1
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
2
|
Su J, Cheng F, Yuan W. Unraveling the cGAS/STING signaling mechanism: impact on glycerolipid metabolism and diseases. Front Med (Lausanne) 2024; 11:1512916. [PMID: 39669992 PMCID: PMC11634591 DOI: 10.3389/fmed.2024.1512916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS) and its downstream effector, the stimulator of interferon genes (STING), are crucial components of the innate immune response, traditionally recognized for their role in detecting cytosolic DNA from pathogens and damaged host cells. However, recent research indicates that the cGAS-STING pathway also significantly impacts metabolic processes, particularly glycerolipid metabolism. Glycerolipids are essential for energy storage and cellular membrane integrity, and their dysregulation is linked to metabolic disorders such as obesity, insulin resistance, and non-alcoholic fatty liver disease (NAFLD). Both cGAS and STING are expressed in various metabolic tissues, suggesting a potential role in lipid homeostasis. Chronic activation of the cGAS-STING pathway may promote inflammatory states that exacerbate insulin resistance and lipid accumulation, forming a feedback loop of metabolic dysfunction. This review explores the emerging relationship between cGAS/STING signaling and glycerolipid metabolism, discussing the mechanisms through which this pathway influences lipid regulation and the potential for therapeutic interventions. By integrating insights from immunology and metabolism, we aim to provide a comprehensive understanding of how the cGAS-STING axis may serve as a novel target for addressing metabolic disorders and enhancing metabolic health outcomes.
Collapse
Affiliation(s)
- Jie Su
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
- The British Heart Foundation Centre of Excellence, St Thomas’ Hospital, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, The Rayne Institute, London, United Kingdom
| | - Fuyu Cheng
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
- School of Engineering and Material Sciences, Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
| | - Wei Yuan
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Liu S, Guo H, Li D, Wang C. Immunologically effective biomaterials enhance immunotherapy of prostate cancer. J Mater Chem B 2024; 12:9821-9834. [PMID: 39239675 DOI: 10.1039/d3tb03044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Prostate cancer (PCa) is one of the most common malignant neoplasms affecting the male population. The onset of the disease is insidious and often associated with severe consequences, such as bone metastases at the time of initial diagnosis. Once it advances to metastatic castration-resistant PCa (mCRPC), conventional treatment methods become ineffective. As research on the mechanism of tumor therapy advances, immunotherapy has been evolving rapidly. However, PCa is a solid tumor type that primarily faces the challenges of poor immunogenicity and inhibitory tumor microenvironment (TME). Fortunately, the extensive use of biomaterials has led to continuous advancement in PCa immunotherapy. These innovative materials aim to address intractable issues, such as immune escape and immune desert, to inhibit tumor progression and metastasis. This detailed review focuses on the regulation of different aspects of tumor immunity by immunologically effective biomaterials, including modulating adaptive immunity, innate immunity, and the immune microenvironment, to enhance the efficacy of PCa immunotherapy. In addition, this review provides a perspective on the future prospects of immunotherapeutic nanoplatforms based on biomaterials in the treatment of PCa.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Hui Guo
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Chunxi Wang
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| |
Collapse
|
5
|
Xu Y, Xiong Y. Targeting STING signaling for the optimal cancer immunotherapy. Front Immunol 2024; 15:1482738. [PMID: 39450170 PMCID: PMC11500076 DOI: 10.3389/fimmu.2024.1482738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Despite the transformative impact of anti-PD-1/PD-L1 therapies, challenges such as low response rates persist. The stimulator of interferon genes (STING) pathway, a crucial element of innate immunity, emerges as a strategic target to overcome these limitations. Understanding its multifaceted functions in cancer, including antigen presentation and response to DNA damage, provides valuable insights. STING agonists, categorized into cyclic dinucleotides (CDNs) and non-CDNs, exhibit promising safety and efficacy profiles. Innovative delivery systems, including antibody-drug conjugates, nanocarriers, and exosome-based therapies, address challenges associated with systemic administration and enhance targeted tumor delivery. Personalized vaccines, such as DT-Exo-STING, showcase the adaptability of STING agonists for individualized treatment. These advancements not only offer new prospects for combination therapies but also pave the way for overcoming resistance mechanisms. This review focuses on the potential of targeting STING pathway to enhance cancer immunotherapy. The integration of STING agonists into cancer immunotherapy holds promise for more effective, personalized, and successful approaches against malignancies, presenting a beacon of hope for the future of cancer treatment.
Collapse
Affiliation(s)
| | - Ying Xiong
- Department of Obstetrics and Gynecology, Haiyan People’s Hospital,
Jiaxing, China
| |
Collapse
|
6
|
Bugybayeva D, Dumkliang E, Patil V, Yadagiri G, Suresh R, Singh M, Schrock J, Dolatyabi S, Shekoni OC, Yassine HM, Opanasopit P, HogenEsch H, Renukaradhya GJ. Evaluation of Efficacy of Surface Coated versus Encapsulated Influenza Antigens in Mannose-Chitosan Nanoparticle-Based Intranasal Vaccine in Swine. Vaccines (Basel) 2024; 12:647. [PMID: 38932376 PMCID: PMC11209417 DOI: 10.3390/vaccines12060647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
This study focuses on the development and characterization of an intranasal vaccine platform using adjuvanted nanoparticulate delivery of swine influenza A virus (SwIAV). The vaccine employed whole inactivated H1N2 SwIAV as an antigen and STING-agonist ADU-S100 as an adjuvant, with both surface adsorbed or encapsulated in mannose-chitosan nanoparticles (mChit-NPs). Optimization of mChit-NPs included evaluating size, zeta potential, and cytotoxicity, with a 1:9 mass ratio of antigen to NP demonstrating high loading efficacy and non-cytotoxic properties suitable for intranasal vaccination. In a heterologous H1N1 pig challenge trial, the mChit-NP intranasal vaccine induced cross-reactive sIgA antibodies in the respiratory tract, surpassing those of a commercial SwIAV vaccine. The encapsulated mChit-NP vaccine induced high virus-specific neutralizing antibody and robust cellular immune responses, while the adsorbed vaccine elicited specific high IgG and hemagglutinin inhibition antibodies. Importantly, both the mChit-NP vaccines reduced challenge heterologous viral replication in the nasal cavity higher than commercial swine influenza vaccine. In summary, a novel intranasal mChit-NP vaccine platform activated both the arms of the immune system and is a significant advancement in swine influenza vaccine design, demonstrating its potential effectiveness for pig immunization.
Collapse
Affiliation(s)
- Dina Bugybayeva
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Ekachai Dumkliang
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
- Drug Delivery System Excellence Center (DDSEC), Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkhla University, Songkhla 90110, Thailand
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Ganesh Yadagiri
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Mithilesh Singh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Olaitan C. Shekoni
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha 2713, Qatar;
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| |
Collapse
|
7
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
8
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Fu C, Tong W, Yu L, Miao Y, Wei Q, Yu Z, Chen B, Wei M. When will the immune-stimulating antibody conjugates (ISACs) be transferred from bench to bedside? Pharmacol Res 2024; 203:107160. [PMID: 38547937 DOI: 10.1016/j.phrs.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/30/2024]
Abstract
Immunostimulatory antibody conjugates (ISACs) as a promising new generation of targeted therapeutic antibody-drug conjugates (ADCs), that not only activate innate immunity but also stimulate adaptive immunity, providing a dual therapeutic effect to eliminate tumor cells. However, several ISACs are still in the early stages of clinical development or have already failed. Therefore, it is crucial to design ISACs more effectively to overcome their limitations, including high toxicity, strong immunogenicity, long development time, and poor pharmacokinetics. This review aims to summarize the composition and function of ISACs, incorporating current design considerations and ongoing clinical trials. Additionally, the review delves into the current issues with ISACs and potential solutions, such as adjusting the drug-antibody ratio (DAR) to improve the bioavailability of ISACs. By leveraging the affinity and bioavailability-enhancing properties of bispecific antibodies, the utility between antibodies and immunostimulatory agents can be balanced. Commonly used immunostimulatory agents may induce systemic immune reactions, and BTK (Bruton's tyrosine kinase) inhibitors can regulate immunogenicity. Finally, the concept of grafting ADC's therapeutic principles is simple, but the combination of payload, linker, and targeted functional molecules is not a simple permutation and combination problem. The development of conjugate drugs faces more complex pharmacological and toxicological issues. Standing on the shoulders of ADC, the development and application scenarios of ISAC are endowed with broader space.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Weiwei Tong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110122, PR China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China.
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang 110122, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
10
|
Hosseinzadeh S, Imani M, Pourfarzi F, Jafari N, AbedianKenari S, Safarzadeh E. Combination of IFN-gamma with STING agonist and PD-1 immune checkpoint blockade: a potential immunotherapy for gastric cancer. Med Oncol 2024; 41:110. [PMID: 38592576 DOI: 10.1007/s12032-024-02326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/05/2024] [Indexed: 04/10/2024]
Abstract
Suppression of the cGAS-STING pathway is an immune escape mechanism in cancer cells. The critical role of this pathway in gastric cancer (GC) is not fully understood. Herein, we evaluated the effect of the interferon-gamma (IFN-gamma), STING agonist, PD-1 immune checkpoint blockade, and their combination on the cGAS-STING pathway in GC. Expression of cGAS and STING in tumor tissue samples and adjacent normal tissue (ANT) biopsies of fifty new GC patients was evaluated by quantitative real-time PCR (qRT-PCR). Moreover, cGAS and STING expression levels were examined in Peripheral Blood Mononuclear Cells (PBMC) samples of forty GC patients and twenty-five healthy subjects. The apoptosis rate of cancer cells was analyzed by Annexin V-FITC/PI. Cell proliferation was measured by the BrdU assay. Also, IFN-β levels were evaluated in the supernatants of the treated groups. The cGAS expression was decreased in patients with distant metastasis. Co-cultures treated with IFN-gamma showed an elevated level of cGAS and STING expressions in PBMC and cancer cells. The rate of apoptosis increased in all the treatment groups. In addition, the rate of proliferation in PBMCs increased in different treated groups. The main role of PBMCs in cytotoxicity was determined by a comparative analysis of the viability of cells treated with all treatments, both with and without PBMCs. The production of IFN-β was elevated in all treated groups. The current study suggests that a combination therapy using IFN-gamma, STING agonist, and anti-PD-1 antibody can provide a promising approach to the treatment of GC.
Collapse
Affiliation(s)
- Shahnaz Hosseinzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Imani
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Narjes Jafari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid AbedianKenari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Immunology, Faculty of Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, 4816978741, Mazandaran, Iran.
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 5166614711, Iran.
| |
Collapse
|
11
|
YILDIRIM Z, DOĞAN E, GÜLER KARA H, KOSOVA B, BOZOK V. STING activation increases the efficiency of temozolomide in PTEN harbouring glioblastoma cells. Turk J Med Sci 2024; 54:607-614. [PMID: 39049995 PMCID: PMC11265881 DOI: 10.55730/1300-0144.5828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/12/2024] [Accepted: 01/21/2024] [Indexed: 07/27/2024] Open
Abstract
Background/aim Glioblastoma is one of the most aggressive tumours, resistant to all applied therapy regiments and prone to relapse. Median survival rates are therefore only expressed as months. STING agonists are immunomodulatory molecules that activate type I interferon expression, making them potentially useful in regulating the tumour microenvironment. Since PTEN serves as a critical phosphatase in activating interferon-regulating transcription factors and is frequently mutated in glioblastoma cells, this study aimed to investigate STING activation in glioblastoma cell lines, examining whether they harbour the PTEN protein or not.°. Materials and methods T98G and U118MG glioblastoma cell lines were treated with the 2'3'-c-di-AM(PS)2(Rp,Rp) STING agonist together with or without the chemotherapeutic agent temozolomide. cGAS/STING pathway components were subsequently analysed using qRT-PCR, western blot, and ELISA methods. Results Our results showed that PTEN-harbouring T98G cells responded well to STING activation, leading to increased temozolomide efficacy. In contrast, STING activation in U118MG cells did not affect the response to temozolomide. mRNA expression levels of STING, IRF3, NF-KB, and RELA genes were significantly increased at the combined treatment groups in T98G cell line. Conversely, combined treatment with STING agonist and temozolomide did not affect mRNA expression levels of cGAS/STING pathway genes in U118MG cells. Conclusion Our data offers new evidence suggesting that STING agonists can effectively be used to increase temozolomide response in the presence of PTEN protein. Therefore, increased GBM therapy success rates can be achieved by employing the PTEN expression status as a predictive biomarker before treating patients with a chemotherapeutic agent in combination with STING agonist.
Collapse
Affiliation(s)
| | - Eda DOĞAN
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Hale GÜLER KARA
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkiye
- Department of Medical Biology, Faculty of Medicine, Harran University, Şanlıurfa,
Turkiye
| | - Buket KOSOVA
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Vildan BOZOK
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| |
Collapse
|
12
|
Alnukhali M, Altabbakh O, Farooqi AA, Pollack A, Daunert S, Deo S, Tao W. Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer. Curr Med Chem 2024; 31:6556-6571. [PMID: 38347787 PMCID: PMC11497144 DOI: 10.2174/0109298673273303231208071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.
Collapse
Affiliation(s)
- Mohammed Alnukhali
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Omar Altabbakh
- College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), National Institute for Genomics and Advanced Biotechnology, Islamabad 44000, Pakistan
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Leonard M. Miller School of Medicine, Clinical and Translational Science Institute, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
13
|
Mathieu M, Budhu S, Nepali PR, Russell J, Powell SN, Humm J, Deasy JO, Haimovitz-Friedman A. Activation of STING in Response to Partial-Tumor Radiation Exposure. Int J Radiat Oncol Biol Phys 2023; 117:955-965. [PMID: 37244631 PMCID: PMC11334988 DOI: 10.1016/j.ijrobp.2023.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE To determine the mechanisms involved in partial volume radiation therapy (RT)-induced tumor response. METHODS AND MATERIALS We investigated 67NR murine orthotopic breast tumors in Balb/c mice and Lewis lung carcinoma (LLC cells; WT, Crispr/Cas9 Sting KO, and Atm KO) injected in the flank of C57Bl/6, cGAS, or STING KO mice. RT was delivered to 50% or 100% of the tumor volume using a 2 × 2 cm collimator on a microirradiator allowing precise irradiation. Tumors and blood were collected at 6, 24, and 48 hours post-RT and assessed for cytokine measurements. RESULTS There is a significant activation of the cGAS/STING pathway in the hemi-irradiated tumors compared with control and to 100% exposed 67NR tumors. In the LLC model, we determined that an ATM-mediated noncanonical activation of STING is involved. We demonstrated that the partial exposure RT-mediated immune response is dependent on ATM activation in the tumor cells and on the STING activation in the host, and cGAS is dispensable. Our results also indicate that partial volume RT stimulates a proinflammatory cytokine response compared with the anti-inflammatory profile induced by 100% tumor volume exposure. CONCLUSIONS Partial volume RT induces an antitumor response by activating STING, which stimulates a specific cytokine signature as part of the immune response. However, the mechanism of this STING activation, via the canonical cGAS/STING pathway or a noncanonical ATM-driven pathway, depends on the tumor type. Identifying the upstream pathways responsible for STING activation in the partial RT-mediated immune response in different tumor types would improve this therapy and its potential combination with immune checkpoint blockade and other antitumor therapies.
Collapse
Affiliation(s)
| | - Sadna Budhu
- Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - James Russell
- Department of Medical Physics, New York City, NY, USA
| | | | - John Humm
- Department of Medical Physics, New York City, NY, USA
| | | | | |
Collapse
|
14
|
Papaevangelou E, Esteves AM, Dasgupta P, Galustian C. Cyto-IL-15 synergizes with the STING agonist ADU-S100 to eliminate prostate tumors and confer durable immunity in mouse models. Front Immunol 2023; 14:1196829. [PMID: 37465665 PMCID: PMC10350564 DOI: 10.3389/fimmu.2023.1196829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Prostate cancer is one of the most commonly diagnosed malignancies in men with high mortality rates. Despite the recent therapeutic advances, such as immunotherapies, survival of patients with advance disease remains significantly low. Blockade of immune checkpoints has led to low response rates in these patients probably due to the immunosuppressive microenvironment and low mutation burden of prostate tumors. Combination of multiple immunotherapeutic regimes has also been unsatisfactory due to augmented adverse effects. To activate multiple immune-stimulatory pathways in the hostile prostate cancer microenvironment, we used a combination of cytotopically modified interleukin-15 (cyto-IL-15) with the stimulator of interferon genes (STING) agonist, ADU-S100. Methods To determine whether this combination regime could lead to both local and systemic anti-tumor effects, intratumoral administration of these agents was used in murine models of prostate cancer. Tumor growth and mouse survival were monitored, and ex vivo analyses, and RNA sequencing were performed on the tumors. Results Intratumorally injected ADU-S100 and cyto-IL-15 synergized to eliminate tumors in 58-67% of mice with unilateral tumors and promoted abscopal immunity in 50% of mice with bilateral tumors treated only at one side. Moreover, this combination regime offered immunoprotection against tumor rechallenge in 83% of cured mice. The efficacy of the combination treatment was associated with a strong innate and adaptive immune activation and induction of apoptotic and necrotic cell death. Cytokines, including type I and II interferons, and cytokine signalling pathways were activated, NK and T cell mediated cytotoxicity was increased, and B cells were activated both locally and systemically. While ADU-S100 led to an ulcerative pathology at the injection site, no other adverse effects were observed. Discussion Localised administration of a STING agonist together with cyto-IL-15 can confer significant systemic benefits and long-lasting immunity against prostate tumors while reducing immune related toxicities.
Collapse
Affiliation(s)
- Efthymia Papaevangelou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
- Institute of Medical and Biomedical Education, St. George’s University of London, London, United Kingdom
| | - Ana M. Esteves
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Prokar Dasgupta
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
- Urology Centre, Guy’s Hospital, London, United Kingdom
| | - Christine Galustian
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| |
Collapse
|
15
|
Pan X, Zhang W, Guo H, Wang L, Wu H, Ding L, Yang B. Strategies involving STING pathway activation for cancer immunotherapy: Mechanism and agonists. Biochem Pharmacol 2023; 213:115596. [PMID: 37201875 DOI: 10.1016/j.bcp.2023.115596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Recent studies have expanded the known functions of cGAS-STING in inflammation to a role in cancer due to its participation in activating immune surveillance. In cancer cells, the cGAS-STING pathway can be activated by cytosolic dsDNA derived from genomic, mitochondrial and exogenous origins. The resulting immune-stimulatory factors from this cascade can either attenuate tumor growth or recruit immune cells for tumor clearance. Furthermore, STING-IRF3-induced type I interferon signaling can enforce tumor antigen presentation on dendritic cells and macrophages and thus cross-prime CD8+ T cells for antitumor immunity. Given the functions of the STING pathway in antitumor immunity, multiple strategies are being developed and tested with the rationale of activating STING in tumor cells or tumor-infiltrating immune cells to elicit immunostimulatory effects, either alone or in combination with a range of established chemotherapeutic and immunotherapeutic regimens. Based on the canonical molecular mechanism of STING activation, numerous strategies for inducing mitochondrial and nuclear dsDNA release have been used to activate the cGAS-STING signaling pathway. Other noncanonical strategies that activate cGAS-STING signaling, including the use of direct STING agonists and STING trafficking facilitation, also show promise in type I interferon release and antitumor immunity priming. Here, we review the key roles of the STING pathway in different steps of the cancer-immunity cycle and characterize the canonical and noncanonical mechanisms of cGAS-STING pathway activation to understand the potential of cGAS-STING agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
16
|
Vasiyani H, Wadhwa B, Singh R. Regulation of cGAS-STING signalling in cancer: Approach for combination therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188896. [PMID: 37088059 DOI: 10.1016/j.bbcan.2023.188896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Innate immunity plays an important role not only during infection but also homeostatic role during stress conditions. Activation of the immune system including innate immune response plays a critical role in the initiation and progression of tumorigenesis. The innate immune sensor recognizes pathogen-associated molecular patterns (PAMPs) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) and induces type-1 immune response during viral and bacterial infection. cGAS-STING is regulated differently in conditions like cellular senescence and DNA damage in normal and tumor cells and is implicated in the progression of tumors from different origins. cGAS binds to cytoplasmic dsDNA and synthesize cyclic GMP-AMP (2'3'-cGAMP), which selectively activates STING and downstream IFN and NF-κB activation. We here reviewed the cGAS-STING signalling pathway and its cross-talk with other pathways to modulate tumorigenesis. Further, the review also focused on emerging studies that targeted the cGAS-STING pathway for developing targeted therapeutics and combinatorial regimens for cancer of different origins.
Collapse
Affiliation(s)
- Hitesh Vasiyani
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Bhumika Wadhwa
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Rajesh Singh
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
17
|
Hines JB, Kacew AJ, Sweis RF. The Development of STING Agonists and Emerging Results as a Cancer Immunotherapy. Curr Oncol Rep 2023; 25:189-199. [PMID: 36705879 PMCID: PMC10994474 DOI: 10.1007/s11912-023-01361-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW New therapies are needed to potentiate the effects of current immunotherapies and overcome resistance. The stimulator of interferon genes genes (STING) pathway is an innate immune activating cascade that may enhance current cancer immunotherapies. RECENT FINDINGS Preclinical data has shown that the addition of a STING agonist enhances the effect of current treatments such as immune checkpoint inhibitor antibodies and radiation therapy. Early phase trials have demonstrated modest efficacy of STING agonists and revealed new mechanistic and technical challenges. STING agonists are a new class of agents that activate the immune response to improve tumor control. A wide range of preclinical experiments, translational data, and ongoing clinical trials support the therapeutic use of STING agonists in patients. Trials to determine optimal drug combinations and novel delivery mechanisms are continuing in development.
Collapse
Affiliation(s)
- Jacobi B Hines
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, 5841 S Maryland Ave, MC 2115, Chicago, IL, 60605, USA
| | - Alec J Kacew
- Pritzker School of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Randy F Sweis
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, 5841 S Maryland Ave, MC 2115, Chicago, IL, 60605, USA.
| |
Collapse
|
18
|
Liu J, Rui K, Peng N, Luo H, Zhu B, Zuo X, Lu L, Chen J, Tian J. The cGAS-STING pathway: Post-translational modifications and functional implications in diseases. Cytokine Growth Factor Rev 2022; 68:69-80. [PMID: 36151014 DOI: 10.1016/j.cytogfr.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/30/2023]
Abstract
Recent studies have illustrated the functional significance of DNA recognition in the activation of innate immune responses among a variety of diseases. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has been found to be modulated by post-translational modifications and can regulate the immune response via type I IFNs. Accumulating evidence indicates a pivotal role of cGAS-STING signaling, being protective or pathogenic, in the development of diseases. Thus, a comprehensive understanding of the post-translational modifications of cGAS-STING pathway and their role in disease development will provide insights in predicting individual disease outcomes and developing appropriate therapies. In this review, we will discuss the regulation of the cGAS-STING pathway and its implications in disease pathologies, as well as pharmacologic strategies to target the cGAS-STING pathway for therapeutic intervention.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, China Three Gorges University, Yichang, China
| | - Hui Luo
- Department of Rheumatology and immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoxia Zuo
- Department of Rheumatology and immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, China
| | - Jixiang Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
19
|
Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol 2022; 43:833-847. [PMID: 36058806 PMCID: PMC9612852 DOI: 10.1016/j.it.2022.08.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
Natural killer (NK) cells, a crucial component of the innate immune system, have long been of clinical interest for their antitumor properties. Almost every aspect of NK cell immunity is regulated by interleukin-15 (IL-15), a cytokine in the common γ-chain family. Several current clinical trials are using IL-15 or its analogs to treat various cancers. Moreover, NK cells are being genetically modified to produce membrane-bound or secretory IL-15. Here, we discuss the key role of IL-15 signaling in NK cell immunity and provide an up-to-date overview of IL-15 in NK cell therapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA.
| |
Collapse
|
20
|
Berger G, Knelson EH, Jimenez-Macias JL, Nowicki MO, Han S, Panagioti E, Lizotte PH, Adu-Berchie K, Stafford A, Dimitrakakis N, Zhou L, Chiocca EA, Mooney DJ, Barbie DA, Lawler SE. STING activation promotes robust immune response and NK cell-mediated tumor regression in glioblastoma models. Proc Natl Acad Sci U S A 2022; 119:e2111003119. [PMID: 35787058 PMCID: PMC9282249 DOI: 10.1073/pnas.2111003119] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/08/2022] [Indexed: 01/07/2023] Open
Abstract
Immunotherapy has had a tremendous impact on cancer treatment in the past decade, with hitherto unseen responses at advanced and metastatic stages of the disease. However, the aggressive brain tumor glioblastoma (GBM) is highly immunosuppressive and remains largely refractory to current immunotherapeutic approaches. The stimulator of interferon genes (STING) DNA sensing pathway has emerged as a next-generation immunotherapy target with potent local immune stimulatory properties. Here, we investigated the status of the STING pathway in GBM and the modulation of the brain tumor microenvironment (TME) with the STING agonist ADU-S100. Our data reveal the presence of STING in human GBM specimens, where it stains strongly in the tumor vasculature. We show that human GBM explants can respond to STING agonist treatment by secretion of inflammatory cytokines. In murine GBM models, we show a profound shift in the tumor immune landscape after STING agonist treatment, with massive infiltration of the tumor-bearing hemisphere with innate immune cells including inflammatory macrophages, neutrophils, and natural killer (NK) populations. Treatment of established murine intracranial GL261 and CT-2A tumors by biodegradable ADU-S100-loaded intracranial implants demonstrated a significant increase in survival in both models and long-term survival with immune memory in GL261. Responses to treatment were abolished by NK cell depletion. This study reveals therapeutic potential and deep remodeling of the TME by STING activation in GBM and warrants further examination of STING agonists alone or in combination with other immunotherapies such as cancer vaccines, chimeric antigen receptor T cells, NK therapies, and immune checkpoint blockade.
Collapse
Affiliation(s)
- Gilles Berger
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels 1050, Belgium
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Erik H. Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Jorge L. Jimenez-Macias
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Michal O. Nowicki
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Saemi Han
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Eleni Panagioti
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Patrick H. Lizotte
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Human Tumor Profiling Group, Belfer Center for Applied Cancer Science, Boston, MA 02115
| | - Kwasi Adu-Berchie
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Alexander Stafford
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Lanlan Zhou
- Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912
| | - E. Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - David J. Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Sean E. Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
21
|
Pimkova Polidarova M, Brehova P, Dejmek M, Birkus G, Brazdova A. STING Agonist-Mediated Cytokine Secretion Is Accompanied by Monocyte Apoptosis. ACS Infect Dis 2022; 8:463-471. [PMID: 35132859 DOI: 10.1021/acsinfecdis.1c00554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway plays a crucial role in inducing an antiviral and antitumor immune response. We studied the effects of synthetic STING agonists on several immune populations and related cytokine production. In comparison with the toll-like receptor 7 (TLR7) agonist, STING agonists induced secretion of a broader proinflammatory cytokine spectrum. Unlike the TLR7 agonist, the structurally diverse STING agonists partially depleted B and NK cells and completely depleted CD14+ monocytes via induction of apoptosis. The TANK-binding kinase 1 inhibitor efficiently prevented interferon alpha (IFNα) secretion and cell depletion, suggesting their possible dependence on the cGAS-STING pathway activation. Finally, IFNα, tumor necrosis factor alpha, interleukin 6, and interleukin 1 beta secretion and CD14+ monocyte apoptosis were primary responses to STING agonists, whereas IFNγ was secreted secondarily. These findings bring new insights into the cGAS-STING pathway immunomodulation that is of future therapeutic importance.
Collapse
Affiliation(s)
- Marketa Pimkova Polidarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
- Faculty of Science, Charles University, Albertov 6, Prague 12800, Czech Republic
| | - Petra Brehova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Gabriel Birkus
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Andrea Brazdova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| |
Collapse
|
22
|
Serrano R, Lettau M, Zarobkiewicz M, Wesch D, Peters C, Kabelitz D. Stimulatory and inhibitory activity of STING ligands on tumor-reactive human gamma/delta T cells. Oncoimmunology 2022; 11:2030021. [PMID: 35127253 PMCID: PMC8812774 DOI: 10.1080/2162402x.2022.2030021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Ligands for Stimulator of Interferon Genes (STING) receptor are under investigation as adjuvants in cancer therapy. Multiple effects have been described, including induction of immunogenic cell death and enhancement of CD8 T-cell mediated anti-tumor immunity. However, the potential effects of STING ligands on activation and effector functions of tumor-reactive human γδ T cells have not yet been investigated. We observed that cyclic dinucleotide as well as novel non-dinucleotide STING ligands diABZI and MSA-2 co-stimulated cytokine induction in Vδ2 T cells within peripheral blood mononuclear cells but simultaneously inhibited their proliferative expansion in response to the aminobisphosphonate Zoledronate and to γδ T-cell specific phosphoantigen. In purified γδ T cells, STING ligands co-stimulated cytokine induction but required the presence of monocytes. STING ligands strongly stimulated IL-1β and TNF-α secretion in monocytes and co-stimulated cytokine induction in short-term expanded Vδ2 γδ T-cell lines. Simultaneously, massive cell death was triggered in both cell populations. Activation of STING as revealed by TBK1/IRF3 phosphorylation and IP-10 secretion varied among STING-expressing tumor cells. STING ligands modulated tumor cell killing by Vδ2 T cells as analyzed in Real-Time Cell Analyzer to variable degree, depending on the tumor target and time course kinetics. Our study reveals complex regulatory effects of STING ligands on human γδ T cells in vitro. These results help to define conditions where STING ligands might boost the efficacy of γδ T cell immunotherapy in vivo.
Collapse
Affiliation(s)
- Ruben Serrano
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Institute of Immunology, Medical University Hannover, Hannover, Germany
| | - Marcus Lettau
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Department of Hematology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Michal Zarobkiewicz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Daniela Wesch
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
23
|
Kiely M, Ambs S. Immune Inflammation Pathways as Therapeutic Targets to Reduce Lethal Prostate Cancer in African American Men. Cancers (Basel) 2021; 13:2874. [PMID: 34207505 PMCID: PMC8227648 DOI: 10.3390/cancers13122874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/17/2023] Open
Abstract
Despite substantial improvements in cancer survival, not all population groups have benefitted equally from this progress. For prostate cancer, men of African descent in the United States and England continue to have about double the rate of fatal disease compared to other men. Studies suggest that when there is equal access to care, survival disparities are greatly diminished. However, notable differences exist in prostate tumor biology across population groups. Ancestral factors and disparate exposures can lead to altered tumor biology, resulting in a distinct disease etiology by population group. While equal care remains the key target to improve survival, additional efforts should be made to gain comprehensive knowledge of the tumor biology in prostate cancer patients of African descent. Such an approach may identify novel intervention strategies in the era of precision medicine. A growing body of evidence shows that inflammation and the immune response may play a distinct role in prostate cancer disparities. Low-grade chronic inflammation and an inflammatory tumor microenvironment are more prevalent in African American patients and have been associated with adverse outcomes. Thus, differences in activation of immune-inflammatory pathways between African American and European American men with prostate cancer may exist. These differences may influence the response to immune therapy which is consistent with recent observations. This review will discuss mechanisms by which inflammation may contribute to the disparate outcomes experienced by African American men with prostate cancer and how these immunogenic and inflammatory vulnerabilities could be exploited to improve their survival.
Collapse
Affiliation(s)
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| |
Collapse
|