1
|
Chen W, Lin G, Feng Y, Chen Y, Li Y, Li J, Mao W, Jing Y, Kong C, Hu Y, Chen M, Xia S, Lu C, Tu J, Ji J. Intratumoral and peritumoral CT radiomics in predicting anaplastic lymphoma kinase mutations and survival in patients with lung adenocarcinoma: a multicenter study. Cancer Imaging 2025; 25:35. [PMID: 40083024 PMCID: PMC11907895 DOI: 10.1186/s40644-025-00856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/02/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND To explore the value of intratumoral and peritumoral radiomics in preoperative prediction of anaplastic lymphoma kinase (ALK) mutation status and survival in patients with lung adenocarcinoma. METHODS We retrospectively collected data from 505 eligible patients with lung adenocarcinoma from four hospitals (training and external validation sets 1-3). The CT-based radiomics features were extracted separately from the gross tumor volume (GTV) and GTV incorporating peritumoral 3-, 6-, 9-, 12-, and 15-mm regions (GPTV3, GPTV6, GPTV9, GPTV12, and GPTV15), and screened the most relevant features to construct radiomics models to predict ALK (+). The combined model incorporated radiomics scores (Rad-scores) of the best radiomics model and clinical predictors was constructed. Performance was evaluated using receiver operating characteristic (ROC) analysis. Progression-free survival (PFS) outcomes were examined using the Cox proportional hazards model. RESULTS In the four sets, 21.19% (107/505) patients were ALK (+). The GPTV3 radiomics model using a support vector machine algorithm achieved the best predictive performance, with the highest average AUC of 0.811 in the validation sets. Clinical TNM stage and pleural indentation were independent predictors. The combined model incorporating the GPTV3-Rad-score and clinical predictors achieved higher performance than the clinical model alone in predicting ALK (+) in three validation sets [AUC: 0.855 (95% CI: 0.766-0.919) vs. 0.648 (95% CI: 0.543-0.745), P = 0.001; 0.882 (95% CI: 0.801-0.962) vs. 0.634 (95% CI: 0.548-0.714), P < 0.001; 0.810 (95% CI: 0.727-0.877) vs. 0.663 (95% CI: 0.570-0.748), P = 0.006]. The prediction score of the combined model could stratify PFS outcomes in patients receiving ALK-TKI therapy (HR: 0.37; 95% CI: 0.15-0.89; P = 0.026) and immunotherapy (HR: 2.49; 95% CI: 1.22-5.08; P = 0.012). CONCLUSION The presented combined model based on GPTV3 effectively mined tumor features to predict ALK mutation status and stratify PFS outcomes in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Weiyue Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- School of Medicine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Guihan Lin
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- School of Medicine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Ye Feng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- School of Medicine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Yongjun Chen
- Department of Radiology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yanjun Li
- Department of Radiology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Jianbin Li
- Department of Radiology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315211, China
| | - Weibo Mao
- Department of Pathology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yang Jing
- Huiying Medical Technology Co., Ltd, Room A206, B2, Dongsheng Science and Technology Park, Haidian District, Beijing, 100192, China
| | - Chunli Kong
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- School of Medicine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Yumin Hu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- School of Medicine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- School of Medicine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Shuiwei Xia
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- School of Medicine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Chenying Lu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- School of Medicine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- School of Medicine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
- School of Medicine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| |
Collapse
|
2
|
AlOsaimi HM, Alshilash AM, Al-Saif LK, Bosbait JM, Albeladi RS, Almutairi DR, Alhazzaa AA, Alluqmani TA, Al Qahtani SM, Almohammadi SA, Alamri RA, Alkurdi AA, Aljohani WK, Alraddadi RH, Alshammari MK. AI models for the identification of prognostic and predictive biomarkers in lung cancer: a systematic review and meta-analysis. Front Oncol 2025; 15:1424647. [PMID: 40078179 PMCID: PMC11896857 DOI: 10.3389/fonc.2025.1424647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction This systematic review and meta-analysis aim to evaluate the efficacy of artificial intelligence (AI) models in identifying prognostic and predictive biomarkers in lung cancer. With the increasing complexity of lung cancer subtypes and the need for personalized treatment strategies, AI-driven approaches offer a promising avenue for biomarker discovery and clinical decision-making. Methods A comprehensive literature search was conducted in multiple electronic databases to identify relevant studies published up to date. Studies investigating AI models for the identification of prognostic and predictive biomarkers in lung cancer were included. Data extraction, quality assessment, and meta-analysis were performed according to PRISMA guidelines. Results A total of 34 studies met the inclusion criteria, encompassing diverse AI methodologies and biomarker targets. AI models, particularly deep learning and machine learning algorithms demonstrated high accuracy in predicting biomarker status. Most of the studies developed models for the prediction of EGFR, followed by PD-L1 and ALK biomarkers in lung cancer. Internal and external validation techniques confirmed the robustness and generalizability of AI-driven predictions across heterogeneous patient cohorts. According to our results, the pooled sensitivity and pooled specificity of AI models for the prediction of biomarkers of lung cancer were 0.77 (95% CI: 0.72 - 0.82) and 0.79 (95% CI: 0.78 - 0.84). Conclusion The findings of this systematic review and meta-analysis highlight the significant potential of AI models in facilitating non-invasive assessment of prognostic and predictive biomarkers in lung cancer. By enhancing diagnostic accuracy and guiding treatment selection, AI-driven approaches have the potential to revolutionize personalized oncology and improve patient outcomes in lung cancer management. Further research is warranted to validate and optimize the clinical utility of AI-driven biomarkers in large-scale prospective studies.
Collapse
Affiliation(s)
- Hind M. AlOsaimi
- Department of Pharmacy Services Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Aseel M. Alshilash
- Department of Medicine, Royal College of Surgeons Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Layan K. Al-Saif
- Department of Medicine, Majmaah University, Almajmaah, Saudi Arabia
| | - Jannat M. Bosbait
- Department of Medicine, King Faisal University, Alahsa, Saudi Arabia
| | - Roaa S. Albeladi
- Department of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | | | - Alwaleed A. Alhazzaa
- Department of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tariq A. Alluqmani
- Department of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | | | | | | | - Abdullah A. Alkurdi
- Department of Medicine, Al Rayan National College of Medicine, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Waleed K. Aljohani
- Department of Medicine, Al Rayan National College of Medicine, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Raghad H. Alraddadi
- Department of Medicine, Al Rayan National College of Medicine, Al-Madinah Al-Munawwarah, Saudi Arabia
| | | |
Collapse
|
3
|
Jungblut L, Rizzo SM, Ebner L, Kobe A, Nguyen-Kim TDL, Martini K, Roos J, Puligheddu C, Afshar-Oromieh A, Christe A, Dorn P, Funke-Chambour M, Hötker A, Frauenfelder T. Advancements in lung cancer: a comprehensive perspective on diagnosis, staging, therapy and follow-up from the SAKK Working Group on Imaging in Diagnosis and Therapy Monitoring. Swiss Med Wkly 2024; 154:3843. [PMID: 39835913 DOI: 10.57187/s.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
In 2015, around 4400 individuals received a diagnosis of lung cancer, and Switzerland recorded approximately 3200 deaths related to lung cancer. Advances in detection, such as lung cancer screening and improved treatments, have led to increased identification of early-stage lung cancer and higher chances of long-term survival. This progress has introduced new considerations in imaging, emphasising non-invasive diagnosis and characterisation techniques like radiomics. Treatment aspects, such as preoperative assessment and the implementation of immune response evaluation criteria in solid tumours (iRECIST), have also seen advancements. For those undergoing curative treatment for lung cancer, guidelines propose follow-up with computed tomography (CT) scans within a specific timeframe. However, discrepancies exist in published guidelines, and there is a lack of universally accepted recommendations for follow-up procedures. This white paper aims to provide a certain standard regarding the use of imaging on the diagnosis, staging, treatment and follow-up of patients with lung cancer.
Collapse
Affiliation(s)
- Lisa Jungblut
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefania Maria Rizzo
- Service of Radiology, Imaging Institute of Southern Switzerland, Clinica Di Radiologia EOC, Lugano, Switzerland
| | - Lukas Ebner
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Adrian Kobe
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thi Dan Linh Nguyen-Kim
- Institute of Radiology and Nuclear Medicine, Stadtspital Triemli Zurich, Zurich, Switzerland
| | - Katharina Martini
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Justus Roos
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Carla Puligheddu
- Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Christe
- Department of Radiology SLS, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Hötker
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Zhuo LY, Hao JW, Song ZJ, Meng H, Wang TD, Yang LL, Yang ZM, Ma JM, Shen D, Cui JJ, Chen WJ, Yang W, Zang LL, Wang JN, Yin XP. Predicting the severity of mycoplasma pneumoniae pneumonia in pediatric and adult patients: a multicenter study. Sci Rep 2024; 14:22978. [PMID: 39362944 PMCID: PMC11450145 DOI: 10.1038/s41598-024-74251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The purpose of this study is to develop a nomogram model for early prediction of the severe mycoplasma pneumoniae pneumonia (SMPP) in Pediatric and Adult Patients. A retrospective analysis was conducted on patients with MPP, classifying them into SMPP and non-severe MPP (NSMPP) groups. A total of 550 patients (NSMPP 374 and SMPP 176) were enrolled in the study and allocated to training, validation cohorts. 278 patients (NSMPP 224 and SMPP 54) were retrospectively collected from two institutions and allocated to testing cohort. The risk factors for SMPP were identified using univariate analysis. For radiomic feature selection, Spearman's correlation and the least absolute shrinkage and selection operator (LASSO) were utilized. Logistic regression was used to build different models, including clinical, imaging, radiomics, and integrated models (combining clinical, imaging, and radiomics features selected). The model's discrimination was evaluated using a receiver operating characteristic curve, its calibration with a calibration curve, and the results were visualized using the Hosmer-Lemeshow goodness-of-fit test. Thirteen clinical features and fourteen imaging features were selected for constructing the clinical and imaging models. Simultaneously, a set of twenty-five radiomics features were utilized to build the radiomics model. The integrated model demonstrated good calibration and discrimination in the training cohorts (AUC, 0.922; 95% CI: 0.900, 0.942), validation cohorts (AUC, 0.879; 95% CI: 0.806, 0.920), and testing cohorts (AUC, 0.877; 95% CI: 0.836, 0.916). The discriminatory and predictive efficacy of the clinical model in testing cohorts increased further after clinical and radiological features were incorporated (AUC, 0.849 vs. 0.922, P = 0.002). The model demonstrated exemplary predictive efficacy for SMPP by leveraging a comprehensive set of inputs, encompassing clinical data, quantitative and qualitative radiological features, along with radiomics features. The integration of these three aspects in the predictive model further enhanced the performance of the clinical model, indicating the potential for extensive clinical applications.
Collapse
Affiliation(s)
- Li-Yong Zhuo
- Department of Radiology and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, The Affiliated Hospital of Hebei University, 212 Eastern Yuhua Road, Baoding, 071000, Hebei Province, China
| | - Jia-Wei Hao
- Department of Radiology and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, The Affiliated Hospital of Hebei University, 212 Eastern Yuhua Road, Baoding, 071000, Hebei Province, China
| | - Zi-Jun Song
- Department of Critical Care Medicine, Baoding First Central Hospital, Lianchi District, No. 320, Changcheng North Street (Qianwei Road), Baoding, 071000, China
| | - Huan Meng
- Department of Radiology and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, The Affiliated Hospital of Hebei University, 212 Eastern Yuhua Road, Baoding, 071000, Hebei Province, China
| | - Tian-Da Wang
- Department of Radiology and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, The Affiliated Hospital of Hebei University, 212 Eastern Yuhua Road, Baoding, 071000, Hebei Province, China
| | - Lu-Lu Yang
- Department of Radiology and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, The Affiliated Hospital of Hebei University, 212 Eastern Yuhua Road, Baoding, 071000, Hebei Province, China
| | - Zi-Mei Yang
- Department of Radiology and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, The Affiliated Hospital of Hebei University, 212 Eastern Yuhua Road, Baoding, 071000, Hebei Province, China
| | - Jia-Mei Ma
- Department of Radiology and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, The Affiliated Hospital of Hebei University, 212 Eastern Yuhua Road, Baoding, 071000, Hebei Province, China
| | - Dan Shen
- Department of Urology, the Affiliated Hospital of Hebei University, 212 Eastern Yuhua Road, Baoding City, 071000, Hebei Province, China
| | - Jing-Jing Cui
- Department of Research and Development, United Imaging Intelligence (Beijing) Co., Ltd.Yongteng North Road, Haidian District, Beijing, 100094, China
| | - Wen-Jing Chen
- Department of Research and Development, United Imaging Intelligence (Beijing) Co., Ltd.Yongteng North Road, Haidian District, Beijing, 100094, China
| | - Wei Yang
- Department of Pulmonary and Critical Care Medicine, Baoding First Central Hospital, Lianchi District, No. 320, Changcheng North Street (Qianwei Road), Baoding, 071000, China
| | - Li-Li Zang
- Department of Radiology, Baoding Children's Hospital, No. 103, East Baihua Road, Baoding, 071000, China
| | - Jia-Ning Wang
- Department of Radiology and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, The Affiliated Hospital of Hebei University, 212 Eastern Yuhua Road, Baoding, 071000, Hebei Province, China.
| | - Xiao-Ping Yin
- Department of Radiology and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, The Affiliated Hospital of Hebei University, 212 Eastern Yuhua Road, Baoding, 071000, Hebei Province, China.
| |
Collapse
|
5
|
Song X, Li L, Yu Q, Liu N, Zhu S, Yuan S. Radiogenomics models for predicting prognosis in locally advanced non-small cell lung cancer patients undergoing definitive chemoradiotherapy. Transl Lung Cancer Res 2024; 13:1828-1840. [PMID: 39263037 PMCID: PMC11384488 DOI: 10.21037/tlcr-24-145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024]
Abstract
Background Definitive chemoradiotherapy (dCRT) is the cornerstone for locally advanced non-small cell lung cancer (LA-NSCLC). The study aimed to construct a multi-omics model integrating baseline clinical data, computed tomography (CT) images and genetic information to predict the prognosis of dCRT in LA-NSCLC patients. Methods The study retrospectively enrolled 105 stage III LA-NSCLC patients who had undergone dCRT. The pre-treatment CT images were collected, and the primary tumor was delineated as a region of interest (ROI) on the image using 3D-Slicer, and the radiomics features were extracted. The least absolute shrinkage and selection operator (LASSO) was employed for dimensionality reduction and selection of features. Genomic information was obtained from the baseline tumor tissue samples. We then constructed a multi-omics model by combining baseline clinical data, radiomics and genomics features. The predictive performance of the model was evaluated by the area under the curve (AUC) of the receiver operating characteristic (ROC) and the concordance index (C-index). Results The median follow-up time was 30.1 months, and the median progression-free survival (PFS) was 10.60 months. Four features were applied to construct the radiomics model. Multivariable analysis demonstrated the Rad-score, KEAP1 and MET mutations were independent prognostic factors for PFS. The C-index of radiomics model, genomics model and radiogenomics model all performed well in the training group (0.590 vs. 0.606 vs. 0.663) and the validation group (0.599 vs. 0.594 vs. 0.650). Conclusions The radiomics model, genomics model and radiogenomics model can all predict the prognosis of dCRT for LA-NSCLC, and the radiogenomics model is superior to the single type model.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Qingxi Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ning Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Shouhui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Hefei, China
| |
Collapse
|
6
|
Han X, Wang Y, Jia X, Zheng Y, Ding C, Zhang X, Zhang K, Cao Y, Li Y, Xia L, Zheng C, Huang J, Shi H. Predictive value of delta-radiomic features for prognosis of advanced non-small cell lung cancer patients undergoing immune checkpoint inhibitor therapy. Transl Lung Cancer Res 2024; 13:1247-1263. [PMID: 38973966 PMCID: PMC11225045 DOI: 10.21037/tlcr-24-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024]
Abstract
Background No robust predictive biomarkers exist to identify non-small cell lung cancer (NSCLC) patients likely to benefit from immune checkpoint inhibitor (ICI) therapies. The aim of this study was to explore the role of delta-radiomics features in predicting the clinical outcomes of patients with advanced NSCLC who received ICI therapy. Methods Data of 179 patients with advanced NSCLC (stages IIIB-IV) from two institutions (Database 1 =133; Database 2 =46) were retrospectively analyzed. Patients in the Database 1 were randomly assigned into training and validation dataset, with a ratio of 8:2. Patients in Database 2 were allocated into testing dataset. Features were selected from computed tomography (CT) images before and 6-8 weeks after ICI therapy. For each lesion, a total of 1,037 radiomic features were extracted. Lowly reliable [intraclass correlation coefficient (ICC) <0.8] and redundant (r>0.8) features were excluded. The delta-radiomics features were defined as the relative net change of radiomics features between two time points. Prognostic models for progression-free survival (PFS) and overall survival (OS) were established using the multivariate Cox regression based on selected delta-radiomics features. A clinical model and a pre-treatment radiomics model were established as well. Results The median PFS (after therapy) was 7.0 [interquartile range (IQR): 3.4, 9.1] (range, 1.4-13.2) months. To predict PFS, the model established based on the five most contributing delta-radiomics features yielded Harrell's concordance index (C-index) values of 0.708, 0.688, and 0.603 in the training, validation, and testing databases, respectively. The median survival time was 12 (IQR: 8.7, 15.8) (range, 2.9-23.3) months. To predict OS, a promising prognostic performance was confirmed with the corresponding C-index values of 0.810, 0.762, and 0.697 in the three datasets based on the seven most contributing delta-radiomics features, respectively. Furthermore, compared with clinical and pre-treatment radiomics models, the delta-radiomics model had the highest area under the curve (AUC) value and the best patients' stratification ability. Conclusions The delta-radiomics model showed a good performance in predicting therapeutic outcomes in advanced NSCLC patients undergoing ICI therapy. It provides a higher predictive value than clinical and the pre-treatment radiomics models.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yujin Wang
- Departments of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Jia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuting Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | | | - Xiaohui Zhang
- Clinical Solution, Philips Healthcare, Shanghai, China
| | - Kailu Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yunkun Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yumin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Liming Xia
- Departments of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
7
|
Miao L, Qiu T, Li Y, Li J, Jiang X, Liu M, Zhang X, Jiang J, Zhang H, Wang Y, Li X, Ying J, Li M. Predicting MET exon 14 skipping mutation in pulmonary sarcomatoid carcinoma by whole-tumour texture analysis combined with clinical and conventional contrast-enhanced computed tomography features. Transl Lung Cancer Res 2024; 13:1232-1246. [PMID: 38973946 PMCID: PMC11225047 DOI: 10.21037/tlcr-24-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 07/09/2024]
Abstract
Background Pulmonary sarcomatoid carcinoma (PSC) is a rare, highly malignant type of non-small cell lung cancer (NSCLC) with a poor prognosis. Targeted drugs for MET exon 14 (METex14) skipping mutation can have considerable clinical benefits. This study aimed to predict METex14 skipping mutation in PSC patients by whole-tumour texture analysis combined with clinical and conventional contrast-enhanced computed tomography (CECT) features. Methods This retrospective study included 56 patients with PSC diagnosed by pathology. All patients underwent CECT before surgery or other treatment, and both targeted DNA- and RNA-based next-generation sequencing (NGS) were used to detect METex14 skipping mutation status. The patients were divided into two groups: METex14 skipping mutation and nonmutation groups. Overall, 1,316 texture features of the whole tumour were extracted. We also collected 12 clinical and 20 conventional CECT features. After dimensionality reduction and selection, predictive models were established by multivariate logistic regression analysis. Models were evaluated using the area under the curve (AUC), and the clinical utility of the model was assessed by decision curve analysis. Results METex14 skipping mutation was detected in 17.9% of PSCs. Mutations were found more frequently in those (I) who had smaller long- or short-axis diameters (P=0.02, P=0.01); (II) who had lower T stages (I, II) (P=0.02); and (III) with pseudocapsular or annular enhancement (P=0.03). The combined model based on the conventional and texture models yielded the best performance in predicting METex14 skipping mutation with the highest AUC (0.89). The conventional and texture models also had good performance (AUC =0.83 conventional; =0.88 texture). Conclusions Whole-tumour texture analysis combined with clinical and conventional CECT features may serve as a noninvasive tool to predict the METex14 skipping mutation status in PSC.
Collapse
Affiliation(s)
- Lei Miao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Li
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Jiang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengwen Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Zhang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiuming Jiang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanhuan Zhang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmei Wang
- GE Healthcare China, Pudong New Area, Shanghai, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Li
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Poalelungi DG, Neagu AI, Fulga A, Neagu M, Tutunaru D, Nechita A, Fulga I. Revolutionizing Pathology with Artificial Intelligence: Innovations in Immunohistochemistry. J Pers Med 2024; 14:693. [PMID: 39063947 PMCID: PMC11278211 DOI: 10.3390/jpm14070693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Artificial intelligence (AI) is a reality of our times, and it has been successfully implemented in all fields, including medicine. As a relatively new domain, all efforts are directed towards creating algorithms applicable in most medical specialties. Pathology, as one of the most important areas of interest for precision medicine, has received significant attention in the development and implementation of AI algorithms. This focus is especially important for achieving accurate diagnoses. Moreover, immunohistochemistry (IHC) serves as a complementary diagnostic tool in pathology. It can be further augmented through the application of deep learning (DL) and machine learning (ML) algorithms for assessing and analyzing immunohistochemical markers. Such advancements can aid in delineating targeted therapeutic approaches and prognostic stratification. This article explores the applications and integration of various AI software programs and platforms used in immunohistochemical analysis. It concludes by highlighting the application of these technologies to pathologies such as breast, prostate, lung, melanocytic proliferations, and hematologic conditions. Additionally, it underscores the necessity for further innovative diagnostic algorithms to assist physicians in the diagnostic process.
Collapse
Affiliation(s)
- Diana Gina Poalelungi
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Anca Iulia Neagu
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint John Clinical Emergency Hospital for Children, 800487 Galati, Romania
| | - Ana Fulga
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Marius Neagu
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Dana Tutunaru
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Aurel Nechita
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint John Clinical Emergency Hospital for Children, 800487 Galati, Romania
| | - Iuliu Fulga
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| |
Collapse
|
9
|
Zhou TH, Zhou XX, Ni J, Ma YQ, Xu FY, Fan B, Guan Y, Jiang XA, Lin XQ, Li J, Xia Y, Wang X, Wang Y, Huang WJ, Tu WT, Dong P, Li ZB, Liu SY, Fan L. CT whole lung radiomic nomogram: a potential biomarker for lung function evaluation and identification of COPD. Mil Med Res 2024; 11:14. [PMID: 38374260 PMCID: PMC10877876 DOI: 10.1186/s40779-024-00516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Computed tomography (CT) plays a great role in characterizing and quantifying changes in lung structure and function of chronic obstructive pulmonary disease (COPD). This study aimed to explore the performance of CT-based whole lung radiomic in discriminating COPD patients and non-COPD patients. METHODS This retrospective study was performed on 2785 patients who underwent pulmonary function examination in 5 hospitals and were divided into non-COPD group and COPD group. The radiomic features of the whole lung volume were extracted. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied for feature selection and radiomic signature construction. A radiomic nomogram was established by combining the radiomic score and clinical factors. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were used to evaluate the predictive performance of the radiomic nomogram in the training, internal validation, and independent external validation cohorts. RESULTS Eighteen radiomic features were collected from the whole lung volume to construct a radiomic model. The area under the curve (AUC) of the radiomic model in the training, internal, and independent external validation cohorts were 0.888 [95% confidence interval (CI) 0.869-0.906], 0.874 (95%CI 0.844-0.904) and 0.846 (95%CI 0.822-0.870), respectively. All were higher than the clinical model (AUC were 0.732, 0.714, and 0.777, respectively, P < 0.001). DCA demonstrated that the nomogram constructed by combining radiomic score, age, sex, height, and smoking status was superior to the clinical factor model. CONCLUSIONS The intuitive nomogram constructed by CT-based whole-lung radiomic has shown good performance and high accuracy in identifying COPD in this multicenter study.
Collapse
Affiliation(s)
- Tao-Hu Zhou
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
- School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Xiu-Xiu Zhou
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jiong Ni
- Department of Radiology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, 200065, China
| | - Yan-Qing Ma
- Department of Radiology, Zhejiang Province People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Fang-Yi Xu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang, 310018, China
| | - Bing Fan
- Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Yu Guan
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xin-Ang Jiang
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiao-Qing Lin
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
- College of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jie Li
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
- College of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yi Xia
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiang Wang
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yun Wang
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Wen-Jun Huang
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
- Department of Radiology, the Second People's Hospital of Deyang, Deyang, 618000, Sichuan, China
| | - Wen-Ting Tu
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Peng Dong
- School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Zhao-Bin Li
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shi-Yuan Liu
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Li Fan
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
10
|
Grenier PA, Brun AL, Mellot F. [The contribution of artificial intelligence (AI) subsequent to the processing of thoracic imaging]. Rev Mal Respir 2024; 41:110-126. [PMID: 38129269 DOI: 10.1016/j.rmr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The contribution of artificial intelligence (AI) to medical imaging is currently the object of widespread experimentation. The development of deep learning (DL) methods, particularly convolution neural networks (CNNs), has led to performance gains often superior to those achieved by conventional methods such as machine learning. Radiomics is an approach aimed at extracting quantitative data not accessible to the human eye from images expressing a disease. The data subsequently feed machine learning models and produce diagnostic or prognostic probabilities. As for the multiple applications of AI methods in thoracic imaging, they are undergoing evaluation. Chest radiography is a practically ideal field for the development of DL algorithms able to automatically interpret X-rays. Current algorithms can detect up to 14 different abnormalities present either in isolation or in combination. Chest CT is another area offering numerous AI applications. Various algorithms have been specifically formed and validated for the detection and characterization of pulmonary nodules and pulmonary embolism, as well as segmentation and quantitative analysis of the extent of diffuse lung diseases (emphysema, infectious pneumonias, interstitial lung disease). In addition, the analysis of medical images can be associated with clinical, biological, and functional data (multi-omics analysis), the objective being to construct predictive approaches regarding disease prognosis and response to treatment.
Collapse
Affiliation(s)
- P A Grenier
- Délégation à la recherche clinique et l'innovation, hôpital Foch, Suresnes, France.
| | - A L Brun
- Service de radiologie, hôpital Foch, Suresnes, France
| | - F Mellot
- Service de radiologie, hôpital Foch, Suresnes, France
| |
Collapse
|
11
|
Cellina M, De Padova G, Caldarelli N, Libri D, Cè M, Martinenghi C, Alì M, Papa S, Carrafiello G. Artificial Intelligence in Lung Cancer Imaging: From Data to Therapy. Crit Rev Oncog 2024; 29:1-13. [PMID: 38505877 DOI: 10.1615/critrevoncog.2023050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Lung cancer remains a global health challenge, leading to substantial morbidity and mortality. While prevention and early detection strategies have improved, the need for precise diagnosis, prognosis, and treatment remains crucial. In this comprehensive review article, we explore the role of artificial intelligence (AI) in reshaping the management of lung cancer. AI may have different potential applications in lung cancer characterization and outcome prediction. Manual segmentation is a time-consuming task, with high inter-observer variability, that can be replaced by AI-based approaches, including deep learning models such as U-Net, BCDU-Net, and others, to quantify lung nodules and cancers objectively and to extract radiomics features for the characterization of the tissue. AI models have also demonstrated their ability to predict treatment responses, such as immunotherapy and targeted therapy, by integrating radiomic features with clinical data. Additionally, AI-based prognostic models have been developed to identify patients at higher risk and personalize treatment strategies. In conclusion, this review article provides a comprehensive overview of the current state of AI applications in lung cancer management, spanning from segmentation and virtual biopsy to outcome prediction. The evolving role of AI in improving the precision and effectiveness of lung cancer diagnosis and treatment underscores its potential to significantly impact clinical practice and patient outcomes.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| | - Giuseppe De Padova
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Nazarena Caldarelli
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Dario Libri
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Carlo Martinenghi
- Radiology Department, Ospedale San Raffaele, Via Olgettina, 60 - 20132 Milan, Italy
| | - Marco Alì
- Radiology Unit, CDI, Centro Diagnostico Italiano, Via Simone Saint Bon, 20, 20147 Milan, Italy
| | - Sergio Papa
- Radiology Unit, CDI, Centro Diagnostico Italiano, Via Simone Saint Bon, 20, 20147 Milan, Italy
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy; Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, Università di Milano, 20122 Milan, Italy
| |
Collapse
|
12
|
Çalışkan M, Tazaki K. AI/ML advances in non-small cell lung cancer biomarker discovery. Front Oncol 2023; 13:1260374. [PMID: 38148837 PMCID: PMC10750392 DOI: 10.3389/fonc.2023.1260374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths among both men and women, representing approximately 25% of cancer fatalities each year. The treatment landscape for non-small cell lung cancer (NSCLC) is rapidly evolving due to the progress made in biomarker-driven targeted therapies. While advancements in targeted treatments have improved survival rates for NSCLC patients with actionable biomarkers, long-term survival remains low, with an overall 5-year relative survival rate below 20%. Artificial intelligence/machine learning (AI/ML) algorithms have shown promise in biomarker discovery, yet NSCLC-specific studies capturing the clinical challenges targeted and emerging patterns identified using AI/ML approaches are lacking. Here, we employed a text-mining approach and identified 215 studies that reported potential biomarkers of NSCLC using AI/ML algorithms. We catalogued these studies with respect to BEST (Biomarkers, EndpointS, and other Tools) biomarker sub-types and summarized emerging patterns and trends in AI/ML-driven NSCLC biomarker discovery. We anticipate that our comprehensive review will contribute to the current understanding of AI/ML advances in NSCLC biomarker research and provide an important catalogue that may facilitate clinical adoption of AI/ML-derived biomarkers.
Collapse
Affiliation(s)
- Minal Çalışkan
- Translational Science Department, Precision Medicine Function, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Koichi Tazaki
- Translational Science Department I, Precision Medicine Function, Daiichi Sankyo, Tokyo, Japan
| |
Collapse
|
13
|
Ma T, Zhang Y, Zhao M, Wang L, Wang H, Ye Z. A machine learning-based radiomics model for prediction of tumor mutation burden in gastric cancer. Front Genet 2023; 14:1283090. [PMID: 38028587 PMCID: PMC10657897 DOI: 10.3389/fgene.2023.1283090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose: To evaluate the potential of machine learning (ML)-based radiomics approach for predicting tumor mutation burden (TMB) in gastric cancer (GC). Methods: The contrast enhanced CT (CECT) images with corresponding clinical information of 256 GC patients were retrospectively collected. Patients were separated into training set (n = 180) and validation set (n = 76). A total of 3,390 radiomics features were extracted from three phases images of CECT. The least absolute shrinkage and selection operator (LASSO) model was used for feature screening. Seven machine learning (ML) algorithms were employed to find the optimal classifier. The predictive ability of radiomics model (RM) was evaluated with receiver operating characteristic. The correlation between RM and TMB values was evaluated using Spearman's correlation coefficient. The explainability of RM was assessed by the Shapley Additive explanations (SHAP) method. Results: Logistic regression algorithm was chosen for model construction. The RM showed good predictive ability of TMB status with AUCs of 0.89 [95% confidence interval (CI): 0.85-0.94] and 0.86 (95% CI: 0.74-0.98) in the training and validation sets. The correlation analysis revealed a good correlation between RM and TMB levels (correlation coefficient: 0.62, p < 0.001). The RM also showed favorable and stable predictive accuracy within the cutoff value range 6-16 mut/Mb in both sets. Conclusion: The ML-based RM offered a promising image biomarker for predicting TMB status in GC patients.
Collapse
Affiliation(s)
- Tingting Ma
- Department of Radiology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mengran Zhao
- Department of Radiology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lingwei Wang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hua Wang
- Department of Radiology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
14
|
Pan F, Feng L, Liu B, Hu Y, Wang Q. Application of radiomics in diagnosis and treatment of lung cancer. Front Pharmacol 2023; 14:1295511. [PMID: 38027000 PMCID: PMC10646419 DOI: 10.3389/fphar.2023.1295511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Radiomics has become a research field that involves the process of converting standard nursing images into quantitative image data, which can be combined with other data sources and subsequently analyzed using traditional biostatistics or artificial intelligence (Al) methods. Due to the capture of biological and pathophysiological information by radiomics features, these quantitative radiomics features have been proven to provide fast and accurate non-invasive biomarkers for lung cancer risk prediction, diagnosis, prognosis, treatment response monitoring, and tumor biology. In this review, radiomics has been emphasized and discussed in lung cancer research, including advantages, challenges, and drawbacks.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of CT, Jilin Province FAW General Hospital, Changchun, China
| | - Li Feng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Wang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Rinaldi L, Guerini Rocco E, Spitaleri G, Raimondi S, Attili I, Ranghiero A, Cammarata G, Minotti M, Lo Presti G, De Piano F, Bellerba F, Funicelli G, Volpe S, Mora S, Fodor C, Rampinelli C, Barberis M, De Marinis F, Jereczek-Fossa BA, Orecchia R, Rizzo S, Botta F. Association between Contrast-Enhanced Computed Tomography Radiomic Features, Genomic Alterations and Prognosis in Advanced Lung Adenocarcinoma Patients. Cancers (Basel) 2023; 15:4553. [PMID: 37760521 PMCID: PMC10527057 DOI: 10.3390/cancers15184553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Non-invasive methods to assess mutational status, as well as novel prognostic biomarkers, are warranted to foster therapy personalization of patients with advanced non-small cell lung cancer (NSCLC). This study investigated the association of contrast-enhanced Computed Tomography (CT) radiomic features of lung adenocarcinoma lesions, alone or integrated with clinical parameters, with tumor mutational status (EGFR, KRAS, ALK alterations) and Overall Survival (OS). In total, 261 retrospective and 48 prospective patients were enrolled. A Radiomic Score (RS) was created with LASSO-Logistic regression models to predict mutational status. Radiomic, clinical and clinical-radiomic models were trained on retrospective data and tested (Area Under the Curve, AUC) on prospective data. OS prediction models were trained and tested on retrospective data with internal cross-validation (C-index). RS significantly predicted each alteration at training (radiomic and clinical-radiomic AUC 0.95-0.98); validation performance was good for EGFR (AUC 0.86), moderate for KRAS and ALK (AUC 0.61-0.65). RS was also associated with OS at univariate and multivariable analysis, in the latter with stage and type of treatment. The validation C-index was 0.63, 0.79, and 0.80 for clinical, radiomic, and clinical-radiomic models. The study supports the potential role of CT radiomics for non-invasive identification of gene alterations and prognosis prediction in patients with advanced lung adenocarcinoma, to be confirmed with independent studies.
Collapse
Affiliation(s)
- Lisa Rinaldi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Elena Guerini Rocco
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Sara Raimondi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Alberto Ranghiero
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
| | - Giulio Cammarata
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Marta Minotti
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Giuliana Lo Presti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Francesca De Piano
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Federica Bellerba
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Gianluigi Funicelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Stefania Volpe
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Serena Mora
- Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (S.M.); (C.F.)
| | - Cristiana Fodor
- Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (S.M.); (C.F.)
| | - Cristiano Rampinelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Massimo Barberis
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
| | - Filippo De Marinis
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Roberto Orecchia
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
- Scientific Direction, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefania Rizzo
- Clinica di Radiologia EOC, Istituto Imaging della Svizzera Italiana (IIMSI), Via Tesserete 46, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Via G. Buffi 13, 6900 Lugano, Switzerland
| | - Francesca Botta
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| |
Collapse
|
16
|
Li X, Chen J, Zhang C, Han Z, Zheng X, Cao D. Application value of CT radiomic nomogram in predicting T790M mutation of lung adenocarcinoma. BMC Pulm Med 2023; 23:339. [PMID: 37697337 PMCID: PMC10494384 DOI: 10.1186/s12890-023-02609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND The purpose of this study was to develop a radiomic nomogram to predict T790M mutation of lung adenocarcinoma base on non-enhanced CT lung images. METHODS This retrospective study reviewed demographic data and lung CT images of 215 lung adenocarcinoma patients with T790M gene test results. 215 patients (including 52 positive) were divided into a training set (n = 150, 36 positive) and an independent test set (n = 65, 16 positive). Multivariate logistic regression was used to select demographic data and CT semantic features to build clinical model. We extracted quantitative features from the volume of interest (VOI) of the lesion, and developed the radiomic model with different feature selection algorithms and classifiers. The models were trained by a 5-fold cross validation strategy on the training set and assessed on the test set. ROC was used to estimate the performance of the clinical model, radiomic model, and merged nomogram. RESULTS Three demographic features (gender, smoking, emphysema) and ten radiomic features (Kruskal-Wallis as selection algorithm, LASSO Logistic Regression as classifier) were determined to build the models. The AUC of the clinical model, radiomic model, and nomogram in the test set were 0.742(95%CI, 0.619-0.843), 0.810(95%CI, 0.696-0.907), 0.841(95%CI, 0.743-0.938), respectively. The predictive efficacy of the nomogram was better than the clinical model (p = 0.042). The nomogram predicted T790M mutation with cutoff value was 0.69 and the score was above 130. CONCLUSION The nomogram developed in this study is a non-invasive, convenient, and economical method for predicting T790M mutation of lung adenocarcinoma, which has a good prospect for clinical application.
Collapse
Affiliation(s)
- Xiumei Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Jianwei Chen
- Department of Radiology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Chengxiu Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai200062, China
| | - Zewen Han
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xiuying Zheng
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Department of Radiology, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, Fujian, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Shanghai200062, China.
| |
Collapse
|
17
|
Liu Z, Duan T, Zhang Y, Weng S, Xu H, Ren Y, Zhang Z, Han X. Radiogenomics: a key component of precision cancer medicine. Br J Cancer 2023; 129:741-753. [PMID: 37414827 PMCID: PMC10449908 DOI: 10.1038/s41416-023-02317-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics, radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Tian Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
18
|
Sun J, Li F, Yang J, Lin C, Zhou X, Liu N, Zhang B, Song G, Wang W, Huang C, Song Z, Shi L. Pretherapy investigations using highly robust visualized biomarkers from CT imaging by multiple machine-learning techniques toward its prognosis prediction for ALK-inhibitor therapy in NSCLC: a feasibility study. J Cancer Res Clin Oncol 2023; 149:7341-7353. [PMID: 36928998 DOI: 10.1007/s00432-023-04615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/27/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE Molecularly targeted therapy has revolutionized the therapeutic landscape and is emerging as the first-line treatment option for ALK-rearranged non-small-cell lung cancer (NSCLC). In this study, the highly informative and robust biomarkers based on pre-treatment CT images and clinicopathologic features will be developed and validated to predict the prognosis for ALK-inhibitor therapy in NSCLC patients. METHODS A total of 161 ALK-positive NSCLC patients treated with ALK inhibitors were retrospectively collected as training, validation and test sets from multi-center institutions. Cox proportional hazard regression (CPH) penalized by LASSO and random survival forest (RSF) coupled with recursive feature elimination (RFE) were used for radiomics and clinical features identification and model construction. An overlapping post-processing method was extra added to training process to investigate the stronger biomarker on the whole set. RESULTS 123 of the collected cases progressed after a median follow-up of 15.5 months (IQR, 8.3-25.3). The T and M staging, pericardial effusion, age and ALK inhibitor-alectinib were determined as significant predictors in the survival analysis. Furthermore, we visualized the finally retained 4 radiomics feature. The RSF models built from overlapping-processed clinical and radiomics features respectively reached the maximum C-index of 0.68 and 0.75,but the combination of them,radioclinical signature, improved the score to 0.78. The model on the validation and external test datasets yielded the C-index of 0.73 and 0.79, with the iAUC of 0.76 and 0.83, the IBS of 0.119 and 0.112. CONCLUSION With respect to a simple selection strategy of overlapping optimal radiomics and clinical features from different survival models may promote better progression-free survival(PFS) prediction than conventional survival analysis, which provides a potential method for guiding personalized pre-treatment options of NSCLC.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Feng Li
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co, Ltd, Beijing, 100080, China
| | - Jiantao Yang
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chen Lin
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xianglan Zhou
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Na Liu
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Bingqian Zhang
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ge Song
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Wenxian Wang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co, Ltd, Beijing, 100080, China
| | - Zhengbo Song
- Department of Clinical Trial, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Lei Shi
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
19
|
Chen M, Copley SJ, Viola P, Lu H, Aboagye EO. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Semin Cancer Biol 2023; 93:97-113. [PMID: 37211292 DOI: 10.1016/j.semcancer.2023.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. It exhibits, at the mesoscopic scale, phenotypic characteristics that are generally indiscernible to the human eye but can be captured non-invasively on medical imaging as radiomic features, which can form a high dimensional data space amenable to machine learning. Radiomic features can be harnessed and used in an artificial intelligence paradigm to risk stratify patients, and predict for histological and molecular findings, and clinical outcome measures, thereby facilitating precision medicine for improving patient care. Compared to tissue sampling-driven approaches, radiomics-based methods are superior for being non-invasive, reproducible, cheaper, and less susceptible to intra-tumoral heterogeneity. This review focuses on the application of radiomics, combined with artificial intelligence, for delivering precision medicine in lung cancer treatment, with discussion centered on pioneering and groundbreaking works, and future research directions in the area.
Collapse
Affiliation(s)
- Mitchell Chen
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK; Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Susan J Copley
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK; Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Patrizia Viola
- North West London Pathology, Charing Cross Hospital, Fulham Palace Rd, London W6 8RF, UK
| | - Haonan Lu
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK.
| |
Collapse
|
20
|
Duan L, Zhang L, Lu G, Guo L, Duan S, Zhou C. A CT-Based Radiomics Model for Prediction of Prognosis in Patients with Novel Coronavirus Disease (COVID-19) Pneumonia: A Preliminary Study. Diagnostics (Basel) 2023; 13:1479. [PMID: 37189580 PMCID: PMC10137710 DOI: 10.3390/diagnostics13081479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to develop a computed tomography (CT)-based radiomics model to predict the outcome of COVID-19 pneumonia. In total of 44 patients with confirmed diagnosis of COVID-19 were retrospectively enrolled in this study. The radiomics model and subtracted radiomics model were developed to assess the prognosis of COVID-19 and compare differences between the aggravate and relief groups. Each radiomic signature consisted of 10 selected features and showed good performance in differentiating between the aggravate and relief groups. The sensitivity, specificity, and accuracy of the first model were 98.1%, 97.3%, and 97.6%, respectively (AUC = 0.99). The sensitivity, specificity, and accuracy of the second model were 100%, 97.3%, and 98.4%, respectively (AUC = 1.00). There was no significant difference between the models. The radiomics models revealed good performance for predicting the outcome of COVID-19 in the early stage. The CT-based radiomic signature can provide valuable information to identify potential severe COVID-19 patients and aid clinical decisions.
Collapse
Affiliation(s)
- Lizhen Duan
- Department of Medical Imaging, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an 223300, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Lili Guo
- Department of Medical Imaging, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an 223300, China
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | | | - Changsheng Zhou
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| |
Collapse
|
21
|
Ge G, Zhang J. Feature selection methods and predictive models in CT lung cancer radiomics. J Appl Clin Med Phys 2023; 24:e13869. [PMID: 36527376 PMCID: PMC9860004 DOI: 10.1002/acm2.13869] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Radiomics is a technique that extracts quantitative features from medical images using data-characterization algorithms. Radiomic features can be used to identify tissue characteristics and radiologic phenotyping that is not observable by clinicians. A typical workflow for a radiomics study includes cohort selection, radiomic feature extraction, feature and predictive model selection, and model training and validation. While there has been increasing attention given to radiomic feature extraction, standardization, and reproducibility, currently, there is a lack of rigorous evaluation of feature selection methods and predictive models. Herein, we review the published radiomics investigations in CT lung cancer and provide an overview of the commonly used radiomic feature selection methods and predictive models. We also compare limitations of various methods in clinical applications and present sources of uncertainty associated with those methods. This review is expected to help raise awareness of the impact of radiomic feature and model selection methods on the integrity of radiomics studies.
Collapse
Affiliation(s)
- Gary Ge
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Jie Zhang
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
22
|
Yin M, Guan S, Ding X, Zhuang R, Sun Z, Wang T, Zheng J, Li L, Gao X, Wei H, Ma J, Huang Q, Xiao J, Mo W. Construction and validation of a novel web-based nomogram for patients with lung cancer with bone metastasis: A real-world analysis based on the SEER database. Front Oncol 2022; 12:1075217. [PMID: 36568214 PMCID: PMC9780685 DOI: 10.3389/fonc.2022.1075217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose Patients with lung cancer with bone metastasis (LCBM) often have a very poor prognosis. The purpose of this study is to characterize the prevalence and associated factors and to develop a prognostic nomogram to predict the overall survival (OS) and cancer-specific survival (CSS) for patients with LCBM using multicenter population-based data. Methods Patients with LCBM at the time of diagnosis were identified using the Surveillance, Epidemiology, and End Results (SEER) Program database of the National Cancer Institute (NCI) from 2010 to 2015. Multivariable and univariate logistic regression analyses were performed to identify factors associated with all-cause mortality and lung cancer (LC)-specific mortality. The performance of the nomograms was evaluated with the calibration curves, area under the curve (AUC), and decision curve analysis (DCA). Kaplan-Meier analysis and log-rank tests were used to estimate the survival times of patients with LCBM. Results We finally identified 26,367 patients with LCBM who were selected for survival analysis. Multivariate analysis demonstrated age, sex, T stage, N stage, grade, histology, radiation therapy, chemotherapy, primary site, primary surgery, liver metastasis, and brain metastasis as independent predictors for LCBM. The AUC values of the nomogram for the OS prediction were 0.755, 0.746, and 0.775 in the training cohort; 0.757, 0.763, and 0.765 in the internal validation cohort; and 0.769, 0.781, and 0.867 in the external validation cohort. For CSS, the values were 0.753, 0.753, and 0.757 in the training cohort; 0.753, 0.753, and 0.757 in the internal validation cohort; and 0.767, 0.774, and 0.872 in the external validation cohort. Conclusions Our study constructs a new prognostic model and clearly presents the clinicopathological features and survival analysis of patients with LCBM. The result indicated that the nomograms had favorable discrimination, good consistency, and clinical benefits in patients. In addition, our constructed nomogram prediction models may assist physicians in evaluating individualized prognosis and deciding on treatment for patients.
Collapse
Affiliation(s)
- Mengchen Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Sisi Guan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Ding
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruoyu Zhuang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengwang Sun
- Department of Musculoskeletal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Tao Wang
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Anhui, China
| | - Jiale Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Li
- Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xin Gao
- Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Haifeng Wei
- Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Junming Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Quan Huang
- Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianru Xiao
- Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China,*Correspondence: Jianru Xiao, ; Wen Mo,
| | - Wen Mo
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Jianru Xiao, ; Wen Mo,
| |
Collapse
|
23
|
Fan L, Yang W, Tu W, Zhou X, Zou Q, Zhang H, Feng Y, Liu S. Thoracic Imaging in China: Yesterday, Today, and Tomorrow. J Thorac Imaging 2022; 37:366-373. [PMID: 35980382 PMCID: PMC9592175 DOI: 10.1097/rti.0000000000000670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thoracic imaging has been revolutionized through advances in technology and research around the world, and so has China. Thoracic imaging in China has progressed from anatomic observation to quantitative and functional evaluation, from using traditional approaches to using artificial intelligence. This article will review the past, present, and future of thoracic imaging in China, in an attempt to establish new accepted strategies moving forward.
Collapse
Affiliation(s)
- Li Fan
- Second Affiliated Hospital, Naval Medical University
| | - Wenjie Yang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenting Tu
- Second Affiliated Hospital, Naval Medical University
| | - Xiuxiu Zhou
- Second Affiliated Hospital, Naval Medical University
| | - Qin Zou
- Second Affiliated Hospital, Naval Medical University
| | - Hanxiao Zhang
- Second Affiliated Hospital, Naval Medical University
| | - Yan Feng
- Second Affiliated Hospital, Naval Medical University
| | - Shiyuan Liu
- Second Affiliated Hospital, Naval Medical University
| |
Collapse
|
24
|
Artificial Intelligence in Lung Cancer Imaging: Unfolding the Future. Diagnostics (Basel) 2022; 12:diagnostics12112644. [PMID: 36359485 PMCID: PMC9689810 DOI: 10.3390/diagnostics12112644] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is one of the malignancies with higher morbidity and mortality. Imaging plays an essential role in each phase of lung cancer management, from detection to assessment of response to treatment. The development of imaging-based artificial intelligence (AI) models has the potential to play a key role in early detection and customized treatment planning. Computer-aided detection of lung nodules in screening programs has revolutionized the early detection of the disease. Moreover, the possibility to use AI approaches to identify patients at risk of developing lung cancer during their life can help a more targeted screening program. The combination of imaging features and clinical and laboratory data through AI models is giving promising results in the prediction of patients’ outcomes, response to specific therapies, and risk for toxic reaction development. In this review, we provide an overview of the main imaging AI-based tools in lung cancer imaging, including automated lesion detection, characterization, segmentation, prediction of outcome, and treatment response to provide radiologists and clinicians with the foundation for these applications in a clinical scenario.
Collapse
|
25
|
Hao P, Deng BY, Huang CT, Xu J, Zhou F, Liu ZX, Zhou W, Xu YK. Predicting anaplastic lymphoma kinase rearrangement status in patients with non-small cell lung cancer using a machine learning algorithm that combines clinical features and CT images. Front Oncol 2022; 12:994285. [PMID: 36338735 PMCID: PMC9630325 DOI: 10.3389/fonc.2022.994285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2023] Open
Abstract
PURPOSE To develop an appropriate machine learning model for predicting anaplastic lymphoma kinase (ALK) rearrangement status in non-small cell lung cancer (NSCLC) patients using computed tomography (CT) images and clinical features. METHOD AND MATERIALS This study included 193 patients with NSCLC (154 in the training cohort, 39 in the validation cohort), 68 of whom tested positive for ALK rearrangements and 125 of whom tested negative. From the nonenhanced CT scans, 157 radiomic characteristics were extracted, and 8 clinical features were collected. Five machine learning (ML) models were assessed to find the best classification model for predicting ALK rearrangement status. A radiomic signature was developed using the least absolute shrinkage and selection operator (LASSO) algorithm. The predictive performance of the models based on radiomic features, clinical features, and their combination was assessed by receiver operating characteristic (ROC) curves. RESULTS The support vector machine (SVM) model had the highest AUC of 0.914 for classification. The clinical features model had an AUC=0.805 (95% CI 0.731-0.877) and an AUC=0.735 (95% CI 0.566-0.863) in the training and validation cohorts, respectively. The CT image-based ML model had an AUC=0.953 (95% CI 0.913-1.0) in the training cohort and an AUC=0.890 (95% CI 0.778-0.971) in the validation cohort. For predicting ALK rearrangement status, the ML model based on CT images and clinical features performed better than the model based on only clinical information or CT images, with an AUC of 0.965 (95% CI 0.826-0.882) in the primary cohort and an AUC of 0.914 (95% CI 0.804-0.893) in the validation cohort. CONCLUSION Our findings revealed that ALK rearrangement status could be accurately predicted using an ML-based classification model based on CT images and clinical data.
Collapse
Affiliation(s)
- Peng Hao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo-Yu Deng
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chan-Tao Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Zhou
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe-Xing Liu
- School of Biomedical Engineering, Southern Medical Uinversity, Guangzhou, China
| | - Wu Zhou
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Kai Xu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Lin Q, Wu HJ, Song QS, Tang YK. CT-based radiomics in predicting pathological response in non-small cell lung cancer patients receiving neoadjuvant immunotherapy. Front Oncol 2022; 12:937277. [PMID: 36267975 PMCID: PMC9577189 DOI: 10.3389/fonc.2022.937277] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives In radiomics, high-throughput algorithms extract objective quantitative features from medical images. In this study, we evaluated CT-based radiomics features, clinical features, in-depth learning features, and a combination of features for predicting a good pathological response (GPR) in non-small cell lung cancer (NSCLC) patients receiving immunotherapy-based neoadjuvant therapy (NAT). Materials and methods We reviewed 62 patients with NSCLC who received surgery after immunotherapy-based NAT and collected clinicopathological data and CT images before and after immunotherapy-based NAT. A series of image preprocessing was carried out on CT scanning images: tumor segmentation, conventional radiomics feature extraction, deep learning feature extraction, and normalization. Spearman correlation coefficient, principal component analysis (PCA), and least absolute shrinkage and selection operator (LASSO) were used to screen features. The pretreatment traditional radiomics combined with clinical characteristics (before_rad_cil) model and pretreatment deep learning characteristics (before_dl) model were constructed according to the data collected before treatment. The data collected after NAT created the after_rad_cil model and after_dl model. The entire model was jointly constructed by all clinical features, conventional radiomics features, and deep learning features before and after neoadjuvant treatment. Finally, according to the data obtained before and after treatment, the before_nomogram and after_nomogram were constructed. Results In the before_rad_cil model, four traditional radiomics features ("original_shape_flatness," "wavelet hhl_firer_skewness," "wavelet hlh_firer_skewness," and "wavelet lll_glcm_correlation") and two clinical features ("gender" and "N stage") were screened out to predict a GPR. The average prediction accuracy (ACC) after modeling with k-nearest neighbor (KNN) was 0.707. In the after_rad_cil model, nine features predictive of GPR were obtained after feature screening, among which seven were traditional radiomics features: "exponential_firer_skewness," "exponential_glrlm_runentropy," "log- sigma-5-0-mm-3d_firer_kurtosis," "logarithm_skewness," "original_shape_elongation," "original_shape_brilliance," and "wavelet llh_glcm_clustershade"; two were clinical features: "after_CRP" and "after lymphocyte percentage." The ACC after modeling with support vector machine (SVM) was 0.682. The before_dl model and after_dl model were modeled by SVM, and the ACC was 0.629 and 0.603, respectively. After feature screening, the entire model was constructed by multilayer perceptron (MLP), and the ACC of the GPR was the highest, 0.805. The calibration curve showed that the predictions of the GPR by the before_nomogram and after_nomogram were in consensus with the actual GPR. Conclusion CT-based radiomics has a good predictive ability for a GPR in NSCLC patients receiving immunotherapy-based NAT. Among the radiomics features combined with the clinicopathological information model, deep learning feature model, and the entire model, the entire model had the highest prediction accuracy.
Collapse
Affiliation(s)
| | - Hai Jun Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | | | | |
Collapse
|
27
|
Li Y, Lv X, Wang B, Xu Z, Wang Y, Gao S, Hou D. Differentiating EGFR from ALK mutation status using radiomics signature based on MR sequences of brain metastasis. Eur J Radiol 2022; 155:110499. [PMID: 36049410 DOI: 10.1016/j.ejrad.2022.110499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/29/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE More and more small brain metastases (BMs) in asymptomatic patients can be detected even prior to their primary lung cancer with the development of MRI. The aim of this study was to develop a predictive radiomics model to identify epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutation status in BM and explore the optimal MR sequence for predication. METHODS This retrospective study included 186 patients with proven BM of lung cancer (training cohort: 70 patients with EGFR mutations and 65 patients with ALK rearrangements; testing cohort: 26 patients with EGFR mutations and 25 patients with ALK rearrangements). Radiomics features were separately extracted from contrast-enhanced T1-weighted imaging (T1-CE), T2 fluid-attenuated inversion recovery (T2-FLAIR) and T2WI sequences. The model for three MR sequences were constructed using a random forest classifier. ROC curves were used to validate the capability of the models in the training and testing cohorts. RESULTS The AUCs of the T2-FLAIR model were significantly higher than those of the T1-CE model in training cohort (0.991 versus 0.954) and testing cohort (0.950 versus 0.867) and much higher than those of the T2WI model in training cohort (0.991 versus 0.880) and testing cohort (0.950 versus 0.731). Besides, the F1 scores of the T1-CE model were slightly higher than the T2-FLAIR model and much higher than the T2WI model in two cohorts. CONCLUSION T2-FLAIR and T1-CE radiomics models that can be used as noninvasive tools for identifying EGFR and ALK mutation status are helpful to guide therapeutic strategies.
Collapse
Affiliation(s)
- Ye Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xinna Lv
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Bing Wang
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Zexuan Xu
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yichuan Wang
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Shan Gao
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
28
|
Han X, Fan J, Zheng Y, Ding C, Zhang X, Zhang K, Wang N, Jia X, Li Y, Liu J, Zheng J, Shi H. The Value of CT-Based Radiomics for Predicting Spread Through Air Spaces in Stage IA Lung Adenocarcinoma. Front Oncol 2022; 12:757389. [PMID: 35880159 PMCID: PMC9307661 DOI: 10.3389/fonc.2022.757389] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesSpread through air spaces (STAS), a new invasive pattern in lung adenocarcinoma (LUAD), is a risk factor for poor outcome in early-stage LUAD. This study aimed to develop and validate a CT-based radiomics model for predicting STAS in stage IA LUAD.MethodsA total of 395 patients (169 STAS positive and 226 STAS negative cases, including 316 and 79 patients in the training and test sets, respectively) with stage IA LUAD before surgery were retrospectively included. On all CT images, tumor size, types of nodules (solid, mix ground-glass opacities [mGGO] and pure GGO [pGGO]), and GGO percentage were recorded. Region of interest (ROI) segmentation was performed semi-automatically, and 1,037 radiomics features were extracted from every segmented lesion. Intraclass correlation coefficients (ICCs), Pearson’s correlation analysis and least absolute shrinkage and selection operator (LASSO) penalized logistic regression were used to filter unstable (ICC < 0.75) and redundant features (r > 0.8). A temporary model was established by multivariable logistic regression (LR) analysis based on selected radiomics features. Then, seven radiomics features contributing the most were selected for establishing the radiomics model. We then built two predictive models (clinical-CT model and MixModel) based on clinical and CT features only, and the combination of clinical-CT and Rad-score, respectively. The performances of these three models were assessed.ResultsThe radiomics model achieved good performance with an area under of curve (AUC) of 0.812 in the training set, versus 0.850 in the test set. Furthermore, compared with the clinical-CT model, both radiomics model and MixModel showed higher AUC and better net benefit to patients in the training and test cohorts.ConclusionThe CT-based radiomics model showed satisfying diagnostic performance in early-stage LUAD for preoperatively predicting STAS, with superiority over the clinical-CT model.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chengyu Ding
- Clinical Solution, Philips Healthcare, Shanghai, China
| | - Xiaohui Zhang
- Clinical Solution, Philips Healthcare, Shanghai, China
| | - Kailu Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Na Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Jia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yumin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jinlong Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- *Correspondence: Jinlong Zheng, ; Heshui Shi,
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- *Correspondence: Jinlong Zheng, ; Heshui Shi,
| |
Collapse
|
29
|
Tao J, Liang C, Yin K, Fang J, Chen B, Wang Z, Lan X, Zhang J. 3D convolutional neural network model from contrast-enhanced CT to predict spread through air spaces in non-small cell lung cancer. Diagn Interv Imaging 2022; 103:535-544. [PMID: 35773100 DOI: 10.1016/j.diii.2022.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to compare the efficacy of five non-invasive models, including three-dimensional (3D) convolutional neural network (CNN) model, to predict the spread through air spaces (STAS) status of non-small cell lung cancer (NSCLC), and to obtain the best prediction model to provide a basis for clinical surgery planning. MATERIALS AND METHODS A total of 203 patients (112 men, 91 women; mean age, 60 years; age range 22-80 years) with NSCLC were retrospectively included. Of these, 153 were used for training cohort and 50 for validation cohort. According to the image biomarker standardization initiative reference manual, the image processing and feature extraction were standardized using PyRadiomics. The logistic regression classifier was used to build the model. Five models (clinicopathological/CT model, conventional radiomics model, computer vision (CV) model, 3D CNN model and combined model) were constructed to predict STAS by NSCLC. Area under the receiver operating characteristic curves (AUC) were used to validate the capability of the five models to predict STAS. RESULTS For predicting STAS, the 3D CNN model was superior to the clinicopathological/CT model, conventional radiomics model, CV model and combined model and achieved satisfactory discrimination performance, with an AUC of 0.93 (95% CI: 0.70-0.82) in the training cohort and 0.80 (95% CI: 0.65-0.86) in the validation cohort. Decision curve analysis indicated that, when the probability of the threshold was over 10%, the 3D CNN model was beneficial for predicting STAS status compared to either treating all or treating none of the patients within certain ranges of risk threshold CONCLUSION: The 3D CNN model can be used for the preoperative prediction of STAS in patients with NSCLC, and was superior to the other four models in predicting patients' risk of developing STAS.
Collapse
Affiliation(s)
- Junli Tao
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400044, PR China
| | - Changyu Liang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400044, PR China
| | - Ke Yin
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400044, PR China
| | - Jiayang Fang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400044, PR China
| | - Bohui Chen
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400044, PR China
| | - Zhenyu Wang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400044, PR China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400044, PR China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400044, PR China.
| |
Collapse
|
30
|
Wang Z, Yang C, Han W, Sui X, Zheng F, Xue F, Xu X, Wu P, Chen Y, Gu W, Song W, Jiang J. Quantifying lung cancer heterogeneity using novel CT features: a cross-institute study. Insights Imaging 2022; 13:82. [PMID: 35482262 PMCID: PMC9050978 DOI: 10.1186/s13244-022-01204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Radiomics-based image metrics are not used in the clinic despite the rapidly growing literature. We selected eight promising radiomic features and validated their value in decoding lung cancer heterogeneity. METHODS CT images of 236 lung cancer patients were obtained from three different institutes, whereupon radiomic features were extracted according to a standardized procedure. The predictive value for patient long-term prognosis and association with routinely used semantic, genetic (e.g., epidermal growth factor receptor (EGFR)), and histopathological cancer profiles were validated. Feature measurement reproducibility was assessed. RESULTS All eight selected features were robust across repeat scans (intraclass coefficient range: 0.81-0.99), and were associated with at least one of the cancer profiles: prognostic, semantic, genetic, and histopathological. For instance, "kurtosis" had a high predictive value of early death (AUC at first year: 0.70-0.75 in two independent cohorts), negative association with histopathological grade (Spearman's r: - 0.30), and altered expression levels regarding EGFR mutation and semantic characteristics (solid intensity, spiculated shape, juxtapleural location, and pleura tag; all p < 0.05). Combined as a radiomic score, the features had a higher area under curve for predicting 5-year survival (train: 0.855, test: 0.780, external validation: 0.760) than routine characteristics (0.733, 0.622, 0.613, respectively), and a better capability in patient death risk stratification (hazard ratio: 5.828, 95% confidence interval: 2.915-11.561) than histopathological staging and grading. CONCLUSIONS We highlighted the clinical value of radiomic features. Following confirmation, these features may change the way in which we approach CT imaging and improve the individualized care of lung cancer patients.
Collapse
Affiliation(s)
- Zixing Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Cuihong Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xin Sui
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fuling Zheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Xue
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoli Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yali Chen
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wentao Gu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jingmei Jiang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
31
|
Zhu M, Yang Z, Zhao W, Wang M, Shi W, Cheng Z, Ye C, Zhu Q, Liu L, Liang Z, Chen L. Predicting Ki-67 labeling index level in early-stage lung adenocarcinomas manifesting as ground-glass opacity nodules using intra-nodular and peri-nodular radiomic features. Cancer Med 2022; 11:3982-3992. [PMID: 35332684 PMCID: PMC9636499 DOI: 10.1002/cam4.4719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Objectives To explore the diagnostic value of radiomics in differentiating between lung adenocarcinomas appearing as ground‐glass opacity nodules (GGO) with high‐ and low Ki‐67 expression levels. Materials and Methods From January 2018 to January 2021, patients with pulmonary GGO who received lung resection were evaluated for potential enrollment. The included GGOs were then randomly divided into a training cohort and a validation cohort with a ratio of 7:3. Logistic regression (LR), decision tree (DT), support vector machines (SVM), and adaboost (AB) were applied for radiomic model construction. Area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of the established models. Results Seven hundred and sixty‐nine patients with 769 GGOs were included in this study. Two hundred and forty‐five GGOs were confirmed to be of high Ki‐67 labeling index (LI). In the training cohort, gender, age, spiculation sign, pleural indentation sign, bubble sign, and maximum 2D diameter of the nodule were found to be significantly different between high‐ and low Ki‐67 LI groups (p < 0.05), and spiculation sign and maximum 2D diameter of the nodule were further confirmed to be risk factors for Ki‐67 LI. The radiomic model established using SVM exhibited an AUC of 0.731 in the validation cohort, which was higher than that of the clinical‐radiographic model (AUC = 0.675). Moreover, radiomic model combining both intra‐ and peri‐nodular features showed better diagnostic efficacy than using intra‐nodular features alone (AUC = 0.731 and 0.720, respectively). Conclusions The established radiomic model exhibited good diagnostic efficacy in differentiating between lung adenocarcinoma GGOs with high and low Ki‐67 LI, which was higher than the clinical‐radiographic model. Peri‐nodular radiomic features showed added benefits to the radiomic model. As a novel noninvasive method, radiomics have the potential to be applied in the preliminary classification of Ki‐67 expression level in lung adenocarcinoma GGOs.
Collapse
Affiliation(s)
- Minghui Zhu
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhen Yang
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wei Zhao
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Miaoyu Wang
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wenjia Shi
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhenshun Cheng
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Ye
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qiang Zhu
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lu Liu
- Department of Nutrition, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhixin Liang
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Liangan Chen
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
32
|
Chiu HY, Chao HS, Chen YM. Application of Artificial Intelligence in Lung Cancer. Cancers (Basel) 2022; 14:1370. [PMID: 35326521 PMCID: PMC8946647 DOI: 10.3390/cancers14061370] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of malignancy-related mortality worldwide due to its heterogeneous features and diagnosis at a late stage. Artificial intelligence (AI) is good at handling a large volume of computational and repeated labor work and is suitable for assisting doctors in analyzing image-dominant diseases like lung cancer. Scientists have shown long-standing efforts to apply AI in lung cancer screening via CXR and chest CT since the 1960s. Several grand challenges were held to find the best AI model. Currently, the FDA have approved several AI programs in CXR and chest CT reading, which enables AI systems to take part in lung cancer detection. Following the success of AI application in the radiology field, AI was applied to digitalized whole slide imaging (WSI) annotation. Integrating with more information, like demographics and clinical data, the AI systems could play a role in decision-making by classifying EGFR mutations and PD-L1 expression. AI systems also help clinicians to estimate the patient's prognosis by predicting drug response, the tumor recurrence rate after surgery, radiotherapy response, and side effects. Though there are still some obstacles, deploying AI systems in the clinical workflow is vital for the foreseeable future.
Collapse
Affiliation(s)
- Hwa-Yen Chiu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Internal Medicine, Hsinchu Branch, Taipei Veterans General Hospital, Hsinchu 310, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Heng-Sheng Chao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
33
|
Ke Z, Li L, Wang L, Liu H, Lu X, Zeng F, Zha Y. Radiomics analysis enables fatal outcome prediction for hospitalized patients with coronavirus disease 2019 (COVID-19). Acta Radiol 2022; 63:319-327. [PMID: 33601893 DOI: 10.1177/0284185121994695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND In December 2019, a rare respiratory disease named coronavirus disease 2019 (COVID-19) broke out, leading to great concern around the world. PURPOSE To develop and validate a radiomics nomogram for predicting the fatal outcome of COVID-19 pneumonia. MATERIAL AND METHODS The present study consisted of a training dataset (n = 66) and a validation dataset (n = 30) with COVID-19 from January 2020 to March 2020. A radiomics signature was generated using the least absolute shrinkage and selection operator (LASSO) Cox regression model. A radiomics score (Rad-score) was developed from the training cohort. The radiomics model, clinical model, and integrated model were built to assess the association between radiomics signature/clinical characteristics and the mortality of COVID-19 cases. The radiomics signature combined with the Rad-score and the independent clinical factors and radiomics nomogram were constructed. RESULTS Seven stable radiomics features associated with the mortality of COVID-19 were finally selected. A radiomics nomogram was based on a combined model consisting of the radiomics signature and the clinical risk factors indicating optimal predictive performance for the fatal outcome of patients with COVID-19 with a C-index of 0.912 (95% confidence interval [CI] 0.867-0.957) in the training dataset and 0.907 (95% CI 0.849-0.966) in the validation dataset. The calibration curves indicated optimal consistency between the prediction and the observation in both training and validation cohorts. CONCLUSION The CT-based radiomics nomogram indicated favorable predictive efficacy for the overall survival risk of patients with COVID-19, which could help clinicians intensively follow up high-risk patients and make timely diagnoses.
Collapse
Affiliation(s)
- Zan Ke
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Liang Li
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Li Wang
- Department of Infection Prevention and Control, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Huan Liu
- GE Healthcare, Shanghai, PR China
| | - Xuefang Lu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Feifei Zeng
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
34
|
Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, Liao L. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front Oncol 2022; 12:773840. [PMID: 35251962 PMCID: PMC8891653 DOI: 10.3389/fonc.2022.773840] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The high-throughput extraction of quantitative imaging features from medical images for the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing and emerging research field that has been attracting increasing interest, particularly in multimodality and multi-omics studies. In this context, the quantitative analysis of multidimensional data plays an essential role in assessing the spatio-temporal characteristics of different tissues and organs and their microenvironment. Herein, recent developments in this method, including manually defined features, data acquisition and preprocessing, lesion segmentation, feature extraction, feature selection and dimension reduction, statistical analysis, and model construction, are reviewed. In addition, deep learning-based techniques for automatic segmentation and radiomic analysis are being analyzed to address limitations such as rigorous workflow, manual/semi-automatic lesion annotation, and inadequate feature criteria, and multicenter validation. Furthermore, a summary of the current state-of-the-art applications of this technology in disease diagnosis, treatment response, and prognosis prediction from the perspective of radiology images, multimodality images, histopathology images, and three-dimensional dose distribution data, particularly in oncology, is presented. The potential and value of radiomics in diagnostic and therapeutic strategies are also further analyzed, and for the first time, the advances and challenges associated with dosiomics in radiotherapy are summarized, highlighting the latest progress in radiomics. Finally, a robust framework for radiomic analysis is presented and challenges and recommendations for future development are discussed, including but not limited to the factors that affect model stability (medical big data and multitype data and expert knowledge in medical), limitations of data-driven processes (reproducibility and interpretability of studies, different treatment alternatives for various institutions, and prospective researches and clinical trials), and thoughts on future directions (the capability to achieve clinical applications and open platform for radiomics analysis).
Collapse
Affiliation(s)
- Xingping Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Yanchun Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Guijuan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
| | - Xiaoxia Yin
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
| | - Liefa Liao
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| |
Collapse
|
35
|
Ma JW, Li M. Molecular typing of lung adenocarcinoma with computed tomography and CT image-based radiomics: a narrative review of research progress and prospects. Transl Cancer Res 2022; 10:4217-4231. [PMID: 35116717 PMCID: PMC8797562 DOI: 10.21037/tcr-21-1037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
Objective The purpose of this paper was to perform a narrative review of current research evidence on conventional computed tomography (CT) imaging features and CT image-based radiomic features for predicting gene mutations in lung adenocarcinoma and discuss how to translate the research findings to guide future practice. Background Lung cancer, especially lung adenocarcinoma, is the leading cause of cancer-related deaths. With advances in the diagnosis and treatment of lung adenocarcinoma with the emergence of molecular testing, the prediction of oncogenes and even drug resistance gene mutations have become key to individualized and precise clinical treatment in order to prolong survival and improve quality of life. The progress of imageological examination includes the development of CT and radiomics are promising quantitative methods for predicting different gene mutations in lung adenocarcinoma, especially common mutations, such as epidermal growth factor receptor (EGFR) mutation, anaplastic lymphoma kinase (ALK) mutation and Kirsten rat sarcoma viral oncogene (KRAS) mutation. Methods The PubMed electronic database was searched along with a set of terms specific to lung adenocarcinoma, radiomics (including texture analysis), CT, computed tomography, EGFR, ALK, KRAS, rearranging transfection (RET) rearrangement and c-ros oncogene 1 (ROS-1), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), and human epidermal growth factor receptor 2 (HER2) mutations et al. This review has been reported in compliance with the Narrative Review checklist guidelines. From each full-text article, information was extracted regarding a set of terms above. Conclusions Research on the application of conventional CT features and CT image-based radiomic features for predicting the gene mutation status of lung adenocarcinoma is still in a preliminary stage. Noninvasively determination of mutation status in lung adenocarcinoma before targeted therapy with conventional CT features and CT image-based radiomic features remains both hopes and challenges. Before radiomics could be applied in clinical practice, more work needs to be done.
Collapse
Affiliation(s)
- Jing-Wen Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Araujo-Filho JAB, Mayoral M, Horvat N, Santini F, Gibbs P, Ginsberg MS. Radiogenomics in personalized management of lung cancer patients: Where are we? Clin Imaging 2022; 84:54-60. [DOI: 10.1016/j.clinimag.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
|
37
|
The application of radiomics in predicting gene mutations in cancer. Eur Radiol 2022; 32:4014-4024. [DOI: 10.1007/s00330-021-08520-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
|
38
|
Pang S, Field M, Dowling J, Vinod S, Holloway L, Sowmya A. Training radiomics-based CNNs for clinical outcome prediction: Challenges, strategies and findings. Artif Intell Med 2022; 123:102230. [PMID: 34998514 DOI: 10.1016/j.artmed.2021.102230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
Radiological images play a central role in radiotherapy, especially in target volume delineation. Radiomic feature extraction has demonstrated its potential for predicting patient outcome and cancer risk assessment prior to treatment. However, inherent methodological challenges such as severe class imbalance, small training sample size, multi-centre data and weak correlation of image representations to outcomes are yet to be addressed adequately. Current radiomic analysis relies on segmented images (e.g., of tumours) for feature extraction, leading to loss of important context information in surrounding tissue. In this work, we examine the correlation between radiomics and clinical outcomes by combining two data modalities: pre-treatment computerized tomography (CT) imaging data and contours of segmented gross tumour volumes (GTVs). We focus on a clinical head & neck cancer dataset and design an efficient convolutional neural network (CNN) architecture together with appropriate machine learning strategies to cope with the challenges. During the training process on two cohorts, our algorithm learns to produce clinical outcome predictions by automatically extracting radiomic features. Test results on two other cohorts show state-of-the-art performance in predicting different clinical endpoints (i.e., distant metastasis: AUC = 0.91; loco-regional failure: AUC = 0.78; overall survival: AUC = 0.70 on segmented CT data) compared to prior studies. Furthermore, we also conduct extensive experiments both on the whole CT dataset and a combination of CT and GTV contours to investigate different learning strategies for this task. For example, further experiments indicate that overall survival prediction significantly improves to 0.83 AUC by combining CT and GTV contours as inputs, and the combination provides more intuitive visual explanations for patient outcome predictions.
Collapse
Affiliation(s)
- Shuchao Pang
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia; Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.
| | - Matthew Field
- Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia; South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, Australia.
| | - Jason Dowling
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; The Australian e-Health and Research Centre, CSIRO Health and Biosecurity, Herston, QLD, Australia.
| | - Shalini Vinod
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, Australia; Liverpool & Macarthur Cancer Therapy Centres, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Lois Holloway
- Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia; South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, Australia; Liverpool & Macarthur Cancer Therapy Centres, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Arcot Sowmya
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
39
|
Xie X, Li X, Tang W, Xie P, Tan X. Primary tumor location in lung cancer: the evaluation and administration. Chin Med J (Engl) 2021; 135:127-136. [PMID: 34784305 PMCID: PMC8769119 DOI: 10.1097/cm9.0000000000001802] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Lung cancer continues to be the leading cause of cancer-related death in the world, which is classically subgrouped into two major histological types: Non-small cell lung cancer (NSCLC) (85% of patients) and small-cell lung cancer (SCLC) (15%). Tumor location has been reported to be associated with the prognosis of various solid tumors. Several types of cancer often occur in a specific region and are more prone to spread to predilection locations, including colorectal cancer, prostate cancer, gastric cancer, ovarian cancer, cervical cancer, bladder cancer, lung tumor, and so on. Besides, tumor location is also considered as a risk factor for lung neoplasm with chronic obstructive pulmonary disease/emphysema. Additionally, the primary lung cancer location is associated with specific lymph node metastasis. And the recent analysis has shown that the primary location may affect metastasis pattern in metastatic NSCLC based on a large population. Numerous studies have enrolled the "location" factor in the risk model. Anatomy location and lobe-specific location are both important in prognosis. Therefore, it is important for us to clarify the characteristics about tumor location according to various definitions. However, the inconsistent definitions about tumor location among different articles are controversial. It is also a significant guidance in multimode therapy in the present time. In this review, we mainly aim to provide a new insight about tumor location, including anatomy, clinicopathology, and prognosis in patients with lung neoplasm.
Collapse
Affiliation(s)
- Xueqi Xie
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan, Shandong 250117, China Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | | | | | | | | |
Collapse
|
40
|
Li L, Wang L, Zeng F, Peng G, Ke Z, Liu H, Zha Y. Development and multicenter validation of a CT-based radiomics signature for predicting severe COVID-19 pneumonia. Eur Radiol 2021; 31:7901-7912. [PMID: 33786655 PMCID: PMC8009273 DOI: 10.1007/s00330-021-07727-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To develop and validate a radiomics nomogram for timely predicting severe COVID-19 pneumonia. MATERIALS AND METHODS Three hundred and sixteen COVID-19 patients (246 non-severe and 70 severe) were retrospectively collected from two institutions and allocated to training, validation, and testing cohorts. Radiomics features were extracted from chest CT images. Radiomics signature was constructed based on reproducible features using the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm with 5-fold cross-validation. Logistic regression modeling was employed to build different models based on quantitative CT features, radiomics signature, clinical factors, and/or the former combined features. Nomogram performance for severe COVID-19 prediction was assessed with respect to calibration, discrimination, and clinical usefulness. RESULTS Sixteen selected features were used to build the radiomics signature. The CT-based radiomics model showed good calibration and discrimination in the training cohort (AUC, 0.9; 95% CI, 0.843-0.942), the validation cohort (AUC, 0.878; 95% CI, 0.796-0.958), and the testing cohort (AUC, 0.842; 95% CI, 0.761-0.922). The CT-based radiomics model showed better discrimination capability (all p < 0.05) compared with the clinical factors joint quantitative CT model (AUC, 0.781; 95% CI, 0.708-0.843) in the training cohort, the validation cohort (AUC, 0.814; 95% CI, 0.703-0.897), and the testing cohort (AUC, 0.696; 95% CI, 0.581-0.796). Decision curve analysis demonstrated that in terms of clinical usefulness, the radiomics model outperformed the clinical factors model and quantitative CT model alone. CONCLUSIONS The CT-based radiomics signature shows favorable predictive efficacy for severe COVID-19, which might assist clinicians in tailoring precise therapy. KEY POINTS • Radiomics can be applied in CT images of COVID-19 and radiomics signature was an independent predictor of severe COVID-19. • CT-based radiomics model can predict severe COVID-19 with satisfactory accuracy compared with subjective CT findings and clinical factors. • Radiomics nomogram integrated with the radiomics signature, subjective CT findings, and clinical factors can achieve better severity prediction with improved diagnostic performance.
Collapse
Affiliation(s)
- Liang Li
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Wang
- Department of Infection Prevention and Control, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Feifei Zeng
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gongling Peng
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zan Ke
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huan Liu
- GE Healthcare, Shanghai, 201203, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
41
|
Xu Z, Zhao L, Yang G, Ren Y, Wu J, Xia Y, Yang X, Cao M, Zhang G, Peng T, Zhao J, Yang H, Hu J, Du J. Severity Assessment of COVID-19 Using a CT-Based Radiomics Model. Stem Cells Int 2021; 2021:2263469. [PMID: 34594383 PMCID: PMC8478587 DOI: 10.1155/2021/2263469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/27/2021] [Indexed: 01/11/2023] Open
Abstract
The coronavirus disease of 2019 (COVID-19) has evolved into a worldwide pandemic. Although CT is sensitive in detecting lesions and assessing their severity, these works mainly depend on radiologists' subjective judgment, which is inefficient in case of a large-scale outbreak. This work focuses on developing a CT-based radiomics model to assess whether COVID-19 patients are in the early, progressive, severe, or absorption stages of the disease. We retrospectively analyzed the CT images of 284 COVID-19 patients. All of the patients were divided into four groups (0-3): early (n = 75), progressive (n = 58), severe (n = 75), and absorption (n = 76) groups, according to the progression of the disease and the CT features. Meanwhile, they were split randomly to training and test datasets with the fixed ratio of 7 : 3 in each category. Thirty-eight radiomic features were nominated from 1688 radiomic features after using select K-best method and the ElasticNet algorithm. On this basis, a support vector machine (SVM) classifier was trained to build this model. Receiver operating characteristic (ROC) curves were generated to determine the diagnostic performance of various models. The precision, recall, and f 1-score of the classification model of macro- and microaverage were 0.82, 0.82, 0.81, 0.81, 0.81, and 0.81 for the training dataset and 0.75, 0.73, 0.73, 0.72, 0.72, and 0.72 for the test dataset. The AUCs for groups 0, 1, 2, and 3 on the training dataset were 0.99, 0.97, 0.96, and 0.93, and the microaverage AUC was 0.97 with a macroaverage AUC of 0.97. On the test dataset, AUCs for each group were 0.97, 0.86, 0.83, and 0.89 and the microaverage AUC was 0.89 with a macroaverage AUC of 0.90. The CT-based radiomics model proved efficacious in assessing the severity of COVID-19.
Collapse
Affiliation(s)
- Zhigao Xu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
- Department of Radiology, The Third People's Hospital of Datong, Datong, 037008 Shanxi Province, China
| | - Lili Zhao
- Department of Radiology, The Third People's Hospital of Datong, Datong, 037008 Shanxi Province, China
| | - Guoqiang Yang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Ying Ren
- Department of Materials Science and Engineering, Henan University of Technology, Zhengzhou, 450001 Henan Province, China
| | - Jinlong Wu
- Department of Radiology, The Third People's Hospital of Datong, Datong, 037008 Shanxi Province, China
| | - Yuwei Xia
- Huiying Medical Technology Co., Ltd, Room A206, B2, Dongsheng Science and Technology Park, Haidian District, Beijing City, 100192, China
| | - Xuhong Yang
- Huiying Medical Technology Co., Ltd, Room A206, B2, Dongsheng Science and Technology Park, Haidian District, Beijing City, 100192, China
| | - Milan Cao
- Department of Science and Education, The Third People's Hospital of Datong, Datong, 037008 Shanxi Province, China
| | - Guojiang Zhang
- Department of Science and Education, The Third People's Hospital of Datong, Datong, 037008 Shanxi Province, China
| | - Taisong Peng
- Department of Radiology, The Second People's Hospital of Datong, Datong, 037005 Shanxi Province, China
| | - Jiafeng Zhao
- Department of Rehabilitation Medicine, Xiantao First People's Hospital, Xiantao, 433000 Hubei Province, China
| | - Hui Yang
- Department of Radiology, The Third People's Hospital of Datong, Datong, 037008 Shanxi Province, China
| | - Jinfeng Hu
- Department of Radiology, The Second People's Hospital of Datong, Datong, 037005 Shanxi Province, China
| | - Jiangfeng Du
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
| |
Collapse
|
42
|
La Greca Saint-Esteven A, Vuong D, Tschanz F, van Timmeren JE, Dal Bello R, Waller V, Pruschy M, Guckenberger M, Tanadini-Lang S. Systematic Review on the Association of Radiomics with Tumor Biological Endpoints. Cancers (Basel) 2021; 13:cancers13123015. [PMID: 34208595 PMCID: PMC8234501 DOI: 10.3390/cancers13123015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Radiomics supposes an alternative non-invasive tumor characterization tool, which has experienced increased interest with the advent of more powerful computers and more sophisticated machine learning algorithms. Nonetheless, the incorporation of radiomics in cancer clinical-decision support systems still necessitates a thorough analysis of its relationship with tumor biology. Herein, we present a systematic review focusing on the clinical evidence of radiomics as a surrogate method for tumor molecular profile characterization. An extensive literature review was conducted in PubMed, including papers on radiomics and a selected set of clinically relevant and commonly used tumor molecular markers. We summarized our findings based on different cancer entities, additionally evaluating the effect of different modalities for the prediction of biomarkers at each tumor site. Results suggest the existence of an association between the studied biomarkers and radiomics from different modalities and different tumor sites, even though a larger number of multi-center studies are required to further validate the reported outcomes.
Collapse
Affiliation(s)
- Agustina La Greca Saint-Esteven
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
- Correspondence:
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Fabienne Tschanz
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Janita E. van Timmeren
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Verena Waller
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Martin Pruschy
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| |
Collapse
|
43
|
Cucchiara F, Petrini I, Romei C, Crucitta S, Lucchesi M, Valleggi S, Scavone C, Capuano A, De Liperi A, Chella A, Danesi R, Del Re M. Combining liquid biopsy and radiomics for personalized treatment of lung cancer patients. State of the art and new perspectives. Pharmacol Res 2021; 169:105643. [PMID: 33940185 DOI: 10.1016/j.phrs.2021.105643] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has become a paradigm for precision medicine in oncology, and liquid biopsy (LB) together with radiomics may have a great potential in this scenario. They are both minimally invasive, easy to perform, and can be repeated during patient's follow-up. Also, increasing evidence suggest that LB and radiomics may provide an efficient way to screen and diagnose tumors at an early stage, including the monitoring of any change in the tumor molecular profile. This could allow treatment optimization, improvement of patients' quality of life, and healthcare-related costs reduction. Latest reports on lung cancer patients suggest a combination of these two strategies, along with cutting-edge data analysis, to decode valuable information regarding tumor type, aggressiveness, progression, and response to treatment. The approach seems more compatible with clinical practice than the current standard, and provides new diagnostic companions being able to suggest the best treatment strategy compared to conventional methods. To implement radiomics and liquid biopsy directly into clinical practice, an artificial intelligence (AI)-based system could help to link patients' clinical data together with tumor molecular profiles and imaging characteristics. AI could also solve problems and limitations related to LB and radiomics methodologies. Further work is needed, including new health policies and the access to large amounts of high-quality and well-organized data, allowing a complementary and synergistic combination of LB and imaging, to provide an attractive choice e in the personalized treatment of lung cancer.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Chiara Romei
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Simona Valleggi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa De Liperi
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Antonio Chella
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
44
|
CT radiomics-based prediction of anaplastic lymphoma kinase and epidermal growth factor receptor mutations in lung adenocarcinoma. Eur J Radiol 2021; 139:109710. [PMID: 33862316 DOI: 10.1016/j.ejrad.2021.109710] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE To develop and validate a CT-based radiomic model to simultaneously diagnose anaplastic lymphoma kinase (ALK) rearrangements and epidermal growth factor receptor (EGFR) mutation status of lung adenocarcinoma and to assess whether peritumoural radiomic features add value in the prediction of mutation status. METHODS 503 patients with pathologically proven lung adenocarcinoma containing information on the mutation status were retrospectively included. Intratumoural and peritumoural radiomic features of the primary lesion were extracted from CT. We proposed two-level stepwise binary radiomics-based classification models to diagnose ALK (step1) and EGFR mutation status (step2). The performance of proposed models and added value of peritumoural radiomic features were evaluated by using the areas under receiver operating characteristic curves (AUC) and Obuchowski index in the development and validation sets. RESULTS Regarding the prediction of ALK rearrangement, the diagnostic performance of the intratumoural radiomic model showed the AUC of 0.77 and 0.68 for the development and validation sets, respectively. As for EGFR mutation, the diagnostic performance of the intratumoural radiomic model showed the AUCs of 0.64 and 0.62 for the development and validation sets, respectively. The radiomics added value to the model based on clinical features (development set [radiomics + clinical model vs. clinical model]: Obuchowski index, 0.76 vs. 0.66, p < 0.001; validation set: 0.69 vs. 0.61, p = 0.075). Adding peritumoural features resulted in no improvement in terms of model performance. CONCLUSION The CT radiomics-based model allowed the simultaneous prediction of the presence of ALK and EGFR mutations while adding value to the clinical features.
Collapse
|
45
|
Wu G, Jochems A, Refaee T, Ibrahim A, Yan C, Sanduleanu S, Woodruff HC, Lambin P. Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging 2021; 48:3961-3974. [PMID: 33693966 PMCID: PMC8484174 DOI: 10.1007/s00259-021-05242-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Lung cancer ranks second in new cancer cases and first in cancer-related deaths worldwide. Precision medicine is working on altering treatment approaches and improving outcomes in this patient population. Radiological images are a powerful non-invasive tool in the screening and diagnosis of early-stage lung cancer, treatment strategy support, prognosis assessment, and follow-up for advanced-stage lung cancer. Recently, radiological features have evolved from solely semantic to include (handcrafted and deep) radiomic features. Radiomics entails the extraction and analysis of quantitative features from medical images using mathematical and machine learning methods to explore possible ties with biology and clinical outcomes. METHODS Here, we outline the latest applications of both structural and functional radiomics in detection, diagnosis, and prediction of pathology, gene mutation, treatment strategy, follow-up, treatment response evaluation, and prognosis in the field of lung cancer. CONCLUSION The major drawbacks of radiomics are the lack of large datasets with high-quality data, standardization of methodology, the black-box nature of deep learning, and reproducibility. The prerequisite for the clinical implementation of radiomics is that these limitations are addressed. Future directions include a safer and more efficient model-training mode, merge multi-modality images, and combined multi-discipline or multi-omics to form "Medomics."
Collapse
Affiliation(s)
- Guangyao Wu
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands. .,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Arthur Jochems
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands
| | - Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Hospital Center Universitaire De Liege, Liege, Belgium.,Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - Chenggong Yan
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sebastian Sanduleanu
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
46
|
Chang C, Sun X, Wang G, Yu H, Zhao W, Ge Y, Duan S, Qian X, Wang R, Lei B, Wang L, Liu L, Ruan M, Yan H, Liu C, Chen J, Xie W. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts ALK Rearrangement Status in Lung Adenocarcinoma. Front Oncol 2021; 11:603882. [PMID: 33738250 PMCID: PMC7962599 DOI: 10.3389/fonc.2021.603882] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives Anaplastic lymphoma kinase (ALK) rearrangement status examination has been widely used in clinic for non-small cell lung cancer (NSCLC) patients in order to find patients that can be treated with targeted ALK inhibitors. This study intended to non-invasively predict the ALK rearrangement status in lung adenocarcinomas by developing a machine learning model that combines PET/CT radiomic features and clinical characteristics. Methods Five hundred twenty-six patients of lung adenocarcinoma with PET/CT scan examination were enrolled, including 109 positive and 417 negative patients for ALK rearrangements from February 2016 to March 2019. The Artificial Intelligence Kit software was used to extract radiomic features of PET/CT images. The maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression were further employed to select the most distinguishable radiomic features to construct predictive models. The mRMR is a feature selection method, which selects the features with high correlation to the pathological results (maximum correlation), meanwhile retain the features with minimum correlation between them (minimum redundancy). LASSO is a statistical formula whose main purpose is the feature selection and regularization of data model. LASSO method regularizes model parameters by shrinking the regression coefficients, reducing some of them to zero. The feature selection phase occurs after the shrinkage, where every non-zero value is selected to be used in the model. Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the models, and the performance of different models was compared by the DeLong test. Results A total of 22 radiomic features were extracted from PET/CT images for constructing the PET/CT radiomic model, and majority of these features used were based on CT features (20 out of 22), only 2 PET features were included (PET percentile 10 and PET difference entropy). Moreover, three clinical features associated with ALK mutation (age, burr and pleural effusion) were also employed to construct a combined model of PET/CT and clinical model. We found that this combined model PET/CT-clinical model has a significant advantage to predict the ALK mutation status in the training group (AUC = 0.87) and the testing group (AUC = 0.88) compared with the clinical model alone in the training group (AUC = 0.76) and the testing group (AUC = 0.74) respectively. However, there is no significant difference between the combined model and PET/CT radiomic model. Conclusions This study demonstrated that PET/CT radiomics-based machine learning model has potential to be used as a non-invasive diagnostic method to help diagnose ALK mutation status for lung adenocarcinoma patients in the clinic.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoyan Sun
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Wang
- Statistical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Yu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenlu Zhao
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaqiong Ge
- Pharmaceutical Diagnostic Department, GE Healthcare China, Shanghai, China
| | - Shaofeng Duan
- Pharmaceutical Diagnostic Department, GE Healthcare China, Shanghai, China
| | - Xiaohua Qian
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ciyi Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Department of Ultrasound, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
47
|
Verifying explainability of a deep learning tissue classifier trained on RNA-seq data. Sci Rep 2021; 11:2641. [PMID: 33514769 PMCID: PMC7846764 DOI: 10.1038/s41598-021-81773-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
For complex machine learning (ML) algorithms to gain widespread acceptance in decision making, we must be able to identify the features driving the predictions. Explainability models allow transparency of ML algorithms, however their reliability within high-dimensional data is unclear. To test the reliability of the explainability model SHapley Additive exPlanations (SHAP), we developed a convolutional neural network to predict tissue classification from Genotype-Tissue Expression (GTEx) RNA-seq data representing 16,651 samples from 47 tissues. Our classifier achieved an average F1 score of 96.1% on held-out GTEx samples. Using SHAP values, we identified the 2423 most discriminatory genes, of which 98.6% were also identified by differential expression analysis across all tissues. The SHAP genes reflected expected biological processes involved in tissue differentiation and function. Moreover, SHAP genes clustered tissue types with superior performance when compared to all genes, genes detected by differential expression analysis, or random genes. We demonstrate the utility and reliability of SHAP to explain a deep learning model and highlight the strengths of applying ML to transcriptome data.
Collapse
|
48
|
Song L, Zhu Z, Wu H, Han W, Cheng X, Li J, Du H, Lei J, Sui X, Song W, Jin ZY. Individualized nomogram for predicting ALK rearrangement status in lung adenocarcinoma patients. Eur Radiol 2020; 31:2034-2047. [PMID: 33146791 DOI: 10.1007/s00330-020-07331-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/02/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To develop a nomogram to identify anaplastic lymphoma kinase (ALK) mutations in lung adenocarcinoma patients using clinical, CT, PET/CT, and histopathological features. METHODS This retrospective study included 399 lung adenocarcinoma patients (129 ALK-rearranged patients and 270 ALK-negative patients) that were randomly divided into a training cohort and an internal validation cohort (4:1 ratio). Clinical factors, radiologist-defined CT features, maximum standard uptake values (SUVmax), and histopathological features were used to construct predictive models with stepwise backward-selection multivariate logistic regression (MLR). The models were then evaluated using the AUC. The integrated model was compared to the clinico-radiological model using the DeLong test to evaluate the role of histopathological features. An associated individualized nomogram was established. RESULTS The integrated model reached an AUC of 0.918 (95% CI, 0.886-0.950), sensitivity of 0.774, and specificity of 0.934 in the training cohort and an AUC of 0.857 (95% CI, 0.777-0.937), sensitivity of 0.739, and specificity of 0.810 in the validation cohort. The MLR analysis showed that younger age, never smoker, lymph node enlargement, the presence of cavity, high SUVmax, solid or micropapillary predominant histology subtype, and local invasiveness were strong and independent predictors of ALK rearrangements. The nomogram calculated the risk of harboring ALK mutation for lung adenocarcinoma patients and exhibited a good generalization ability. CONCLUSION Our study demonstrates that histopathological features added value to the imaging characteristics-based model. The nomogram with clinical, imaging, and histopathological features can serve as a supplementary non-invasive tool to evaluate the probability of ALK rearrangement in lung adenocarcinoma. KEY POINTS • The developed nomogram can accurately predict the probability of lung adenocarcinoma harboring ALK-fused gene. • Pathological analysis is important to predict ALK rearrangement in lung adenocarcinoma. • Lung adenocarcinoma with lepidic predominant growth pattern and TTF-1 negativity is unlikely to have ALK rearrangement.
Collapse
Affiliation(s)
- Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Zhenchen Zhu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.,4+4 MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medicine Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xin Cheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huayang Du
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Jing Lei
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xin Sui
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
49
|
Li J, Li X, Chen X, Ma S. [Research Advances and Obstacles of CT-based Radiomics in Diagnosis and Treatment of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:904-908. [PMID: 32798440 PMCID: PMC7583873 DOI: 10.3779/j.issn.1009-3419.2020.101.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
影像组学是一种基于多模态医学影像处理分析的技术,该技术能够基于高性能计算机及算法从目前普遍使用的计算机断层扫描(computed tomography, CT)、磁共振图像(magnetic resonance imaging, MRI)和正电子发射/断层图像(positron emission tomography/computed tomography, PET/CT)中自动提取海量数据进行分析,对疾病的早期诊断、良恶性肿瘤鉴别、疾病治疗全程管理,个体化精准治疗等需求提供更多有价值信息。近年来,许多研究表明基于CT的影像组学技术在肺癌的早期诊断、基因表型预测、疗效预测及预后评估均有良好的应用价值,且影像学检查具有无创、经济、可重复等优势。其对临床的指导价值已有所展露,在肺癌的个体化、精准化治疗和研究方面具有较大价值,但是,影像组学特征的重复性和一致性问题以及在肺部肿瘤图像提取中的特征筛选还需进一步研究。
Collapse
Affiliation(s)
- Jiawei Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiadong Li
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Xueqin Chen
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Shenglin Ma
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou 310006, China
| |
Collapse
|
50
|
Liu G, Xu Z, Ge Y, Jiang B, Groen H, Vliegenthart R, Xie X. 3D radiomics predicts EGFR mutation, exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma. Transl Lung Cancer Res 2020; 9:1212-1224. [PMID: 32953499 PMCID: PMC7481623 DOI: 10.21037/tlcr-20-122] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND To establish a radiomic approach to identify epidermal growth factor receptor (EGFR) mutation status in lung adenocarcinoma patients based on CT images, and to distinguish exon-19 deletion and exon-21 L858R mutation. METHODS Two hundred sixty-three patients who underwent pre-surgical contrast-enhanced CT and molecular testing were included, and randomly divided into the training (80%) and test (20%) cohort. Tumor images were three-dimensionally segmented to extract 1,672 radiomic features. Clinical features (age, gender, and smoking history) were added to build classification models together with radiomic features. Subsequently, the top-10 most relevant features were used to establish classifiers. For the classifying tasks including EGFR mutation, exon-19 deletion, and exon-21 L858R mutation, four logistic regression models were established for each task. RESULTS The training and test cohort consisted of 210 and 53 patients, respectively. Among the established models, the highest accuracy and sensitivity among the four models were 75.5% (61.7-86.2%) and 92.9% (76.5-99.1%) to classify EGFR mutation, respectively. The highest specificity values were 86.7% (69.3-96.2%) and 70.4% (49.8-86.3%) to classify exon-19 deletion and exon-21 L858R mutation, respectively. CONCLUSIONS CT radiomics can sensitively identify the presence of EGFR mutation, and increase the certainty of distinguishing exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma patients. CT radiomics may become a helpful non-invasive biomarker to select EGFR mutation patients for invasive sampling.
Collapse
Affiliation(s)
- Guixue Liu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihan Xu
- Siemens Healthineers Ltd, Shanghai, China
| | | | - Beibei Jiang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Harry Groen
- Department of Lung Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RB Groningen, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RB Groningen, The Netherlands
| | - Xueqian Xie
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|