1
|
Poddar A, Ahmady F, Rao SR, Sharma R, Kannourakis G, Prithviraj P, Jayachandran A. The role of pregnancy associated plasma protein-A in triple negative breast cancer: a promising target for achieving clinical benefits. J Biomed Sci 2024; 31:23. [PMID: 38395880 PMCID: PMC10885503 DOI: 10.1186/s12929-024-01012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Pregnancy associated plasma protein-A (PAPP-A) plays an integral role in breast cancer (BC), especially triple negative breast cancer (TNBC). This subtype accounts for the most aggressive BC, possesses high tumor heterogeneity, is least responsive to standard treatments and has the poorest clinical outcomes. There is a critical need to address the lack of effective targeted therapeutic options available. PAPP-A is a protein that is highly elevated during pregnancy. Frequently, higher PAPP-A expression is detected in tumors than in healthy tissues. The increase in expression coincides with increased rates of aggressive cancers. In BC, PAPP-A has been demonstrated to play a role in tumor initiation, progression, metastasis including epithelial-mesenchymal transition (EMT), as well as acting as a biomarker for predicting patient outcomes. In this review, we present the role of PAPP-A, with specific focus on TNBC. The structure and function of PAPP-A, belonging to the pappalysin subfamily, and its proteolytic activity are assessed. We highlight the link of BC and PAPP-A with respect to the IGFBP/IGF axis, EMT, the window of susceptibility and the impact of pregnancy. Importantly, the relevance of PAPP-A as a TNBC clinical marker is reviewed and its influence on immune-related pathways are explored. The relationship and mechanisms involving PAPP-A reveal the potential for more treatment options that can lead to successful immunotherapeutic targets and the ability to assist with better predicting clinical outcomes in TNBC.
Collapse
Affiliation(s)
- Arpita Poddar
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
- RMIT University, Victoria, Australia
| | - Farah Ahmady
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Sushma R Rao
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Revati Sharma
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, Victoria, Australia.
- Federation University, Victoria, Australia.
| |
Collapse
|
2
|
Zheng Y, Pan Y, Liao K, Yu K, Wu Q, Chen Y, Deng Y, Sun H, Pu H, Ju H, Xu R, Liu Z. Pan-cancer landscape of tumour endothelial cells pinpoints insulin receptor as a novel antiangiogenic target and predicts immunotherapy response. Clin Transl Med 2023; 13:e1501. [PMID: 38037528 PMCID: PMC10689971 DOI: 10.1002/ctm2.1501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Yongqiang Zheng
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Yi‐Qian Pan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Kun Liao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Kai Yu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Qinian Wu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Yanxing Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Yuqing Deng
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Hui Sun
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Hengying Pu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Huai‐Qiang Ju
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Rui‐Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| | - Ze‐Xian Liu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouP. R. China
| |
Collapse
|
3
|
Liao Y, Schembre SM, Brannon GE, Pan Z, Wang J, Ali S, Beg MS, Basen-Engquist KM. Using wearable biological sensors to provide personalized feedback to motivate behavioral changes: Study protocol for a randomized controlled physical activity intervention in cancer survivors (Project KNOWN). PLoS One 2022; 17:e0274492. [PMID: 36099282 PMCID: PMC9469963 DOI: 10.1371/journal.pone.0274492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Regular physical activity reduces the progression of several cancers and offers physical and mental health benefits for cancer survivors. However, many cancer survivors are not sufficiently active to achieve these health benefits. Possible biological mechanisms through which physical activity could affect cancer progression include reduced systemic inflammation and positive changes in metabolic markers. Chronic and acute hyperglycemia could have downstream effects on cell proliferation and tumorigenesis. One novel strategy to motivate cancer survivors to be more active is to provide personalized biological-based feedback that demonstrates the immediate positive impact of physical activity. Continuous glucose monitors (CGMs) have been used to demonstrate the acute beneficial effects of physical activity on insulin sensitivity and glucose metabolisms in controlled lab settings. Using personal data from CGMs to illustrate the immediate impact of physical activity on glucose patterns could be particularly relevant for cancer survivors because they are at a higher risk for developing type 2 diabetes (T2D). As a pilot project, this study aims to (1) test the preliminary effect of a remotely delivered physical activity intervention that incorporates personalized biological-based feedback on daily physical activity levels, and (2) explore the association between daily glucose patterns and cancer-related insulin pathway and inflammatory biomarkers in cancer survivors who are at high risk for T2D. We will recruit 50 insufficiently active, post-treatment cancer survivors who are at elevated risk for T2D. Participants will be randomly assigned into (1) a group that receives personalized biological feedback related to physical activity behaviors; and (2) a control group that receives standard educational material. The feasibility and preliminary efficacy of this wearable sensor-based, biofeedback-enhanced 12-week physical activity intervention will be evaluated. Data from this study will support the further refinement and enhancement of a more comprehensive remotely delivered physical activity intervention that targets cancer survivors. Trial registration: ClinicalTrials.gov Identifier: NCT05490641.
Collapse
Affiliation(s)
- Yue Liao
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, Texas, United States of America
- * E-mail:
| | - Susan M. Schembre
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Grace E. Brannon
- Department of Communication, College of Liberal Arts, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Zui Pan
- Department of Graduate Nursing, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Jing Wang
- Department of Graduate Nursing, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Sadia Ali
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - M. Shaalan Beg
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Karen M. Basen-Engquist
- Department of Health Disparities Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
4
|
Subventricular zone adult mouse neural stem cells require insulin receptor for self-renewal. Stem Cell Reports 2022; 17:1411-1427. [PMID: 35523180 PMCID: PMC9213826 DOI: 10.1016/j.stemcr.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
The insulin receptor (INSR) is an evolutionarily conserved signaling protein that regulates development and cellular metabolism. INSR signaling promotes neurogenesis in Drosophila; however, a specific role for the INSR in maintaining adult neural stem cells (NSCs) in mammals has not been investigated. We show that conditionally deleting the Insr gene in adult mouse NSCs reduces subventricular zone NSCs by ∼70% accompanied by a corresponding increase in progenitors. Insr deletion also produced hyposmia caused by aberrant olfactory bulb neurogenesis. Interestingly, hippocampal neurogenesis and hippocampal-dependent behaviors were unperturbed. Highly aggressive proneural and mesenchymal glioblastomas had high INSR/insulin-like growth factor (IGF) pathway gene expression, and isolated glioma stem cells had an aberrantly high ratio of INSR:IGF type 1 receptor. Moreover, INSR knockdown inhibited GBM tumorsphere growth. Altogether, these data demonstrate that the INSR is essential for a subset of normal NSCs, as well as for brain tumor stem cell self-renewal. Insulin receptor (INSR) is essential for adult SVZ neural stem cell self-renewal INSR deletion causes hyposmia with increased olfactory bulb neurogenesis Hippocampal stem cells (and associated behaviors) do not require INSR Glioblastomas overexpress INSR pathway components required for tumorsphere growth
Collapse
|
5
|
Mehta S, Fiorelli R, Bao X, Pennington-Krygier C, Derogatis A, Kim S, Yoo W, Li J, Sanai N. A Phase 0 Trial of Ceritinib in Patients with Brain Metastases and Recurrent Glioblastoma. Clin Cancer Res 2022; 28:289-297. [PMID: 34702773 PMCID: PMC9306447 DOI: 10.1158/1078-0432.ccr-21-1096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/28/2021] [Accepted: 10/20/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Ceritinib is an orally bioavailable, small-molecule inhibitor of anaplastic lympoma kinase (ALK), insulin-like growth factor 1 receptor (IGFR1), and focal adhesion kinase (FAK), which are highly expressed in glioblastoma and many brain metastases. Preclinical and clinical studies indicate that ceritinib has antitumor activity in central nervous system (CNS) malignancies. This phase 0 trial measured the tumor pharmacokinetics (PK) and pharmacodynamics (PD) of ceritinib in patients with brain metastasis or recurrent glioblastoma. PATIENTS AND METHODS Preoperative patients with brain tumors demonstrating high expression of pSTAT5b/pFAK/pIGFR1 were administered ceritinib for 10 days prior to tumor resection. Plasma, tumor, and cerebrospinal fluid (CSF) samples were collected at predefined timepoints following the final dose. Total and unbound drug concentrations were determined using LC-MS/MS. In treated tumor and matched archival tissues, tumor PD was quantified through IHC analysis of pALK, pSTAT5b, pFAK, pIGFR1, and pIRS1. RESULTS Ten patients (3 brain metastasis, 7 glioblastoma) were enrolled and no dose-limiting toxicities were observed. Ceritinib was highly bound to human plasma protein [median fraction unbound (Fu), 1.4%] and to brain tumor tissue (median Fu, 0.051% and 0.045% in gadolinium-enhancing and -nonenhancing regions respectively). Median unbound concentrations in enhancing and nonenhancing tumor were 0.048 and 0.006 μmol/L, respectively. Median unbound tumor-to-plasma ratios were 2.86 and 0.33 in enhancing and nonenhancing tumor, respectively. No changes in PD biomarkers were observed in the treated tumor samples as compared to matched archival tumor tissue. CONCLUSIONS Ceritinib is highly bound to plasma proteins and tumor tissues. Unbound drug concentrations achieved in brain metastases and patients with recurrent glioblastoma were insufficient for target modulation.
Collapse
Affiliation(s)
- Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona
| | - Roberto Fiorelli
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona
| | - Xun Bao
- Karmanos Cancer Institute, Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Alanna Derogatis
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona
| | - Seongho Kim
- Karmanos Cancer Institute, Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan
| | - Wonsuk Yoo
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona
| | - Jing Li
- Karmanos Cancer Institute, Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona.,Corresponding Author: Nader Sanai, Ivy Brain Tumor Center, Barrow Neurological Institute, 2910 North Third Avenue, Phoenix, AZ 85013. Phone: 602-406-8889; E-mail:
| |
Collapse
|
6
|
Keihanian T, Othman M. Epidemiology, Pathogenesis, and Prognosis of Pancreatic Neuroendocrine Tumors. HEPATO-PANCREATO-BILIARY MALIGNANCIES 2022:623-637. [DOI: 10.1007/978-3-030-41683-6_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Xia B, Peng J, Enrico DT, Lu K, Cheung EC, Kuo Z, He Q, Tang Y, Liu A, Fan D, Zhang C, He Y, Pan Y, Yuan J. Metabolic syndrome and its component traits present gender-specific association with liver cancer risk: a prospective cohort study. BMC Cancer 2021; 21:1084. [PMID: 34620113 PMCID: PMC8499577 DOI: 10.1186/s12885-021-08760-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND & AIMS Little is known on the gender-specific effect and potential role of non-linear associations between metabolic syndrome (MetS) components and liver cancer risk. We evaluated these associations based on the UK Biobank cohort. METHODS We included 474,929 individuals without previous cancer based on the UK Biobank cohort. Gender-specific hazard ratios (HRs) and 95% confidence interval (CIs) were calculated by Cox proportional hazards regression, adjusting for potential confounders. Non-linear associations for individual MetS components were assessed by the restricted cubic spline method. RESULTS Over a median follow-up of 6.6 years, we observed 276 cases of liver cancer (175 men, 101 women). MetS [HR 1.48, 95% CI 1.27-1.72] and central obesity [HR 1.65, 95% CI 1.18-2.31] were associated with higher risk of liver cancer in men but not in women. Participants with hyperglycaemia has higher risk of liver cancer. High waist circumference and blood glucose were dose-dependently associated with increased liver cancer risk in both genders. For high density lipoprotein (HDL) cholesterol (both genders) and blood pressure (women), U-shaped associations were observed. Low HDL cholesterol (< 1.35 mmol/L) in men and high HDL cholesterol in women (> 1.52 mmol/L) were associated with increased liver cancer risk. CONCLUSIONS MetS components showed gender-specific linear or U- shaped associations with the risk of liver cancer. Our study might provide evidence for individualized management of MetS for preventing liver cancer.
Collapse
Affiliation(s)
- Bin Xia
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - De Toni Enrico
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Kuiqing Lu
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Eddie C Cheung
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,Division of Gastroenterology, Davis School of Medicine, University of California, Oakland, USA
| | - Zichong Kuo
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qiangsheng He
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Tang
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Anran Liu
- Department of Clinical Nutrition, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Die Fan
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Jinqiu Yuan
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China. .,Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China. .,Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
The IGF-1 Signaling Pathway in Viral Infections. Viruses 2021; 13:v13081488. [PMID: 34452353 PMCID: PMC8402757 DOI: 10.3390/v13081488] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 01/29/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) and the IGF-1 receptor (IGF-1R) belong to the insulin-like growth factor family, and IGF-1 activates intracellular signaling pathways by binding specifically to IGF-1R. The interaction between IGF-1 and IGF-1R transmits a signal through a number of intracellular substrates, including the insulin receptor substrate (IRS) and the Src homology collagen (Shc) proteins, which activate two major intracellular signaling pathways: the phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) pathways, specifically the extracellular signal-regulated kinase (ERK) pathways. The PI3K/AKT kinase pathway regulates a variety of cellular processes, including cell proliferation and apoptosis. IGF1/IGF-1R signaling also promotes cell differentiation and proliferation via the Ras/MAPK pathway. Moreover, upon IGF-1R activation of the IRS and Shc adaptor proteins, Shc stimulates Raf through the GTPase Ras to activate the MAPKs ERK1 and ERK2, phosphorylate and several other proteins, and to stimulate cell proliferation. The IGF-1 signaling pathway is required for certain viral effects in oncogenic progression and may be induced as an effect of viral infection. The mechanisms of IGF signaling in animal viral infections need to be clarified, mainly because they are involved in multifactorial signaling pathways. The aim of this review is to summarize the current data obtained from virological studies and to increase our understanding of the complex role of the IGF-1 signaling axis in animal virus infections.
Collapse
|
9
|
Cancela MB, Zugbi S, Winter U, Martinez AL, Sampor C, Sgroi M, Francis JH, Garippa R, Abramson DH, Chantada G, Schaiquevich P. A decision process for drug discovery in retinoblastoma. Invest New Drugs 2020; 39:426-441. [PMID: 33200242 DOI: 10.1007/s10637-020-01030-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
Intraocular retinoblastoma treatment has changed radically over the last decade, leading to a notable improvement in ocular survival. However, eyes that relapse remain difficult to treat, as few alternative active drugs are available. More challenging is the scenario of central nervous system (CNS) metastasis, in which almost no advancements have been made. Both clinical scenarios represent an urgent need for new drugs. Using an integrated multidisciplinary approach, we developed a decision process for prioritizing drug selection for local (intravitreal [IVi], intrathecal/intraventricular [IT/IVt]), systemic, or intra-arterial chemotherapy (IAC) treatment by means of high-throughput pharmacological screening of primary cells from two patients with intraocular tumor and CNS metastasis and a thorough database search to identify clinical and biopharmaceutical data. This process identified 169 compounds to be cytotoxic; only 8 are FDA-approved, lack serious toxicities and available for IVi administration. Four of these agents could also be delivered by IT/IVt. Twelve FDA-approved drugs were identified for systemic delivery as they are able to cross the blood-brain barrier and lack serious adverse events; four drugs are of oral usage and six compounds that lack vesicant or neurotoxicity could be delivered by IAC. We also identified promising compounds in preliminary phases of drug development including inhibitors of survivin, antiapoptotic Bcl-2 family proteins, methyltransferase, and kinesin proteins. This systematic approach may be applied more broadly to prioritize drugs to be repurposed or to identify novel hits for use in retinoblastoma treatment.
Collapse
Affiliation(s)
- María Belen Cancela
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina
| | - Santiago Zugbi
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina
| | - Ursula Winter
- Pathology Service, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Ana Laura Martinez
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Claudia Sampor
- Hematology-Oncology Service, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Mariana Sgroi
- Ophthalmology Service, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Jasmine H Francis
- Ophthalmic Oncology Service, Memorial Sloan-Kettering Institute and Cancer Center, New York, NY, 10065, USA
| | - Ralph Garippa
- Gene Editing And Screening Core facility, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Institute and Cancer Center, New York, NY, 10065, USA
| | - David H Abramson
- Ophthalmic Oncology Service, Memorial Sloan-Kettering Institute and Cancer Center, New York, NY, 10065, USA
| | - Guillermo Chantada
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina
| | - Paula Schaiquevich
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina. .,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Somri-Gannam L, Meisel-Sharon S, Hantisteanu S, Groisman G, Limonad O, Hallak M, Bruchim I. IGF1R Axis Inhibition Restores Dendritic Cell Antitumor Response in Ovarian Cancer. Transl Oncol 2020; 13:100790. [PMID: 32428851 PMCID: PMC7232112 DOI: 10.1016/j.tranon.2020.100790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy. The insulin-like growth factor (IGF) system plays a key role in regulating growth and invasiveness in several malignancies, including ovarian cancer. IGF1R targeting showed antiproliferative activity of EOC cells. However, clinical studies failed to show significant benefit. EOC cells suppress antitumor immune responses by inducing dendritic cell (DC) dysfunction. The IGF1 axis can regulate DC maturation. The current study evaluated involvement of the IGF1 axis in DC differentiation in EOC. Studies were conducted on EOC and on a human monocyte cell line. Tissue microarray analysis (TMA) was performed on 36 paraffin blocks from EOC patients. Expression of IGF1R, p53, Ki67, BRCA1, and DC markers was evaluated using immunohistochemistry. Co-culture of EOC cells with DC pretreated with IGF1R inhibitor blocked cancer cell migration. TMA demonstrated higher rate of IGF1R protein expression in patients with advanced (76.9%) as compared to early (40%) EOC. A negative correlation between IGF1R protein expression and the CD1c marker was found. These findings provide evidence that IGF1R axis inhibition could be a therapeutic strategy for ovarian cancer by restoring DC-mediated antitumor immunity.
Collapse
Affiliation(s)
- Lina Somri-Gannam
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Shilhav Meisel-Sharon
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel
| | - Shay Hantisteanu
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel
| | - Gabriel Groisman
- Institute of Pathology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ofer Limonad
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel; Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Mordechai Hallak
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ilan Bruchim
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
11
|
Amin HM, Morani AC, Daw NC, Lamhamedi-Cherradi SE, Subbiah V, Menegaz BA, Vishwamitra D, Eskandari G, George B, Benjamin RS, Patel S, Song J, Lazar AJ, Wang WL, Kurzrock R, Pappo A, Anderson PM, Schwartz GK, Araujo D, Cuglievan B, Ratan R, McCall D, Mohiuddin S, Livingston JA, Molina ER, Naing A, Ludwig JA. IGF-1R/mTOR Targeted Therapy for Ewing Sarcoma: A Meta-Analysis of Five IGF-1R-Related Trials Matched to Proteomic and Radiologic Predictive Biomarkers. Cancers (Basel) 2020; 12:cancers12071768. [PMID: 32630797 PMCID: PMC7408058 DOI: 10.3390/cancers12071768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022] Open
Abstract
Background : Ten to fourteen percent of Ewing sarcoma (ES) study participants treated nationwide with IGF-1 receptor (IGF-1R)-targeted antibodies achieved tumor regression. Despite this success, low response rates and short response durations (approximately 7-weeks) have slowed the development of this therapy. Methods: We performed a meta-analysis of five phase-1b/2 ES-oriented trials that evaluated the anticancer activity of IGF-1R antibodies +/− mTOR inhibitors (mTORi). Our meta-analysis provided a head-to-head comparison of the clinical benefits of IGF-1R antibodies vs. the IGF-1R/mTOR-targeted combination. Available pretreatment clinical samples were semi-quantitatively scored using immunohistochemistry to detect proteins in the IGF-1R/PI3K/AKT/mTOR pathway linked to clinical response. Early PET/CT imaging, obtained within the first 2 weeks (median 10 days), were examined to determine if reduced FDG avidity was predictive of progression-free survival (PFS). Results: Among 56 ES patients treated at MD Anderson Cancer Center (MDACC) with IGF-1R antibodies, our analysis revealed a significant ~two-fold improvement in PFS that favored a combination of IGF-1R/mTORi therapy (1.6 vs. 3.3-months, p = 0.042). Low pIGF-1R in the pretreatment specimens was associated with treatment response. Reduced total-lesion glycolysis more accurately predicted the IGF-1R response than other previously reported radiological biomarkers. Conclusion: Synergistic drug combinations, and newly identified proteomic or radiological biomarkers of IGF-1R response, may be incorporated into future IGF-1R-related trials to improve the response rate in ES patients.
Collapse
Affiliation(s)
- Hesham M. Amin
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.M.A.); (D.V.); (G.E.); (B.G.)
| | - Ajaykumar C. Morani
- Department of Nuclear Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Najat C. Daw
- Department of Pediatrics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.C.D.); (B.C.); (D.M.); (S.M.)
| | - Salah-Eddine Lamhamedi-Cherradi
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, 7Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (V.S.); (A.N.)
| | - Brian A. Menegaz
- Baylor College of Medicine, Department of Surgery, Breast Surgical Oncology, Houston, TX 77030, USA; (B.A.M.); (E.R.M.)
| | - Deeksha Vishwamitra
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.M.A.); (D.V.); (G.E.); (B.G.)
| | - Ghazaleh Eskandari
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.M.A.); (D.V.); (G.E.); (B.G.)
| | - Bhawana George
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.M.A.); (D.V.); (G.E.); (B.G.)
| | - Robert S. Benjamin
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - Juhee Song
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Alexander J. Lazar
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.J.L.); (W.-L.W.)
| | - Wei-Lien Wang
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.J.L.); (W.-L.W.)
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, University of California San Diego (UCSD) Moores Cancer Center, San Diego, CA 92037, USA;
| | - Alberto Pappo
- Department of Pathology, St. Jude’s Cancer Research Hospital, Memphis, TN 38105, USA;
| | | | - Gary K. Schwartz
- Division of Hematology & Oncology, Columbia University Medical Center, New York, NY 10032, USA;
| | - Dejka Araujo
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - Branko Cuglievan
- Department of Pediatrics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.C.D.); (B.C.); (D.M.); (S.M.)
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - David McCall
- Department of Pediatrics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.C.D.); (B.C.); (D.M.); (S.M.)
| | - Sana Mohiuddin
- Department of Pediatrics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.C.D.); (B.C.); (D.M.); (S.M.)
| | - John A. Livingston
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
| | - Eric R. Molina
- Baylor College of Medicine, Department of Surgery, Breast Surgical Oncology, Houston, TX 77030, USA; (B.A.M.); (E.R.M.)
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, 7Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (V.S.); (A.N.)
| | - Joseph A. Ludwig
- Department of Sarcoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.-E.L.-C.); (R.S.B.); (S.P.); (D.A.); (R.R.); (J.A.L.)
- Correspondence: ; Tel.: +1-(713)-792-3626
| |
Collapse
|
12
|
Receptor Tyrosine Kinases in Osteosarcoma: 2019 Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:141-155. [PMID: 32767239 DOI: 10.1007/978-3-030-43085-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary conclusions of our 2014 contribution to this series were as follows: Multiple receptor tyrosine kinases (RTKs) likely contribute to aggressive phenotypes in osteosarcoma and, therefore, inhibition of multiple RTKs is likely necessary for successful clinical outcomes. Inhibition of multiple RTKs may also be useful to overcome resistance to inhibitors of individual RTKs as well as resistance to conventional chemotherapies. Different combinations of RTKs are likely important in individual patients. AXL, EPHB2, FGFR2, IGF1R, and RET were identified as promising therapeutic targets by our in vitro phosphoproteomic/siRNA screen of 42 RTKs in the highly metastatic LM7 and 143B human osteosarcoma cell lines. This chapter is intended to provide an update on these topics as well as the large number of osteosarcoma clinical studies of inhibitors of multiple tyrosine kinases (multi-TKIs) that were recently published.
Collapse
|
13
|
Ceritinib-Induced Regression of an Insulin-Like Growth Factor-Driven Neuroepithelial Brain Tumor. Int J Mol Sci 2019; 20:ijms20174267. [PMID: 31480400 PMCID: PMC6747232 DOI: 10.3390/ijms20174267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
The insulin-like growth factor (IGF) pathway plays an important role in several brain tumor entities. However, the lack of inhibitors crossing the blood–brain barrier remains a significant obstacle for clinical translation. Here, we targeted the IGF pathway using ceritinib, an off-target inhibitor of the IGF1 receptor (IGF1R) and insulin receptor (INSR), in a pediatric patient with an unclassified brain tumor and a notch receptor 1 (NOTCH1) germline mutation. Pathway analysis of the tumor revealed activation of the sonic hedgehog (SHH), the wingless and integrated-1 (WNT), the IGF, and the Notch pathway. The proliferation of the patient tumor cells (225ZL) was inhibited by arsenic trioxide (ATO), which is an inhibitor of the SHH pathway, by linsitinib, which is an inhibitor of IGF1R and INSR, and by ceritinib. 225ZL expressed INSR but not IGF1R at the protein level, and ceritinib blocked the phosphorylation of INSR. Our first personalized treatment included ATO, but because of side effects, we switched to ceritinib. After 46 days, we achieved a concentration of 1.70 µM of ceritinib in the plasma, and after 58 days, MRI confirmed that there was a response to the treatment. Ceritinib accumulated in the tumor at a concentration of 2.72 µM. Our data suggest ceritinib as a promising drug for the treatment of IGF-driven brain tumors.
Collapse
|
14
|
Yang F, Li J, Deng H, Wang Y, Lei C, Wang Q, Xiang J, Liang L, Xia J, Pan X, Li X, Long Q, Chang L, Xu P, Huang A, Wang K, Tang N. GSTZ1-1 Deficiency Activates NRF2/IGF1R Axis in HCC via Accumulation of Oncometabolite Succinylacetone. EMBO J 2019; 38:e101964. [PMID: 31267557 PMCID: PMC6669923 DOI: 10.15252/embj.2019101964] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/24/2019] [Accepted: 06/02/2019] [Indexed: 12/19/2022] Open
Abstract
The IGF1R signaling is important in the malignant progression of cancer. However, overexpression of IGF1R has not been properly assessed in HCC. Here, we revealed that GSTZ1‐1, the enzyme in phenylalanine/tyrosine catabolism, is downregulated in HCC, and its expression was negatively correlated with IGF1R. Mechanistically, GSTZ1‐1 deficiency led to succinylacetone accumulation, alkylation modification of KEAP1, and NRF2 activation, thus promoting IGF1R transcription by recruiting SP1 to its promoter. Moreover, inhibition of IGF1R or NRF2 significantly inhibited tumor‐promoting effects of GSTZ1 knockout in vivo. These findings establish succinylacetone as an oncometabolite, and GSTZ1‐1 as an important tumor suppressor by inhibiting NRF2/IGF1R axis in HCC. Targeting NRF2 or IGF1R may be a promising treatment approach for this subset HCC.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China.,Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jingjing Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Chong Lei
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Qiujie Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Xuanming Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quanxin Long
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Wang SQ, Yang XY, Yu XF, Cui SX, Qu XJ. Knockdown of IGF-1R Triggers Viral RNA Sensor MDA5- and RIG-I-Mediated Mitochondrial Apoptosis in Colonic Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:105-117. [PMID: 30861413 PMCID: PMC6411632 DOI: 10.1016/j.omtn.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/10/2019] [Accepted: 02/09/2019] [Indexed: 01/28/2023]
Abstract
The important role of insulin-like growth factor-1 receptor (IGF-1R) in tumorigenesis has been well established. The classical model involves IGF-1R binding to IGF-1/2, the following activation of PI3K-Akt-signaling cascades, driving cell proliferation and apoptosis inhibition. Here we report a new signal transduction pathway of IGF-1R in the intestinal epithelium. Using heterozygous knockout mice (Igf1r+/-), we analyzed the expressions of viral RNA sensors MDA5 and RIG-I in the intestinal epithelium. Igf1r+/- mice exhibited higher MDA5 and RIG-I than wild-type (WT) mice, indicating that knockdown of IGF-1R could trigger MDA5 and RIG-I. IGF-1R knockdown-triggered MDA5 and RIG-I were further investigated in human colonic cancer cells. Increased MDA5 and RIG-I were clearly seen in the cytoplasm in cancer cells as well as normal human colonic cells with silenced IGF-1R. Notably, the upregulations of MDA5 and RIG-I was not affected by blockage of the PI3K-Akt pathway with LY294002. These results suggested a new signal transduction pathway of IGF-1R. Importantly, IGF-1R knockdown-triggered MDA5 and RIG-I resulted in colorectal cancer apoptosis through activation of the mitochondrial pathway. These in vitro observations were evidenced in the azoxymethane (AOM)-dextran sulfate sodium (DSS) colorectal cancer model of mice. In conclusion, knockdown of IGF-1R triggers viral RNA sensor MDA5- and RIG-I-mediated mitochondrial apoptosis in cancer cells.
Collapse
Affiliation(s)
- Shu-Qing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiang-Yu Yang
- Department of Stomatology, Aerospace Center Hospital, Haidian District, Beijing, China
| | - Xin-Feng Yu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shu-Xiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China.
| | - Xian-Jun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Holly JMP, Biernacka K, Perks CM. Systemic Metabolism, Its Regulators, and Cancer: Past Mistakes and Future Potential. Front Endocrinol (Lausanne) 2019; 10:65. [PMID: 30809194 PMCID: PMC6380210 DOI: 10.3389/fendo.2019.00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/23/2019] [Indexed: 12/28/2022] Open
Abstract
There has been a resurgence of interest in cancer metabolism; primarily in the resetting of metabolism within malignant cells. Metabolism within cells has always been a tightly regulated process; initially in protozoans due to metabolic enzymes, and the intracellular signaling pathways that regulate these, being directly sensitive to the availability of nutrients. With the evolution of metazoans many of these controls had been overlaid by extra-cellular regulators that ensured coordinated regulation of metabolism within the community of cells that comprised the organism. Central to these systemic regulators is the insulin/insulin-like growth factor (IGF) system that throughout evolution has integrated the control of tissue growth with metabolic status. Oncological interest in the main systemic metabolic regulators greatly subsided when pharmaceutical strategies designed to treat cancers failed in the clinic. During the same period, however the explosion of new information from genetics has revealed the complexity and heterogeneity of advanced cancers and helped explain the problems of managing cancer when it reaches such a stage. Evidence has also accumulated implying that the setting of the internal environment determines whether cancers progress to advanced disease and metabolic status is clearly an important component of this local ecology. We are in the midst of an epidemic of metabolic disorders and there is considerable research into strategies for controlling metabolism. Integrating these new streams of information suggests new possibilities for cancer prevention; both primary and secondary.
Collapse
Affiliation(s)
- Jeff M. P. Holly
- Faculty of Medicine, School of Translational Health Science, University of Bristol, Southmead Hospital, Bristol, United Kingdom
| | | | | |
Collapse
|
17
|
Vaniotis G, Moffett S, Sulea T, Wang N, Elahi SM, Lessard E, Baardsnes J, Perrino S, Durocher Y, Frystyk J, Massie B, Brodt P. Enhanced anti-metastatic bioactivity of an IGF-TRAP re-engineered to improve physicochemical properties. Sci Rep 2018; 8:17361. [PMID: 30478273 PMCID: PMC6255772 DOI: 10.1038/s41598-018-35407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/07/2018] [Indexed: 01/22/2023] Open
Abstract
The insulin-like growth factor (IGF) axis has been implicated in the progression of malignant disease and identified as a clinically important therapeutic target. Several IGF-1 receptor (IGF-1R) targeting drugs including humanized monoclonal antibodies have advanced to phase II/III clinical trials, but to date, have not progressed to clinical use, due, at least in part, to interference with insulin receptor signalling. We previously reported on the production of a soluble fusion protein consisting of the extracellular domain of human IGF-1R fused to the Fc portion of human IgG1 (first generation IGF-TRAP) that bound human IGF-1 and IGF-2 with a 3 log higher affinity than insulin. We showed that the IGF-TRAP had potent anti-cancer activity in several pre-clinical models of aggressive carcinomas. Here we report on the re-engineering of the IGF-TRAP with the aim of improving physicochemical properties and suitability for clinical applications. We show that cysteine-serine substitutions in the Fc hinge region of IGF-TRAP eliminated high-molecular-weight oligomerized species, while a further addition of a flexible linker, not only improved the pharmacokinetic profile, but also enhanced the therapeutic profile of the IGF-TRAP, as evaluated in an experimental colon carcinoma metastasis model. Dose-response profiles of the modified IGF-TRAPs correlated with their bio-availability profiles, as measured by the IGF kinase-receptor-activation (KIRA) assay, providing a novel, surrogate biomarker for drug efficacy. This study provides a compelling example of structure-based re-engineering of Fc-fusion-based biologics for better manufacturability that also significantly improved pharmacological parameters. It identifies the re-engineered IGF-TRAP as a potent anti-cancer therapeutic.
Collapse
Affiliation(s)
- George Vaniotis
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - Serge Moffett
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - Traian Sulea
- Institute of Parasitology, McGill University, Montreal Quebec, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Ni Wang
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - S Mehdy Elahi
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Etienne Lessard
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | | | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Jan Frystyk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bernard Massie
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Pnina Brodt
- Department of Surgery, McGill University, Montreal Quebec, Canada.
- Department of Medicine, McGill University, Montreal Quebec, Canada.
- Department of Oncology, McGill University, Montreal Quebec, Canada.
- Cancer Research Program, Research Institute of the McGill University Health Center, Montreal Quebec, Canada.
| |
Collapse
|
18
|
Cui Y, Huang Y, Wu X, Zheng M, Xia Y, Fu Z, Ge H, Wang S, Xie H. Hypoxia‐induced tRNA‐derived fragments, novel regulatory factor for doxorubicin resistance in triple‐negative breast cancer. J Cell Physiol 2018; 234:8740-8751. [PMID: 30362543 DOI: 10.1002/jcp.27533] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yangyang Cui
- Department of Breast Surgery The First Affiliated Hospital, Nanjing Medical University Nanjing China
| | - Yue Huang
- Department of Breast Surgery The First Affiliated Hospital, Nanjing Medical University Nanjing China
| | - Xiaowei Wu
- Department of Breast Surgery The First Affiliated Hospital, Nanjing Medical University Nanjing China
| | - Mingjie Zheng
- Department of Breast Surgery The First Affiliated Hospital, Nanjing Medical University Nanjing China
| | - Yiqin Xia
- Department of Breast Surgery The First Affiliated Hospital, Nanjing Medical University Nanjing China
| | - Ziyi Fu
- Department of Oncology The First Affiliated Hospital, Nanjing Medical University Nanjing China
- Medical Research Center, Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital Nanjing China
- Obstetrics and Gynecology Department Northwestern University Chicago Illinois
| | - Han Ge
- Department of Breast Surgery The First Affiliated Hospital, Nanjing Medical University Nanjing China
| | - Shui Wang
- Department of Breast Surgery The First Affiliated Hospital, Nanjing Medical University Nanjing China
| | - Hui Xie
- Department of Breast Surgery The First Affiliated Hospital, Nanjing Medical University Nanjing China
| |
Collapse
|
19
|
Steffensen LL, Ernst EH, Amoushahi M, Ernst E, Lykke-Hartmann K. Transcripts Encoding the Androgen Receptor and IGF-Related Molecules Are Differently Expressed in Human Granulosa Cells From Primordial and Primary Follicles. Front Cell Dev Biol 2018; 6:85. [PMID: 30148131 PMCID: PMC6095988 DOI: 10.3389/fcell.2018.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/18/2018] [Indexed: 11/13/2022] Open
Abstract
Bidirectional cross talk between granulosa cells and oocytes is known to be important in all stages of mammalian follicular development. Insulin-like growth factor (IGF) signaling is a prominent candidate to be involved in the activation of primordial follicles, and may be be connected to androgen-signaling. In this study, we interrogated transcriptome dynamics in granulosa cells isolated from human primordial and primary follicles to reveal information of growth factors and androgens involved in the physiology of ovarian follicular activation. Toward this, a transcriptome comparison study on primordial follicles (n = 539 follicles) and primary follicles (n = 261 follicles) donated by three women having ovarian tissue cryopreserved before chemotherapy was performed. The granulosa cell contribution in whole follicle isolates was extracted in silico. Modeling of complex biological systems was performed using IPA® software. We found the granulosa cell compartment of the human primordial and primary follicles to be extensively enriched in genes encoding IGF-related factors, and the Androgen Receptor (AR) enriched in granulosa cells of primordial follicles. Our study hints the possibility that primordial follicles may indeed be androgen responsive, and that the action of androgens represents a connection to the expression of key players in the IGF-signaling pathway including IGF1R, IGF2, and IGFBP3, and that this interaction could be important for early follicular activation. In line with this, several androgen-responsive genes were noted to be expressed in both oocytes and granulosa cells from human primordial and primary follicle. We present a detailed description of AR and IGF gene activities in the human granulosa cell compartment of primordial and primary follicles, suggesting that these cells may be or prepare to be responsive toward androgens and IGFs.
Collapse
Affiliation(s)
| | - Emil H Ernst
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Erik Ernst
- The Fertility Clinic, Horsens Hospital, Horsens, Denmark.,The Fertility Clinic, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Type 1 IGF Receptor Localization in Paediatric Gliomas: Significant Association with WHO Grading and Clinical Outcome. Discov Oncol 2018. [PMID: 29524179 DOI: 10.1007/s12672-018-0328-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nuclear localization of insulin-like growth factor receptor type 1 (IGF-1R) has been described as adverse prognostic factor in some cancers. We studied the expression and localization of IGF-1R in paediatric patients with gliomas, as well as its association with World Health Organization (WHO) grading and survival. We conducted a single cohort, prospective study of paediatric patients with gliomas. Samples were taken at the time of the initial surgery; IGF-1R expression and localization were characterized by immunohistochemistry (IHC), subcellular fractionation and western blotting. Tumours (47/53) showed positive staining for IGF-1R by IHC. IGF-1R nuclear labelling was observed in 10/47 cases. IGF-1R staining was mostly non-nuclear in low-grade tumours, while IGF-1R nuclear labelling was predominant in high-grade gliomas (p = 0.0001). Survival was significantly longer in patients with gliomas having non-nuclear IGF-1R localization than in patients with nuclear IGF-1R tumours (p = 0.016). In gliomas, IGF-1R nuclear localization was significantly associated with both high-grade tumours and increased risk of death. Based on a prospective design, we provide evidence of a potential usefulness of intracellular localization of IGF-1R as prognostic factor in paediatric patients with gliomas.
Collapse
|
21
|
O'Flanagan CH, O'Shea S, Lyons A, Fogarty FM, McCabe N, Kennedy RD, O'Connor R. IGF-1R inhibition sensitizes breast cancer cells to ATM-related kinase (ATR) inhibitor and cisplatin. Oncotarget 2018; 7:56826-56841. [PMID: 27472395 PMCID: PMC5302955 DOI: 10.18632/oncotarget.10862] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/10/2016] [Indexed: 01/18/2023] Open
Abstract
The complexity of the IGF-1 signalling axis is clearly a roadblock in targeting this receptor in cancer therapy. Here, we sought to identify mediators of resistance, and potential co-targets for IGF-1R inhibition. By using an siRNA functional screen with the IGF-1R tyrosine kinase inhibitor (TKI) BMS-754807 in MCF-7 cells we identified several genes encoding components of the DNA damage response (DDR) pathways as mediators of resistance to IGF-1R kinase inhibition. These included ATM and Ataxia Telangiectasia and RAD3-related kinase (ATR). We also observed a clear induction of DDR in cells that were exposed to IGF-1R TKIs (BMS-754807 and OSI-906) as indicated by accumulation of γ-H2AX, and phosphorylated Chk1. Combination of the IGF-1R/IR TKIs with an ATR kinase inhibitor VE-821 resulted in additive to synergistic cytotoxicity compared to either drug alone. In MCF-7 cells with stably acquired resistance to the IGF-1R TKI (MCF-7-R), DNA damage was also observed, and again, dual inhibition of the ATR kinase and IGF-1R/IR kinase resulted in synergistic cytotoxicity. Interestingly, dual inhibition of ATR and IGF-1R was more effective in MCF-7-R cells than parental cells. IGF-1R TKIs also potentiated the effects of cisplatin in a panel of breast cancer cell lines. Overall, our findings identify induction of DDR by IGF-1R kinase inhibition as a rationale for co-targeting the IGF-1R with ATR kinase inhibitors or cisplatin, particularly in cells with acquired resistance to TKIs.
Collapse
Affiliation(s)
- Ciara H O'Flanagan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sandra O'Shea
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Amy Lyons
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Fionola M Fogarty
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Nuala McCabe
- Almac Diagnostics, Craigavon, Northern Ireland, UK
| | - Richard D Kennedy
- Almac Diagnostics, Craigavon, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rosemary O'Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies LG, Weyer-Czernilofsky U, Bogenrieder T, Schmid M, Mielgo A. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene 2018; 37:2022-2036. [PMID: 29367764 PMCID: PMC5895608 DOI: 10.1038/s41388-017-0115-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/15/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022]
Abstract
Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation.
Collapse
Affiliation(s)
- Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Almudena Santos
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Fiona Campbell
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Carlos Figueiredo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Dean Hammond
- Department of Physiology, University of Liverpool, Liverpool, UK
| | - Lesley G Ellies
- Department of Pathology, University of California San Diego, La Jolla, USA
| | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG Medicine and Translational Research, Vienna, Austria.,Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
23
|
Bieghs L, Johnsen HE, Maes K, Menu E, Van Valckenborgh E, Overgaard MT, Nyegaard M, Conover CA, Vanderkerken K, De Bruyne E. The insulin-like growth factor system in multiple myeloma: diagnostic and therapeutic potential. Oncotarget 2018; 7:48732-48752. [PMID: 27129151 PMCID: PMC5217049 DOI: 10.18632/oncotarget.8982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a highly heterogeneous plasma cell malignancy. The MM cells reside in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, proliferation, and drug resistance. As in most cancers, the insulin-like growth factor (IGF) system has been demonstrated to play a key role in the pathogenesis of MM. The IGF system consists of IGF ligands, IGF receptors, IGF binding proteins (IGFBPs), and IGFBP proteases and contributes not only to the survival, proliferation, and homing of MM cells, but also MM-associated angiogenesis and osteolysis. Furthermore, increased IGF-I receptor (IGF-IR) expression on MM cells correlates with a poor prognosis in MM patients. Despite the prominent role of the IGF system in MM, strategies targeting the IGF-IR using blocking antibodies or small molecule inhibitors have failed to translate into the clinic. However, increasing preclinical evidence indicates that IGF-I is also involved in the development of drug resistance against current standard-of-care agents against MM, including proteasome inhibitors, immunomodulatory agents, and corticoids. IGF-IR targeting has been able to overcome or revert this drug resistance in animal models, enhancing the efficacy of standard-of-care agents. This finding has generated renewed interest in the therapeutic potential of IGF-I targeting in MM. The present review provides an update of the impact of the different IGF system components in MM and discusses the diagnostic and therapeutic potentials.
Collapse
Affiliation(s)
- Liesbeth Bieghs
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Hematology, Aalborg Hospital, Aalborg University, Denmark.,Department of Biomedicin, Aarhus University, Aarhus, Denmark
| | - Hans E Johnsen
- Department of Hematology, Aalborg Hospital, Aalborg University, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Denmark.,Department of Clinical Medicine, Aalborg University, Denmark
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Mette Nyegaard
- Department of Biomedicin, Aarhus University, Aarhus, Denmark
| | - Cheryl A Conover
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, Rochester, NY, USA
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
24
|
Yahya MA, Sharon SM, Hantisteanu S, Hallak M, Bruchim I. The Role of the Insulin-Like Growth Factor 1 Pathway in Immune Tumor Microenvironment and Its Clinical Ramifications in Gynecologic Malignancies. Front Endocrinol (Lausanne) 2018; 9:297. [PMID: 29922232 PMCID: PMC5996273 DOI: 10.3389/fendo.2018.00297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Treatment of patients with gynecologic malignancies diagnosed at advanced stages remains a therapeutic challenge. Survival rates of these patients remain significantly low, despite surgery and chemotherapy. Advances in understanding the role of the immune system in the pathogenesis of cancer have led to the rapid evolution of immunotherapeutic approaches. Immunotherapeutic strategies, including targeting specific immune checkpoints, as well as dendritic cell (DC) immunotherapy are being investigated in several malignancies, including gynecological cancers. Another important approach in cancer therapy is to inhibit molecular pathways that are crucial for tumor growth and maintenance, such as the insulin-like growth factor-1 (IGF1) pathway. The IGF axis has been shown to play a significant role in carcinogenesis of several types of tissue, including ovarian cancer. Preclinical studies reported significant anti-proliferative activity of IGF1 receptor (IGF1R) inhibitors in gynecologic malignancies. However, recent clinical studies have shown variable response rates with advanced solid tumors. This study provides an overview on current immunotherapy strategies and on IGF-targeted therapy for gynecologic malignancies. We focus on the involvement of IGF1R signaling in DCs and present our preliminary results which imply that the IGF axis contributes to an immunosuppressive tumor microenvironment (TME). For the long term, we believe that restoring the TME function by IGF1R targeting in combination with immunotherapy can serve as a new clinical approach for gynecological cancers.
Collapse
Affiliation(s)
- Muna Alemi Yahya
- Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center (Affiliated with the Technion Israel Institute of Technology), Hadera, Israel
| | - Shilhav Meisel Sharon
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center (Affiliated with the Technion Israel Institute of Technology), Hadera, Israel
| | - Shay Hantisteanu
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center (Affiliated with the Technion Israel Institute of Technology), Hadera, Israel
| | - Mordechai Hallak
- Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center (Affiliated with the Technion Israel Institute of Technology), Hadera, Israel
| | - Ilan Bruchim
- Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center (Affiliated with the Technion Israel Institute of Technology), Hadera, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Ilan Bruchim,
| |
Collapse
|
25
|
Björner S, Rosendahl AH, Tryggvadottir H, Simonsson M, Jirström K, Borgquist S, Rose C, Ingvar C, Jernström H. Coffee Is Associated With Lower Breast Tumor Insulin-Like Growth Factor Receptor 1 Levels in Normal-Weight Patients and Improved Prognosis Following Tamoxifen or Radiotherapy Treatment. Front Endocrinol (Lausanne) 2018; 9:306. [PMID: 29928262 PMCID: PMC5997826 DOI: 10.3389/fendo.2018.00306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/23/2018] [Indexed: 11/28/2022] Open
Abstract
Coffee is associated with decreased breast cancer risk, but the impact of body mass index (BMI) in combination with coffee consumption on prognosis is unclear. The suppressive effect of coffee constituents on the insulin-like growth factor receptor 1 (IGF1R) levels in breast cancer cells may play a role. The aim was to investigate the prognostic impact of coffee consumption and possible associations with tumor-specific IGF1R protein expression and BMI in a population-based cohort in Sweden, comprising 1,014 primary breast cancer patients without pretreatment enrolled 2002-2012 and followed for up to 13 years. Patients with higher coffee consumption had lower tumor IGF1R levels (P = 0.025), but only among the normal-weight patients (P = 0.005). Coffee did not impact the recurrence-risk overall. However, tamoxifen-treated patients with ER+ tumors drinking ≥ 2 cups of coffee/day had lower recurrence-risk [adjusted HR (HRadj) 0.57, 95% CI, 0.34-0.97] compared with patients with lower intake, although only among normal-weight patients (HRadj 0.37, 95% CI: 0.17-0.78; Pinteraction = 0.039). Similarly, coffee consumption ≥ 2 cups/day was associated with significantly lower recurrence-risk among the 640 radiotherapy-treated patients irrespective of BMI (HRadj 0.59, 95% CI 0.36-0.98) and in the 296 normal-weight patients (HRadj 0.36, 95% CI 0.17-0.76) but not in the 329 overweight or obese patients (HRadj 0.88, 95% CI 0.42-1.82) although the interaction was not significant (Pinteraction = 0.093). In conclusion, coffee consumption was negatively associated with tumor-specific IGF1R levels only among normal-weight patients. Though, IGF1R did not explain the association between coffee intake and improved prognosis among normal-weight tamoxifen- or radiotherapy-treated patients. Studies of IGF1R-targeting therapies may benefit from taking BMI and coffee consumption into account.
Collapse
Affiliation(s)
- Sofie Björner
- Skåne University Hospital, Department of Clinical Sciences Lund, Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Ann H. Rosendahl
- Skåne University Hospital, Department of Clinical Sciences Lund, Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Helga Tryggvadottir
- Skåne University Hospital, Department of Clinical Sciences Lund, Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maria Simonsson
- Skåne University Hospital, Department of Clinical Sciences Lund, Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Karin Jirström
- Skåne University Hospital, Department of Clinical Sciences Lund, Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Signe Borgquist
- Skåne University Hospital, Department of Clinical Sciences Lund, Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Carsten Rose
- CREATE Health, Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
| | - Christian Ingvar
- Skåne University Hospital, Department of Clinical Sciences Lund, Surgery, Lund University, Lund, Sweden
| | - Helena Jernström
- Skåne University Hospital, Department of Clinical Sciences Lund, Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
- *Correspondence: Helena Jernström,
| |
Collapse
|
26
|
Hamilton N, Austin D, Márquez-Garbán D, Sanchez R, Chau B, Foos K, Wu Y, Vadgama J, Pietras R. Receptors for Insulin-Like Growth Factor-2 and Androgens as Therapeutic Targets in Triple-Negative Breast Cancer. Int J Mol Sci 2017; 18:E2305. [PMID: 29099049 PMCID: PMC5713274 DOI: 10.3390/ijms18112305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) occurs in 10-15% of all breast cancer patients, yet it accounts for about half of all breast cancer deaths. There is an urgent need to identify new antitumor targets to provide additional treatment options for patients afflicted with this aggressive disease. Preclinical evidence suggests a critical role for insulin-like growth factor-2 (IGF2) and androgen receptor (AR) in regulating TNBC progression. To advance this work, a panel of TNBC cell lines was investigated with all cell lines showing significant expression of IGF2. Treatment with IGF2 stimulated cell proliferation in vitro (p < 0.05). Importantly, combination treatments with IGF1R inhibitors BMS-754807 and NVP-AEW541 elicited significant inhibition of TNBC cell proliferation (p < 0.001). Based on Annexin-V binding assays, BMS-754807, NVP-AEW541 and enzalutamide induced TNBC cell death (p < 0.005). Additionally, combination of enzalutamide with BMS-754807 or NVP-AEW541 exerted significant reductions in TNBC proliferation even in cells with low AR expression (p < 0.001). Notably, NVP-AEW541 and BMS-754807 reduced AR levels in BT549 TNBC cells. These results provide evidence that IGF2 promotes TNBC cell viability and proliferation, while inhibition of IGF1R/IR and AR pathways contribute to blockade of TNBC proliferation and promotion of apoptosis in vitro.
Collapse
Affiliation(s)
- Nalo Hamilton
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- UCLA Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - David Austin
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
| | - Diana Márquez-Garbán
- UCLA Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- UCLA David Geffen School of Medicine, Department of Medicine, Division of Hematology-Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Rudy Sanchez
- Department of Biology, California State University Channel Islands, Camarillo, CA 93012, USA.
| | - Brittney Chau
- Department of Integrative Ecology and Evolutionary Biology and Physiology, UCLA College of Life Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Kay Foos
- Department Physiological, UCLA College of Life Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Yanyuan Wu
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
| | - Jaydutt Vadgama
- UCLA Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
- UCLA David Geffen School of Medicine, Department of Medicine, Division of Hematology-Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Richard Pietras
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
- UCLA David Geffen School of Medicine, Department of Medicine, Division of Hematology-Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Abstract
The development of milk during evolution is considered a more recent step to provide the neonate with adequate amounts of energy, nutrients, and specific hormonal signals thereby, granting a fast and efficient rate of postnatal growth and development. Since the insulin- or the insulin-like growth factor (IGF) systems were evolved much earlier, it can be assumed that the functionality of the IGF-system has been integrated into the novel matrix milk containing casein and whey proteins from the beginnings. In fact, IGFs and IGF-binding proteins (IGFBPs) are abundantly present in milk, which is particularly true for fore-milk or colostrum and the potential effects of milk-borne IGF-compounds on the consuming organisms have in fact been addressed by several studies. Those studies examined, if orally administered IGFs can be absorbed by the consumer's gastro-intestinal tract and thus contribute e.g. to the somatic growth of infants. A second line of studies assessed local effects of milk-borne IGFs on growth and development of the gastro-intestinal tract itself. Finally, distinct functions of isolated IGF-compounds for growth and involution of the mammary gland have also been provided in the past. While the consumption of milk seems not to represent a major source of endogenous IGFs, accumulating evidence indicates secondary effects of milk on the endogenous IGF-system, which may be mediated by micronutrients such as branched amino acids and metabolic programming. By contrast, direct effects on growth and development of oesophageal and intestinal cells have been observed if IGFs were administered orally.
Collapse
Affiliation(s)
- Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Zianka Meyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
28
|
Bhaw-Luximon A, Jhurry D. Metformin in pancreatic cancer treatment: from clinical trials through basic research to biomarker quantification. J Cancer Res Clin Oncol 2016; 142:2159-71. [PMID: 27160287 DOI: 10.1007/s00432-016-2178-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE Three major chemotherapy strategies have emerged in the treatment of PDAC in the recent past: multiple drug combination, stroma depletion, and use of nanodrug therapy. Anti-diabetic metformin was shown to improve the outcome of a number of cancer types the first seminal report on an observational study published in 2005 and the first hospital-based case-control study on pancreatic cancer in 2009. METHODS In this review paper, we confront the findings of a selected number of epidemiological studies and clinical trials on the use of metformin in pancreatic cancer treatment with basic knowledge and research. We particularly emphasize on the point that contradictory clinical results likely originate from heterogeneous study design due to a trial and error approach rather than an evidence-based and scientific approach. A non-rigorous selection of patients suffering from PDAC and often a poor understanding of the biological mechanism of metformin coupled with lack of scientific data has led to general statements on metformin positive or negative action, another aspect which we highlight in the review. RESULTS We here present a few pathways which in our opinion are predominant for pancreatic cancer specifically: mitochondrial activity, AMPK activation, mTOR inhibition, and decreased IGF-1R and HIF-1α expression. CONCLUSION We stress on the need for a better stratification of patients and a more rigorous planning of clinical trials not only focusing on classical parameters but also on potential predictive biomarkers (AMPK, mTOR, HIF-1α, IGF-1R) and metformin dosage for positive outcome.
Collapse
Affiliation(s)
- Archana Bhaw-Luximon
- Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Dhanjay Jhurry
- Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius.
| |
Collapse
|
29
|
Insulin-like growth factor (IGF) axis in cancerogenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:78-104. [PMID: 28528692 DOI: 10.1016/j.mrrev.2016.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
Abstract
Determination of the role of insulin-like growth factor (IGF) family components in carcinogenesis of several human tumors is based on numerous epidemiological and pre-clinical studies, experiments in vivo and in vitro and on attempts at application of drugs affecting the IGF axis. Investigative hypotheses in original studies were based on biological functions manifested by the entire family of IGF (ligands, receptors, linking proteins, adaptor molecules). In the context of carcinogenesis the most important functions of IGF family involve intensification of proliferation and inhibition of cell apoptosis and effect on cell transformation through synthesis of several regulatory proteins. IGF axis controls survival and influences on metastases of cells. Interactions of IGF axis components may be of a direct or indirect nature. The direct effects are linked to activation of PI3K/Akt signaling pathway, in which the initiating role is first of all played by IGF-1 and IGF-1R. Activity of this signaling pathway leads to an increased mitogenesis, cell cycle progression, and protection against different apoptotic stresses. Indirect effects of the axis depend on interactions between IGF and other molecules important for cancer etiology (e.g. sex hormones, products of suppressor genes, viruses, and other GFs) and the style of life (nutrition, physical activity). From the clinical point of view, components of IGF system are first of all considered as diagnostic serous and/or tissue biomarkers of a given cancer, prognostic factors and attractive target of modern anti-tumor therapies. Several mechanisms in which IGF system components act in the process of carcinogenesis need to be clarified, mainly due to multifactorial etiology of the neoplasms. Pin-pointing of the role played in carcinogenesis by any single signaling pathway remains particularly difficult. The aim of this review is to summarize the current data of several epidemiological studies, experiments in vitro and on animal models, to increase our understanding of the complex role of IGF family components in the most common human cancers.
Collapse
|
30
|
Devin JL, Bolam KA, Jenkins DG, Skinner TL. The Influence of Exercise on the Insulin-like Growth Factor Axis in Oncology: Physiological Basis, Current, and Future Perspectives. Cancer Epidemiol Biomarkers Prev 2015; 25:239-49. [PMID: 26677213 DOI: 10.1158/1055-9965.epi-15-0406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/24/2015] [Indexed: 01/02/2023] Open
Abstract
Exercise and physical activity have been shown to reduce the risk of many common cancers and strongly influence tumor biology. A cause-effect mechanism explaining this relationship is dependent on cellular pathways that can influence tumor growth and are exercise responsive. The insulin-like growth factor (IGF) axis is reported to promote the development and progression of carcinomas through cellular signaling in cancerous tissues. This review summarizes the physiologic basis of the role of the IGF axis in oncology and the influence of exercise on this process. We examined the effects of exercise prescription on the IGF axis in cancer survivors by evaluating the current scope of the literature. The current research demonstrates a remarkable heterogeneity and inconsistency in the responses of the IGF axis to exercise in breast, prostate, and colorectal cancer survivors. Finally, this review presents an in-depth exploration of the physiologic basis and mechanistic underpinnings of the seemingly disparate relationship between exercise and the IGF axis in oncology. Although there is currently insufficient evidence to categorize the effects of exercise prescription on the IGF axis in cancer survivors, the inconsistency of results suggests a multifaceted relationship, the complexities of which are considered in this review.
Collapse
Affiliation(s)
- James L Devin
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Kate A Bolam
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia. The Swedish School of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Stockholm, Sweden
| | - David G Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Hamilton N, Márquez-Garbán D, Mah V, Elshimali Y, Elashoff D, Garon E, Vadgama J, Pietras R. Estrogen Receptor-β and the Insulin-Like Growth Factor Axis as Potential Therapeutic Targets for Triple-Negative Breast Cancer. Crit Rev Oncog 2015; 20:373-90. [PMID: 27279236 PMCID: PMC5495464 DOI: 10.1615/critrevoncog.v20.i5-6.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancers (TNBCs) lack estrogen receptor-α (ERα), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) amplification and account for almost half of all breast cancer deaths. This breast cancer subtype largely affects women who are premenopausal, African-American, or have BRCA1/2 mutations. Women with TNBC are plagued with higher rates of distant metastasis that significantly diminish their overall survival and quality of life. Due to their poor response to chemotherapy, patients with TNBC would significantly benefit from development of new targeted therapeutics. Research suggests that the insulin-like growth factor (IGF) family and estrogen receptor beta-1 (ERβ1), due to their roles in metabolism and cellular regulation, might be attractive targets to pursue for TNBC management. Here, we review the current state of the science addressing the roles of ERβ1 and the IGF family in TNBC. Further, the potential benefit of metformin treatment in patients with TNBC as well as areas of therapeutic potential in the IGF-ERβ1 pathway are highlighted.
Collapse
Affiliation(s)
- Nalo Hamilton
- UCLA School of Nursing, Los Angeles, CA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Diana Márquez-Garbán
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Vei Mah
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Yayha Elshimali
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA
| | - David Elashoff
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
- Department of Medicine, Division of General Internal Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Edward Garon
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Jaydutt Vadgama
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA
| | - Richard Pietras
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|