1
|
Assal RA, Rashwan HH, Zakaria ZI, Sweillam JH, Fouda YM, Abdelhamid AM, Youness RA. Deciphering the mysteries of MEG3 LncRNA and its implications in genitourinary cancers. Front Oncol 2025; 15:1519103. [PMID: 40242248 PMCID: PMC12000830 DOI: 10.3389/fonc.2025.1519103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/28/2025] [Indexed: 04/18/2025] Open
Abstract
Maternally expressed gene 3 (MEG3), a long non-coding RNA, plays a pivotal role in various biological processes, including tumorigenesis. Aberrant expression of MEG3 has been implicated in several cancers, including genitourinary malignancies. This comprehensive review explores the multifaceted functions of MEG3 in the context of genitourinary cancers through unravelling the molecular mechanisms underlying the influence of MEG3 on cellular proliferation, apoptosis, invasion, and metastasis. Additionally, we discuss the potential clinical implications of MEG3 as a biomarker and therapeutic target in genitourinary cancers. By unraveling the intricate role of MEG3 in these biological processes, this review aims to contribute to the development of novel strategies for the diagnosis and treatment of genitourinary malignancies.
Collapse
Affiliation(s)
- Reem A. Assal
- Department of Pharmacology and Toxicology, Heliopolis University for Sustainable Development (HU), Cairo, Egypt
| | - Hannah H. Rashwan
- Bioinformatics Group, Center for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Zeina I. Zakaria
- Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Jana H. Sweillam
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University, Cairo, Egypt
| | - Yasmine M. Fouda
- Faculty of Medicine, Al-Kasr Al Ainy, Cairo University, Cairo, Egypt
| | | | - Rana A. Youness
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University, Cairo, Egypt
| |
Collapse
|
2
|
Rahman MS, Ghorai S, Panda K, Santiago MJ, Aggarwal S, Wang T, Rahman I, Chinnapaiyan S, Unwalla HJ. Dr. Jekyll or Mr. Hyde: The multifaceted roles of miR-145-5p in human health and disease. Noncoding RNA Res 2025; 11:22-37. [PMID: 39736851 PMCID: PMC11683234 DOI: 10.1016/j.ncrna.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 01/01/2025] Open
Abstract
MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and breast cancers. Notably, miR-145-5p plays a vital role in the pathophysiology underlying HIV and chronic obstructive pulmonary diseases associated with cigarette smoke. This miRNA is abundant in biofluids and shows potential as a biomarker for the diagnosis and prognosis of several infectious diseases, such as hepatitis B, tuberculosis, and influenza. Additionally, numerous studies have indicated that other non-coding RNAs, including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate miR-145-5p. Given the significance of miR-145-5p, a comprehensive overview focusing on its roles in health and disease is essential. This review discusses the dual role of miR-145-5p as a protagonist and antagonist in important human diseases, with particular emphasis on disorders of the respiratory, digestive, nervous, reproductive, endocrine, and urinary systems.
Collapse
Affiliation(s)
- Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Maria J. Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Ting Wang
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
3
|
Custódio Dias Duarte B, Ribeiro Queiroz F, Percínio Costa Á, Borges de Melo Neto A, Pereira de Souza Melo C, de Oliveira Salles PG, de Jesus Jeremias W, Lima Bertarini PL, Rodrigues do Amaral L, da Conceição Braga L, de Souza Gomes M, Lopes da Silva Filho A. Upregulation of long non-coding RNA ENSG00000267838 is related to the high risk of progression and non-response to chemoradiotherapy treatment for cervical cancer. Noncoding RNA Res 2025; 11:104-114. [PMID: 39736855 PMCID: PMC11683307 DOI: 10.1016/j.ncrna.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 01/01/2025] Open
Abstract
Cervical cancer (CC) is a global public health concern, primarily caused by persistent infection with oncogenic types of human papillomavirus (HPV). The World Health Organization (WHO) has established a plan to eliminate CC as a public health issue by the year 2100. However, the implementation of the HPV vaccine is impeded by vaccine restrictions and misinformation despite its demonstrated effectiveness. The CC treatment is influenced by the disease stage, with an unfavorable prognosis for those in advanced stages. This study aimed to investigate the potential of long non-coding RNAs (lncRNAs) in CC by identifying and characterizing related lncRNAs, elucidating their regulatory mechanisms and molecular interactions, and analyzing their expression patterns in patients with diverse responses to chemoradiotherapy. Non-stem cells from CC were isolated using flow cytometry sorting and used for total RNA extraction. The RNA was used to build libraries that were subsequently sequenced using the Illumina Nextseq 550.417 lncRNAs that showed differentially expressed between CC patients who responded or not to treatment. Further analysis demonstrated that these lncRNAs significantly interact with several molecules, which play crucial roles in CC progression and therapeutic resistance. Statistical analysis correlated the expression profile of these lncRNAs with treatment efficacy. Three lncRNAs, ENSG00000267838, ENSG00000266340, and FRMD6-AS1, were identified with positive expression related to non-response to chemoradiotherapy and worse progression-free survival in CC patients. Specifically, lncRNA ENSG00000267838 has its up-regulation related to non-response and down-regulation to response to chemoradiotherapy treatment.
Collapse
Affiliation(s)
- Bruna Custódio Dias Duarte
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Fábio Ribeiro Queiroz
- Laboratório de Pesquisa Translacional Em Oncologia, Instituto Mário Penna, 30380-490, Belo Horizonte, MG, Brazil
| | - Álvaro Percínio Costa
- Programa de Pós-graduação Em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| | - Angelo Borges de Melo Neto
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | | | | | - Wander de Jesus Jeremias
- Laboratório de Farmacologia Experimental, Escola de Farmácia, Universidade Federal de Ouro Preto, 35402-163, Ouro Preto, MG, Brazil
| | - Pedro Luiz Lima Bertarini
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Letícia da Conceição Braga
- Laboratório de Pesquisa Translacional Em Oncologia, Instituto Mário Penna, 30380-490, Belo Horizonte, MG, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Agnaldo Lopes da Silva Filho
- Programa de Pós-graduação Em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Wang S, Chen L, Wu Z, Zou Y, Li Y, He X, Zhang Y, Huang B. MiR-362-3p mediates IFNα-induced antiviral viability against Enterovirus 71 (EV71). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04062-6. [PMID: 40137969 DOI: 10.1007/s00210-025-04062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Enteroviruses, which belong to the Picornaviridae family, include species that infect humans and Interferon Alpha (IFNα) is commonly used against Enterovirus 71 (EV71) infections. This study investigated the role of IFNα-induced miR-362-3p expression in the defense against EV71EV71. Differential analysis identified up-regulated miRNAs following IFNα treatment. RD cells were used to assess EV71proliferation, while HMC3 cells were employed to evaluate the effects of IFNα and EV71 on miR-362-3p expression. Antiviral activity was assessed by modulating miR-362-3p levels. Compared to the NC mimic group, miR-362-3p in miR-362-3p mimic and IFNα treatment groups was increased; cell viability was enhanced; -lgTCID50 was reduced, and the replication of EV71 was inhibited. Further, VP1 mRNA and protein expression declined significantly in miR-362-3p mimic group vs NC mimic while they were notably elevated in the miR-362-3p inhibitor group vs NC inhibitor. IFNα treatment could induce miR-362-3p production and enhanced cell viability in HMC3 cells. Besides, when compared with the miR-362-3p mimic group, IFNα combined with miR-362-3p mimic group reduced -lgTCID50 and significantly decreased the expression of VP1 mRNA and protein. Conclusion: The inhibition of EV71-infected HMC3 cell replication was related to the upregulation of miR-362-3p induced by IFNα, which in turn enhanced antiviral viability.
Collapse
Affiliation(s)
- San Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zunyi Medical University, the First People'S Hospital of Zunyi), Guizhou, 563099, China
| | - Lan Chen
- Department of Pediatrics, The Third Affiliated Hospital of Zunyi Medical University, the First People'S Hospital of Zunyi), Guizhou, 563099, China
| | - Zongtao Wu
- Department of Pediatrics, The Third Affiliated Hospital of Zunyi Medical University, the First People'S Hospital of Zunyi), Guizhou, 563099, China
| | - Yingbo Zou
- Department of Pediatrics, The Third Affiliated Hospital of Zunyi Medical University, the First People'S Hospital of Zunyi), Guizhou, 563099, China
| | - Yunrong Li
- Department of Pediatrics, The Third Affiliated Hospital of Zunyi Medical University, the First People'S Hospital of Zunyi), Guizhou, 563099, China
| | - Xiang He
- Department of Pediatrics, The Third Affiliated Hospital of Zunyi Medical University, the First People'S Hospital of Zunyi), Guizhou, 563099, China
| | - Yusong Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Zunyi Medical University, the First People'S Hospital of Zunyi), Guizhou, 563099, China
| | - Bo Huang
- Department of Pediatrics, The Third Affiliated Hospital of Zunyi Medical University, the First People'S Hospital of Zunyi), Guizhou, 563099, China.
| |
Collapse
|
5
|
Khalid AQ, Zaidan TN, Bhuvanendran S, Magalingam KB, Mohamedahmed SM, Ramdas P, Radhakrishnan AK. Insights into the Anticancer Mechanisms Modulated by Gamma and Delta Tocotrienols in Colorectal Cancers. Nutr Rev 2025; 83:e1295-e1310. [PMID: 39181121 PMCID: PMC11819494 DOI: 10.1093/nutrit/nuae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) is a growing concern all over the world. There has been a concerted effort to identify natural bioactive compounds that can be used to prevent or overcome this condition. Tocotrienols (T3s) are a naturally occurring form of vitamin E known for various therapeutic effects, such as anticancer, antioxidant, neuroprotective, and anti-inflammatory activities. The literature evidence suggests that two T3 analogues, ie, gamma (γ)- and delta (δ)-T3, can modulate cancers via several cancer-related signaling pathways. The aim of this review was to compile and analyze the existing literature on the diverse anticancer mechanisms of γT3 and δT3 exhibited in CRC cells, to showcase the anticancer potential of T3s. Medline was searched for research articles on anticancer effects of γT3 and δT3 in CRC published in the past 2 decades. A total of 38 articles (26 cell-based, 9 animal studies, 2 randomized clinical trials, and 1 scoping review) that report anticancer effects of γT3 and δT3 in CRC were identified. The findings reported in those articles indicate that γT3 and δT3 inhibit the proliferation of CRC cells, induce cell cycle arrest and apoptosis, suppress metastasis, and produce synergistic anticancer effects when combined with well-established anticancer agents. There is preliminary evidence that shows that T3s affect telomerase functions and support anticancer immune responses. γT3 and δT3 have the potential for development as anticancer agents.
Collapse
Affiliation(s)
- Ali Qusay Khalid
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Tabarek Najeeb Zaidan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Kasthuri B Magalingam
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Shaza M Mohamedahmed
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Premdass Ramdas
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Ammu K Radhakrishnan
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
6
|
Li J, Huang L, Xiao W, Kong J, Hu M, Pan A, Yan X, Huang F, Wan L. Multimodal insights into adult neurogenesis: An integrative review of multi-omics approaches. Heliyon 2025; 11:e42668. [PMID: 40051854 PMCID: PMC11883395 DOI: 10.1016/j.heliyon.2025.e42668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Adult neural stem cells divide to produce neurons that migrate to preexisting neuronal circuits in a process named adult neurogenesis. Adult neurogenesis is one of the most exciting areas of current neuroscience, and it may be involved in a range of brain functions, including cognition, learning, memory, and social and behavior changes. While there is a growing number of multi-omics studies on adult neurogenesis, generalized analyses from a multi-omics perspective are lacking. In this review, we summarize studies related to genomics, metabolomics, proteomics, epigenomics, transcriptomics, and microbiomics of adult neurogenesis, and then discuss their future research priorities and potential neighborhoods. This will provide theoretical guidance and new directions for future research on adult neurogenesis.
Collapse
Affiliation(s)
- Jin Li
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
- Yiyang Medical College, Yiyang, Hunan Province, China
| | - Leyi Huang
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Minghua Hu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Fulian Huang
- Yiyang Medical College, Yiyang, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Tornesello AL, Cerasuolo A, Starita N, Amiranda S, Cimmino TP, Bonelli P, Tuccillo FM, Buonaguro FM, Buonaguro L, Tornesello ML. Emerging role of endogenous peptides encoded by non-coding RNAs in cancer biology. Noncoding RNA Res 2025; 10:231-241. [PMID: 39554691 PMCID: PMC11567935 DOI: 10.1016/j.ncrna.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Non-coding RNAs have long been recognized for their regulatory roles in various cellular processes, including cancer development and progression. Recent advancements have shed light on a novel aspect of non-coding RNA biology, revealing their ability to encode endogenous peptides also named micropeptides or microprotein through short open reading frames (sORFs). These small proteins play crucial roles in oncogenic processes, acting as either tumour suppressors or tumour promoters, and hold enormous potential as biomarkers for early diagnosis of cancer and as therapeutic targets. This comprehensive review highlights the state of the art on peptides encoded by long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), elucidating their regulatory functions and implications in different cancer types, including breast cancer, hepatocellular carcinoma and colorectal cancer. The review also discusses challenges and future directions in the exploration of these emerging players in cancer biology, emphasizing the importance of further investigation for their clinical translation in diagnosis and therapy.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Sara Amiranda
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Tiziana Pecchillo Cimmino
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
8
|
Tolentino-Molina BX, Loaeza-Loaeza J, Ortega-Soto A, Castro-Coronel Y, Fernández-Tilapa G, Hernández-Sotelo D. Hsa_circ_0009910 knockdown in HeLa cells increases miR‑198 expression levels and decreases c‑Met expression levels and cell viability. Oncol Lett 2025; 29:74. [PMID: 39650233 PMCID: PMC11622005 DOI: 10.3892/ol.2024.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/09/2024] [Indexed: 12/11/2024] Open
Abstract
Cervical cancer (CC) is considered a public health problem. Circular RNAs (circRNAs) serve important roles in different types of cancer, including CC. However, the mechanisms used by circRNAs to facilitate CC progression are currently unclear. The present study analyzed the effects of hsa_circ_0009910 knockdown on microRNA (miRNA/miR)-198 and mesenchymal-epithelial transition factor (c-Met) expression levels and its impact on apoptosis and the viability of HeLa cells. Differentially expressed circRNAs in CC were identified using analysis of circRNA microarray data. Bioinformatics analysis was performed to predict circRNA-microRNA (miRNA) and miRNA-mRNA interactions. The knockdown of hsa_circ_0009910 in HeLa cells was performed using small interfering RNA and the expression levels of hsa_circ_0009910, miR-198 and c-Met were assessed using reverse transcription-quantitative PCR. The viability and apoptosis of HeLa cells were evaluated using MTT, neutral red uptake and ApoLive-Glo™ multiplex assays. Hsa_circ_0009910 was significantly upregulated in HeLa cells and the knockdown of hsa_circ_0009910 increased miRNA-198 expression levels, reduced c-Met expression levels and decreased cellular viability, but not apoptosis, in HeLa cells. Overall, these results indicated that hsa_circ_0009910 could act as a molecular sponge of miRNA-198 and contribute to the upregulation of c-Met expression levels. The hsa_circ_0009910/miRNA-198/c-Met interaction network affects the viability, but not apoptosis, of HeLa cells. Based on this mechanism, the present study suggests that hsa_circ_0009910 may be a promising biomarker for CC.
Collapse
Affiliation(s)
- Bernardo Xavier Tolentino-Molina
- Laboratory of Cancer Epigenetics, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Jaqueline Loaeza-Loaeza
- Laboratory of Neurotoxicology, Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07300, Mexico
| | - Arturo Ortega-Soto
- Laboratory of Neurotoxicology, Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07300, Mexico
| | - Yaneth Castro-Coronel
- Laboratory of Cytopathology and Histochemistry, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Daniel Hernández-Sotelo
- Laboratory of Cancer Epigenetics, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| |
Collapse
|
9
|
Kepsha MA, Timofeeva AV, Chernyshev VS, Silachev DN, Mezhevitinova EA, Sukhikh GT. MicroRNA-Based Liquid Biopsy for Cervical Cancer Diagnostics and Treatment Monitoring. Int J Mol Sci 2024; 25:13271. [PMID: 39769036 PMCID: PMC11678179 DOI: 10.3390/ijms252413271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Despite prevention strategies, cervical cancer remains a significant public health issue. Human papillomavirus plays a critical role in its development, and early detection is vital to improve patient outcomes. The incidence of cervical cancer is projected to rise, necessitating better diagnostic tools. Traditional screening methods like the cytological examination and human papillomavirus testing have limitations in sensitivity and reproducibility. Liquid-based cytology offers some improvements, but the need for more reliable and sensitive techniques persists, particularly for detecting precancerous lesions. Liquid biopsy is a non-invasive method that analyzes cancer-derived products in biofluids like blood, offering potential for real-time monitoring of tumor progression, metastasis, and treatment response. It can be based on detection of circulating tumor cells (CTCs), circulating free DNA (cfDNA), and microRNAs (miRNAs). This review particularly underlines the potential of microRNAs, which are transported by extracellular vesicles. Overall, this article underscores the importance of continued research into non-invasive diagnostic methods like liquid biopsy to enhance cervical cancer screening and treatment monitoring.
Collapse
Affiliation(s)
| | | | - Vasiliy S. Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia (D.N.S.)
| | | | | | | |
Collapse
|
10
|
Palomino-Vizcaino G, Bañuelos-Villegas EG, Alvarez-Salas LM. The Natural History of Cervical Cancer and the Case for MicroRNAs: Is Human Papillomavirus Infection the Whole Story? Int J Mol Sci 2024; 25:12991. [PMID: 39684702 PMCID: PMC11641362 DOI: 10.3390/ijms252312991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that negatively regulate gene expression. MiRNAs regulate fundamental biological processes and have significant roles in several pathologies, including cancer. Cervical cancer is the best-known example of a widespread human malignancy with a demonstrated viral etiology. Infection with high-risk human papillomavirus (hrHPV) has been shown to be a causative factor for cervical carcinogenesis. Despite the occurrence of prophylactic vaccines, highly sensitive HPV diagnostics, and innovative new therapies, cervical cancer remains a main cause of death in developing countries. The relationship between hrHPV infection and cervical cancer depends on the integration of viral DNA to the host genome, disrupting the viral regulator E2 and the continuous production of the viral E6 and E7 proteins, which are necessary to acquire and maintain a transformed phenotype but insufficient for malignant cervical carcinogenesis. Lately, miRNAs, the tumor microenvironment, and immune evasion have been found to be major players in cervical carcinogenesis after hrHPV infection. Many miRNAs have been widely reported as deregulated in cervical cancer. Here, the relevance of miRNA in HPV-mediated transformation is critically reviewed in the context of the natural history of hrHPV infection and cervical cancer.
Collapse
Affiliation(s)
- Giovanni Palomino-Vizcaino
- Facultad de Ciencias de la Salud, Unidad Valle de las Palmas, Campus Tijuana, Universidad Autónoma de Baja California, Tijuana 21500, Mexico;
| | - Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| |
Collapse
|
11
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Arega S, Dey S, Pani S, Dash SR, Budhwar R, Kundu CN, Ganguly N. Determining the effect of long non-coding RNA maternally expressed gene 3 (lncRNA MEG3) on the transcriptome profile in cervical cancer cell lines. Genomics 2024; 116:110957. [PMID: 39510199 DOI: 10.1016/j.ygeno.2024.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/16/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
This study investigates the role of the long non-coding RNA Maternally Expressed Gene3 (lncRNA MEG3) gene in cervical cancer, as evidenced by its downregulation in cancerous cell lines. The study demonstrates the effects of the overexpression of lncRNA MEG3 in cervical cancer cell lines, particularly in C33A and CaSki. Through comprehensive analyses, including Next-Generation Sequencing (NGS), alterations in global mRNA expression were analyzed. In C33A cells, 67 genes were upregulated, while 303 genes were downregulated. Similarly, in CaSki cells, 221 genes showed upregulation and 248 genes displayed downregulation. Gene ontology and KEGG pathway analyses were conducted to gain insight into potential mechanisms. Furthermore, the study delves into gene regulatory networks, uncovering intricate interactions among genes. The RNA sequencing data were confirmed for eight genes: PAX3, EGR2, ROR1, NRP1, OAS2, STRA6, CA9, and EDN2 by Real-time PCR. The findings illuminate the complex landscape of gene expression alterations and pathways impacted by the overexpression of lncRNA MEG3. The impact of MEG3 on the overall cervical cancer cells' mRNA profile is reported for the first time. New biomarkers for the prognosis of cervical cancer are also reported in this study. Moreover, identifying specific genes within the regulatory networks provides valuable insights into potential therapeutic targets for managing cervical cancer.
Collapse
Affiliation(s)
- Solomon Arega
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India.
| | - Suchanda Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Sunil Pani
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Somya Ranjan Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Roli Budhwar
- Bionivid Technology Pvt. Ltd, Bangalore 560043, India
| | - Chanakya Nath Kundu
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Niladri Ganguly
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
13
|
Liu Y, Ai H. Comprehensive insights into human papillomavirus and cervical cancer: Pathophysiology, screening, and vaccination strategies. Biochim Biophys Acta Rev Cancer 2024; 1879:189192. [PMID: 39349261 DOI: 10.1016/j.bbcan.2024.189192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
This article provides an in-depth review of the Human Papillomavirus (HPV), a predominant etiological factor in cervical cancer, exploring its pathophysiology, epidemiology, and mechanisms of oncogenesis. We examine the role of proteins, DNA methylation markers, and non-coding RNAs as predictive biomarkers in cervical cancer, highlighting their potential in refining diagnostic and prognostic practices. The evolution and efficacy of cervical cancer screening methods, including the Papanicolaou smear, HPV testing, cytology and HPV test, and colposcopy techniques, are critically analyzed. Furthermore, the article delves into the current landscape and future prospects of prophylactic HPV vaccines and therapeutic vaccines, underscoring their significance in the prevention and potential treatment of HPV-related diseases. This comprehensive review aims to synthesize recent advances and ongoing challenges in the field, providing a foundation for future research and clinical strategies in the prevention and management of cervical cancer.
Collapse
Affiliation(s)
- Ying Liu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Jinzhou Medical University; Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, No. 2, Section 5, Heping Road, Linghe District, Jinzhou City, Liaoning Province, 121000, P.R. China
| | - Hao Ai
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Jinzhou Medical University; Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, No. 2, Section 5, Heping Road, Linghe District, Jinzhou City, Liaoning Province, 121000, P.R. China.
| |
Collapse
|
14
|
Diamantopoulos MA, Adamopoulos PG, Scorilas A. Small non-coding RNAs as diagnostic, prognostic and predictive biomarkers of gynecological cancers: an update. Expert Rev Mol Diagn 2024; 24:979-995. [PMID: 39390687 DOI: 10.1080/14737159.2024.2408740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs) comprise a heterogeneous cluster of RNA molecules. Emerging evidence suggests their involvement in various aspects of tumorigenesis, particularly in gynecological malignancies. Notably, ncRNAs have been implicated as mediators within tumor signaling pathways, exerting their influence through interactions with RNA or proteins. These findings further highlight the hypothesis that ncRNAs constitute therapeutic targets and point out their clinical potential as stratification biomarkers. AREAS COVERED The review outlines the use of small ncRNAs, including miRNAs, tRNA-derived small RNAs, PIWI-interacting RNAs and circular RNAs, for diagnostic, prognostic, and predictive purposes in gynecological cancers. It aims to increase our knowledge of their functions in tumor biology and their translation into clinical practice. EXPERT OPINION By leveraging interdisciplinary collaborations, scientists can decipher the riddle of small ncRNA biomarkers as diagnostic, prognostic and predictive biomarkers of gynecological tumors. Integrating small ncRNA-based assays into clinical practice will allow clinicians to provide cure plans for each patient, reducing the likelihood of adverse responses. Nevertheless, addressing challenges such as standardizing experimental methodologies and refining diagnostic assays is imperative for advancing small ncRNA research in gynecological cancer.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Shao N. Research progress on human papillomavirus-negative cervical cancer: A review. Medicine (Baltimore) 2024; 103:e39957. [PMID: 39465870 PMCID: PMC11479510 DOI: 10.1097/md.0000000000039957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cervical cancer is the fourth most common cancer in women worldwide. The vast majority of cervical cancers are associated with human papillomavirus (HPV) infection, but a small proportion of cervical cancers occur independently of HPV infection, with different subtypes having varying rates of occurrence. Despite the presence of false negatives in current testing, improving the accuracy of detection is crucial for studying the pathogenesis of HPV-negative cervical cancer and improving the prognosis of these patients. Existing research suggests that HPV-negative cervical cancer has a different pathogenesis from HPV-positive cervical cancer, although the exact mechanism is not yet clear. It is currently believed to be associated with the immune microenvironment, certain tumor gene mutations, and some long noncoding RNAs. This article provides an overview of the latest research progress on HPV-negative cervical cancer, including possible reasons, pathogenesis, pathological features, and clinical characteristics, aiming to provide new insights for diagnosis, treatment, and prognosis improvement.
Collapse
Affiliation(s)
- Ning Shao
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Figueroa-Angulo EE, Puente-Rivera J, Perez-Navarro YF, Condado EM, Álvarez-Sánchez ME. Epigenetic alteration in cervical cancer induced by human papillomavirus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:25-66. [PMID: 39864896 DOI: 10.1016/bs.ircmb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.
Collapse
Affiliation(s)
- Elisa-Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de la México, Ciudad de México, México
| | - Jonathan Puente-Rivera
- División de Investigación, Hospital Juárez De México, Ciudad de México, México; Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Yussel Fernando Perez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Edgar Mendieta Condado
- Laboratorio Estatal de Salud Pública, Secretaría de Salud de Jalisco, Guadalajara, Jalisco, México
| | - María-Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
| |
Collapse
|
17
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
18
|
Krsek A, Baticic L, Sotosek V, Braut T. The Role of Biomarkers in HPV-Positive Head and Neck Squamous Cell Carcinoma: Towards Precision Medicine. Diagnostics (Basel) 2024; 14:1448. [PMID: 39001338 PMCID: PMC11241541 DOI: 10.3390/diagnostics14131448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Head and neck cancer (HNC) represents a significant global health challenge, with squamous cell carcinomas (SCCs) accounting for approximately 90% of all HNC cases. These malignancies, collectively referred to as head and neck squamous cell carcinoma (HNSCC), originate from the mucosal epithelium lining the larynx, pharynx, and oral cavity. The primary risk factors associated with HNSCC in economically disadvantaged nations have been chronic alcohol consumption and tobacco use. However, in more affluent countries, the landscape of HNSCC has shifted with the identification of human papillomavirus (HPV) infection, particularly HPV-16, as a major risk factor, especially among nonsmokers. Understanding the evolving risk factors and the distinct biological behaviors of HPV-positive and HPV-negative HNSCC is critical for developing targeted treatment strategies and improving patient outcomes in this complex and diverse group of cancers. Accurate diagnosis of HPV-positive HNSCC is essential for developing a comprehensive model that integrates the molecular characteristics, immune microenvironment, and clinical outcomes. The aim of this comprehensive review was to summarize the current knowledge and advances in the identification of DNA, RNA, and protein biomarkers in bodily fluids and tissues that have introduced new possibilities for minimally or non-invasive cancer diagnosis, monitoring, and assessment of therapeutic responses.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vlatka Sotosek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Tamara Braut
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
19
|
Yuan L, Wang Y, Yu M, Feng Z, Ci M, Wang C, Chen H. Oncogenic HPV-induced high expression of ESM1 predicts poor prognosis and regulates aerobic glycolysis in cervical cancer. iScience 2024; 27:110112. [PMID: 38947495 PMCID: PMC11214327 DOI: 10.1016/j.isci.2024.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
The impact of endothelial cell-specific molecule 1 (ESM1) on the initiation and progression of diverse cancers has been extensively studied, yet its regulatory mechanisms in relation to cervical cancer remain insufficiently understood. Through bioinformatics analysis, we revealed that ESM1 was highly expressed in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) and correlated with dismal clinicopathological features. The activation of ESM1 is facilitated by the presence of oncogenic HPV E6 and E7. HPV E6 and E7 enhance the expression of ESM1 by diminishing the levels of miR-205-5p, which specifically targets the 3' untranslated region of ESM1 mRNA. In addition, we demonstrated that ESM1 facilitates aerobic glycolysis of cervical cancer cells via the Akt/mTOR pathway. Suppression of ESM1 led to a reduction in the expression of HIF-1α and multiple glycolytic enzymes. Taken together, our findings provide insights into the mechanisms by which HPV infections regulate oncogenes, thereby contributing to cervical carcinogenesis.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, P.R. China
| | - Yunqiu Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, P.R. China
| | - Mengyuan Yu
- Department of Radiation Oncology, the Third Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Zitong Feng
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Ming Ci
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, P.R. China
| | - Chunqing Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, P.R. China
| | - Hanxiang Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, P.R. China
| |
Collapse
|
20
|
Balhara N, Yadav R, Ranga S, Ahuja P, Tanwar M. Understanding the HPV associated cancers: A comprehensive review. Mol Biol Rep 2024; 51:743. [PMID: 38874682 DOI: 10.1007/s11033-024-09680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Human papillomavirus (HPV), a common cause of sexually transmitted diseases, may cause warts and lead to various types of cancers, which makes it important to understand the risk factors associated with it. HPV is the leading risk factor and plays a crucial role in the progression of cervical cancer. Viral oncoproteins E6 and E7 play a pivotal role in this process. Beyond cervical cancer, HPV-associated cancers of the mouth and throat are also increasing. HPV can also contribute to other malignancies like penile, vulvar, and vaginal cancers. Emerging evidence links HPV to these cancers. Research on the oncogenic effect of HPV is still ongoing and explorations of screening techniques, vaccination, immunotherapy and targeted therapeutics are all in progress. The present review offers valuable insight into the current understanding of the role of HPV in cancer and its potential implications for treatment and prevention in the future.
Collapse
Affiliation(s)
- Nikita Balhara
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
21
|
Rajendran P, Sekar R, Abdallah BM, Fathima JH S, Ali EM, Jayaraman S, Abdelsalam SA, Veeraraghavan V. Epigenetic modulation of long noncoding RNA H19 in oral squamous cell carcinoma-A narrative review. Noncoding RNA Res 2024; 9:602-611. [PMID: 38532798 PMCID: PMC10963247 DOI: 10.1016/j.ncrna.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 03/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) showed a seemingly increasing incidence in the last decade. In India, despite the use of tobacco decreased rapidly, in the past five years, the incidence pattern of OSCC over gender and age showed a drastic shift. About 51 % of the head and neck cancers are not associated with habits. Studies exploring various contributing factors in the incidence of this malignancy have documented. Recently, the epigenetic factors associated with the induction and progression of OSCC were explored. More than 90 % of the human genome is made up of non-coding transcriptome, which believed to be noises. However, these non-coding RNAs were identified to be the major epigenetic modulators, which raises concern over incidence of carcinoma in non-habit patients. H19 is a long non coding RNA which proved to be an effective biomarker in various carcinoma. Its role in oral squamous cell cancer was not investigated in depth. This review discusses in detail the various epigenetic role of H19 in inducing oral carcinogenesis.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Ramya Sekar
- Department of Oral Pathology & Microbiology, Meenakshi Ammal Dental College & Hospital, Alapakkam Main Road, Maduravoyal, Chennai, 95, TN, India
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Shazia Fathima JH
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
- Department of Oral Pathology and Microbiology, Ragas Dental College and Hospitals, Chennai, 600119, Tamil Nadu, India
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Selvaraj Jayaraman
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Vishnupriya Veeraraghavan
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
22
|
Lizano M, Carrillo-García A, De La Cruz-Hernández E, Castro-Muñoz LJ, Contreras-Paredes A. Promising predictive molecular biomarkers for cervical cancer (Review). Int J Mol Med 2024; 53:50. [PMID: 38606495 PMCID: PMC11090266 DOI: 10.3892/ijmm.2024.5374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) constitutes a serious public health problem. Vaccination and screening programs have notably reduced the incidence of CC worldwide by >80%; however, the mortality rate in low‑income countries remains high. The staging of CC is a determining factor in therapeutic strategies: The clinical management of early stages of CC includes surgery and/or radiotherapy, whereas radiotherapy and/or concurrent chemotherapy are the recommended therapeutic strategies for locally advanced CC. The histopathological characteristics of tumors can effectively serve as prognostic markers of radiotherapy response; however, the efficacy rate of radiotherapy may significantly differ among cancer patients. Failure of radiotherapy is commonly associated with a higher risk of recurrence, persistence and metastasis; therefore, radioresistance remains the most important and unresolved clinical problem. This condition highlights the importance of precision medicine in searching for possible predictive biomarkers to timely identify patients at risk of treatment response failure and provide tailored therapeutic strategies according to genetic and epigenetic characteristics. The present review aimed to summarize the evidence that supports the role of several proteins, methylation markers and non‑coding RNAs as potential predictive biomarkers for CC.
Collapse
Affiliation(s)
- Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adela Carrillo-García
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - Erick De La Cruz-Hernández
- Laboratorio de Investigación en Enfermedades Metabólicas e Infecciosas, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur Cuarta Sección, Comalcalco City, Tabasco 86650, Mexico
| | | | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| |
Collapse
|
23
|
Garg P, Krishna M, Subbalakshmi AR, Ramisetty S, Mohanty A, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging biomarkers and molecular targets for precision medicine in cervical cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189106. [PMID: 38701936 DOI: 10.1016/j.bbcan.2024.189106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Cervical cancer remains a significant global health burden, necessitating innovative approaches for improved diagnostics and personalized treatment strategies. Precision medicine has emerged as a promising paradigm, leveraging biomarkers and molecular targets to tailor therapy to individual patients. This review explores the landscape of emerging biomarkers and molecular targets in cervical cancer, highlighting their potential implications for precision medicine. By integrating these biomarkers into comprehensive diagnostic algorithms, clinicians can identify high-risk patients at an earlier stage, enabling timely intervention and improved patient outcomes. Furthermore, the identification of specific molecular targets has paved the way for the development of targeted therapies aimed at disrupting key pathways implicated in cervical carcinogenesis. In conclusion, the evolving landscape of biomarkers and molecular targets presents exciting opportunities for advancing precision medicine in cervical cancer. By harnessing these insights, clinicians can optimize treatment selection, enhance patient outcomes, and ultimately transform the management of this devastating disease.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Madhu Krishna
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ayalur Raghu Subbalakshmi
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sravani Ramisetty
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
24
|
Fattahi M, Maghsudlu M, Razipour M, Movahedpour A, Ghadami M, Alizadeh M, Khatami SH, Taheri-Anganeh M, Ghasemi E, Ghasemi H, Aiiashi S, Ghadami E. MicroRNA biosensors for detection of glioblastoma. Clin Chim Acta 2024; 556:117829. [PMID: 38355000 DOI: 10.1016/j.cca.2024.117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Glioblastoma (GBM) is the most common type of malignant brain tumor.The discovery of microRNAs and their unique properties have made them suitable tools as biomarkers for cancer diagnosis, prognosis, and evaluation of therapeutic response using different types of nanomaterials as sensitive and specific biosensors. In this review, we discuss microRNA-based electrochemical biosensing systems and the use of nanoparticles in the evolving development of microRNA-based biosensors in glioblastoma.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Mohadese Maghsudlu
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Elham Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Begliarzade S, Sufianov A, Ilyasova T, Shumadalova A, Sufianov R, Beylerli O, Yan Z. Circular RNA in cervical cancer: Fundamental mechanism and clinical potential. Noncoding RNA Res 2024; 9:116-124. [PMID: 38035041 PMCID: PMC10686810 DOI: 10.1016/j.ncrna.2023.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
CC (CC) remains a significant global health concern, imposing a substantial health burden on women worldwide due to its high incidence and mortality rates. To address this issue, there is a need for ongoing research to uncover the underlying molecular mechanisms of CC and to discover novel diagnostic and therapeutic strategies. Recent progress in non-coding RNAs (ncRNAs) has opened new avenues for investigation, and circular RNAs (circRNAs) have emerged as molecules with diverse roles in various cellular processes. These circRNAs are distinct in structure, forming a closed loop, setting them apart from their linear counterparts. They are intricately involved in regulating different aspects of cellular functions, particularly in cell growth and development. Remarkably, circRNAs can have varying functions, either promoting or inhibiting oncogenic processes, depending on the specific cellular context. Recent studies have identified abnormal circRNAs expression patterns associated with CC, indicating their significant involvement in disease development. The differing circRNAs profiles linked to CC present promising opportunities for early detection, precise prognosis evaluation, and personalized treatment strategies. In this comprehensive review, we embark on a detailed exploration of CC-related circRNAs, elucidating their distinct roles and providing insights into the intricate molecular mechanisms governing CC's onset and progression. A growing body of evidence strongly suggests that circRNAs can serve as valuable biomarkers for early CC detection and hold potential as therapeutic targets for intervention. By delving into the complex interplay between circRNAs and CC, we are paving the way for innovative, individualized approaches to combat this serious disease, with the goal of reducing its impact on women's health globally and improving patient outcomes. As our understanding of circRNAs in the context of CC continues to deepen, the outlook for breakthroughs in diagnosis and treatment becomes increasingly promising.
Collapse
Affiliation(s)
- Sema Begliarzade
- Department of Oncology, Radiology and Radiotherapy, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Rinat Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Neurooncology, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Zhongrui Yan
- Department of Gynecology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, China
| |
Collapse
|
26
|
Kamali MJ, Salehi M, Mostafavi M, Morovatshoar R, Akbari M, Latifi N, Barzegari O, Ghadimi F, Daraei A. Hijacking and rewiring of host CircRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) regulatory networks by oncoviruses during development of viral cancers. Rev Med Virol 2024; 34:e2530. [PMID: 38517354 DOI: 10.1002/rmv.2530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
A significant portion of human cancers are caused by oncoviruses (12%-25%). Oncoviruses employ various strategies to promote their replication and induce tumourigenesis in host cells, one of which involves modifying the gene expression patterns of the host cells, leading to the rewiring of genes and resulting in significant changes in cellular processes and signalling pathways. In recent studies, a specific mode of gene regulation known as circular RNA (circRNA)-mediated competing endogenous RNA (ceRNA) networks has emerged as a key player in this context. CircRNAs, a class of non-coding RNA molecules, can interact with other RNA molecules, such as mRNAs and microRNAs (miRNAs), through a process known as ceRNA crosstalk. This interaction occurs when circRNAs, acting as sponges, sequester miRNAs, thereby preventing them from binding to their target mRNAs and modulating their expression. By rewiring the host cell genome, oncoviruses have the ability to manipulate the expression and activity of circRNAs, thereby influencing the ceRNA networks that can profoundly impact cellular processes such as cell proliferation, differentiation, apoptosis, and immune responses. This review focuses on a comprehensive evaluation of the latest findings on the involvement of virus-induced reprogramming of host circRNA-mediated ceRNA networks in the development and pathophysiology of human viral cancers, including cervical cancer, gastric cancer, nasopharyngeal carcinoma, Kaposi's sarcoma, hepatocellular carcinoma, and diffuse large B cell lymphoma. Understanding these mechanisms can improve our knowledge of how oncoviruses contribute to human tumourigenesis and identify potential targets for developing optimised therapies and diagnostic tools for viral cancers.
Collapse
Affiliation(s)
- Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrnaz Mostafavi
- Department of Physics, Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mitra Akbari
- Eye Department, Eye Research Center, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Omid Barzegari
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Ghadimi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
27
|
Dhanyamraju PK. Drug resistance mechanisms in cancers: Execution of pro-survival strategies. J Biomed Res 2024; 38:95-121. [PMID: 38413011 PMCID: PMC11001593 DOI: 10.7555/jbr.37.20230248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 02/29/2024] Open
Abstract
One of the quintessential challenges in cancer treatment is drug resistance. Several mechanisms of drug resistance have been described to date, and new modes of drug resistance continue to be discovered. The phenomenon of cancer drug resistance is now widespread, with approximately 90% of cancer-related deaths associated with drug resistance. Despite significant advances in the drug discovery process, the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy. Therefore, understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities. In the present review, I discuss the different mechanisms of drug resistance in cancer cells, including DNA damage repair, epithelial to mesenchymal transition, inhibition of cell death, alteration of drug targets, inactivation of drugs, deregulation of cellular energetics, immune evasion, tumor-promoting inflammation, genome instability, and other contributing epigenetic factors. Furthermore, I highlight available treatment options and conclude with future directions.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
28
|
Heidari-Ezzati S, Moeinian P, Ahmadian-Nejad B, Maghbbouli F, Abbasi S, Zahedi M, Afkhami H, Shadab A, Sajedi N. The role of long non-coding RNAs and circular RNAs in cervical cancer: modulating miRNA function. Front Cell Dev Biol 2024; 12:1308730. [PMID: 38434620 PMCID: PMC10906305 DOI: 10.3389/fcell.2024.1308730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Cervical cancer (CC) is a primary global health concern, ranking as the fourth leading cause of cancer-related death in women. Despite advancements in prognosis, long-term outcomes remained poor. Beyond HPV, cofactors like dietary deficiencies, immunosuppression, hormonal contraceptives, co-infections, and genetic variations are involved in CC progression. The pathogenesis of various diseases, including cancer, has brought to light the critical regulatory roles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The aberrant expression of these miRNAs, lncRNAs, and circRNAs plays a pivotal role in the initiation and progression of CC. This review provides a comprehensive summary of the recent literature regarding the involvement of lncRNAs and circRNAs in modulating miRNA functions in cervical neoplasia and metastasis. Studies have shown that lncRNAs and circRNAs hold great potential as therapeutic agents and innovative biomarkers in CC. However, more clinical research is needed to advance our understanding of the therapeutic benefits of circRNAs and lncRNAs in CC.
Collapse
Affiliation(s)
- Sama Heidari-Ezzati
- School of Nursing and Midwifery, Bonab University of Medical Sciences, Bonab, Iran
| | - Parisa Moeinian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Ahmadian-Nejad
- School of Nursing and Midwifery, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | | | - Sheida Abbasi
- Department of obstetrics and gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Nayereh Sajedi
- Department of Anatomy, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
29
|
Endale HT, Mariye YF, Negash HK, Hassen FS, Asrat WB, Mengstie TA, Tesfaye W. MiRNA in cervical cancer: Diagnosis to therapy: Systematic review. Heliyon 2024; 10:e24398. [PMID: 38317930 PMCID: PMC10839805 DOI: 10.1016/j.heliyon.2024.e24398] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Cancers are one of the most public health problems worldwide. Among them, cervical cancer (CC) is the fourth most prevalent cancer with 604 000 new cases and 342 000 deaths. Mostly, it is associated with Human papillomavirus (HPV). It has been caused by the aggregation of genetic and epigenetic modifications in cervical epithelial cells. Although genetic mutations are given great attention for the carcinogenesis of CC, epigenetic changes have emerged as a hotspot area for CC biomarkers research with great implications for early diagnosis, prognosis, and treatment response prediction of the disease. Recently, there are several studies focused on miRNAs as biomarkers of cervical cancer. However, the precise function of miRNAs in the development of cervical cancer is not still completely understood, particularly when it comes to unconventional sampling materials like cervical mucus and plasma serum. Hence, this review article will give a summary of the miRNAs profiles that emerge at different stages of cervical cancer progression and their downstream effects on target genes and associated signaling pathways. Finally, these results may provide insight into the use of miRNAs as biomarkers for the prediction or diagnosis of cervical cancer or the development of miRNA-based therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Yitbarek Fantahun Mariye
- Department of Obstetrics & Gynecology, School of Medicine, College of Medicine & Health Sciences, Addis Ababa University, Ethiopia
| | - Habtu Kifle Negash
- Department of Human Anatomy, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Tiget Ayelgn Mengstie
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| |
Collapse
|
30
|
Heydarnia E, Dorostgou Z, Hedayati N, Mousavi V, Yahyazadeh S, Alimohammadi M, Gheibi M, Heidari P, Igder S, Mafi A, Vakili O. Circular RNAs and cervical cancer: friends or foes? A landscape on circRNA-mediated regulation of key signaling pathways involved in the onset and progression of HPV-related cervical neoplasms. Cell Commun Signal 2024; 22:107. [PMID: 38341592 PMCID: PMC10859032 DOI: 10.1186/s12964-024-01494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Cervical cancer (CC) is a common gynecologic malignancy, accounting for a significant proportion of women death worldwide. Human papillomavirus (HPV) infection is one of the major etiological causes leading to CC onset; however, genetic, and epigenetic factors are also responsible for disease expansion. Circular RNAs (circRNAs), which are known as a particular subset of non-coding RNA (ncRNA) superfamily, with covalently closed loop structures, have been reported to be involved in the progression of diverse diseases, especially neoplasms. In this framework, abnormally expressed circRNAs are in strong correlation with CC pathogenesis through regulating substantial signaling pathways. Also, these RNA molecules can be considered as promising biomarkers and therapeutic targets for CC diagnosis/prognosis and treatment, respectively. Herein, we first review key molecular mechanisms, including Wnt/β-catenin, MAPK, and PI3K/Akt/mTOR signaling pathways, as well as angiogenesis and metastasis, by which circRNAs interfere with CC development. Then, diagnostic, prognostic, and therapeutic potentials of these ncRNA molecules will be highlighted in depth.
Collapse
Affiliation(s)
- Emad Heydarnia
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mobina Gheibi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Wu H, Lin J, Ling N, Zhang Y, He Y, Qiu L, Tan W. Functional Nucleic Acid-Based Immunomodulation for T Cell-Mediated Cancer Therapy. ACS NANO 2024; 18:119-135. [PMID: 38117770 DOI: 10.1021/acsnano.3c09861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
T cell-mediated immunity plays a pivotal role in cancer immunotherapy. The anticancer actions of T cells are coordinated by a sequence of biological processes, including the capture and presentation of antigens by antigen-presenting cells (APCs), the activation of T cells by APCs, and the subsequent killing of cancer cells by activated T cells. However, cancer cells have various means to evade immune responses. Meanwhile, these vulnerabilities provide potential targets for cancer treatments. Functional nucleic acids (FNAs) make up a class of synthetic nucleic acids with specific biological functions. With their diverse functionality, good biocompatibility, and high programmability, FNAs have attracted widespread interest in cancer immunotherapy. This Review focuses on recent research progress in employing FNAs as molecular tools for T cell-mediated cancer immunotherapy, including corresponding challenges and prospects.
Collapse
Affiliation(s)
- Hui Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie Lin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yutong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Ghasemian M, Zehtabi M, Dari MAG, Pour FK, Tabesh GA, Moramezi F, Jafari RM, Barati M, Uddin S, Farzaneh M. The emerging roles of long non-coding RNA (lncRNA) H19 in gynecologic cancers. BMC Cancer 2024; 24:4. [PMID: 38166752 PMCID: PMC10763168 DOI: 10.1186/s12885-023-11743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Long non-coding RNA (lncRNA) H19 has gained significant recognition as a pivotal contributor to the initiation and advancement of gynecologic cancers, encompassing ovarian, endometrial, cervical, and breast cancers. H19 exhibits a complex array of mechanisms, demonstrating dualistic effects on tumorigenesis as it can function as both an oncogene and a tumor suppressor, contingent upon the specific context and type of cancer being investigated. In ovarian cancer, H19 promotes tumor growth, metastasis, and chemoresistance through modulation of key signaling pathways and interaction with microRNAs. Conversely, in endometrial cancer, H19 acts as a tumor suppressor by inhibiting proliferation, inducing apoptosis, and regulating epithelial-mesenchymal transition. Additionally, H19 has been implicated in cervical and breast cancers, where it influences cell proliferation, invasion, and immune evasion. Moreover, H19 has potential as a diagnostic and prognostic biomarker for gynecologic cancers, with its expression levels correlating with clinical parameters and patient outcomes. Understanding the functional roles of H19 in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized treatment approaches. Further investigation into the intricate molecular mechanisms underlying H19's involvement in gynecologic malignancies is warranted to fully unravel its therapeutic potential and clinical implications. This review aims to elucidate the functional roles of H19 in various gynecologic malignancies.
Collapse
Affiliation(s)
- Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Azizi Tabesh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Moramezi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razieh Mohammad Jafari
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Barati
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 22602, India
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
33
|
Wang Y, Xie Y, Wang X, Yang N, Wu Z, Zhang X. Tumor cells-derived extracellular vesicles carry circ_0064516 competitively inhibit microRNA-6805-3p and promote cervical cancer angiogenesis and tumor growth. Expert Opin Ther Targets 2024; 28:97-112. [PMID: 38270096 DOI: 10.1080/14728222.2024.2306353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The current study tried to elucidate the regulatory role of tumor cell-derived exosomes (Exos)-circ_0064516 in angiogenesis and growth of cervical cancer. RESEARCH DESIGN AND METHODS Related cirRNAs and downstream target genes were identified through bioinformatics analysis. Exos were isolated from cervical cancer cell line CaSki, followed by co-cultured with human umbilical vein endothelial cells (HUVECs). Then, the roles of circ_0064516, miR-6805-3p, and MAPK1 in migration and angiogenesis of HUVECs were assayed. Furthermore, xenografted tumors were transplanted into nude mice for in vivo validation. RESULTS In vitro assay validated highly expressed circ_0064516 in cervical cancer cells. Tumor cell-derived Exos carried circ_0064516 to HUVECs. circ_0064516 increased MAPK1 expression by binding to miR-6805-3p, thus enhancing migration and angiogenesis. Exos containing circ_0064516 also promoted tumorigenesis of cervical cancer cells in nude mice. CONCLUSIONS We confirmed the oncogenic role of tumor cell-derived Exos carrying circ_0064516 in cervical cancer progression through miR-6805-3p/MAPK1.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Xie
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Wang
- Department of Obstetrics and Gynecology, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, Sichuan, China
| | - Nian Yang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xun Zhang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
34
|
Zheng Y, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zhao R, Chubarev V, Fan R, Liu J. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res 2023; 13:6147-6175. [PMID: 38187051 PMCID: PMC10767355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Small non-coding RNAs (microRNA, miR), powerful epigenetic regulators, were found involved in the regulation of most biological functions via post-translational inhibition of protein expression. Increased expression of pro-oncogenic miRs (known as miR cancer biomarkers) and inhibition of pro-apoptotic miR expression have been demonstrated in different tumors. The recently identified miR-183 was found implicated in gastrointestinal tumor metabolism regulation. Elevated miR-183 expression and cancer-promoting effects were reported in esophageal and colorectal cancers, which was partially contradicted by controversial data observed in gastric cancers. Anti-cancer effect of miR-183 in gastric cancer cells was associated with the Bim-1 and Ezrin genes regulation. Many studies indicated that miR-183 can inhibit tumor suppressor genes in most cell lines, promoting tumor cell proliferation and migration. Increased miR-183 level results in the downregulation of FOXO1, PDCD4, and other tumor suppressor genes in gastrointestinal tumor cells. MiR-183 also influences the signaling of PI3K/AKT/mTOR, Wnt/β-catenin, and Bcl-2/p53 signaling pathways. Mir-183 inhibits apoptosis and autophagy, and promotes epithelial-to-mesenchymal transition, cancer cell proliferation, and migration. Accordingly, gastrointestinal cancer occurrence, development of chemoradiotherapy resistance, recurrence/metastasis, and prognosis were associated with miR-183 expression. The current study assessed reported miR-183 functions and signaling, providing new insights for the diagnosis and treatment of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Yufei Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Olga Sukocheva
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Ruiwen Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Vladimir Chubarev
- Sechenov First Moscow State Medical University (Sechenov University)8-2 Trubetskaya St., Moscow 119991, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
35
|
Aswathy R, Sumathi S. Defining new biomarkers for overcoming therapeutical resistance in cervical cancer using lncRNA. Mol Biol Rep 2023; 50:10445-10460. [PMID: 37878205 DOI: 10.1007/s11033-023-08864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
Despite improvements in cervical cancer diagnosis and treatment, the prognosis for cervical cancer patients remains dismal due to the development of drug resistance, metastasis, and invasion resulting leading to treatment failure. Long non-coding RNAs (lncRNAs), a class of RNA transcripts have been reported in mediating carcinogenesis as well as drug, and radio-resistance in tumor cells. These lncRNAs regulate various cancer hallmarks and contribute to the development of therapeutic resistance. They regulates multiple signalling pathways, recruits polycomb group, function as miRNA sponge and scaffolds. Additionally, lncRNAs can act as oncogenes or tumor suppressors in cervical cancer. This comprehensive review outlines the biogenesis of lncRNA and its role in cancer development. It delves into the mechanisms through which various lncRNAs mediate chemoresistance and radioresistance in cervical cancer. By shedding into the light of mechanism, this review will also aids researchers in understanding lncRNAs as biomarkers and latest advancements in clinically targeting them with the help of Artificial Intelligence for overcoming chemoresistance and radioresistance, thereby improving cervical cancer treatment.
Collapse
Affiliation(s)
- Raghu Aswathy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Bharathi Park Rd, near Forest College Campus, Saibaba Colony, Coimbatore, Tamil Nadu, 641043, India
| | - Sundaravadivelu Sumathi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam University for Home Science and Higher Education for Women, Bharathi Park Rd, near Forest College Campus, Saibaba Colony, Coimbatore, Tamil Nadu, 641043, India.
| |
Collapse
|
36
|
Zhang Y, Liu P, Wen D, Xiong H, Zhou Z, Yan L. Regulation of Cervical Cancer Development by a Novel Circ_0000212/miR-1236-3p/GREM1 ceRNA Crosstalk. Mol Biotechnol 2023; 65:2086-2098. [PMID: 36952219 DOI: 10.1007/s12033-023-00721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Circular RNAs (circRNAs) possess important functions in cervical carcinogenesis by operating as competing endogenous RNAs (ceRNAs). Our preliminary bioinformatics predicted the potential circ_0000212/microRNA (miR)-1236-3p/gremlin 1 (GREM1) ceRNA crosstalk. Thus, we further elucidated whether the novel ceRNA crosstalk can participate in cervical cancer development. Circ_0000212, miR-1236-3p and GREM1 were quantified by real-time quantitative polymerase chain reaction (qPCR) and immunoblotting. 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, and tube formation assay were performed to assess cell proliferation, apoptosis and tube formation, respectively. Transwell assay was used to detect cell migration and invasion. Mouse xenografts were established to evaluate the role of circ_0000212 in vivo. Dual-luciferase reporter assay was performed to verify the direct relationship between miR-1236-3p and circ_0000212 or GREM1. Circ_0000212 expression was elevated in human cervical cancer. Silencing of endogenous circ_0000212 hindered cancer cell proliferation, motility and invasion and induced apoptosis, as well as diminished the tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Circ_0000212 silencing also weakened tumor growth in vivo. Mechanistically, circ_0000212 directly bound to miR-1236-3p, and downregulation of miR-1236-3p reversed these effects of circ_0000212 silencing on cell malignant phenotypes and HUVEC tube formation. GREM1 was a direct miR-1236-3p target, and its expression was regulated by circ_0000212 through miR-1236-3p. Moreover, miR-1236-3p upregulation impeded cancer cell malignant phenotypes and HUVEC tube formation by targeting GREM1. Our findings identify a novel ceRNA regulatory network, circ_0000212/miR-1236-3p/GREM1 axis, in cervical carcinogenesis, and provide potential targets that can be explored for therapeutic interventions.
Collapse
Affiliation(s)
- Yajun Zhang
- Department of Pathology, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222000, China
| | - Peili Liu
- Department of Gynaecology, Lianyungang Maternal and Child Health Hospital, No.669 Qindongmen Road, Haizhou, Lianyungang, 222000, China.
| | - Daoqing Wen
- Department of Gynaecology, Lianyungang Maternal and Child Health Hospital, No.669 Qindongmen Road, Haizhou, Lianyungang, 222000, China
| | - Haizhen Xiong
- Department of Gynaecology, Lianyungang Maternal and Child Health Hospital, No.669 Qindongmen Road, Haizhou, Lianyungang, 222000, China
| | - Zhe Zhou
- Department of Gynaecology, Lianyungang Maternal and Child Health Hospital, No.669 Qindongmen Road, Haizhou, Lianyungang, 222000, China
| | - Li Yan
- Department of Pathology, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222000, China
| |
Collapse
|
37
|
Nazari-Khanamiri F, Abdyazdani N, Abbasi R, Ahmadi M, Rezaie J. Tumor cells-derived exosomal noncoding RNAs in cancer angiogenesis: Molecular mechanisms and prospective. Cell Biochem Funct 2023; 41:1008-1015. [PMID: 37843018 DOI: 10.1002/cbf.3874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Exosomes, heterogeneous, membrane-bound nanoparticles that originated from eukaryotic cells, contribute to intracellular communication by transferring various biomolecules both on their surface and as internal cargo. One of the most significant current discussions on cancer progression is noncoding RNAs cargo of exosomes, which can regulate angiogenesis in tumor. A growing body of evidence shows that exosomes from tumor cells contain various microRNAs, long noncoding RNAs, and circular RNAs that can promote tumor progression by inducing angiogenesis. However, some noncoding RNAs may inhibit cancer angiogenesis. Targeting angiogenic noncoding RNA of exosomes may serve as a hopeful implement for cancer therapy. In this review, we discuss the latest knowledge of the roles of exosomal noncoding RNAs in tumor angiogenesis Understanding the biology of exosomal noncoding RNAs can help scientists plan exosomes-based innovations for the treatment of cancer angiogenesis and cancer biomarkers.
Collapse
Affiliation(s)
- Fereshteh Nazari-Khanamiri
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
38
|
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, Movahedpour A. Non-coding RNAs in gynecologic cancer. Clin Chim Acta 2023; 551:117618. [PMID: 38375624 DOI: 10.1016/j.cca.2023.117618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.
Collapse
Affiliation(s)
- Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Thvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Alizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
39
|
Alharbi KS. Exploring GAS5's impact on prostate cancer: Recent discoveries and emerging paradigms. Pathol Res Pract 2023; 251:154851. [PMID: 37837861 DOI: 10.1016/j.prp.2023.154851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Novel treatment targets must be discovered to improve the results for patients with prostate cancer, which continues to be a significant worldwide health problem. Growth Arrest-Specific 5 (GAS5) is a long non-coding RNA (lncRNA) that has emerged as a promising target. GAS5 is a non-coding RNA that is a tumour suppressor in many different cancers by reducing cell proliferation and increasing apoptosis. GAS5 influences cell cycle control and apoptosis via interactions with important signalling pathways and microRNAs, as has been shown by recent studies. Furthermore, GAS5 has attracted interest for its diagnostic and prognostic potential in prostate cancer. GAS5 expression is a promising biomarker for disease classification and individualized treatment approaches because of its association with clinicopathological characteristics such as tumour stage, Gleason score, and metastatic potential. Preclinical models have revealed encouraging anticancer benefits from experimental techniques employing GAS5 overexpression or synthetic analogues, indicating the possibility of translational treatments. Whether GAS5 can be used as a diagnostic biomarker and therapeutic target might lead to more effective and individualized ways to fight prostate cancer, improving patient outcomes and quality of life. To utilize its potential for therapy and establish it as a useful addition to the clinical arsenal against this pervasive malignancy, more investigation into the complex molecular pathways of GAS5 in prostate cancer is essential. This review highlights the recent advancements and insights into the role of GAS5 in prostate cancer pathogenesis and progression.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
40
|
George N, Bhandari P, Shruptha P, Jayaram P, Chaudhari S, Satyamoorthy K. Multidimensional outlook on the pathophysiology of cervical cancer invasion and metastasis. Mol Cell Biochem 2023; 478:2581-2606. [PMID: 36905477 PMCID: PMC10006576 DOI: 10.1007/s11010-023-04686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Cervical cancer being one of the primary causes of high mortality rates among women is an area of concern, especially with ineffective treatment strategies. Extensive studies are carried out to understand various aspects of cervical cancer initiation, development and progression; however, invasive cervical squamous cell carcinoma has poor outcomes. Moreover, the advanced stages of cervical cancer may involve lymphatic circulation with a high risk of tumor recurrence at distant metastatic sites. Dysregulation of the cervical microbiome by human papillomavirus (HPV) together with immune response modulation and the occurrence of novel mutations that trigger genomic instability causes malignant transformation at the cervix. In this review, we focus on the major risk factors as well as the functionally altered signaling pathways promoting the transformation of cervical intraepithelial neoplasia into invasive squamous cell carcinoma. We further elucidate genetic and epigenetic variations to highlight the complexity of causal factors of cervical cancer as well as the metastatic potential due to the changes in immune response, epigenetic regulation, DNA repair capacity, and cell cycle progression. Our bioinformatics analysis on metastatic and non-metastatic cervical cancer datasets identified various significantly and differentially expressed genes as well as the downregulation of potential tumor suppressor microRNA miR-28-5p. Thus, a comprehensive understanding of the genomic landscape in invasive and metastatic cervical cancer will help in stratifying the patient groups and designing potential therapeutic strategies.
Collapse
Affiliation(s)
- Neena George
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Poonam Bhandari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padival Shruptha
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
41
|
Li R, Zhao M, Sun M, Miao C, Lu J. Construction and validation of a PANoptosis-related lncRNA signature for predicting prognosis and targeted drug response in thyroid cancer. PeerJ 2023; 11:e15884. [PMID: 37671354 PMCID: PMC10476615 DOI: 10.7717/peerj.15884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 09/07/2023] Open
Abstract
Thyroid cancer (TC) is the most prevalent malignancy of the endocrine system. PANoptosis, a newly discovered cell death pathway, is of interest in tumor research. However, the relationship between PANoptosis-related lncRNAs (PRlncRNAs) and TC remains unclear. The study aimed to develop a prognostic model based on PRlncRNAs in TC. Gene expression data of PANoptosis-associated genes and clinical information on TC from The Cancer Genome Atlas (TCGA) database were analyzed by Pearson correlation analysis, univariate/multivariate Cox analysis, and Lasso Cox regression analysis. A PRlncRNA signature was constructed and used to develop a nomogram to predict overall survival (OS). We further explored the correlation between the risk score and tumor immune microenvironment, immune checkpoints, and drug sensitivity. Moreover, we verified the expression and biological function of lncRNAs in TC cell lines. Finally, seven PRlncRNAs were used to construct a prognostic model for predicting the OS of TC patients. We found that the risk score was associated with the tumor microenvironment (TME) and the expression of critical immune checkpoints. In addition, we screened for drugs that high- or low-risk TC groups might be sensitive to. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed differential expression of four PRlncRNAs (GAPLINC, IDI2-AS1, LINC02154, and RBPMS-AS1) between tumor and normal tissues. Besides, a GEO database (GSE33630) was used to verify the expression differences of PRLncRNAs in THCA tissues and normal tissues. Finally, RBPMS-AS1 was found to inhibit the proliferation and migration of TC cells. In conclusion, we developed a PANoptosis-related lncRNA prognostic risk model that offers a comprehensive understanding of TME status in patients with TC and establishes a foundation for the choice of sensitive medications and immunotherapy.
Collapse
Affiliation(s)
- Ruowen Li
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingjian Zhao
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Min Sun
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chengxu Miao
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinghui Lu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
42
|
Li Y, Patterson MR, Morgan EL, Wasson CW, Ryder EL, Barba‐Moreno D, Scarth JA, Wang M, Macdonald A. CREB1 activation promotes human papillomavirus oncogene expression and cervical cancer cell transformation. J Med Virol 2023; 95:e29025. [PMID: 37565725 PMCID: PMC10952218 DOI: 10.1002/jmv.29025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Human papillomaviruses (HPVs) infect the oral and anogenital mucosa and can cause cancer. The high-risk (HR)-HPV oncoproteins, E6 and E7, hijack cellular factors to promote cell proliferation, delay differentiation and induce genomic instability, thus predisposing infected cells to malignant transformation. cAMP response element (CRE)-binding protein 1 (CREB1) is a master transcription factor that can function as a proto-oncogene, the abnormal activity of which is associated with multiple cancers. However, little is known about the interplay between HPV and CREB1 activity in cervical cancer or the productive HPV lifecycle. We show that CREB is activated in productively infected primary keratinocytes and that CREB1 expression and phosphorylation is associated with the progression of HPV+ cervical disease. The depletion of CREB1 or inhibition of CREB1 activity results in decreased cell proliferation and reduced expression of markers of epithelial to mesenchymal transition, coupled with reduced migration in HPV+ cervical cancer cell lines. CREB1 expression is negatively regulated by the tumor suppressor microRNA, miR-203a, and CREB1 phosphorylation is controlled through the MAPK/MSK pathway. Crucially, CREB1 directly binds the viral promoter to upregulate transcription of the E6/E7 oncogenes, establishing a positive feedback loop between the HPV oncoproteins and CREB1. Our findings demonstrate the oncogenic function of CREB1 in HPV+ cervical cancer and its relationship with the HPV oncogenes.
Collapse
Affiliation(s)
- Yigen Li
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | | | - Christopher W. Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and HealthUniversity of LeedsLeedsWest YorkshireUK
| | - Emma L. Ryder
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Diego Barba‐Moreno
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Miao Wang
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| |
Collapse
|
43
|
Burk RD, Mirabello L, DeSalle R. Distinguishing Genetic Drift from Selection in Papillomavirus Evolution. Viruses 2023; 15:1631. [PMID: 37631973 PMCID: PMC10458755 DOI: 10.3390/v15081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Pervasive purifying selection on non-synonymous substitutions is a hallmark of papillomavirus genome history, but the role of selection on and the drift of non-coding DNA motifs on HPV diversification is poorly understood. In this study, more than a thousand complete genomes representing Alphapapillomavirus types, lineages, and SNP variants were examined phylogenetically and interrogated for the number and position of non-coding DNA sequence motifs using Principal Components Analyses, Ancestral State Reconstructions, and Phylogenetic Independent Contrasts. For anciently diverged Alphapapillomavirus types, composition of the four nucleotides (A, C, G, T), codon usage, trimer usage, and 13 established non-coding DNA sequence motifs revealed phylogenetic clusters consistent with genetic drift. Ancestral state reconstruction and Phylogenetic Independent Contrasts revealed ancient genome alterations, particularly for the CpG and APOBEC3 motifs. Each evolutionary analytical method we performed supports the unanticipated conclusion that genetic drift and different evolutionary drivers have structured Alphapapillomavirus genomes in distinct ways during successive epochs, even extending to differences in more recently formed variant lineages.
Collapse
Affiliation(s)
- Robert D. Burk
- Departments of Pediatrics, Microbiology & Immunology, Epidemiology & Population Health, Obstetrics, Gynecology and Woman’s Health, and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Robert DeSalle
- Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
44
|
Liu MY, Li N. The diagnostic value of lncRNA HOTAIR for cervical carcinoma in vaginal discharge and serum. Medicine (Baltimore) 2023; 102:e34042. [PMID: 37390273 PMCID: PMC10313301 DOI: 10.1097/md.0000000000034042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 07/02/2023] Open
Abstract
There is a lower incidence of cervical carcinoma compared with other common carcinomas, however, the mortality rate of cervical carcinoma is higher, suggesting that the treatment and prognosis of cervical carcinoma are relatively poor. Therefore, cervical carcinoma patients urgently need to find new diagnostic markers for early detection and treatment. One hundred and fifty cervical carcinoma and 100 benign cervical disease patients from 2019 January to 2021 December in Tianjin Central Hospital of Gynecology Obstetrics were selected and 100 healthy women were as normal group. The expression of HOX transcript antisense RNA (HOTAIR) in cervical carcinoma and paracancerous tissue, serum sample was measured by realtime PCR assay. The receiver operating characteristic of HOTAIR for cervical carcinoma was analyzed. The study found that the expression level of HOTAIR in primary cervical carcinoma is closely related to tumor metastasis and prognosis. The expression level of HOTAIR in paracancerous tissue was significantly lower than that in cancer tissue, and the expression level of HOTAIR in vaginal discharge and serum was higher than that in cervical carcinoma patients which was positively correlated with tumor malignancy, meanwhile, HOTAIR was significantly reduced after surgery 3 months both in vaginal discharge and serum. In order to examine the diagnostic efficiency of HOTAIR for cervical carcinoma, we found that the area under curve of vaginal discharge was 0.9723, sensitivity was 92%, specificity was 98%, the area under curve of serum was 0.8518, sensitivity was 79%, and specificity was 94% by receiver operating characteristic analysis. The accuracy were 92.7% and 89.3% in vaginal discharge and serum via certified by cervical carcinoma and benign cervical disease patient and healthy people. The above results show that the diagnostic performance of HOTAIR in vaginal discharge is higher than that of serum, and it is expected to become a marker for cervical carcinoma diagnosis and treatment.
Collapse
Affiliation(s)
- Ming-Yan Liu
- Department of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Na Li
- Department of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| |
Collapse
|
45
|
Dabi Y, Favier A, Razakamanantsoa L, Suisse S, Marie Y, Touboul C, Ferrier C, Bendifallah S, Daraï E. Value of non-coding RNAs to assess lymph node status in cervical cancer. Front Oncol 2023; 13:1144672. [PMID: 37234986 PMCID: PMC10206114 DOI: 10.3389/fonc.2023.1144672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Cervical cancer (CC) is the fourth cancer in women and is the leading cause of cancer death in 42 countries. Lymph node metastasis is a determinant prognostic factor, as underlined in the latest FIGO classification. However, assessment of lymph node status remains difficult, despite the progress of imaging such as PET-CT and MRI. In the specific setting of CC, all data underlined the need for new biomarkers easily available to assess lymph node status. Previous studies have underlined the potential value of ncRNA expression in gynecological cancers. In this review, we aimed to evaluate the contribution of ncRNAs in tissue and biofluid samples to determine lymph node status in CC with potential impact on both surgical and adjuvant therapies. In tissue samples, our analysis found that there are arguments to support the role of ncRNAs in physiopathology, differential diagnosis from normal tissue, preinvasive and invasive tumors. In biofluids, despite small studies especially concerning miRNAs expression, promising data opens up new avenue to establish a non-invasive signature for lymph node status as well as a tool to predict response to neo- and adjuvant therapies, thus improving management algorithm of patients with CC.
Collapse
Affiliation(s)
- Yohann Dabi
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Amelia Favier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Léo Razakamanantsoa
- Sorbonne University, Inserm UMR S 938, Centre de recherche de saint Antoine (CRSA), Hôpital Saint Antoine, Paris, France
- Department of Radiology imaging and Interventional speciality imaging, Tenon Hospital, Paris, France
| | | | - Yannick Marie
- Gentoyping and Sequencing core facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Cyril Touboul
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Clément Ferrier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Sofiane Bendifallah
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Emile Daraï
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| |
Collapse
|
46
|
Mo Y, Liang Z, Lan L, Xiong X, Zhang C, Liu W, Huang H, Fan J, Yang L. Extracellular vesicles derived from cervical cancer cells carrying MCM3AP-AS1 promote angiogenesis and tumor growth in cervical cancer via the miR-93/p21 axis. Exp Cell Res 2023; 428:113621. [PMID: 37137462 DOI: 10.1016/j.yexcr.2023.113621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
Tumor cells can promote angiogenesis by secreting extracellular vesicles (EVs). Meanwhile, tumor-derived EVs can carry long non-coding RNAs to activate pro-angiogenic signaling in endothelial cells. Here, we investigated the role of long non-coding RNA MCM3AP-AS1 carried by cervical cancer (CC) cell-derived EVs in the angiogenesis and the resultant tumor growth in CC, as well as the potential molecular mechanisms. LncRNAs significantly expressed in CC cell-derived EVs and CC were screened, followed by prediction of downstream target genes. EVs were isolated from HcerEpic and CaSki cell supernatants, followed by identification. The expression of MCM3AP-AS1 in CC was analyzed and its interaction with miR-93-p21 was confirmed. Following co-culture system, the role of MCM3AP-AS1 carried by EVs in HUVEC angiogenic ability, CC cell invasion and migration in vitro along with angiogenesis and tumorigenicity in vivo was assayed. MCM3AP-AS1 was overexpressed in CC cell-derived EVs as well as in CC tissues and cell lines. Cervical cancer cell-derived EVs could transfer MCM3AP-AS1 into HUVECs where MCM3AP-AS1 competitively bound to miR-93 and upregulate the expression of the miR-93 target p21 gene. Thus, MCM3AP-AS1 promoted angiogenesis of HUVECs. In the similar manner, MCM3AP-AS1 enhanced CC cell malignant properties. In nude mice, EVs-MCM3AP-AS1 induced angiogenesis and tumor growth. Overall, this study reveals that CC cell-derived EVs may transport MCM3AP-AS1 to promote angiogenesis and tumor growth in CC.
Collapse
Affiliation(s)
- Yuzhen Mo
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China.
| | - Zhishan Liang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China
| | - Liu Lan
- Department of Radiotherapy, The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Cici Zhang
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Wei Liu
- Department of Breast Surgery, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Haowei Huang
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Jiangxia Fan
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Li Yang
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| |
Collapse
|
47
|
Gan Q, Huang X, Zhao W, Liu H, Xu Y, Zhang X, Cheng J, Chen R. AC010883.5 promotes cell proliferation, invasion, migration, and epithelial-to-mesenchymal transition in cervical cancer by modulating the MAPK signaling pathway. BMC Cancer 2023; 23:364. [PMID: 37081411 PMCID: PMC10120252 DOI: 10.1186/s12885-023-10825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
Homo sapiens chromosome 2 clone RP11-339H12 (AC010883.5) is a dysregulated long non-coding RNA (lncRNA) that has never been investigated in cervical cancer (CC). Thus, the potential function and molecular mechanism remain unclear. Our study explored the biological function of AC010883.5 to determine the underlying mechanisms in CC and provide potential therapeutic targets for improving the clinical treatment strategy. We used quantitative real-time polymerase chain reaction to measure mitochondrial RNA levels and western blot to measure the protein levels of target genes. Further, we used Cell Counting Kit-8 and 5-Bromo-2'-deoxyuridine incorporation assays to evaluate cell proliferation in vitro. Cell apoptosis was analyzed by flow cytometry. Cell invasion was analyzed by wound healing and Transwell migration assays was ued to analyze cell migration. Finally, the biological function and mechanism of AC010883.5 in CC growth were evaluated by in vivo xenograft assay. AC010883.5 was enhanced in CC tissues and cell lines, and enhanced AC010883.5 expression accelerated CC cell proliferation, migration, and invasion and induced epithelial-mesenchymal transition in vitro and in vivo. AC010883.5 also activated the mitogen-activated protein kinase (MAPK) signaling pathway by promoting phosphorylation of extracellular signal-regulated kinase 1/2 (i.e., ERK1/2) and MAPK kinase 1/2 (i.e., MEK1/2). Blocking the MAPK signaling pathway could counteract the pro-proliferative, pro-migrative, and pro-invasive effects of AC010883.5 over-expression. We found that the lncRNA, AC010883.5, is an oncogenic molecule involved in CC tumor progression via dysregulation of the MAPK signaling pathway, implying that AC010883.5 could be a tumor progression and therapeutic response biomarker.
Collapse
Affiliation(s)
- Qiyu Gan
- Department of Gynecology and Obstetrics, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Xia Huang
- Department of Gynecology and Obstetrics, Shanghai East Hospital Ji'an Hospital, 80 Ji'an South Road, Ji'an City, 343000, Jiangxi, China
| | - Wenrong Zhao
- Department of Gynecology and Obstetrics, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Hui Liu
- Department of Gynecology and Obstetrics, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Yan Xu
- Department of Pathology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Xiaohua Zhang
- Department of Gynecology and Obstetrics, Shanghai East Hospital Ji'an Hospital, 80 Ji'an South Road, Ji'an City, 343000, Jiangxi, China
| | - Jingxin Cheng
- Department of Gynecology and Obstetrics, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
- Department of Gynecology and Obstetrics, Shanghai East Hospital Ji'an Hospital, 80 Ji'an South Road, Ji'an City, 343000, Jiangxi, China.
| | - Rui Chen
- Department of Gynecology, United Family Hospital, Shanghai, China.
| |
Collapse
|
48
|
Zhang Y, Zhu M, Pan J, Qiu Q, Tong X, Hu X, Gong C. BmCPV replication is suppressed by the activation of the NF-κB/autophagy pathway through the interaction of vsp21 translated by vcircRNA_000048 with ubiquitin carboxyl-terminal hydrolase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103947. [PMID: 37086910 DOI: 10.1016/j.ibmb.2023.103947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Bombyx mori cypovirus (BmCPV), a typical double-stranded RNA virus, was demonstrated to generate a viral circRNA, vcircRNA_000048, which encodes a vsp21 with 21 amino acid residues to suppress viral replication. However, the regulatory mechanism of vsp21 on virus infection remained unclear. This study discovered that vsp21 induces reactive oxygen species (ROS) generation, activates autophagy, and attenuates virus replication by inducing autophagy. Then we confirmed that the effect of vsp21-induced autophagy on viral replication was attributed to the activation of the NF-κB signaling pathway. Furthermore, we clarified that vsp21 interacted with ubiquitin carboxyl-terminal hydrolase (UCH) and that ubiquitination and degradation of phospho-IκB-α were enhanced by vsp21 via competitive binding to UCH. Finally, we validated that vsp21 activates the NF-κB/autophagy pathway to suppress viral replication by interacting with UCH. These findings provided new insights into regulating viral multiplication and reovirus-host interaction.
Collapse
Affiliation(s)
- Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Qunnan Qiu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xinyu Tong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
49
|
Tiucă RA, Tiucă OM, Pașcanu IM. The Role of Genetic Polymorphisms in Differentiated Thyroid Cancer: A 2023 Update. Biomedicines 2023; 11:biomedicines11041075. [PMID: 37189693 DOI: 10.3390/biomedicines11041075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignancy, with an increasing trend in the past decades. It has a variety of different histological subtypes, the most frequent one being differentiated thyroid cancer, which refers to papillary carcinoma, the most common histological type, followed by follicular carcinoma. Associations between genetic polymorphisms and thyroid cancer have been investigated over the years and are an intriguing topic for the scientific world. To date, the results of associations of single nucleotide polymorphisms, the most common genetic variations in the genome, with thyroid cancer have been inconsistent, but many promising results could potentially influence future research toward developing new targeted therapies and new prognostic biomarkers, thus consolidating a more personalized management for these patients. This review focuses on emphasizing the existing literature data regarding genetic polymorphisms investigated for their potential association with differentiated thyroid cancer and highlights the opportunity of using genetic variations as biomarkers of diagnosis and prognosis for thyroid cancer patients.
Collapse
Affiliation(s)
- Robert Aurelian Tiucă
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Endocrinology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Compartment of Endocrinology, Mures County Clinical Hospital, 540139 Targu Mures, Romania
| | - Oana Mirela Tiucă
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Dermatology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Dermatology Clinic, Mures County Clinical Hospital, 540015 Targu Mures, Romania
| | - Ionela Maria Pașcanu
- Department of Endocrinology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Compartment of Endocrinology, Mures County Clinical Hospital, 540139 Targu Mures, Romania
| |
Collapse
|
50
|
Guo D, Yang M, Li S, Zhu W, Chen M, Pan J, Long D, Liu Z, Zhang C. Expression and molecular regulation of non-coding RNAs in HPV-positive head and neck squamous cell carcinoma. Front Oncol 2023; 13:1122982. [PMID: 37064141 PMCID: PMC10090466 DOI: 10.3389/fonc.2023.1122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent malignancy worldwide. Accumulating evidence suggests that persistent HPV infection is closely related to a subset of HNSCC types, and the incidence of human papillomavirus (HPV)-positive HNSCC has been annually increasing in recent decades. Although the carcinogenesis of HPV-positive HNSCC has not been completely elucidated, it has been well confirmed that E6 and E7, the main viral oncoproteins are responsible for the maintenance of malignant transformation, promotion of cell proliferation, and increase in tumor invasion. Moreover, compared with HPV-negative HNSCC, HPV-positive HNSCC shows some special clinical-pathological features, which are possibly related to HPV infection and their specific regulatory mechanisms. Non-coding RNA (ncRNA) is a class of RNA lacking the protein-coding function and playing a critical regulatory role via multiple complex molecular mechanisms. NcRNA is an important regulatory pattern of epigenetic modification, which can exert significant effects on HPV-induced tumorigenesis and progression by deregulating downstream genes. However, the knowledge of ncRNAs is still limited, hence, a better understanding of ncRNAs could provide some insights for exploring the carcinogenesis mechanism and identifying valuable biomarkers in HPV-positive HNSCC. Therefore, in this review, we mainly focused on the expression profile of ncRNAs (including lncRNA, miRNA, and circRNA) and explored their regulatory role in HPV-positive HNSCC, aiming to clarify the regulatory mechanism of ncRNAs and identify valuable biomarkers for HPV-positive HNSCC.
Collapse
|