. However, little is known about the effects of MF on liver lipid metabolism and egg yolk fatty acid composition of laying hens and their underlying mechanisms. In this study, we performed a multi-omics investigation to explore the variations in liver lipid metabolism, egg yolk fatty acid composition, gut microbiota, and the associations among them induced by dietary MF in laying hens. RESULTS Dietary MF had no harmful effects on the laying performance or egg quality in laying hens. The enzyme activities associated with lipid metabolism in the liver were altered by the addition of 5% MF, resulting in reduced liver fat accumulation. Furthermore, dietary 5% MF induced the variation in the fatty acid profiles of egg yolk, and increased the polyunsaturated fatty acid (PUFA) content. We observed a significant reduction in the diversity of both gut bacteria and changes in their compositions after the addition of MF. Dietary MF significantly increased the abundance of genes involved in fatty acid biodegradation, and short-chain fatty acids biosynthesis in the gut microbiota of laying hens. The significant correlations were observed between the liver lipid metabolism enzyme activities of hepatic lipase, lipoprotein lipase, and total esterase with gut microbiota, including negative correlations with gut microbiota diversity, and multiple correlations with gut bacteria and viruses. Moreover, various correlations between the contents of PUFAs and monounsaturated fatty acids in egg yolk with the gut microbiota were obtained. Based on partial-least-squares path modeling integrated with the multi-omics datasets, we deduced the direct effects of liver enzyme activities and gut bacterial compositions on liver fat content and the roles of liver enzyme activities and gut bacterial diversity on egg yolk fatty acid composition. CONCLUSIONS The results indicate that dietary MF is beneficial to laying hens as it reduces the liver fat and improves egg yolk fatty acid composition through the enterohepatic axis. Video Abstract.
Collapse
Affiliation(s)
- Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Changyou Shi
- University of Maryl and School of Medicine, Baltimore, MD, 21228, USA
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100193, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd, Shanghai, 201800, China
| | - Xiaojian Yin
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qiang Zhang
- WOD Poultry Research Institute, Beijing, 100193, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
14
|
Deng Y, Hu M, Huang S, Fu N. Molecular mechanism and therapeutic significance of essential amino acids in metabolically associated fatty liver disease. J Nutr Biochem 2024; 126:109581. [PMID: 38219809 DOI: 10.1016/j.jnutbio.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), also known as metabolically associated fatty liver disease (MAFLD), is a systemic metabolic disease characterized by lipid accumulation in the liver, lipid toxicity, insulin resistance, intestinal dysbiosis, and inflammation that can progress from simple steatosis to nonalcoholic steatohepatitis (NASH) and even cirrhosis or cancer. It is the most prevalent illness threatening world health. Currently, there are almost no approved drug interventions for MAFLD, mainly dietary changes and exercise to control weight and regulate metabolic disorders. Meanwhile, the metabolic pathway involved in amino acid metabolism also influences the onset and development of MAFLD in the body, and most amino acid metabolism takes place in the liver. Essential amino acids are those amino acids that must be supplemented from outside the diet and that cannot be synthesized in the body or cannot be synthesized at a rate sufficient to meet the body's needs, including leucine, isoleucine, valine (collectively known as branched-chain amino acids), tryptophan, phenylalanine (which are aromatic amino acids), histidine, methionine, threonine and lysine. The metabolic balance of the body is closely linked to these essential amino acids, and essential amino acids are closely linked to the pathophysiological process of MAFLD. In this paper, we will focus on the metabolism of essential amino acids in the body and further explore the therapeutic strategies for MAFLD based on the studies conducted in recent years.
Collapse
Affiliation(s)
- Yuting Deng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Mengsi Hu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Shufang Huang
- The Affiliated Nanhua Hospital, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China; The Affiliated Nanhua Hospital, Institute of Clinical Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| |
Collapse
|
15
|
Liu M, Kang Z, Cao X, Jiao H, Wang X, Zhao J, Lin H. Prevotella and succinate treatments altered gut microbiota, increased laying performance, and suppressed hepatic lipid accumulation in laying hens. J Anim Sci Biotechnol 2024; 15:26. [PMID: 38369510 PMCID: PMC10874536 DOI: 10.1186/s40104-023-00975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND This work aimed to investigate the potential benefits of administering Prevotella and its primary metabolite succinate on performance, hepatic lipid accumulation and gut microbiota in laying hens. RESULTS One hundred and fifty 58-week-old Hyline Brown laying hens, with laying rate below 80% and plasma triglyceride (TG) exceeding 5 mmol/L, were used in this study. The hens were randomly allocated into 5 groups and subjected to one of the following treatments: fed with a basal diet (negative control, NC), oral gavage of 3 mL/hen saline every other day (positive control, PC), gavage of 3 mL/hen Prevotella melaninogenica (107 CFU/mL, PM) or 3 mL/hen Prevotella copri (107 CFU/mL, P. copri) every other day, and basal diet supplemented with 0.25% sodium succinate (Succinate). The results showed that PM and P. copri treatments significantly improved laying rate compared to the PC (P < 0.05). The amount of lipid droplet was notably decreased by PM, P. copri, and Succinate treatments at week 4 and decreased by P. copri at week 8 (P < 0.05). Correspondingly, the plasma TG level in Succinate group was lower than that of PC (P < 0.05). Hepatic TG content, however, was not significantly influenced at week 4 and 8 (P > 0.05). PM treatment increased (P < 0.05) the mRNA levels of genes PGC-1β and APB-5B at week 4, and ACC and CPT-1 at week 8. The results indicated enhanced antioxidant activities at week 8, as evidenced by reduced hepatic malondialdehyde (MDA) level and improved antioxidant enzymes activities in PM and Succinate groups (P < 0.05). Supplementing with Prevotella or succinate can alter the cecal microbiota. Specifically, the abundance of Prevotella in the Succinate group was significantly higher than that in the other 4 groups at the family and genus levels (P < 0.05). CONCLUSIONS Oral intake of Prevotella and dietary supplementation of succinate can ameliorate lipid metabolism of laying hens. The beneficial effect of Prevotella is consistent across different species. The finding highlights that succinate, the primary metabolite of Prevotella, represents a more feasible feed additive for alleviating fatty liver in laying hens.
Collapse
Affiliation(s)
- Min Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Zeyue Kang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Xikang Cao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
16
|
Liu M, Chen R, Wang T, Ding Y, Zhang Y, Huang G, Huang J, Qu Q, Lv W, Guo S. Dietary Chinese herbal mixture supplementation improves production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. Poult Sci 2024; 103:103201. [PMID: 37980727 PMCID: PMC10692728 DOI: 10.1016/j.psj.2023.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Chinese herbs have been used as feed additives and are commonly utilized in domestic intensive livestock farming. However, their impact on the production performance and intestinal health of broiler breeders has yet to be thoroughly explored. This study aimed to evaluate the effects of a Chinese herbal mixture (CHM) on the production performance of broiler breeders in terms of reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. A total of 336 thirty-wk-old hens were randomly allotted to 4 groups with 6 replicates of fourteen hens each, which fed a basal diet supplemented with 0 (CON), 500 (CHM500), 1,000 (CHM1000), and 1,500 (CHM1500) mg/kg CHM for 56 days, respectively. Our results showed that dietary supplementation with CHM1000 increased the laying rate and number of SYF and decreased the feed conversion ratio (P < 0.05). All CHM groups increased oviduct and ovarian indexes, serum E2 and T-AOC levels, and decreased serum TG and MDA levels compared with CON (P < 0.05). In comparison to the CON group, the CHM1000 and CHM1500 groups increased serum ALB, IgM, and IL-10 levels, whereas the CHM1000 group also increased serum TP and SOD levels, and the CHM1500 group increased serum P and decreased serum TNF-α (P < 0.05). The addition of CHM increased FSHR expressions in the ovary, Claudin-1 expressions in the jejunum, and SOD1 expressions in the liver and ovary, but decreased the mRNA expressions of INH in the ovary as well as IL-2 and IL-6 expressions in the jejunum (P < 0.05). Moreover, CHM500 and CHM1000 groups increased CAT, GPx, and HO-1 expression in the ovary, and SOD1 and GPx expression in the jejunum, while decreasing IL-17A expression in the jejunum (P < 0.05). In addition, CHM1000 and CHM1500 groups increased villus height, VCR, and the mRNA expressions of Nrf2, HO-1, Occludin, and MUC2 in the jejunum, and IL-10 expression in the ovary, while decreasing IL-2 and IL-17A expression in the ovary, in addition to increasing GPx, Nrf2, HO-1, NQO1, and IL-10 expression in the liver (P < 0.05). Supplementation with CHM1000 increased ESR-α, ESR-β, GnRH, Nrf2, and NQO1 expression in the ovary, but decreased IFN-γ expression in the ovary as well as crypt depth in the jejunum (P < 0.05). Supplementing CHM1500 increased NQO1 and ZO-1 expression in the jejunum and decreased IL-2 in the liver (P < 0.05). The high-throughput sequencing results showed that dietary CHM1000 supplementation altered the composition of the intestinal microbiota, as evidenced by the regulation of the genera Lactobacillus, Faecalibacterium, and Phascolarctobacterium. PICRUSt analysis revealed that metabolic pathways of bacterial chemotaxis, butanoate metabolism, and synthesis and degradation of ketone bodies were enriched in the CHM1000 group. Spearman's correlation analysis indicated that the differentiated genera were significantly associated with the production performance, serum hormone, and gut barrier-related genes. Taken together, supplementation of CHM, especially at 1,000 mg/kg, could improve production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders, and maybe provide insights into its application as a potential feed additive to promote the performance of broiler breeders.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yinwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Gengxiong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, PR China; International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, PR China.
| |
Collapse
|
17
|
Yu Z, Cheng M, Luo S, Wei J, Song T, Gong Y, Zhou Z. Comparative Lipidomics and Metabolomics Reveal the Underlying Mechanisms of Taurine in the Alleviation of Nonalcoholic Fatty Liver Disease Using the Aged Laying Hen Model. Mol Nutr Food Res 2023; 67:e2200525. [PMID: 37909476 DOI: 10.1002/mnfr.202200525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/18/2023] [Indexed: 11/03/2023]
Abstract
SCOPE Aged laying hen is recently suggested as a more attractive animal model than rodent for studying nonalcoholic fatty liver disease (NAFLD) of humans. This study aims to reveal effects and metabolic regulation mechanisms of taurine alleviating NAFLD by using the aged laying hen model. METHODS AND RESULTS Liver histomorphology and biochemical indices show 0.02% taurine effectively alleviated fat deposition and liver damage. Comparative liver lipidomics and gene expressions analyses reveal taurine promoted lipolysis, fatty acids oxidation, lipids transport, and reduced oxidative stress in liver. Furthermore, comparative serum metabolomics screen six core metabolites negatively correlated with NAFLD, including linoleic acid, gamma-linolenic acid, pantothenate, L-methionine, 2-methylbutyroylcarnitine, L-carnitine; and two core metabolites positively correlated with NAFLD, including lysophosphatidylcholine (14:0/0:0) and lysophosphatidylcholine (16:0/0:0). Metabolic pathway analysis reveals taurine mainly regulated linoleic acid metabolism, cysteine and methionine metabolism, carnitine metabolism, pantothenic acid and coenzyme A biosynthesis metabolism, and glycerophospholipid metabolism to up-adjust levels of six negatively correlated metabolites and down-adjust two positively correlated metabolites for alleviating NAFLD of aged hens. CONCLUSION This study firstly reveals underlying metabolic mechanisms of taurine alleviating NAFLD using the aged hen model, thereby laying the foundation for taurine's application in the prevention of NAFLD in both human and poultry.
Collapse
Affiliation(s)
- Zhengwang Yu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Shanghai Yuanyao Agriculture and Animal Husbandry Technology Co., Ltd, Shanghai, 200000, China
| | - Manman Cheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shimei Luo
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tieping Song
- Yichang Tianyou Huamu Technology Co.,Ltd, Yichang, 443000, China
| | - Yanzhang Gong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongxin Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
18
|
Zheng X, Zhu Y, Zhao Z, Chu Y, Yang W. The role of amino acid metabolism in inflammatory bowel disease and other inflammatory diseases. Front Immunol 2023; 14:1284133. [PMID: 37936710 PMCID: PMC10626463 DOI: 10.3389/fimmu.2023.1284133] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammation is a characteristic symptom of the occurrence and development of many diseases, which is mainly characterized by the infiltration of inflammatory cells such as macrophages and granulocytes, and the increased release of proinflammatory factors. Subsequently, macrophage differentiates and T cells and other regulated factors exhibit anti-inflammatory function, releasing pro- and anti-inflammatory factors to maintain homeostasis. Although reports define various degrees of metabolic disorders in both the inflamed and non-inflamed parts of inflammatory diseases, little is known about the changes in amino acid metabolism in such conditions. This review aims to summarize amino acid changes and mechanisms involved in the progression of inflammatory bowel disease (IBD) and other inflammatory diseases. Since mesenchymal stem cells (MSCs) and their derived exosomes (MSC-EXO) have been found to show promising effects in the treatment of IBD and other inflammatory diseases,their potential in the modulation of amino acid metabolism in the treatment of inflammation is also discussed.
Collapse
Affiliation(s)
- Xiaowen Zheng
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yi Zhu
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Wenjing Yang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
Liao Z, Han X, Wang Y, Shi J, Zhang Y, Zhao H, Zhang L, Jiang M, Liu M. Differential Metabolites in Osteoarthritis: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:4191. [PMID: 37836475 PMCID: PMC10574084 DOI: 10.3390/nu15194191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Many studies have attempted to utilize metabolomic approaches to explore potential biomarkers for the early detection of osteoarthritis (OA), but consistent and high-level evidence is still lacking. In this study, we performed a systematic review and meta-analysis of differential small molecule metabolites between OA patients and healthy individuals to screen promising candidates from a large number of samples with the aim of informing future prospective studies. (2) Methods: We searched the EMBASE, the Cochrane Library, PubMed, Web of Science, Wan Fang Data, VIP Date, and CNKI up to 11 August 2022, and selected relevant records based on inclusion criteria. The risk of bias was assessed using the Newcastle-Ottawa quality assessment scale. We performed qualitative synthesis by counting the frequencies of changing directions and conducted meta-analyses using the random effects model and the fixed-effects model to calculate the mean difference and 95% confidence interval. (3) Results: A total of 3798 records were identified and 13 studies with 495 participants were included. In the 13 studies, 132 kinds of small molecule differential metabolites were extracted, 58 increased, 57 decreased and 17 had direction conflicts. Among them, 37 metabolites appeared more than twice. The results of meta-analyses among four studies showed that three metabolites increased, and eight metabolites decreased compared to healthy controls (HC). (4) Conclusions: The main differential metabolites between OA and healthy subjects were amino acids (AAs) and their derivatives, including tryptophan, lysine, leucine, proline, phenylalanine, glutamine, dimethylglycine, citrulline, asparagine, acetylcarnitine and creatinine (muscle metabolic products), which could be potential biomarkers for predicting OA.
Collapse
Affiliation(s)
- Zeqi Liao
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Yuhe Wang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| | - Jingru Shi
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| | - Yuanyue Zhang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| | - Hongyan Zhao
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| | - Lei Zhang
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Meijie Liu
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| |
Collapse
|
20
|
Li L, Wang Y, Wang H, Yang Y, Ma H. Protective effects of genistein on the production performance and lipid metabolism disorders in laying hens with fatty liver hemorrhagic syndrome by activation of the GPER-AMPK signaling pathways. J Anim Sci 2023; 101:skad197. [PMID: 37314978 PMCID: PMC10290500 DOI: 10.1093/jas/skad197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023] Open
Abstract
The aim of this study was to evaluate the beneficial effects and potential mechanisms of genistein (GEN) on production performance impairments and lipid metabolism disorders in laying hens fed a high-energy and low-protein (HELP) diet. A total of 120 Hy-line Brown laying hens were fed with the standard diet and HELP diet supplemented with 0, 50, 100, and 200 mg/kg GEN for 80 d. The results showed that the declines in laying rate (P < 0.01), average egg weight (P < 0.01), and egg yield (P < 0.01), and the increase of the ratio of feed to egg (P < 0.01) induced by HELP diet were markedly improved by 100 and 200 mg/kg of GEN treatment in laying hens (P < 0.05). Moreover, the hepatic steatosis and increases of lipid contents (P < 0.01) in serum and liver caused by HELP diet were significantly alleviated by treatment with 100 and 200 mg/kg of GEN in laying hens (P < 0.05). The liver index and abdominal fat index of laying hens in the HELP group were higher than subjects in the control group (P < 0.01), which were evidently attenuated by dietary 50 to 200 mg/kg of GEN supplementation (P < 0.05). Dietary 100 and 200 mg/kg of GEN supplementation significantly reduced the upregulations of genes related to fatty acid transport and synthesis (P < 0.01) but enhanced the downregulations of genes associated with fatty acid oxidation (P < 0.01) caused by HELP in the liver of laying hens (P < 0.05). Importantly, 100 and 200 mg/kg of GEN supplementation markedly increased G protein-coupled estrogen receptor (GPER) mRNA and protein expression levels and activated the AMP-activated protein kinase (AMPK) signaling pathway in the liver of laying hens fed a HELP diet (P < 0.05). These data indicated that the protective effects of GEN against the decline of production performance and lipid metabolism disorders caused by HELP diet in laying hens may be related to the activation of the GPER-AMPK signaling pathways. These data not only provide compelling evidence for the protective effect of GEN against fatty liver hemorrhagic syndrome in laying hens but also provide the theoretical basis for GEN as an additive to alleviate metabolic disorders in poultry.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulei Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Hao S, Ming L, Li Y, Lv H, Li L, Jambal T, Ji R. Modulatory effect of camel milk on intestinal microbiota of mice with non-alcoholic fatty liver disease. Front Nutr 2022; 9:1072133. [PMID: 36532537 PMCID: PMC9751322 DOI: 10.3389/fnut.2022.1072133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 08/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease of life, usually caused by unhealthy diet and lifestyle. Compared to normal individuals, the structure of the intestinal flora of NAFLD patients is altered accordingly. This study investigates the effect of camel milk on the regulation of intestinal flora structure in mice with high-fat diet-induced NAFLD. NAFLD model was established by feeding C57BL/6J mice a high-fat diet for 12 weeks, meanwhile camel milk (3.0 g/kg/d), cow milk (3.0 g/kg/d), and silymarin (200 mg/kg/d) were administered by gavage, respectively. Food intake and changes of physiological indexes in mice were observed and recorded. The 16S rRNA gene V3-V4 region was sequenced and the intestinal flora diversity and gene function were predicted in the colon contents of mice from different group. The results showed that camel milk enhanced glucolipid metabolism by downregulate the levels of blood glucose and triglyceride (TG) in serum, reduced lipid accumulation by downregulate the level of TG in the liver and improved liver tissue structure in NAFLD mice (p < 0.05). Meanwhile, camel milk had a positive modulatory effect on the intestinal flora of NAFLD mice, increasing the relative abundance of beneficial bacteria and decreasing the relative abundance of harmful bacteria in the intestinal flora of NAFLD mice, and silymarin had a similar modulatory effect. At the genus level, camel milk increased the relative abundance of Bacteroides, norank_f_Muribaculaceae and Alloprevotella and decreased the relative abundance of Dubosiella and Coriobacteriaceae_UCG-002 (p < 0.05). Camel milk also enhanced Carbohydrate metabolism, Amino acid metabolism, Energy metabolism, Metabolism of cofactors and vitamins and Lipid metabolism in NAFLD mice, thus reducing the degree of hepatic lipid accumulation in NAFLD mice and maintaining the normal structure of the liver. In conclusion, camel milk can improve the structure and diversity of intestinal flora and enhance the levels of substance and energy metabolism in NAFLD mice, which has a positive effect on alleviating NAFLD and improving the structure of intestinal flora.
Collapse
Affiliation(s)
- Shiqi Hao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Liang Ming
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Yafei Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Haodi Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Tuyatsetseg Jambal
- China-Mongolia Joint Laboratory for Biomacromolecule Research, Ulaanbaatar, Mongolia
| | - Rimutu Ji
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
22
|
Exploring the Protective Effects and Mechanism of Huaji Jianpi Decoction against Nonalcoholic Fatty Liver Disease by Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5440347. [PMID: 36199550 PMCID: PMC9529445 DOI: 10.1155/2022/5440347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
This paper was designed to predict the mechanisms of the active components of Huaji Jianpi Decoction (HJJPD) against nonalcoholic fatty liver disease (NAFLD) based on network pharmacology-combined animal experiments. The candidate compounds of HJJPD and its relative targets were obtained from TCMSP and PharmMapper web server, and the intersection genes for NAFLD were discerned using OMIM, GeneCards, and DisGeNET. Then, the target protein-protein interaction (PPI) and component-target-pathway networks were constructed. Moreover, gene function annotation (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to study the potential signaling pathways associated with HJJPD’s effect on NAFLD. Molecular docking simulation was preformed to validate the binding affinity between potential core components and key targets. Eventually, the candidate targets, the possible pathway, and the mechanism of HJJPD were predicted by the network pharmacology-based strategy, followed by experimental validation in the NAFLD mice model treated with HJJPD. A total of 55 candidate compounds and 36 corresponding genes were identified from HJJPD that are associated with activity against NAFLD, and then the network of them was constructed. Inflammatory response and lipid metabolism-related signaling pathways were identified as the critical signaling pathways mediating the therapeutic effect of the active bioactive ingredients on NAFLD. Compared with the model group, the liver wet weight, liver/body ratio, the levels of total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and high-density lipoprotein (HDL) in serum in the HJJPD low-dose (17.52 g/kg·d), medium-dose (35.04 g/kg·d), and high-dose (70.07 g/kg·d) groups significantly decreased (
). Light microscope observation shows that HJJPD could control the degree of lipid denaturation of the mouse liver tissue to a great extent. RT-qPCR results show that the mRNA expression levels of peroxisome proliferative activated receptor gamma (PPARG), tumor necrosis factor-α (TNF-α), antiserine/threonine protein kinase 1 (AKT1), and prostaglandin-endoperoxide synthase (PTGS2) in the liver tissues of the three HJJPD groups (17.52 g/kg·d, 35.04 g/kg·d, and 70.07 g/kg·d) were significantly lower than those in the model group (
). HJJPD can exert its effect by inhibiting hepatic steatosis and related mRNA expression and decreasing the levels of other liver-related indexes. This study suggested that HJJPD exerted its effect on NAFLD by modulating multitargets with multicompounds through multipathways. It also demonstrated that the network pharmacology-based approach might provide insights for understanding the interrelationship between complex diseases and interventions of HJJPD.
Collapse
|