1
|
Duan T, Ren Z, Jiang H, Ding Y, Wang H, Wang F. Gut microbiome signature in response to neoadjuvant chemoradiotherapy in patients with rectal cancer. Front Microbiol 2025; 16:1543507. [PMID: 40270827 PMCID: PMC12014591 DOI: 10.3389/fmicb.2025.1543507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/04/2025] [Indexed: 04/25/2025] Open
Abstract
Background Rectal cancer remains a leading cause of cancer-associated mortality, especially in advanced cases with limited treatment options. Emerging evidence suggests that the gut microbiome may influence the therapeutic efficacy of neoadjuvant chemoradiotherapy (CRT). Objective This study aimed to explore the dynamic changes in gut microbiome composition and metabolic pathways in rectal cancer patients undergoing CRT. Methods Paired fecal samples were collected from rectal cancer patients pre- and post-CRT. 16S rRNA amplicon sequencing and proteomics analysis were conducted to investigate microbial and metabolic alterations. Results Significant shifts in the microbiome were observed, with Fusobacterium, Subdoligranulum, Prevotella, Alloprevotella, and Bacteroides being enriched pre-CRT, while Streptococcus, Megamonas, Megasphaera, Escherichia-Shigella, and Olsenella became dominant post-CRT. Metabolic analysis revealed upregulated carbohydrate metabolism and downregulated lipid and energy metabolism. Conclusion These findings identify potential microbial biomarkers and metabolic pathways associated with CRT response, offering insights into personalized treatment strategies.
Collapse
Affiliation(s)
- Tingmei Duan
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengting Ren
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haili Jiang
- Department of Integrated Chinese and Western Medicine Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Ding
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongyan Wang
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Wang
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Yakut A. Gut microbiota in the development and progression of chronic liver diseases: Gut microbiota-liver axis. World J Hepatol 2025; 17:104167. [PMID: 40177197 PMCID: PMC11959663 DOI: 10.4254/wjh.v17.i3.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
The gut microbiota (GM) is a highly dynamic ecology whose density and composition can be influenced by a wide range of internal and external factors. Thus, "How do GM, which can have commensal, pathological, and mutualistic relationships with us, affect human health?" has become the most popular research issue in recent years. Numerous studies have demonstrated that the trillions of microorganisms that inhabit the human body can alter host physiology in a variety of systems, such as metabolism, immunology, cardiovascular health, and neurons. The GM may have a role in the development of a number of clinical disorders by producing bioactive peptides, including neurotransmitters, short-chain fatty acids, branched-chain amino acids, intestinal hormones, and secondary bile acid conversion. These bioactive peptides enter the portal circulatory system through the gut-liver axis and play a role in the development of chronic liver diseases, cirrhosis, and hepatic encephalopathy. This procedure is still unclear and quite complex. In this study, we aim to discuss the contribution of GM to the development of liver diseases, its effects on the progression of existing chronic liver disease, and to address the basic mechanisms of the intestinal microbiota-liver axis in the light of recent publications that may inspire the future.
Collapse
Affiliation(s)
- Aysun Yakut
- Department of Gastroenterology, İstanbul Medipol University Sefakoy Health Practice Research Center, İstanbul 38000, Türkiye.
| |
Collapse
|
3
|
Chen MS, Jia XY, Hou DJ, Xie QY, Ke DW, Tu ZC, Zhang L. Fabrication of Rubus chingii Hu ellagitannins-loaded W/O and O/W emulsion gels: Structure, stability, in vitro digestion and in vivo metabolism. Int J Biol Macromol 2025; 295:139656. [PMID: 39793811 DOI: 10.1016/j.ijbiomac.2025.139656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Tannin is the main naturally occurring phytochemicals in Rubus chingii Hu with poor digestive stability and low bioavailability. In this study, oil-in-water (O/W) and water-in-oil (W/O) emulsion gels encapsulating Rubus chingii Hu ellagitannins (RCHT) were fabricated and their structure, rheology, stability, in vitro digestion and in vivo metabolism were characterized. The W/O emulsion gel showed smaller particle size, better pH stability, thermal stability, centrifugal stability and storage stability. Regarding rheology, two emulsion gels exhibited characteristics of non-Newtonian fluids. The encapsulation efficiency of W/O emulsion gel was higher, reaching 95.46 %. The lower release rate and higher bioaccessibility of RCHT were also observed in the W/O emulsion gel. In vitro fermentation results indicated that W/O emulsion gel could promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria. Metabolic kinetics in rats showed that the embedding of W/O emulsion gel greatly promoted the absorption and transformation of ellagitannins to urolithins in vivo. Thus, the W/O emulsion gel was quite suitable for the delivery of RCHT.
Collapse
Affiliation(s)
- Ming-Shun Chen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xiao-Yan Jia
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Dong-Jun Hou
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Quan-Yuan Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Dai-Wei Ke
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Lu Zhang
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
4
|
Ang TL, Koo SH, Ang D, Tan CK, Wang LM, Wong SH, Chow PKH. Postcholecystectomy Gut Microbiome Changes and the Clinical Impact: A Systematic Review With Narrative Synthesis. J Gastroenterol Hepatol 2025; 40:574-583. [PMID: 39675817 DOI: 10.1111/jgh.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Cholecystectomy (CCE) can affect the enterohepatic circulation of bile acids and result in gut microbiome changes. This systematic review aimed to clarify the effect of CCE on gut microbiome composition and its clinical impact. METHOD A systematic search was conducted in PubMed, Web of Science, and Scopus, combining keywords such as "cholecystectomy" or "post-cholecystectomy" with "gut microbiome," "stool microbiome," or "gut dysbiosis." Data were extracted and synthesized using narrative review. Study quality was assessed using the Newcastle-Ottawa scale. RESULTS A total of 1373 articles were screened and 14 studies were selected. Significant but inconsistent microbiome changes were reported. Changes were observed in alpha and beta diversity. At phylum level, an increase in Bacteroides and Ascomycota, decrease in Firmicutes, Actinomycetes, and Basidiomycota, and both increase and decrease in Fusobacteria were reported. At genus level, an increase in Prevotella and a decrease in Faecalibacterium were reported. In post-CCE diarrhea, decreased beta diversity, a decreased F/B ratio, an increase in Prevotella, an increase in Phocaeicola vulgatus, and a decrease in Prevotella copri were noted. For post-CCE syndrome, a higher abundance of Proteobacteria and decreased Firmicutes/Bacteroides (F/B) ratio were reported. A decreased relative abundance of Bifidobacterium longum subsp. longum from controls to CCE without colonic neoplasia to CCE with colonic neoplasia, and an increased abundance of Candida glabrata from controls, to CCE without colonic neoplasia and CCE with colonic neoplasia, were reported. CONCLUSION Patients who underwent CCE had significant gut dysbiosis. However, current studies could not clarify the detailed gut microbial structural and functional changes associated with CCE.
Collapse
Affiliation(s)
- Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Seok Hwee Koo
- Research Laboratory, Clinical Trials and Research Unit, Changi General Hospital, Singapore
| | - Daphne Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-NUS Medical School, Singapore
| | - Chin Kimg Tan
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lai Mun Wang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
- Department of Pathology, Parkway Laboratory Services Ltd, Singapore
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore
| | - Pierce K H Chow
- Duke-NUS Medical School, Singapore
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, National Cancer Center and Singapore General Hospital, Singapore
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore
| |
Collapse
|
5
|
Yang S, Wang Y, Sheng L, Cui W, Ma C. The effect of fecal bile acids on the incidence and risk-stratification of colorectal cancer: an updated systematic review and meta-analysis. Sci Rep 2025; 15:740. [PMID: 39753873 PMCID: PMC11698987 DOI: 10.1038/s41598-024-84801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Recent studies suggest the role of gut microbes in bile acid metabolism in the development and progression of colorectal cancer. However, the surveys of the association between fecal bile acid concentrations and colorectal cancer (CRC) have been inconsistent. We searched online to identify relevant cross-sectional and case-control studies published online in the major English language databases (Medline, Embase, Web of Science, AMED, and CINAHL) up to January 1, 2024. We selected studies according to inclusion and exclusion criteria and extracted data from them. RevMan 5.3 was used to perform the meta-analyses. In CRC risk meta-analysis, the effect size of CA (cholic acid), CDCA (chenodeoxycholic acid), DCA (deoxycholic acid), and UDCA (ursodeoxycholic acid) were significantly higher (CA: standardized mean difference [SMD] = 0.41, 95% confidence interval [CI]: 0.5-0.76, P = 0.02; CDCA: SMD = 0.35, 95% CI: 0.09-0.62, P = 0.009; DCA: SMD = 0.33,95% CI: 0.03-0.64, P = 0.03; UDCA: SMD = 0.46, 95% CI: 0.14-0.78, P = 0.005), and the combined effect size was significantly higher in the high-risk than the low-risk CRC group (SMD = 0.36, 95% CI: 0.21-0.51, P < 0.00001). In the CRC incidence meta-analysis, the effect sizes of CA and CDCA were significantly higher (CA: SMD = 0.42, 95% CI: 0.04-0.80, P = 0.03; CDCA: SMD = 0.61, 95% CI: 0.26-0.96, P = 0.00079), and their combined effect size was also significantly higher in the high-risk compared to low-risk CRC group (SMD = 0.39, 95% CI: 0.09-0.68, P = 0.01). Only one cross-sectional study suggested a higher concentration of CDCA, DCA, and UDCA in the stool of the CRC high-risk group than the low-risk group. These findings indicate that higher fecal concentrations of bile acid may be associated with a higher risk/incidence of CRC.
Collapse
Affiliation(s)
- Shaohui Yang
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Yu Wang
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Lijuan Sheng
- Gulou Street Community Health Service Center, Ningbo, 315000, China
| | - Wei Cui
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Chenyang Ma
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China.
| |
Collapse
|
6
|
Ma W, Yin L, Hu Y, Liu X, Guo Z, Zhong B, Qiu H, Li J. Multi-omics analysis reveals interactions between host and microbes in Bama miniature pigs during weaning. Front Microbiol 2024; 15:1482925. [PMID: 39723142 PMCID: PMC11668797 DOI: 10.3389/fmicb.2024.1482925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction There are complex interactions between host and gut microbes during weaning, many of the mechanisms are not yet fully understood. Previous research mainly focuses on commercial pigs, whereas limited information has been known about the host and gut microbe interactions in miniature pigs. Methods To address the issue in Bama miniature piglets that were weaned 30 days after birth, we collected samples on days 25 and 36 for metabolomics, transcriptomics, and microgenomics analysis. Results and discussion The average daily weight gain of piglets during weaning was only 58.1% and 40.6% of that during 0-25 days and 36-60 days. Metabolomic results identified 61 significantly different metabolites (SDMs), of which, the most significantly increased and decreased SDMs after weaning were ectoine and taurocholate, respectively, indicating the occurrence of inflammation. Metagenomic analysis identified 30 significantly different microbes before and after weaning. Bacteria related to decreasing intestinal inflammation, such as Megasphaera, Alistipes and Bifidobacterium, were enriched before weaning. While bacteria related to infection such as Chlamydia, Clostridium, Clostridioides, and Blautia were enriched after weaning. The carbohydrate enzymes CBM91, CBM13, GH51_1, and GH94 increase after weaning, which may contribute to the digestion of complex plant fibers. Furthermore, we found the composition of antibiotic resistance genes (ARGs) changed during weaning. Transcriptomic analysis identified 147 significantly differentially expressed genes (DEGs). The upregulated genes after weaning were enriched in immune response categories, whereas downregulated genes were enriched in protein degradation. Combining multi-omics data, we identified significant positive correlations between gene MZB1, genera Alistipes and metabolite stachydrine, which involve anti-inflammatory functions. The reduced abundance of bacteria Dialister after weaning had strong correlations with the decreased 2-AGPE metabolite and the downregulated expression of RHBDF1 gene. Altogether, the multi-omics study reflects dietary changes and gut inflammation during weaning, highlighting complex interactions between gut microbes, host genes and metabolites."
Collapse
Affiliation(s)
- Wen Ma
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Li Yin
- Chengdu Dossy Experimental Animal Co., Ltd., Chengdu, China
| | - Ying Hu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenghong Guo
- Dossy Biological Engineering (Chongqing) Co., Ltd., Chongqing, China
| | - Bingyang Zhong
- Chengdu Dossy Experimental Animal Co., Ltd., Chengdu, China
| | - Haofeng Qiu
- Chengdu Dossy Experimental Animal Co., Ltd., Chengdu, China
| | - Jing Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Cheng H, Xu L, Zhu H, Bu T, Li Z, Zhao S, Yang K, Sun P, Cai M. Structural characterization of oligosaccharide from Dendrobium officinale and its properties in vitro digestion and fecal fermentation. Food Chem 2024; 460:140511. [PMID: 39047478 DOI: 10.1016/j.foodchem.2024.140511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Oligosaccharides from Dendrobium officinale (DOO) is a kind of new potential prebiotic for health. In this study, structural characteristics, digestion properties and regulatory function on intestinal flora of DOO were investigated. An oligosaccharide, DOO 1-1, was purified by DEAE-Sepharose Fast Flow and Sephadex G-25, and its physicochemical properties were characterized as a glucomannan oligosaccharide with a molecular weight of 1560 Da (DP = 9). In vitro simulated digestion, it proved that the structure of DOO 1-1 was degraded hardly in the simulated gastric and small intestinal fluid. By evaluating the gas, short-chain fatty acids and intestinal microbiota in vitro fermentation, DOO has an excellent regulatory effect on intestinal microbiota, especially promoting the proliferation of Bacteroidetes and Actinobacteria. Therefore, DOO can be used as a potential prebiotic in functional foods.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Lei Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Hua Zhu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Tingting Bu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Zhenhao Li
- Longevity Valley Botanical Co., Ltd., Zhejiang 321200, People's Republic of China
| | - Shuna Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China.
| |
Collapse
|
8
|
Muñoz RA, Ramos AA, Miranda FJ, De La Rosa JE, Muñoz AE, Ramírez AA, Chavez EP, Gallardo G, Pizarro S. Cholecystectomy Is a Risk Factor for Proximal Colon Cancer That May Also Relate to its Aggressiveness. J Surg Res 2024; 304:152-161. [PMID: 39547064 DOI: 10.1016/j.jss.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION There are studies with mixed conclusions about the role cholecystectomy plays as a risk factor for proximal colorectal cancer (CRC). METHODS We performed a multicenter retrospective cohort study where the records of patients with CRC were reviewed. Data was collected regarding affected colon subsegment (cecum, ascending, transverse, descending, sigmoid, or rectum, which were also combined into proximal or distal colon), history and time since cholecystectomy, histopathology reports (TNM classification and clinical stage), and KRAS, NRAS, and BRAF mutation analysis. Univariate and multivariate analysis adjusting for age, smoking history, body mass index, sex, and family history of cancer were performed. Logistical regression for statistical analysis was used to estimate the odds ratio for the association between cholecystectomy and tumor location. RESULTS Four hundred four cases were obtained, of which 52 previously had cholecystectomy. The date of surgery was recorded in 43 patients, with a 5 y median and an interquartile range of 1.5-14 y prior to CRC diagnosis. Both crude and adjusted odds ratio (2.86 and 2.42, respectively) confirmed an associated risk for developing proximal CRC after cholecystectomy. When proximal CRC cases with previous cholecystectomy were directly compared against proximal CRC without cholecystectomy and distal CRC cases, the former had a higher distribution of prevalence for T3, T4b, N1b, M1a, and M1c. KRAS mutation also presented its highest prevalence in this group with 33%. CONCLUSIONS Cholecystectomy was related to the development of proximal CRC in all its subsegments, seemingly associated with higher stages at diagnosis. Close surveillance should be considered in patients who undergo cholecystectomy.
Collapse
Affiliation(s)
- Raymundo A Muñoz
- Department of Research and Medical Education, Hospital Angeles Chihuahua, Chihuahua, Mexico; Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua (UACH), Chihuahua, Mexico.
| | - Andrei A Ramos
- Department of General Surgery, Christus Muguerza Hospital del Parque, Chihuahua, Mexico
| | - Francisco J Miranda
- Department of Oncologic Surgery, Christus Muguerza Hospital del Parque, Chihuahua, Mexico
| | - José E De La Rosa
- Medical Program Coordination Office, Faculty of Medicine and Biomedical Sciences, UACH, Chihuahua, Mexico
| | - Alfonzo E Muñoz
- College Of Science, University of Texas at El Paso (UTEP), El Paso, Texas
| | - Aáron A Ramírez
- Department of General Surgery, Christus Muguerza Hospital del Parque, Chihuahua, Mexico
| | - Eva P Chavez
- Plastic Surgery, Private Practice, El Paso, Texas
| | - Guillermo Gallardo
- Department of General Surgery & Endoscopy, Hospital Angeles Chihuahua, Chihuahua, Mexico
| | - Salvador Pizarro
- Department of Rheumatology, Hospital Angeles Chihuahua, Chihuahua, Mexico
| |
Collapse
|
9
|
Xie Q, Gong S, Cao J, Li A, Kulyar MF, Wang B, Li J. Mesenchymal stem cells: a novel therapeutic approach for feline inflammatory bowel disease. Stem Cell Res Ther 2024; 15:409. [PMID: 39522034 PMCID: PMC11550560 DOI: 10.1186/s13287-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) poses a significant and growing global health challenge, affecting both humans and domestic cats. Research on feline IBD has not kept pace with its widespread prevalence in human populations. This study aimed to develop a model of feline IBD by incorporating dextran sulfate sodium (DSS) to evaluate the therapeutic potential of MSCs and to elucidate the mechanisms that enhance their action. METHODS We conducted a comprehensive clinical assessment, including magnetic resonance imaging (MRI), endoscopy, and histopathological examination. Additionally, alterations in intestinal microbiota were characterized by 16 S rDNA sequencing, and the influence of MSCs on IBD-related gene expression was investigated through transcriptome analysis. RESULTS According to our findings, MSC treatment significantly mitigated DSS-induced clinical manifestations, reduced inflammatory cell infiltration, decreased the production of inflammatory mediators, and promoted mucosal repair. Regarding the intestinal microbiota, MSC intervention effectively corrected the DSS-induced dysbiosis, increasing the presence of beneficial bacteria and suppressing the proliferation of harmful bacteria. Transcriptome analysis revealed the ability of MSCs to modulate various inflammatory and immune-related signaling pathways, including cytokine-cytokine receptor interactions, TLR signaling pathways, and NF-κB pathways. CONCLUSION The collective findings indicate that MSCs exert multifaceted therapeutic effects on IBD, including the regulation of intestinal microbiota balance, suppression of inflammatory responses, enhancement of intestinal barrier repair, and modulation of immune responses. These insights provide a solid scientific foundation for employing MSCs as an innovative therapeutic strategy for IBD and pave the way for future clinical explorations.
Collapse
Affiliation(s)
- Qiyun Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jintao Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P.R. China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bingyun Wang
- School of Life Science and Engineering, Foshan University, Foshan, P.R. China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| |
Collapse
|
10
|
Ravikrishnan A, Wijaya I, Png E, Chng KR, Ho EXP, Ng AHQ, Mohamed Naim AN, Gounot JS, Guan SP, Hanqing JL, Guan L, Li C, Koh JY, de Sessions PF, Koh WP, Feng L, Ng TP, Larbi A, Maier AB, Kennedy BK, Nagarajan N. Gut metagenomes of Asian octogenarians reveal metabolic potential expansion and distinct microbial species associated with aging phenotypes. Nat Commun 2024; 15:7751. [PMID: 39237540 PMCID: PMC11377447 DOI: 10.1038/s41467-024-52097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
While rapid demographic changes in Asia are driving the incidence of chronic aging-related diseases, the limited availability of high-quality in vivo data hampers our ability to understand complex multi-factorial contributions, including gut microbial, to healthy aging. Leveraging a well-phenotyped cohort of community-living octogenarians in Singapore, we used deep shotgun-metagenomic sequencing for high-resolution taxonomic and functional characterization of their gut microbiomes (n = 234). Joint species-level analysis with other Asian cohorts identified distinct age-associated shifts characterized by reduction in microbial richness, and specific Alistipes and Bacteroides species enrichment (e.g., Alistipes shahii and Bacteroides xylanisolvens). Functional analysis confirmed these changes correspond to metabolic potential expansion in aging towards alternate pathways synthesizing and utilizing amino-acid precursors, vis-à-vis dominant microbial guilds producing butyrate in gut from pyruvate (e.g., Faecalibacterium prausnitzii, Roseburia inulinivorans). Extending these observations to key clinical markers helped identify >10 robust microbial associations to inflammation, cardiometabolic and liver health, including potential probiotic species (e.g., Parabacteroides goldsteinii) and pathobionts (e.g., Klebsiella pneumoniae), highlighting the microbiome's role as biomarkers and potential targets for promoting healthy aging.
Collapse
Affiliation(s)
- Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Indrik Wijaya
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Eileen Png
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Kern Rei Chng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Eliza Xin Pei Ho
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Amanda Hui Qi Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Ahmad Nazri Mohamed Naim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Jean-Sebastien Gounot
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Shou Ping Guan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jasinda Lee Hanqing
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Lihuan Guan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Chenhao Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Jia Yu Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Paola Florez de Sessions
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Woon-Puay Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Brenner Centre for Molecular Medicine, Singapore, 117609, Republic of Singapore
| | - Lei Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Tze Pin Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Anis Larbi
- Singapore Immunology Network (SigN), Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Andrea B Maier
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Brian K Kennedy
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
11
|
Fan MY, Jiang QL, Cui MY, Zhao MQ, Wang JJ, Lu YY. Alteration of ascending colon mucosal microbiota in patients after cholecystectomy. World J Gastrointest Surg 2024; 16:2436-2450. [PMID: 39220062 PMCID: PMC11362947 DOI: 10.4240/wjgs.v16.i8.2436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Cholecystectomy is a successful treatment option for gallstones, although the incidence of colorectal cancer (CRC) has notably increased in post-cholecystectomy (PC) patients. However, it remains uncertain whether the altered mucosal microbiota in the ascending colon is related. AIM To investigate the potential correlation between gut microbiota and the surgical procedure of cholecystectomy. METHODS In total, 30 PC patients and 28 healthy controls underwent colonoscopies to collect mucosal biopsy samples. PC patients were divided based on their clinical features. Then, 16S-rRNA gene sequencing was used to analyze the amplicon, alpha diversity, beta diversity, and composition of the bacterial communities. Additionally, the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) database, sourced from the Kyoto Encyclopedia of Genes and Genomes, was used to predict the functional capabilities of the bacteria. RESULTS PC patients were comparable with healthy controls. However, PC patients older than 60 years had a distinct composition compared to those under 60 years old. Bacteroidetes richness was considerably higher at the phylum level in PC patients. Bacteroides, Parabacteroides, and Bilophila were more abundant in the PC group than in the control group. Furthermore, PC patients exhibited greater enrichment in metabolic pathways, specifically those related to lipopolysaccharide biosynthesis and vancomycin group antibiotic production, than controls. CONCLUSION This study indicated that the mucosal microbiota in PC patients was altered, perhaps offering new perspectives on the treatment possibilities for CRC and diarrhea following cholecystectomy.
Collapse
Affiliation(s)
- Miao-Yan Fan
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qiao-Li Jiang
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Meng-Yan Cui
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Meng-Qi Zhao
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jing-Jing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ying-Ying Lu
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
12
|
Amaral Raposo M, Sousa Oliveira E, Dos Santos A, Guadagnini D, El Mourabit H, Housset C, Lemoinne S, Abdalla Saad MJ. Impact of cholecystectomy on the gut-liver axis and metabolic disorders. Clin Res Hepatol Gastroenterol 2024; 48:102370. [PMID: 38729564 DOI: 10.1016/j.clinre.2024.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Cholecystectomy is considered as a safe procedure to treat patients with gallstones. However, epidemiological studies highlighted an association between cholecystectomy and metabolic disorders, such as type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease (MASLD), independently of the gallstone disease. Following cholecystectomy, bile acids flow directly from the liver into the intestine, leading to changes in the entero-hepatic circulation of bile acids and their metabolism. The changes in bile acids metabolism impact the gut microbiota. Therefore, cholecystectomized patients display gut dysbiosis characterized by a reduced diversity, a loss of bacteria producing short-chain fatty acids and an increase in pro-inflammatory bacteria. Alterations of both bile acids metabolism and gut microbiota occurring after cholecystectomy can promote the development of metabolic disorders. In this review, we discuss the impact of cholecystectomy on bile acids and gut microbiota and its consequences on metabolic functions.
Collapse
Affiliation(s)
- Mariana Amaral Raposo
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Emília Sousa Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Andrey Dos Santos
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Haquima El Mourabit
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Chantal Housset
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Sara Lemoinne
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, European Reference Network on Hepatological Diseases (ERN Rare-Liver), Saint-Antoine Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.
| | - Mário José Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil.
| |
Collapse
|
13
|
Xia C, Zhang R, Jia X, Dong L, Ma Q, Zhao D, Kun Lee Y, Sun Z, Huang F, Zhang M. In vitro human gut microbiota fermentation of litchi pulp polysaccharides as affected by Lactobacillus pre-treatment. Food Chem 2024; 445:138734. [PMID: 38401310 DOI: 10.1016/j.foodchem.2024.138734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
In this study, litchi polysaccharides were obtained from unfermented or fermented pulp by Lactobacillus fermentum (denoted as LP and LPF, respectively). The differences between LP and LPF in the colonic fermentation characteristics and modulatory of gut microbiota growth and metabolism were investigated with an in vitro fecal fermentation model. Results revealed that the strategies of gut bacteria metabolizing LP and LPF were different and LPF with lower molecular weight (Mw) was readily utilized by bacteria. The monosaccharide utilization sequence of each polysaccharide was Ara > Gla > GalA > GlcA ≈ Glu ≈ Man. Moreover, LPF promoted stronger proliferation of Bifidobacterium, Megamonas, Prevotella, and Bacteroides and higher SCFAs production (especially acetic and butyric acids) than LP. Correlation analysis further revealed that Mw could represent an essential structural feature of polysaccharides associated with its microbiota-regulating effect. Overall, Lactobacillus fermentation pre-treatment of litchi pulp promoted the fermentation characteristics and prebiotic activities of its polysaccharide.
Collapse
Affiliation(s)
- Chunmei Xia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Dong Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yuan Kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Zhida Sun
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
14
|
Nie X, Lu Q, Yin Y, He Z, Bai Y, Zhu C. Microbiome and metabolome analyses reveal significant alterations of gut microbiota and bile acid metabolism in ETEC-challenged weaned piglets by dietary berberine supplementation. Front Microbiol 2024; 15:1428287. [PMID: 38983627 PMCID: PMC11231202 DOI: 10.3389/fmicb.2024.1428287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
This study mainly investigated the effects of berberine (BBR) on the bile acid metabolism in gut-liver axis and the microbial community in large intestine of weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC) by microbiome and metabolome analyses. Sixty-four piglets were randomly assigned to four groups including Control group, BBR group, ETEC group, and BBR + ETEC group. Dietary BBR supplementation upregulated the colonic mRNA expression of Occludin, Claudin-5, trefoil factor 3 (TFF3), and interleukin (IL)-10, and downregulated colonic IL-1β and IL-8 mRNA expression in piglets challenged with ETEC K88 (p < 0.05). The hepatic non-targeted metabolome results showed that dietary BBR supplementation enriched the metabolic pathways of primary bile acid biosynthesis, tricarboxylic acid cycle, and taurine metabolism. The hepatic targeted metabolome analyses showed that BBR treatment increased the hepatic concentrations of taurocholic acid (TCA) and taurochenodeoxycholic acid (TDCA), but decreased the hepatic cholic acid (CA) concentration (p < 0.05). Further intestinal targeted metabolome analyses indicated that the deoxycholic acid (DCA), hyocholic acid (HCA), 7-ketodeoxycholic acid (7-KDCA), and the unconjugated bile acid concentrations in ileal mucosa was decreased by dietary BBR treatment (p < 0.05). Additionally, BBR treatment significantly upregulated the hepatic holesterol 7 α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) mRNA expression, and upregulated the ileal mRNA expression of farnesoid X receptor (FXR) and apical sodium-dependent bile acid transporter (ASBT) as well as the colonic mRNA expression of FXR, fibroblast growth factor19 (FGF19), takeda G protein-coupled receptor 5 (TGR5) and organic solute transporters beta (OST-β) in piglets (p < 0.05). Moreover, the microbiome analysis showed that BBR significantly altered the composition and diversity of colonic and cecal microbiota community, with the abundances of Firmicutes (phylum), and Lactobacillus and Megasphaera (genus) significantly increased in the large intestine of piglets (p < 0.05). Spearman correlation analysis showed that the relative abundances of Megasphaera (genus) were positively correlated with Claudin-5, Occludin, TFF3, and hepatic TCDCA concentration, but negatively correlated with hepatic CA and glycocholic acid (GCA) concentration (p < 0.05). Moreover, the relative abundances of Firmicute (phylum) and Lactobacillus (genus) were positively correlated with hepatic TCDCA concentration (p < 0.05). Collectively, dietary BBR supplementation could regulate the gut microbiota and bile acid metabolism through modulation of gut-liver axis, and attenuate the decreased intestinal tight junction expression caused by ETEC, which might help maintain intestinal homeostasis in weaned piglets.
Collapse
Affiliation(s)
- Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qi Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yucheng Yin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhentao He
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Province Doctoral Workstation, Shanwei Xinsheng Leisure Agriculture Co., Ltd, Shanwei, China
| | - Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
15
|
Peng Y, Li Y, Pi Y, Yue X. Effects of almond (Armeniaca Sibirica L. Lam) polysaccharides on gut microbiota and anti-inflammatory effects on LPS-induced RAW264.7 cells. Int J Biol Macromol 2024; 263:130098. [PMID: 38342264 DOI: 10.1016/j.ijbiomac.2024.130098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
The aim of this study was to investigate the prebiotic properties of the almond polysaccharide AP-1 on intestinal microorganisms by using an in vitro fecal fermentation method and its anti-inflammatory effect on lipopolysaccharide (LPS)-induced RAW264.7 cells. The results showed that during the in vitro fermentation of AP-1, the pH value of the fermentation broth decreased obviously, while the concentration of short-chain fatty acids (SCFAs) increased significantly, especially acetic acid and butyric acid. In genus level, the number of Clostridium and Megamonas increased markedly in the AP-1 group after 24 h of fermentation. After 48 h of fermentation, there was a noticeable increase in the number of beneficial genera Lactobacillaceae and Bifidobacteriaceae, and a considerable decrease in the number of pro-inflammatory genera. In addition, we found that AP-1 had no toxic effect on RAW264.7 cells. In the LPS-induced inflammation model of RAW264.7 cells, AP-1 could effectively inhibit the release of NO, regulate the level of reactive oxides (ROS), and effectively down-regulate the mRNA expression of TNF-α, IL-1β, IL-6 and iNOS. In conclusion, the almond polysaccharide AP-1 may be a functional active substance aimed at promoting intestinal health and exerting anti-inflammatory effects.
Collapse
Affiliation(s)
- Yanqi Peng
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yingshuo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yuzhen Pi
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| |
Collapse
|
16
|
Gao Q, Li D, Wang Y, Zhao C, Li M, Xiao J, Kang Y, Lin H, Wang N. Analysis of intestinal flora and cognitive function in maintenance hemodialysis patients using combined 16S ribosome DNA and shotgun metagenome sequencing. Aging Clin Exp Res 2024; 36:28. [PMID: 38334873 PMCID: PMC10857965 DOI: 10.1007/s40520-023-02645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cognitive impairment is widely prevalent in maintenance hemodialysis (MHD) patients, and seriously affects their quality of life. The intestinal flora likely regulates cognitive function, but studies on cognitive impairment and intestinal flora in MHD patients are lacking. METHODS MHD patients (36) and healthy volunteers (18) were evaluated using the Montreal Cognitive Function Scale, basic clinical data, and 16S ribosome DNA (rDNA) sequencing. Twenty MHD patients and ten healthy volunteers were randomly selected for shotgun metagenomic analysis to explore potential metabolic pathways of intestinal flora. Both16S rDNA sequencing and shotgun metagenomic sequencing were conducted on fecal samples. RESULTS Roseburia were significantly reduced in the MHD group based on both 16S rDNA and shotgun metagenomic sequencing analyses. Faecalibacterium, Megamonas, Bifidobacterium, Parabacteroides, Collinsella, Tyzzerella, and Phascolarctobacterium were positively correlated with cognitive function or cognitive domains. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included oxidative phosphorylation, photosynthesis, retrograde endocannabinoid signaling, flagellar assembly, and riboflavin metabolism. CONCLUSION Among the microbiota, Roseburia may be important in MHD patients. We demonstrated a correlation between bacterial genera and cognitive function, and propose possible mechanisms.
Collapse
Affiliation(s)
- Qiuyi Gao
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dianshi Li
- Centre for Empirical Legal Studies, Faculty of Law, University of Macau, Macau, China
| | - Yue Wang
- Department of Nephrology, Binzhou Medical University Affiliated Shengli Oilfield Central Hospital, Binzhou, China
| | - Chunhui Zhao
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingshuai Li
- School of Graduate, Dalian Medical University, Dalian, China
| | - Jingwen Xiao
- School of Graduate, Dalian Medical University, Dalian, China
| | - Yan Kang
- School of Graduate, Dalian Medical University, Dalian, China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Nan Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
17
|
Miutescu B, Vuletici D, Burciu C, Bende F, Ratiu I, Moga T, Gadour E, Reddy S, Sandru V, Balan G, Dancu G, Maralescu FM, Popescu A. Comparative Analysis of Microbial Species and Multidrug Resistance Patterns in Acute Cholangitis Patients with Cholecystectomy: A Single-Center Study. Diseases 2024; 12:19. [PMID: 38248370 PMCID: PMC10813899 DOI: 10.3390/diseases12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
This study aimed to compare microbial species and multidrug resistance patterns in acute cholangitis patients with and without a history of cholecystectomy, highlighting potential differences We hypothesized that post-cholecystectomy patients would exhibit distinct microbial spectra and resistance patterns. Conducted at a western Romanian hospital specializing in gastroenterology and hepatobiliary diseases from 2020 to 2023, this retrospective study included 488 acute cholangitis patients, divided into groups based on their cholecystectomy history. Bile and blood samples were analyzed for microbial identification and antibiotic susceptibility using VITEK®2. Positive biliary cultures were found in 66% of patients. The cholecystectomy group showed a higher prevalence of multidrug-resistant organisms, with 74.4% exhibiting resistance compared to 31.5% in the non-cholecystectomy group (p < 0.001). Notable microbial differences included higher occurrences of Escherichia coli (40.2%) and Enterococcus spp. (32.4%) in the cholecystectomy group. Resistance to Piperacillin/Tazobactam and Penems was significantly higher in this group, with odds ratios of 3.25 (p < 0.001) and 2.80 (p = 0.001), respectively, for the development of multidrug-resistant (MDR) bacterial species. The study confirmed our hypothesis, revealing distinct microbial profiles and a higher prevalence of multidrug resistance in acute cholangitis post-cholecystectomy patients. These findings underscore the need for tailored antibiotic strategies in managing acute cholangitis in this patient demographic.
Collapse
Affiliation(s)
- Bogdan Miutescu
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (B.M.); (C.B.); (F.B.); (I.R.); (T.M.); (G.D.); (A.P.)
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Deiana Vuletici
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (B.M.); (C.B.); (F.B.); (I.R.); (T.M.); (G.D.); (A.P.)
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Calin Burciu
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (B.M.); (C.B.); (F.B.); (I.R.); (T.M.); (G.D.); (A.P.)
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Gastroenterology, Faculty of Medicine, Pharmacy and Dental Medicine, “Vasile Goldis” West University of Arad, 310414 Arad, Romania
| | - Felix Bende
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (B.M.); (C.B.); (F.B.); (I.R.); (T.M.); (G.D.); (A.P.)
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Iulia Ratiu
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (B.M.); (C.B.); (F.B.); (I.R.); (T.M.); (G.D.); (A.P.)
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Tudor Moga
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (B.M.); (C.B.); (F.B.); (I.R.); (T.M.); (G.D.); (A.P.)
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Eyad Gadour
- Department of Gastroenterology, King Abdulaziz Hospital-National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia;
- Department of Medicine, Zamzam University College, Khartoum 11113, Sudan
| | - Shruta Reddy
- Department of General Medicine, SVS Medical College, Yenugonda, Mahbubnagar 509001, Telangana, India;
| | - Vasile Sandru
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania;
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Gheorghe Balan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Greta Dancu
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (B.M.); (C.B.); (F.B.); (I.R.); (T.M.); (G.D.); (A.P.)
| | - Felix-Mihai Maralescu
- Division of Nephrology, Department of Internal Medicine II, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Alina Popescu
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (B.M.); (C.B.); (F.B.); (I.R.); (T.M.); (G.D.); (A.P.)
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
18
|
Guo S, Ma T, Kwok LY, Quan K, Li B, Wang H, Zhang H, Menghe B, Chen Y. Effects of postbiotics on chronic diarrhea in young adults: a randomized, double-blind, placebo-controlled crossover trial assessing clinical symptoms, gut microbiota, and metabolite profiles. Gut Microbes 2024; 16:2395092. [PMID: 39189588 PMCID: PMC11352714 DOI: 10.1080/19490976.2024.2395092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic diarrhea has a considerable impact on quality of life. This randomized, double-blind, placebo-controlled crossover intervention trial was conducted with 69 participants (36 in Group A, 33 in Group B), aiming to investigate the potential of postbiotics in alleviating diarrhea-associated symptoms. Participants received postbiotic Probio-Eco® and placebo for 21 days each in alternating order, with a 14-day washout period between interventions. The results showed that postbiotic intake resulted in significant improvements in Bristol stool scale score, defecation frequency, urgency, and anxiety. Moreover, the postbiotic intervention increased beneficial intestinal bacteria, including Dysosmobacter welbionis and Faecalibacterium prausnitzii, while reducing potential pathogens like Megamonas funiformis. The levels of gut Microviridae notably increased. Non-targeted metabolomics analysis revealed postbiotic-driven enrichment of beneficial metabolites, including α-linolenic acid and p-methoxycinnamic acid, and reduction of diarrhea-associated metabolites, including theophylline, piperine, capsaicin, and phenylalanine. Targeted metabolomics confirmed a significant increase in fecal butyric acid after postbiotic intervention. The levels of aromatic amino acids, phenylalanine and tryptophan, and their related metabolites, 5-hydroxytryptophan and kynurenine, decreased after the postbiotic intervention, suggesting diarrhea alleviation was through modulating the tryptophan-5-hydroxytryptamine and tryptophan-kynurenine pathways. Additionally, chenodeoxycholic acid, a diarrhea-linked primary bile acid, decreased substantially. In conclusion, postbiotics have shown promise in relieving chronic diarrhea.
Collapse
Affiliation(s)
- Shuai Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Keyu Quan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Bohai Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Huan Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Department of Clinical Nutrition, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
19
|
Xu J, Zhang Y, Fang XH, Liu Y, Huang YB, Ke ZL, Wang Y, Zhang YF, Zhang Y, Zhou JH, Su HT, Chen N, Liu YL. The oral bacterial microbiota facilitates the stratification for ulcerative colitis patients with oral ulcers. Ann Clin Microbiol Antimicrob 2023; 22:99. [PMID: 37946238 PMCID: PMC10633958 DOI: 10.1186/s12941-023-00646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Clinically, a large part of inflammatory bowel disease (IBD) patients is complicated by oral lesions. Although previous studies proved oral microbial dysbiosis in IBD patients, the bacterial community in the gastrointestinal (GI) tract of those IBD patients combined with oral ulcers has not been profiled yet. METHODS In this study, we enrolled four groups of subjects, including healthy controls (CON), oral ulcer patients (OU), and ulcerative colitis patients with (UC_OU) and without (UC) oral ulcers. Bio-samples from three GI niches containing salivary, buccal, and fecal samples, were collected for 16S rRNA V3-V4 region sequencing. Bacterial abundance and related bio-functions were compared, and data showed that the fecal microbiota was more potent than salivary and buccal microbes in shaping the host immune system. ~ 22 UC and 10 UC_OU 5-aminosalicylate (5-ASA) routine treated patients were followed-up for six months; according to their treatment response (a decrease in the endoscopic Mayo score), they were further sub-grouped as responding and non-responding patients. RESULTS We found those UC patients complicated with oral ulcers presented weaker treatment response, and three oral bacterial genera, i.e., Fusobacterium, Oribacterium, and Campylobacter, might be connected with treatment responding. Additionally, the salivary microbiome could be an indicator of treatment responding in 5-ASA routine treatment rather than buccal or fecal ones. CONCLUSIONS The fecal microbiota had a strong effect on the host's immune indices, while the oral bacterial microbiota could help stratification for ulcerative colitis patients with oral ulcers. Additionally, the oral microbiota had the potential role in reflecting the treatment response of UC patients. Three oral bacteria genera (Fusobacterium, Oribacterium, and Campylobacter) might be involved in UC patients with oral ulcers lacking treatment responses, and monitoring oral microbiota may be meaningful in assessing the therapeutic response in UC patients.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiao-Hui Fang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yun Liu
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yi-Bo Huang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Zi-Liang Ke
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yang Wang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yi-Fan Zhang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yang Zhang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jian-Hua Zhou
- Institute of Clinical Molecular Biology and Central Laboratory, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Hui-Ting Su
- Institute of Clinical Molecular Biology and Central Laboratory, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu-Lan Liu
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
20
|
Ming-bin G, Ya-nan W, Yong-ting X, Min Z, Hao T, Lian-ping Q, Feng G. TCM syndrome differentiation in colorectal cancer patients assisted by differences in gut microbiota: An exploratory study. Heliyon 2023; 9:e21057. [PMID: 37928040 PMCID: PMC10623286 DOI: 10.1016/j.heliyon.2023.e21057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Objective To explore the difference in gut microbiota between different traditional Chinese Medicine (TCM) syndromes in patients with colorectal cancer (CRC) and its internal relationship. Methods From June 2020 to August 2021, 109 colorectal cancer patients with a clear pathological diagnosis who had not yet undergone surgery or chemotherapy were classified according to the TCM syndrome classification, and the feces samples of 109 patients with preoperative colorectal cancer were collected. 16s rRNA gene sequencing was used to determine gut microbiota diversity and abundance in CRC patients with different TCM syndrome, and LEfSe analysis was made to screen different TCM syndrome for differential representative microbiota. Results 109 patients were divided into 5 syndromes by TCM syndrome classification, which were Liver and Kidney Yin Deficiency Syndrome (LKYDS, n = 19), Spleen Deficient Qi Stagnation Syndrome (SDQSS, n = 30), Stasis and Poison Obstruction Syndrome (SPOS, n = 17), Damp-Heat Syndrome (DHS, n = 30), Qi and Blood Deficiency Syndrome (QBDS, n = 13). Alpha diversity index showed significant differences among the five groups of TCM syndromes, with Shannon index being highest in the SDQSS group and lowest in the LKYDS (p = 0.003). ACE index being highest in the SDQSS group and lowest in the SPOS (p = 0.010). PD whole tree index being highest in the SDQSS group and lowest in the SPOS (p = 0.017). Similarly, beta diversity showed significant differences among the five groups of TCM syndromes, with principal coordinate analysis (PCo1 = 31.86 %, PCo2 = 5.62 %) showing separation and coincidence between the groups, and Adonis group differences showing coincidence between the QBDS-LKYDS (p = 0.702), QBDS-DHS (p = 0.133), and SDQSS-DHS (p = 0.260) groups. LEfSe analysis revealed that the representative microbiota of DHS patients was Dialister sp Marseille P5638 (LDA = 3.05, p<0.001), the representative microbiota of SPOS patients was Oscillospirales (LDA = 4.78, p = 0.029), the representative microbiota of SDQSS patients was Selenomonadaceae (LDA = 3.94, p = 0.003), the representative microbiota of LKYDS patients was Dialister (LDA = 4.19, p = 0.001), and the representative microbiota of QBDS patients was Akkermansia muciniphila (LDA = 4.23, p = 0.006). Conclusions There are significant differences in gut microbiota between different TCM syndromes in CRC patients. The five microbiota, Dialister sp Marseille P5638, Oscillospirales, Selenomonadaceae, Dialister, and Akkermansia muciniphila, may be differential markers of TCM syndrome in CRC and are expected to be one of the bases for accurate TCM syndrome differentiation of CRC.
Collapse
Affiliation(s)
- Gui Ming-bin
- Department of Colorectal & Anal surgery, The 940th Hospital of Joint Logistics support force of Chinese people's Liberation Army, Lanzhou 730050, China
| | - Wang Ya-nan
- Department of Colorectal & Anal surgery, The 940th Hospital of Joint Logistics support force of Chinese people's Liberation Army, Lanzhou 730050, China
| | - Xue Yong-ting
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Zou Min
- Department of Colorectal & Anal surgery, The 940th Hospital of Joint Logistics support force of Chinese people's Liberation Army, Lanzhou 730050, China
| | - Tu Hao
- Department of Colorectal & Anal surgery, The 940th Hospital of Joint Logistics support force of Chinese people's Liberation Army, Lanzhou 730050, China
| | - Qu Lian-ping
- Department of Colorectal & Anal surgery, The 940th Hospital of Joint Logistics support force of Chinese people's Liberation Army, Lanzhou 730050, China
| | - Gao Feng
- Department of Colorectal & Anal surgery, The 940th Hospital of Joint Logistics support force of Chinese people's Liberation Army, Lanzhou 730050, China
| |
Collapse
|
21
|
Welham Z, Li J, Engel AF, Molloy MP. Mucosal Microbiome in Patients with Early Bowel Polyps: Inferences from Short-Read and Long-Read 16S rRNA Sequencing. Cancers (Basel) 2023; 15:5045. [PMID: 37894412 PMCID: PMC10605900 DOI: 10.3390/cancers15205045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Numerous studies have correlated dysbiosis in stool microbiota with colorectal cancer (CRC); however, fewer studies have investigated the mucosal microbiome in pre-cancerous bowel polyps. The short-read sequencing of variable regions in the 16S rRNA gene has commonly been used to infer bacterial taxonomy, and this has led, in part, to inconsistent findings between studies. Here, we examined mucosal microbiota from patients who presented with one or more polyps, compared to patients with no polyps, at the time of colonoscopy. We evaluated the results obtained using both short-read and PacBio long-read 16S rRNA sequencing. Neither sequencing technology identified significant differences in microbial diversity measures between patients with or without bowel polyps. Differential abundance measures showed that amplicon sequence variants (ASVs) associated with Ruminococcus gnavus and Escherichia coli were elevated in mucosa from polyp patients, while ASVs associated with Parabacteroides merdae, Veillonella nakazawae, and Sutterella wadsworthensis were relatively decreased. Only R. gnavus was consistently identified using both sequencing technologies as being altered between patients with polyps compared to patients without polyps, suggesting differences in technologies and bioinformatics processing impact study findings. Several of the differentially abundant bacteria identified using either sequencing technology are associated with inflammatory bowel diseases despite these patients being excluded from the current study, which suggests that early bowel neoplasia may be associated with a local inflammatory niche.
Collapse
Affiliation(s)
- Zoe Welham
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, Sydney 2065, Australia; (Z.W.); (J.L.)
| | - Jun Li
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, Sydney 2065, Australia; (Z.W.); (J.L.)
| | - Alexander F. Engel
- Colorectal Surgical Unit, Royal North Shore Hospital, Sydney 2065, Australia;
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2050, Australia
| | - Mark P. Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, Sydney 2065, Australia; (Z.W.); (J.L.)
| |
Collapse
|
22
|
Xu F, Chen R, Zhang C, Wang H, Ding Z, Yu L, Tian F, Chen W, Zhou Y, Zhai Q. Cholecystectomy Significantly Alters Gut Microbiota Homeostasis and Metabolic Profiles: A Cross-Sectional Study. Nutrients 2023; 15:4399. [PMID: 37892474 PMCID: PMC10609985 DOI: 10.3390/nu15204399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Cholecystectomy (CCE) is a standard clinical treatment for conditions like gallstones and cholecystitis. However, its link to post-CCE syndrome, colorectal cancer, and nonalcoholic fatty liver disease has raised concerns. Additionally, studies have demonstrated the disruptive effects of CCE on gut microbiota homeostasis and bile acid (BA) metabolism. Considering the role of gut microbiota in regulating host metabolic and immune pathways, the use of dietary and probiotic intervention strategies to maintain a stable gut ecosystem after CCE could potentially reduce associated disease risks. Inter-study variations have made it challenging to identify consistent gut microbiota patterns after CCE, a prerequisite for targeted interventions. In this study, we first meta-analyzed 218 raw 16S rRNA gene sequencing datasets to determine consistent patterns of structural and functional changes in the gut microbiota after CCE. Our results revealed significant alterations in the gut microbiota's structure and function due to CCE. Furthermore, we identified characteristic gut microbiota changes associated with CCE by constructing a random model classifier. In the validation cohort, this classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.713 and 0.683 when distinguishing between the microbiota of the CCE and healthy groups at the family and genus levels, respectively. Further, fecal metabolomics analysis demonstrated that CCE also substantially modified the metabolic profile, including decreased fecal short-chain fatty acid levels and disrupted BA metabolism. Importantly, dietary patterns, particularly excessive fat and total energy intake, influenced gut microbiota and metabolic profile changes post-CCE. These dietary habits were associated with further enrichment of the microbiota related to BA metabolism and increased levels of intestinal inflammation after CCE. In conclusion, our study identified specific alterations in gut microbiota homeostasis and metabolic profiles associated with CCE. It also revealed a potential link between dietary patterns and gut microbiota changes following CCE. Our study provides a theoretical basis for modulating gut microbiota homeostasis after CCE using long-term dietary strategies and probiotic interventions.
Collapse
Affiliation(s)
- Fusheng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruimin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Wang
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Zhijie Ding
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yongping Zhou
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Noh CK, Jung W, Yang MJ, Kim WH, Hwang JC. Alteration of the fecal microbiome in patients with cholecystectomy: potential relationship with postcholecystectomy diarrhea - before and after study. Int J Surg 2023; 109:2585-2597. [PMID: 37288587 PMCID: PMC10498850 DOI: 10.1097/js9.0000000000000518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Bile acid (BA) is a crucial determinant of the gut microbiome, and cholecystectomy can alter the physiology of BA. Physiological changes in BA resulting from cholecystectomy can also influence the gut microbiome. We aimed to identify the specific taxa associated with perioperative symptoms, including postcholecystectomy diarrhea (PCD), and to evaluate the effect of cholecystectomy on the microbiome by investigating the fecal microbiome of patients with gallstones. METHODS We analyzed the fecal samples of 39 patients with gallstones (GS group) and 26 healthy controls (HC group) to evaluate their gut microbiome. We also collected fecal samples from GS group 3 months postcholecystectomy. Symptoms of patients were evaluated before and after cholecystectomy. Further, 16S ribosomal RNA amplification and sequencing were performed to determine the metagenomic profile of fecal samples. RESULTS The microbiome composition of GS differed from that of HC; however, the alpha diversity was not different. No significant microbiome alterations were observed before and after cholecystectomy. Moreover, GS group showed a significantly lower Firmicutes to Bacteroidetes ratio before and after cholecystectomy than the HC group (6.2, P< 0.05). The inter-microbiome relationship was lower in GS than in HC and tended to recover 3 months after surgery. Furthermore, ~28.1% ( n =9) of patients developed PCD after surgery. The most prominent species among PCD (+) patients was Phocaeicola vulgatus. Compared with the preoperative state, Sutterellaceae , Phocaeicola , and Bacteroidals were the most dominant taxa among PCD (+) patients. CONCLUSION GS group showed a different microbiome from that of HC; however, their microbiomes were not different 3 months after cholecystectomy. Our data revealed taxa-associated PCD, highlighting the possibility of symptom relief by restoring the gut microbiome.
Collapse
Affiliation(s)
| | - Woohyun Jung
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | - Wook Hwan Kim
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | | |
Collapse
|
24
|
Yu L, Liu W, Yan Y, Jiang Y, Gao X, Ruan S. No association between cholecystectomy and risk of colorectal cancer: a meta-analysis of cohort studies. Int J Colorectal Dis 2023; 38:179. [PMID: 37368048 DOI: 10.1007/s00384-023-04463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE Cohort studies have reported an association between colorectal cancer and cholecystectomy. However, the conclusions are inconsistent. Thus, this meta-analysis will quantify the risk of colorectal cancer following cholecystectomy. METHODS PubMed, EMBASE and Cochrane Library databases were searched for relevant cohort studies. The quality of individual observational studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. The relative risk of colorectal cancer after cholecystectomy was calculated using STATA 14.0 software. Subgroup and sensitivity analyses were used to examine the source of heterogeneity. Funnel plots and Egger's test were finally performed to assess the publication bias. RESULTS This meta-analysis included 14 studies comprising 2,283,616 subjects. Pooled analysis indicated that cholecystectomy was not a risk factor for colorectal cancer (Colorectal: RR 1.06; 95% CI 0.75-1.51, p = 0.739 Colon: RR 1.30; 95% CI 0.88-1.93, p = 0.182 Rectal: RR 0.99; 95% CI 0.74-1.32, p = 0.932). Subgroup showed that patients are at an increased risk of sigmoid colon following cholecystectomy (RR 1.42; 95% CI 1.27-1.58, p = 0.000). Furthermore, it was shown that both females and males undergoing cholecystectomy may have higher risks of colon cancer (Female: RR = 1.47, 95% CI 1.01-2.14, P = 0.042 Male: RR = 1.32; 95% CI 1.07-1.63, P = 0.010), which is similarly observed in the right colon (Female: RR 1.99; 95% CI 1.31-3.03, p = 0.001, P = 0.017 Male: RR 1.68; 95% CI 0.81-3.49, p = 0.166). CONCLUSIONS No clear evidence to support the association between cholecystectomy and an increased risk of colorectal cancer. For patients with valid indications, timely cholecystectomy could be performed without the risk of colorectal cancer.
Collapse
Affiliation(s)
- Lulin Yu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenjing Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yici Yan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Jiang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Gao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
| |
Collapse
|
25
|
Dong Z, Shi R, Li P, Song X, Dong F, Zhu J, Wu R, Liang Z, Du M, Wang J, Yang Z. Does postcholecystectomy increase the risk of colorectal cancer? Front Microbiol 2023; 14:1194419. [PMID: 37426004 PMCID: PMC10324655 DOI: 10.3389/fmicb.2023.1194419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
With the increasing number of cholecystectomy and the high proportion of colorectal cancer in malignant tumors, the question of whether cholecystectomy is a risk factor for colorectal disease has been widely concerned. After reviewing the literature at home and abroad, the authors will summarize the research progress of the correlation between the occurrence of colorectal tumors after cholecystectomy, in order to provide help for the prevention and treatment of colorectal tumors.
Collapse
Affiliation(s)
- Zhenyu Dong
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Ruixian Shi
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Pengda Li
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiaobiao Song
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Fan Dong
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Jianmin Zhu
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Riga Wu
- Department of General Surgery, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zhi Liang
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Mingyue Du
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Jijun Wang
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Zhigang Yang
- Department of Urology, Baotou Central Hospital, Baotou, Inner Mongolia, China
| |
Collapse
|
26
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
27
|
Hartmann P, Schnabl B. Fungal infections and the fungal microbiome in hepatobiliary disorders. J Hepatol 2023; 78:836-851. [PMID: 36565724 PMCID: PMC10033447 DOI: 10.1016/j.jhep.2022.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Liver and biliary diseases affect more than a billion people worldwide, with high associated morbidity and mortality. The impact of the intestinal bacterial microbiome on liver diseases has been well established. However, the fungal microbiome, or mycobiome, has been overlooked for a long time. Recently, several studies have shed light on the role of the mycobiome in the development and progression of hepatobiliary diseases. In particular, the fungal genus Candida has been found to be involved in the pathogenesis of multiple hepatobiliary conditions. Herein, we compare colonisation and infection, describe mycobiome findings in the healthy state and across the various hepatobiliary conditions, and point toward communalities. We detail how quantitation of immune responses to fungal antigens can be employed to predict disease severity, e.g. using antibodies to Saccharomyces cerevisiae or specific anti-Candida albicans antibodies. We also show how fungal products (e.g. beta-glucans, candidalysin) activate the host's immune system to exacerbate liver and biliary diseases. Finally, we describe how the gut mycobiome can be modulated to ameliorate hepatobiliary conditions.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Division of Gastroenterology, Hepatology & Nutrition, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
28
|
Fu J, Shan J, Cui Y, Yan C, Wang Q, Han J, Cao G. Metabolic disorder and intestinal microflora dysbiosis in chronic inflammatory demyelinating polyradiculoneuropathy. Cell Biosci 2023; 13:6. [PMID: 36627678 PMCID: PMC9832664 DOI: 10.1186/s13578-023-00956-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a rare acquired immune-mediated neuropathy. Although microbial infection is potentially a contributing factor, a causative link between CIDP and microbial infection remains unclear. There is also no definitive biomarker for CIDP diagnostics and therapies. The present study aimed to characterize the serum metabolic profile and gut microbiome structure in CIDP. METHODS Targeted metabolomics profiling of serum, using liquid chromatography-mass spectrometry, and metagenomics sequencing of stool samples from a cohort of CIDP and non-CIDP subjects were performed to evaluate serum metabolic profiles and gut microbiome structure in CIDP subjects relative to healthy controls. RESULTS Metabolome data revealed that the bile acids profile was perturbed in CIDP with bile acids and arachidonic acid enriched significantly in CIDP versus non-CIDP controls. Metagenome data revealed that opportunistic pathogens, such as Klebsiella pneumonia and Megamonas funiformis, and genes involved in bacterial infection were notably more abundant in CIDP subjects, while gut microbes related to biotransformation of secondary bile acids were abnormal in CIDP versus non-CIDP subjects. Correlation analysis revealed that changes in secondary bile acids were associated with altered gut microbes, including Bacteroides ovatus, Bacteroides caccae, and Ruminococcus gnavus. CONCLUSION Bile acids and arachidonic acid metabolism were disturbed in CIDP subjects and might be affected by the dysbiosis of gut microbial flora. These findings suggest that the combination of bile acids and arachidonic acid could be used as a CIDP biomarker and that modulation of gut microbiota might impact the clinical course of CIDP.
Collapse
Affiliation(s)
- Jiafang Fu
- grid.452422.70000 0004 0604 7301Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 China ,Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117 China ,grid.410587.fNHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Jingli Shan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Yazhou Cui
- grid.452422.70000 0004 0604 7301Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 China ,Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117 China ,grid.410587.fNHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China ,Department of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035 China ,grid.27255.370000 0004 1761 1174Brain Science Research Institute, Shandong University, Jinan, 250012 China
| | - Qinzhou Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Jinxiang Han
- grid.452422.70000 0004 0604 7301Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 China ,Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117 China ,grid.410587.fNHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Guangxiang Cao
- grid.452422.70000 0004 0604 7301Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 China ,Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117 China ,grid.410587.fNHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
29
|
Jiang X, Jiang Z, Cheng Q, Sun W, Jiang M, Sun Y. Cholecystectomy promotes the development of colorectal cancer by the alternation of bile acid metabolism and the gut microbiota. Front Med (Lausanne) 2022; 9:1000563. [PMID: 36213655 PMCID: PMC9540502 DOI: 10.3389/fmed.2022.1000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality of colorectal cancer (CRC) have been markedly increasing worldwide, causing a tremendous burden to the healthcare system. Therefore, it is crucial to investigate the risk factors and pathogenesis of CRC. Cholecystectomy is a gold standard procedure for treating symptomatic cholelithiasis and gallstone diseases. The rhythm of bile acids entering the intestine is altered after cholecystectomy, which leads to metabolic disorders. Nonetheless, emerging evidence suggests that cholecystectomy might be associated with the development of CRC. It has been reported that alterations in bile acid metabolism and gut microbiota are the two main reasons. However, the potential mechanisms still need to be elucidated. In this review, we mainly discussed how bile acid metabolism, gut microbiota, and the interaction between the two factors influence the development of CRC. Subsequently, we summarized the underlying mechanisms of the alterations in bile acid metabolism after cholecystectomy including cellular level, molecular level, and signaling pathways. The potential mechanisms of the alterations on gut microbiota contain an imbalance of bile acid metabolism, cellular immune abnormality, acid-base imbalance, activation of cancer-related pathways, and induction of toxin, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Cheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Yan Sun,
| |
Collapse
|
30
|
Liu Y, Xu J, Ren X, Zhang Y, Ke Z, Zhou J, Wang Y, Zhang Y, Liu Y. Cholecystectomy-induced secondary bile acids accumulation ameliorates colitis through inhibiting monocyte/macrophage recruitment. Gut Microbes 2022; 14:2107387. [PMID: 36050867 PMCID: PMC9450905 DOI: 10.1080/19490976.2022.2107387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although post-cholecystectomy (PC) patients usually have gastrointestinal complications and a higher risk of colorectal cancer, previous studies undetected a heightened risk of inflammatory bowel disease. Thus, we tried to investigate cholecystectomy's impact and pathophysiological mechanism on murine colitis models and clarify the association among fecal bile acids (BAs), mucosal bacterial microbiota, and immune cells in the PC patients. One month or three months after cholecystectomy, mice have induced colitis and tested BAs and fecal microbiota analysis. Next, mice were treated with various cholecystectomy-accumulated bile acids in drinking water for three months before inducing colitis. All 14 paired PC patients and healthy subjects were enrolled for BAs and mucosal microbiota analysis. Cholecystectomy ameliorated DSS-induced murine colitis, accelerated mucosal repair, and induced a significant shifting of fecal microbiota and BAs profiles under colitis status, which featured a higher relative abundance of species involved in BAs metabolism and increased secondary BAs concentrations. Cholecystectomy-associated secondary BAs (LCA, DCA, and HDCA) also ameliorated DSS-induced colitis and accelerated mucosal repair in mice. Cholecystectomy and specific secondary BAs treatments inhibited monocytes/macrophages recruitment in colitis mice. In vitro, cholecystectomy-associated secondary BAs also downregulated monocytes chemokines in the THP-1 derived macrophages through activation of the LXRα-linked signaling pathway. The alterations of mucosal microbiota and fecal BAs profiles were found in the PC patients, characterized as increased species with potential immuno-modulating effects and secondary BAs, which were negatively associated with peripheral monocytes levels. Cholecystectomy-induced secondary bile acids accumulation ameliorated colitis through inhibiting monocyte/macrophage recruitment, which might be mediated by the LXRα-related signaling pathway. Cholecystectomy, after 3 months follow-up, has an immune-regulatory role in murine colitis, preliminarily explaining that no increased risk of IBD had been reported in the PC patients, which still warrants further studies.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Xinhua Ren
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Ziliang Ke
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Jianhua Zhou
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yang Wang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Yifan Zhang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China,CONTACT Yulan Liu Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
31
|
Shulpekova Y, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Synitsyna A, Izotov A, Butkova T, Shulpekova N, Lapina N, Nechaev V, Kardasheva S, Okhlobystin A, Ivashkin V. The Role of Bile Acids in the Human Body and in the Development of Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113401. [PMID: 35684337 PMCID: PMC9182388 DOI: 10.3390/molecules27113401] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Bile acids are specific and quantitatively important organic components of bile, which are synthesized by hepatocytes from cholesterol and are involved in the osmotic process that ensures the outflow of bile. Bile acids include many varieties of amphipathic acid steroids. These are molecules that play a major role in the digestion of fats and the intestinal absorption of hydrophobic compounds and are also involved in the regulation of many functions of the liver, cholangiocytes, and extrahepatic tissues, acting essentially as hormones. The biological effects are realized through variable membrane or nuclear receptors. Hepatic synthesis, intestinal modifications, intestinal peristalsis and permeability, and receptor activity can affect the quantitative and qualitative bile acids composition significantly leading to extrahepatic pathologies. The complexity of bile acids receptors and the effects of cross-activations makes interpretation of the results of the studies rather difficult. In spite, this is a very perspective direction for pharmacology.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Maria Zharkova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Pyotr Tkachenko
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Igor Tikhonov
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexander Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Alexandra Synitsyna
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Alexander Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Tatyana Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | | | - Natalia Lapina
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Nechaev
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Svetlana Kardasheva
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexey Okhlobystin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| |
Collapse
|
32
|
Xu J, Ren X, Liu Y, Zhang Y, Zhang Y, Chen G, Huang Q, Liu Q, Zhou J, Liu Y. Alterations of Fungal Microbiota in Patients With Cholecystectomy. Front Microbiol 2022; 13:831947. [PMID: 35633725 PMCID: PMC9132483 DOI: 10.3389/fmicb.2022.831947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence suggests a high risk of gastrointestinal postoperative comorbidities (such as colorectal cancer) in patients with postcholecystectomy (PC). Although previous studies implicated the role of fungi in colon carcinogenesis, few reports focused on the fungal profile in patients with PC. We enrolled 104 subjects, including 52 patients with PC and 52 non-PC controls (CON), for fecal collection to detect the fungal composition by an internal transcribed spacer (ITS) 1 rDNA sequencing. Data showed that Candida (C.) glabrata and Aspergillus (A.) Unassigned were enriched, and Candida albicans was depleted in patients with PC. In addition, postoperative duration was the main factor to affect the fungal composition. Machine learning identified that C. glabrata, A. Unassigned, and C. albicans were three biomarkers to discriminate patients with PC from CON subjects. To investigate the fungal role in colon carcinogenesis, the subjects of the PC group were divided into two subgroups, namely, patients with PC without (non-CA) and with precancerous lesions or colorectal cancer (preCA_CRC), by histopathological studies. C. glabrata was found to be gradually accumulated in different statuses of patients with PC. In conclusion, we found fungal dysbiosis in patients with cholecystectomy, and the postoperative duration was a potent factor to influence the fungal composition. The accumulation of C. glabrata might be connected with carcinogenesis after cholecystectomy.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Xinhua Ren
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yun Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yuanyuan Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yiwen Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Guodong Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Qing Huang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Qing Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Jianhua Zhou
- Institute of Clinical Molecular Biology and Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| |
Collapse
|
33
|
Kharazmi E, Sundquist K, Sundquist J, Fallah M, Bermejo JL. Risk of Gynecological Cancers in Cholecystectomized Women: A Large Nationwide Cohort Study. Cancers (Basel) 2022; 14:cancers14061484. [PMID: 35326635 PMCID: PMC8946708 DOI: 10.3390/cancers14061484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Gallstones affect women more frequently than men, and symptomatic gallstones are increasingly treated with surgical removal of the gallbladder (cholecystectomy). Breast, endometrial, and ovarian cancer share several risk factors with gallstones, including overweight, obesity, and exposure to female sex hormones. We intended to assess the association between cholecystectomy and female cancer risk, which has not been comprehensively investigated. Methods: We investigated the risk of female cancers after cholecystectomy leveraging the Swedish Cancer, Population, Patient, and Death registries. Standardized incidence ratios (SIRs) adjusted for age, calendar period, socioeconomic status, and residential area were used to compare cancer risk in cholecystectomized and non-cholecystectomized women. Results: During a median follow-up of 11 years, 325,106 cholecystectomized women developed 10,431 primary breast, 2888 endometrial, 1577 ovarian, and 705 cervical cancers. The risk of ovarian cancer was increased by 35% (95% confidence interval (CI) 2% to 77%) in the first 6 months after cholecystectomy. The exclusion of cancers diagnosed in the first 6 months still resulted in an increased risk of endometrial (19%, 95%CI 14% to 23%) and breast (5%, 95%CI 3% to 7%) cancer, especially in women cholecystectomized after age 50 years. By contrast, cholecystectomized women showed decreased risks of cervical (-13%, 95%CI -20% to -7%) and ovarian (-6%, 95%CI -10% to -1%) cancer. Conclusions: The risk of ovarian cancer increased by 35% in a just short period of time (6 months) following the surgery. Therefore, it is worth ruling out ovarian cancer before cholecystectomy. Women undergoing cholecystectomy showed an increased risk of breast and endometrial cancer up to 30 years after surgery. Further evaluation of the association between gallstones or gallbladder removal on female cancer risk would allow for the assessment of the need to intensify cancer screening in cholecystectomized women.
Collapse
Affiliation(s)
- Elham Kharazmi
- Institute of Medical Biometry, University of Heidelberg, 69120 Heidelberg, Germany;
- Risk Adapted Prevention Group, Division of Preventive Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Center for Primary Health Care Research, Lund University, 202 13 Malmö, Sweden; (K.S.); (J.S.)
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, 202 13 Malmö, Sweden; (K.S.); (J.S.)
- Department of Family Medicine and Community Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, 202 13 Malmö, Sweden; (K.S.); (J.S.)
- Department of Family Medicine and Community Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Mahdi Fallah
- Risk Adapted Prevention Group, Division of Preventive Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Center for Primary Health Care Research, Lund University, 202 13 Malmö, Sweden; (K.S.); (J.S.)
- Institute of Primary Health Care (BIHAM), University of Bern, 3012 Bern, Switzerland
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry, University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-6221-56-4195
| |
Collapse
|
34
|
Georgescu D, Caraba A, Ionita I, Lascu A, Hut EF, Dragan S, Ancusa OE, Suceava I, Lighezan D. Dyspepsia and Gut Microbiota in Female Patients with Postcholecystectomy Syndrome. Int J Womens Health 2022; 14:41-56. [PMID: 35136356 PMCID: PMC8816732 DOI: 10.2147/ijwh.s342882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gallstone disease (GSD) represents one of the most frequent digestive disorders, highly reported in female gender. The purpose of the study was to explore the clinical and gut microbiota particularities of female patients with postcholecystectomy syndrome (PCS) and the possible relationship between gut dysbiosis (DB) and abdominal complaints. PATIENTS AND METHODS In total, 129 female participants: 104 outpatients divided into two equal groups, 52 PCS (+), 52 PCS (-) and 25 healthy controls were consecutively enrolled in this observational study. Patients underwent clinical examination with assessment of pain, bloating, transit disturbances, abdominal ultrasound/computer tomography/magnetic resonance imaging/endoscopic retrograde cholangiopancreatography, upper and lower digestive endoscopies. Laboratory work-ups and stool microbiology assessments were performed for all study participants (patients and controls). Stool microorganisms were identified by matrix-assisted laser desorption ionization - time-of-flight- mass spectrometry and in patients with DB also by next-generation sequencing. RESULTS Older age, complicated gallstones disease, associated conditions like diabetes mellitus/impaired glucose tolerance and irritable bowel syndrome were significantly present in PCS (+) group, as well as sedentary lifestyle and diets characterized by a low fiber intake (p<0.0001). PCS (+) patients displayed significant differences related to the incidence and severity of overall gut microbiota DB, decreased H index of biodiversity and the unbalanced Firmicutes/Bacteroidetes (F/B) ratios by comparison to the PCS (-) group (p<0.0001). Strong positive correlations of the severity of overall DB with bloating and the intestinal habit disorders, as well as of F/B ratios to all abdominal symptoms were noted. CONCLUSION PCS in female patients was associated with older age, sedentary lifestyle, specific dietary habits, history of complicated gallstone disease, diabetes mellitus/impaired glucose tolerance and irritable bowel syndrome, as well as gut microbiota particularities. Overall DB and unbalanced F/B ratios were strongly correlated to abdominal complaints.
Collapse
Affiliation(s)
- Doina Georgescu
- Department of Internal Medicine I, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandru Caraba
- Department of Internal Medicine I, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Ionita
- Department of Internal Medicine I, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Ana Lascu
- Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Emil Florin Hut
- Department IX of Surgery I/Compartment of Hepato-Bilio-Pancreatic Surgery, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Simona Dragan
- Department of Cardiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana Elena Ancusa
- Department of Internal Medicine I, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Suceava
- Department of Internal Medicine I, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Daniel Lighezan
- Department of Internal Medicine I, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
35
|
Ma Y, Qu R, Zhang Y, Jiang C, Zhang Z, Fu W. Progress in the Study of Colorectal Cancer Caused by Altered Gut Microbiota After Cholecystectomy. Front Endocrinol (Lausanne) 2022; 13:815999. [PMID: 35282463 PMCID: PMC8907136 DOI: 10.3389/fendo.2022.815999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies have found an increased incidence of colorectal cancer (CRC) in people who undergo cholecystectomy compared to healthy individuals. After cholecystectomy, bile enters the duodenum directly, unregulated by the timing of meals. Disruption of the balance of bile acid metabolism and increased production of primary bile acids, which in turn affects the composition and abundance of intestinal microorganisms. The link among cholecystectomy, the gut microbiota, and the occurrence and development of CRC is becoming clearer. However, due to the complexity of the microbial community, the mechanistic connections are less well understood. In this review, we summarize the changes of gut microbiota after cholecystectomy and illuminate the potential mechanisms on CRC, such as inflammation and immune regulation, production of genotoxins, metabolism of dietary ingredients, activation of signaling pathways, and so on. By reviewing these, we aimed to unravel the interactions between the gut microbiota and its host and be better positioned to develop treatments for CRC after cholecystectomy.
Collapse
Affiliation(s)
- Yanpeng Ma
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Ruize Qu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Yi Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhipeng Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| |
Collapse
|
36
|
Zarnescu N, Zarnescu E, Dumitrascu I, Chirca A, Sanda N, Iliesiu A, Costea R. Synchronous biliary gallstones and colorectal cancer: A single center analysis. Exp Ther Med 2021; 23:138. [PMID: 35069819 PMCID: PMC8756434 DOI: 10.3892/etm.2021.11061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
Gallstones and colorectal cancer (CRC) are two common disorders that may develop simultaneously. In such situations, there is a significant chance of missing one of the conditions due to the primary clinical presentation. Late detection, diagnosis and treatment can be especially problematic in the case of unrecognized CRC. In the present study, the medical charts were retrospectively reviewed for all consecutive patients who were treated in the Second Department of Surgery, University Emergency Hospital Bucharest (Romania) between February 2015 and December 2017 following a diagnosis of CRC and/or biliary stones. There were 203 patients with CRC, 433 with biliary gallstones and 19 patients with both conditions. There were 125 men (61.6%) in the CRC group and 138 men (31.9%) in the gallstone group. The average age was 54.1±15.9 years in the gallstone group and 66.1±11.6 years in the CRC group. Obesity was observed in 96 patients (22.2%) with gallstones and in 14 (6.9%) patients in the CRC group. In the CRC group, 80 patients had medical comorbidities (39.4%), while in the gallstone group 126 patients (29.1%) had medical comorbidities. Bivariate analysis comparing gallstone only vs. gallstone and CRC identified age (P=0.001), male sex (P=0.001) and thyroid disease (P=0.001) as significant factors associated with synchronous diagnosis. The multivariable logistic regression of factors predicting CRC in patients with gallstones identified age (OR, 1.06; 95% CI, 1.023-1.105; P=0.002) and thyroid diseases (OR, 11.15; 95% CI, 2.532-49.06; P=0.001) as independent factors. There were significant differences regarding the location of the tumor between the CRC-only group and the gallstone and CRC group (P=0.001): Rectum (39.7 vs. 5.3%), left colon (26.6 vs. 21.1%), transverse colon (13 vs. 26.3%) and right colon (20.7 vs. 47.4%). The study concluded that, in patients with gallstones, age and thyroid conditions were significantly associated with CRC. Patients with a synchronous diagnosis of gallstones and CRC had significantly more right-sided CRC compared with regular CRC.
Collapse
Affiliation(s)
- Narcis Zarnescu
- Department of Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Eugenia Zarnescu
- Department of Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Dumitrascu
- Second Department of Surgery, University Emergency Hospital, 050098 Bucharest, Romania
| | - Alexandru Chirca
- Department of Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Nicoleta Sanda
- Department of Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andreea Iliesiu
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Radu Costea
- Department of Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
37
|
Mándi M, Keleti G, Juhász M. The role of appendectomy and cholecystectomy in the pathogenesis of colorectal carcinomas. Ann Med Surg (Lond) 2021; 72:102991. [PMID: 34820118 PMCID: PMC8599105 DOI: 10.1016/j.amsu.2021.102991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Several alterations in the gastrointestinal tract which occur after appendectomy or cholecystectomy have been suggested to raise the risk of developing colorectal carcinoma. Given the frequency that these procedures are performed, we sought to determine whether a history of either cholecystectomy or appendectomy increased the risk of future colorectal carcinoma. METHODS We determined the number of patients with a history of appendectomy and cholecystectomy who developed colorectal carcinoma between January 2018 and February 2021, as well as the latency time between the two diseases. Secondly, we carried out a data-collection spanning 15 years after the primary surgery (January 2005-December 2006). RESULTS The post-cholecystectomy state is significantly more frequently observed in patients treated for colorectal carcinomas (both male and female), especially among those who developed right-sided or left-sided colon cancer, as opposed to anorectal cancer (p = 0.53). However, the time elapsed between the two diseases is 20-25 years, which appears to be markedly long regarding such a multifactorial disease as the colorectal carcinoma. No similar extra risk was observed among patients having appendectomy. Secondly, we found no extra risk during the first 15 years after cholecystectomy. CONCLUSION Although a statistically higher risk of colon cancer is observed after the removal of the gallbladder, but the latency time is long. Thus, cholecystectomy may not be an independent risk factor for colorectal carcinogenesis. Altogether, the patient is not exposed to a higher risk of colorectal carcinogenesis after having cholecystectomy.
Collapse
Affiliation(s)
- Miklós Mándi
- General, Vascular and Thoracic Surgery Unit, Bajcsy-Zsilinszky Hospital, Budapest, Hungary 89-91, Maglódi Street, H-1106, Hungary
| | - György Keleti
- General, Vascular and Thoracic Surgery Unit, Bajcsy-Zsilinszky Hospital, Budapest, Hungary 89-91, Maglódi Street, H-1106, Hungary
| | - Miklós Juhász
- General, Vascular and Thoracic Surgery Unit, Bajcsy-Zsilinszky Hospital, Budapest, Hungary 89-91, Maglódi Street, H-1106, Hungary
| |
Collapse
|
38
|
Kim R, Lee JY, Park S, Han K, Shin CM. Cholecystectomy and subsequent risk of Parkinson's disease: a nationwide retrospective cohort study. NPJ Parkinsons Dis 2021; 7:100. [PMID: 34785689 PMCID: PMC8595409 DOI: 10.1038/s41531-021-00245-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Growing evidence has suggested that the gut-brain axis plays an important role in the pathogenesis of Parkinson's disease (PD), and that this role is mediated by the interactions between bile acids (BAs) and intestinal microbiota. Given that cholecystectomy can lead to alterations in BAs and gut microbiota, we investigated whether cholecystectomy is linked to a higher risk of PD. We constructed a cohort of patients with an operation code of cholecystectomy from 2010 to 2015 (n = 161,838) and age- and sex-matched control subjects without cholecystectomy (n = 286,135) using the National Health Insurance Service database. Incident PD was traced over a maximum observation period of 7 years. We identified 1404 incident PD cases during 1,631,265 person-years of follow-up. The cholecystectomy group showed an elevated risk of PD compared to the control group, even after adjusting for potential confounding factors (adjusted hazard ratio [HR] 1.14, 95% confidence interval [CI] 1.02-1.27). When the data were split by sex, the risk elevation was significant in men (adjusted HR 1.22, 95% CI 1.06-1.41), but not in women (adjusted HR 1.03, 95% CI 0.88-1.22). Our results provide evidence that cholecystectomy is associated with an increased risk of developing PD. This association differed between men and women, suggesting sex-specific effects of cholecystectomy on the risk of PD.
Collapse
Affiliation(s)
- Ryul Kim
- grid.411605.70000 0004 0648 0025Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Sanghyun Park
- grid.411947.e0000 0004 0470 4224Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyungdo Han
- grid.263765.30000 0004 0533 3568Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
39
|
Gut Microbiome in a Russian Cohort of Pre- and Post-Cholecystectomy Female Patients. J Pers Med 2021; 11:jpm11040294. [PMID: 33921449 PMCID: PMC8070538 DOI: 10.3390/jpm11040294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
The last decade saw extensive studies of the human gut microbiome and its relationship to specific diseases, including gallstone disease (GSD). The information about the gut microbiome in GSD-afflicted Russian patients is scarce, despite the increasing GSD incidence worldwide. Although the gut microbiota was described in some GSD cohorts, little is known regarding the gut microbiome before and after cholecystectomy (CCE). By using Illumina MiSeq sequencing of 16S rRNA gene amplicons, we inventoried the fecal bacteriobiome composition and structure in GSD-afflicted females, seeking to reveal associations with age, BMI and some blood biochemistry. Overall, 11 bacterial phyla were identified, containing 916 operational taxonomic units (OTUs). The fecal bacteriobiome was dominated by Firmicutes (66% relative abundance), followed by Bacteroidetes (19%), Actinobacteria (8%) and Proteobacteria (4%) phyla. Most (97%) of the OTUs were minor or rare species with ≤1% relative abundance. Prevotella and Enterocossus were linked to blood bilirubin. Some taxa had differential pre- and post-CCE abundance, despite the very short time (1–3 days) elapsed after CCE. The detailed description of the bacteriobiome in pre-CCE female patients suggests bacterial foci for further research to elucidate the gut microbiota and GSD relationship and has potentially important biological and medical implications regarding gut bacteria involvement in the increased GSD incidence rate in females.
Collapse
|
40
|
Grüner N, Mattner J. Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver-Gut Axis. Int J Mol Sci 2021; 22:1397. [PMID: 33573273 PMCID: PMC7866539 DOI: 10.3390/ijms22031397] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
After their synthesis from cholesterol in hepatic tissues, bile acids (BAs) are secreted into the intestinal lumen. Most BAs are subsequently re-absorbed in the terminal ileum and are transported back for recycling to the liver. Some of them, however, reach the colon and change their physicochemical properties upon modification by gut bacteria, and vice versa, BAs also shape the composition and function of the intestinal microbiota. This mutual interplay of both BAs and gut microbiota regulates many physiological processes, including the lipid, carbohydrate and energy metabolism of the host. Emerging evidence also implies an important role of this enterohepatic BA circuit in shaping mucosal colonization resistance as well as local and distant immune responses, tissue physiology and carcinogenesis. Subsequently, disrupted interactions of gut bacteria and BAs are associated with many disorders as diverse as Clostridioides difficile or Salmonella Typhimurium infection, inflammatory bowel disease, type 1 diabetes, asthma, metabolic syndrome, obesity, Parkinson's disease, schizophrenia and epilepsy. As we cannot address all of these interesting underlying pathophysiologic mechanisms here, we summarize the current knowledge about the physiologic and pathogenic interplay of local site microbiota and the enterohepatic BA metabolism using a few selected examples of liver and gut diseases.
Collapse
Affiliation(s)
- Niklas Grüner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
41
|
Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. J Pers Med 2020; 11:jpm11010013. [PMID: 33375615 PMCID: PMC7823692 DOI: 10.3390/jpm11010013] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity is a major risk factor for developing gallstone disease (GSD). Previous studies have shown that obesity is associated with an elevated Firmicutes/Bacteroidetes ratio in the gut microbiota. These findings suggest that the development of GSD may be related to gut dysbiosis. This review presents and summarizes the recent findings of studies on the gut microbiota in patients with GSD. Most of the studies on the gut microbiota in patients with GSD have shown a significant increase in the phyla Firmicutes (Lactobacillaceae family, genera Clostridium, Ruminococcus, Veillonella, Blautia, Dorea, Anaerostipes, and Oscillospira), Actinobacteria (Bifidobacterium genus), Proteobacteria, Bacteroidetes (genera Bacteroides, Prevotella, and Fusobacterium) and a significant decrease in the phyla Bacteroidetes (family Muribaculaceae, and genera Bacteroides, Prevotella, Alistipes, Paludibacter, Barnesiella), Firmicutes (genera Faecalibacterium, Eubacterium, Lachnospira, and Roseburia), Actinobacteria (Bifidobacterium genus), and Proteobacteria (Desulfovibrio genus). The influence of GSD on microbial diversity is not clear. Some studies report that GSD reduces microbial diversity in the bile, whereas others suggest the increase in microbial diversity in the bile of patients with GSD. The phyla Proteobacteria (especially family Enterobacteriaceae) and Firmicutes (Enterococcus genus) are most commonly detected in the bile of patients with GSD. On the other hand, the composition of bile microbiota in patients with GSD shows considerable inter-individual variability. The impact of GSD on the Firmicutes/Bacteroidetes ratio is unclear and reports are contradictory. For this reason, it should be stated that the results of reviewed studies do not allow for drawing unequivocal conclusions regarding the relationship between GSD and the Firmicutes/Bacteroidetes ratio in the microbiota.
Collapse
|