1
|
Luo L, Zhao Q, Cui X, Dong S, Wang Y, Jiang N, Cai C, Jin J, Liang B. Male-specific lethal 1 (MSL1) promotes Erastin-induced ferroptosis in colon cancer cells by regulating the KCTD12-SLC7A11 axis. Cell Death Dis 2025; 16:281. [PMID: 40221412 PMCID: PMC11993775 DOI: 10.1038/s41419-025-07555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
MSL1, a scaffold protein of the MSL histone acetyltransferase complex, is crucial for its structural integrity and enzymatic activity. While MSL1 is highly expressed in various tumors, its role in tumor progression and cell death remains unclear. Here, we provide evidence of a negative regulatory relationship between MSL1 and KCTD12 through biochemical assays and knockdown/overexpression studies. Notably, in colon cancer cells, the ferroptosis inducer Erastin significantly suppressed MSL1 expression, leading to KCTD12 upregulation. Moreover, MSL1 promotes Erastin-induced ferroptosis in HCT116 and SW480 cells via the KCTD12-SLC7A11 axis. Consistently, Erastin-induced changes in ROS, GSH, and MDA levels were regulated by this axis, highlighting its role in ferroptosis. These findings offer potential therapeutic targets and a theoretical foundation for colon cancer treatment.
Collapse
Affiliation(s)
- Lifu Luo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qingzhi Zhao
- School of Nursing, Jilin University, Changchun, Jilin Province, China
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xueli Cui
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Shijiao Dong
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yong Wang
- Urology Department, Jilin Province People's Hospital, Changchun, Jilin Province, China
| | - Nan Jiang
- Department of Cardiovascular center, Jilin University First Hospital, Changchun, Jilin Province, China
| | - Chengyu Cai
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China.
| | - Bing Liang
- School of Nursing, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
2
|
Shimura T, Yin C, Ma R, Zhang A, Nagai Y, Shiratori A, Ozaki H, Yamashita S, Higashi K, Sato Y, Imaoka H, Kitajima T, Kawamura M, Koike Y, Okita Y, Yoshiyama S, Ohi M, Hayashi A, Imai H, Zhang X, Okugawa Y, Toiyama Y. The prognostic importance of the negative regulators of ferroptosis, GPX4 and HSPB1, in patients with colorectal cancer. Oncol Lett 2025; 29:144. [PMID: 39850719 PMCID: PMC11755263 DOI: 10.3892/ol.2025.14890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
The prognostic value of negative regulators of ferroptosis in patients with colorectal cancer (CRC) has not yet been fully elucidated. The present study performed a systematic in silico identification and selection of candidate negative regulators of ferroptosis using The Cancer Genome Atlas data cohort (n=367), followed by clinical validation through immunohistochemistry of samples from patients with CRC (n=166) and further in vitro evaluation. In silico analysis identified specific light-chain subunit of the cystine/glutamate antiporter, AIFM2, NFE2L2, FTH1, GLS2, glutathione peroxidase 4 (GPX4) and heat shock protein β-1 (HSPB1) genes as possible candidates. Furthermore, patients with high expression of GPX4 or HSPB1 exhibited significantly worse overall survival (OS) compared with those with low expression (P<0.01 for both). Immunohistochemical analysis revealed that both OS and recurrence-free survival (RFS) of patients with CRC and high GPX4 or HSPB1 expression were significantly worse compared with in patients with low expression (P<0.01 for all). Furthermore, multivariate analysis showed that high GPX4 and HSPB1 expression were independent risk factors for poor oncological outcome for OS and RFS (GPX4: RFS, P=0.03; HSPB1: OS, P=0.006 and RFS, P<0.0001). Moreover, the effects of GPX4 and HSPB1 small interfering RNAs on two CRC cell lines (DLD-1 and SW480) indicated that GPX4 and HSPB1 may exhibit important roles in attenuating the cytotoxic effect of 5-fluorouracil-based chemotherapy. In conclusion, the current study confirmed that GPX4 and HSPB1 may serve as substantial prognostic- and recurrence-predictive biomarkers in patients with CRC.
Collapse
Affiliation(s)
- Tadanobu Shimura
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Chengzeng Yin
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Ruiya Ma
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063007, P.R. China
| | - Aiying Zhang
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuka Nagai
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Aoi Shiratori
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hana Ozaki
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shinji Yamashita
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Koki Higashi
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuki Sato
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroki Imaoka
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Genomic Medicine, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shigeyuki Yoshiyama
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Akinobu Hayashi
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroshi Imai
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Xueming Zhang
- Department of Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063007, P.R. China
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Genomic Medicine, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
3
|
Xie YJ, Su MX, Gao H, Yan GY, Li SS, Chen JM, Bai YY, Deng JG. SSR marker-based genetic diversity and structure analyses of Camellia nitidissima var. phaeopubisperma from different populations. PeerJ 2025; 13:e18845. [PMID: 39866559 PMCID: PMC11758913 DOI: 10.7717/peerj.18845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Background Camellia nitidissima var. phaeopubisperma is a variety in the section Chrysantha of the genus Camellia of the family Theaceae which is native to Fangchenggang, Guangxi, China. To date, the genetic diversity and structure of this variety remains to be understood. Methods In the present study, eight simple sequence repeat (SSR) molecular markers previously screened were used to analyze the genetic diversity and structure of C. nitidissima var. phaeopubisperma natural populations from 14 growing areas in China, so as to determine the influence of environmental changes on genetic variations and provide the basis for introduction and selection of suitable growing sites of that variety. Results Our results show that, for the eight SSR loci, the observed numbers of alleles per locus (Na) and the effective numbers of alleles per locus (Ne) were nine and 3.206, respectively on average, and the Ne was lower than the Na for all loci; the observed heterozygosity (Ho) was lower than the expected heterozygosity (He). For all the eight loci, the fixation index (F) was greater than 0, and the intra-population inbreeding coefficient (Fis) for seven loci was positive. Three loci were moderately polymorphic (0.25 < polymorphism information content (PIC) <0.5), and five loci were highly polymorphic (PIC > 0.5); all eight loci had a moderate genetic differentiation level (0.05 < genetic differentiation coefficient (Fst) <0.25). As shown by the genetic diversity analysis, the He was bigger than the Ho for 10 populations, indicating the presence of a certain degree of intra-population inbreeding. The F had a negative value for four populations, suggesting that excessive random mating was present within each of them. Results of the analysis of molecular variance show that 19% of the total variation was attributed to among-individuals and 78% of the total variation originated from within-individuals. The adjusted Fst (F'st) was 0.073, indicative of a moderate level of genetic differentiation among the populations. The value of gene flow was greater than 1 (7.367), suggesting that genetic differentiation among populations was not caused by genetic drift. Results of the STRUCTURE analysis show that all the samples tested could be clustered into five ancestor groups. Results of the Unweighted Pair Group Method using Arithmetic Averages (UPGMA) clustering analyses show that the 84 plant samples could be divided into three clusters and natural populations from the 14 growing areas could be divided into two clusters. Clustering results of the populations were not affected by geographic distances, and gene flow occurred frequently among the populations, suggesting that the genetic variation among the natural populations of C. nitidissima var. phaeopubisperma from 14 growing areas was not influenced by environmental changes of these areas but mainly derived from the genetic variation present in pre-introduction populations.
Collapse
Affiliation(s)
- Yang-Jiao Xie
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, Guangxi, China
| | - Meng-Xue Su
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, Guangxi, China
| | - Hui Gao
- Guangxi University of Chinese Medicine School of Nursing, Nanning, Guangxi, China
| | - Guo-Yue Yan
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, Guangxi, China
| | - Shuang-Shuang Li
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, Guangxi, China
| | - Jin-Mei Chen
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, Guangxi, China
| | - Yan-Yuan Bai
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, Guangxi, China
| | - Jia-Gang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, Guangxi, China
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Nanning, Guangxi, China
| |
Collapse
|
4
|
Xie YJ, Bai YY, Gao H, Li YY, Su MX, Li SS, Chen JM, Li T, Yan GY. Phylotranscriptomics resolved phylogenetic relationships and divergence time between 20 golden camellia species. Sci Rep 2025; 15:699. [PMID: 39753635 PMCID: PMC11699060 DOI: 10.1038/s41598-024-83004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Golden camellia species are endangered species with great ecological significance and economic value in the section Chrysantha of the genus Camellia of the family Theaceae. Literature shows that more than 50 species of golden camellia have been found all over the world, but the exact number remains undetermined due to the complex phylogenetic background, the non-uniform classification criteria, and the presence of various synonyms and homonyms; and phylogenetic relationships among golden camellia species at the gene level are yet to be disclosed. Therefore, it is necessary to investigate the divergence time and phylogenetic relationships between all golden camellia species at the gene level to improve their classification system and achieve accurate identification of them. Phenotypic data and transcriptomic sequences of 20 golden camellia species commonly found in Guangxi, China were obtained. PCA and OPLS-DA analyses were conducted based on phenotypic data, and agglomerative clustering was performed to generate the clustering tree of the 20 golden camellia species. Single-copy homologous genes were used to generate phylogenetic trees using Neighbor-Joining, Maximum Likelihood, and Bayesian Inference methods, and the results obtained with these three methods were compared. Then the molecular dating analysis was performed to reveal the divergence time and evolutionary relationships. Rhododendron griersonianum, Diospyros lotus, and Impatiens glandulifera were used as outgroups. The phylogenetic tree based on single-copy homologous genes showed that golden camellia species with shorter geographical distances were closer phylogenetically. Phylogenetic relationships based on phenotypic traits and those based on single-copy homologous genes were inconsistent, suggesting that species with a close genetic evolutionary relationship may show high variation in phenotypic traits and thus the analysis of evolutionary relationships based on phenotypic traits may result in inaccurate outcomes. Among three phylogenetic trees constructed by the three methods, the evolutionary sequences were different, but evolutionary relationships between most species were consistent. For 6 species, the divergence time estimated by Maximum Likelihood and Bayesian Inference varied much, that estimated by Bayesian Inference later than that estimated by Maximum Likelihood. Using these two methods, the resulting divergence time of 14 species was 3.452 Mya. The divergence time predicted in our study is later than that in the literature. In the present study phylogenetic relationships among 20 golden camellia species were analyzed at the transcriptome level to provide a supplement to the phylogenetic classification and evolutionary relationships explored using morphological traits and some molecular markers. Our findings show that the 20 golden camellia species diverged at a later time than other known species in the genus Camellia. Since our analyses were based on the failed molecular clock hypothesis, our conclusions are tentative. Further research using more systematic analyses and more methods should be conducted to confirm the phylogenetic relationships among golden camellia species.
Collapse
Affiliation(s)
- Yang-Jiao Xie
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Yan-Yuan Bai
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Hui Gao
- Guangxi University of Chinese Medicine School of Nursing, Nanning, 530200, Guangxi, China
| | - Yao-Yan Li
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Meng-Xue Su
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Shuang-Shuang Li
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Jin-Mei Chen
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China
| | - Tong Li
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China.
| | - Guo-Yue Yan
- Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China.
| |
Collapse
|
5
|
Zhou XW, Ye XX, Ye BJ, Yan SH, Hu HB, Xu QY, Yao X, Liu HX, Li B, Xie YQ, Liu ZJ. Proteomic analysis identified proteins that are differentially expressed in the flavonoid and carotenoid biosynthetic pathways of Camellia Nitidissima flowers. BMC PLANT BIOLOGY 2024; 24:1037. [PMID: 39482574 PMCID: PMC11529430 DOI: 10.1186/s12870-024-05737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Camellia nitidissima Chi is a popular ornamental plant because of its golden flowers, which contain flavonoids and carotenoids. To understand the regulatory mechanism of golden color formation, the metabolites of C. nitidissima petals at five different developmental stages were detected, a proteome map of petals was first constructed via tandem mass tag (TMT) analysis, and the accuracy of the sequencing data was validated via parallel reaction monitoring (PRM). RESULTS Nineteen color components were detected, and most of these components were carotenoids that gradually accumulated, while some metabolites were flavonoids that were gradually depleted. A total of 97,647 spectra were obtained, and 6,789 quantifiable proteins were identified. Then, 1,319 differentially expressed proteins (DEPs) were found, 55 of which belong to the flavonoid and carotenoid pathways, as revealed by pairwise comparisons of protein expression levels across the five developmental stages. Notably, most DEPs involved in the synthesis of flavonoids, such as phenylalanine ammonium lyase and 4-coumarate-CoA ligase, were downregulated during petal development, whereas DEPs involved in carotenoid synthesis, such as phytoene synthase, 1-deoxy-D-xylulose-5-phosphate synthase, and β-cyclase, tended to be upregulated. Furthermore, protein‒protein interaction (PPI) network analysis revealed that these 55 DEPs formed two distinct PPI networks closely tied to the flavonoid and carotenoid synthesis pathways. Phytoene synthase and chalcone synthase exhibited extensive interactions with numerous other proteins and displayed high connectivity within the PPI networks, suggesting their pivotal biological functions in flavonoid and carotenoid biosynthesis. CONCLUSION Proteomic data on the flavonoid and carotenoid biosynthesis pathways were obtained, and the regulatory roles of the DEPs were analyzed, which provided a theoretical basis for further understanding the golden color formation mechanism of C. nitidissima.
Collapse
Affiliation(s)
- Xing-Wen Zhou
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - Xiao-Xia Ye
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Bao-Jian Ye
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - Shi-Hong Yan
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - Hai-Bin Hu
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - Qiu-Yuan Xu
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - Xiong Yao
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - He-Xia Liu
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Bo Li
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| | - Yi-Qing Xie
- Institute of Economic Forestry, Fujian Academy of Forestry, Fuzhou, 350012, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
6
|
Wu T, Wu S, Gao H, Liu H, Feng J, Yin G. Astragaloside IV augments anti-PD-1 therapy to suppress tumor growth in lung cancer by remodeling the tumor microenvironment. Eur J Histochem 2024; 68:4098. [PMID: 39440587 PMCID: PMC11558310 DOI: 10.4081/ejh.2024.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
Programmed cell death protein-1 (PD-1) inhibitors are increasingly utilized in the treatment of lung cancer (LC). Combination therapy has recently gained popularity in treating LC. This study aimed to assess the efficacy of combining Astragaloside IV (AS-IV) and anti-PD-1 in LC. C57BL/6J mice were subcutaneously injected with Lewis lung carcinoma (LLC) cells. After 3 weeks, the animals were sacrificed, and the tumors were harvested for analysis. Ki-67 immuno-labeling and TUNEL assay were used for evaluating cell proliferation and apoptosis in tumor tissues. In addition, anti-cleaved caspase 3 was used for immunolabelling of apoptotic cells. Immune cell infiltration (macrophages and T cells) and gene expression in tumor tissues were also investigated by using immunofluorescence staining. Compared to treatment with anti-PD-1 or AS-IV, the combination of AS-IV and anti-PD-1 notably reduced tumor volume and weight of LLC-bearing mice. Additionally, the combination treatment strongly induced the apoptosis and suppressed the proliferation in tumor tissues through inactivating PI3K/Akt and ERK signaling pathways, compared to single treatment group. Moreover, the combination treatment elevated levels of the M1 macrophage marker mCD86, reduced levels of the M2 macrophage marker mCD206, as well as upregulated levels of the T cell activation marker mCD69 in tumor tissues. Collectively, the combination treatment effectively inhibited tumor growth in LLC mice through promoting M1 macrophage polarization and T cell activation. These findings showed that combining AS-IV with anti-PD-1 therapy could be a promising therapeutic approach for LC.
Collapse
Affiliation(s)
- Tao Wu
- Department of Oncology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Zhuzhou.
| | - Shikui Wu
- Department of Oncology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Zhuzhou.
| | - Hui Gao
- Department of Oncology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Zhuzhou.
| | - Haolei Liu
- Department of Oncology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Zhuzhou.
| | - Jun Feng
- Department of Oncology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Zhuzhou.
| | - Ge Yin
- Department of Oncology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Zhuzhou.
| |
Collapse
|
7
|
Ma S, Wu Y, Min H, Ge L, Yang K. Triterpenoid Saponins and Flavonoid Glycosides from the Flower of Camellia flavida and Their Cytotoxic and α-Glycosidase Inhibitory Activities. Int J Mol Sci 2024; 25:10977. [PMID: 39456760 PMCID: PMC11506924 DOI: 10.3390/ijms252010977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Camellia flavida var. flavida, commonly known as "Jinhua Tea", has its flowers and leaves traditionally utilized as tea and functional food sources. However, there is limited knowledge about its bioactive components and their biological activities. This study isolated ten previously unidentified glycoside compounds from the flowers of Camellia flavida, including three oleanane-type triterpenoid saponins (compounds 1-3) and seven flavonoid glycosides (compounds 4-10), collectively named flavidosides A-J. This study assessed the cytotoxicity of these compounds against a panel of human cancer cell lines and their α-glucosidase inhibitory activities. Notably, flavidoside C showed significant cytotoxicity against BEL-7402 and MCF-7 cell lines, with IC50 values of 4.94 ± 0.41 and 1.65 ± 0.39 μM, respectively. Flavidoside H exhibited potent α-glucosidase inhibitory activity, with an IC50 value of 1.17 ± 0.30 mM. These findings underscore the potential of Camellia flavida in the development of functional foods.
Collapse
Affiliation(s)
| | | | | | - Li Ge
- Medical School of Guangxi University, Nanning 530004, China (Y.W.); (H.M.)
| | - Kedi Yang
- Medical School of Guangxi University, Nanning 530004, China (Y.W.); (H.M.)
| |
Collapse
|
8
|
Guo KC, Wang ZZ, Su XQ. Chinese Medicine in Colorectal Cancer Treatment: From Potential Targets and Mechanisms to Clinical Application. Chin J Integr Med 2024:10.1007/s11655-024-4115-8. [PMID: 39331211 DOI: 10.1007/s11655-024-4115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 09/28/2024]
Abstract
Colorectal cancer (CRC) is a global health challenge necessitating innovative therapeutic strategies. There is an increasing trend toward the clinical application of integrative Chinese medicine (CM) and Western medicine approaches. Chinese herbal monomers and formulations exert enhanced antitumor effects by modulating multiple signaling pathways in tumor cells, including inhibiting cell proliferation, inducing apoptosis, suppressing angiogenesis, reversing multidrug resistance, inhibiting metastasis, and regulating immunity. The synergistic effects of CM with chemotherapy, targeted therapy, immunotherapy, and nanovectors provide a comprehensive framework for CRC treatment. CM can mitigate drug toxicity, improve immune function, control tumor progression, alleviate clinical symptoms, and improve patients' survival and quality of life. This review summarizes the key mechanisms and therapeutic strategies of CM in CRC, highlighting its clinical significance. The potential for CM and combination with conventional treatment modalities is emphasized, providing valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Ke-Chen Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zao-Zao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiang-Qian Su
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
9
|
Tan P, Wei X, Huang H, Wang F, Wang Z, Xie J, Wang L, Liu D, Hu Z. Application of omics technologies in studies on antitumor effects of Traditional Chinese Medicine. Chin Med 2024; 19:123. [PMID: 39252074 PMCID: PMC11385818 DOI: 10.1186/s13020-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Traditional Chinese medicine (TCM) is considered to be one of the most comprehensive and influential form of traditional medicine. It plays an important role in clinical treatment and adjuvant therapy for cancer. However, the complex composition of TCM presents challenges to the comprehensive and systematic understanding of its antitumor mechanisms, which hinders further development of TCM with antitumor effects. Omics technologies can immensely help in elucidating the mechanism of action of drugs. They utilize high-throughput sequencing and detection techniques to provide deeper insights into biological systems, revealing the intricate mechanisms through which TCM combats tumors. Multi-omics approaches can be used to elucidate the interrelationships among different omics layers by integrating data from various omics disciplines. By analyzing a large amount of data, these approaches further unravel the complex network of mechanisms underlying the antitumor effects of TCM and explain the mutual regulations across different molecular levels. In this study, we presented a comprehensive overview of the recent progress in single-omics and multi-omics research focused on elucidating the mechanisms underlying the antitumor effects of TCM. We discussed the significance of omics technologies in advancing research on the antitumor properties of TCM and also provided novel research perspectives and methodologies for further advancing this research field.
Collapse
Affiliation(s)
- Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
10
|
Yan L, Shi J, Zhu J. Cellular and molecular events in colorectal cancer: biological mechanisms, cell death pathways, drug resistance and signalling network interactions. Discov Oncol 2024; 15:294. [PMID: 39031216 PMCID: PMC11265098 DOI: 10.1007/s12672-024-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, affecting millions each year. It emerges from the colon or rectum, parts of the digestive system, and is closely linked to both genetic and environmental factors. In CRC, genetic mutations such as APC, KRAS, and TP53, along with epigenetic changes like DNA methylation and histone modifications, play crucial roles in tumor development and treatment responses. This paper delves into the complex biological underpinnings of CRC, highlighting the pivotal roles of genetic alterations, cell death pathways, and the intricate network of signaling interactions that contribute to the disease's progression. It explores the dysregulation of apoptosis, autophagy, and other cell death mechanisms, underscoring the aberrant activation of these pathways in CRC. Additionally, the paper examines how mutations in key molecular pathways, including Wnt, EGFR/MAPK, and PI3K, fuel CRC development, and how these alterations can serve as both diagnostic and prognostic markers. The dual function of autophagy in CRC, acting as a tumor suppressor or promoter depending on the context, is also scrutinized. Through a comprehensive analysis of cellular and molecular events, this research aims to deepen our understanding of CRC and pave the way for more effective diagnostics, prognostics, and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yan
- Medical Department, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jia Shi
- Department of Obstetrics and Gynecology, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jiazuo Zhu
- Department of Oncology, Xuancheng City Central Hospital, No. 117 Tong Road, Xuancheng, Anhui, China.
| |
Collapse
|
11
|
Hou J, Wang B, Li J, Liu W. Ferroptosis and its role in gastric and colorectal cancers. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:183-196. [PMID: 38682167 PMCID: PMC11058540 DOI: 10.4196/kjpp.2024.28.3.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 05/01/2024]
Abstract
Ferroptosis is a novel mechanism of programmed cell death, characterized by intracellular iron overload, intensified lipid peroxidation, and abnormal accumulation of reactive oxygen species, which ultimately resulting in cell membrane impairment and demise. Research has revealed that cancer cells exhibit a greater demand for iron compared to normal cells, indicating a potential susceptibility of cancer cells to ferroptosis. Stomach and colorectal cancers are common gastrointestinal malignancies, and their elevated occurrence and mortality rates render them a global health concern. Despite significant advancements in medical treatments, certain unfavorable consequences and drug resistance persist. Consequently, directing attention towards the phenomenon of ferroptosis in gastric and colorectal cancers holds promise for enhancing therapeutic efficacy. This review aims to elucidate the intricate cellular metabolism associated with ferroptosis, encompassing lipid and amino acid metabolism, as well as iron metabolic processes. Furthermore, the significance of ferroptosis in the context of gastric and colorectal cancer is thoroughly examined and discussed.
Collapse
Affiliation(s)
- Jinxiu Hou
- School of Anesthesiology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Bo Wang
- School of Anesthesiology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jing Li
- Department of Gastroenterology, Weifang People’s Hospital, Weifang 261041, Shandong, China
| | - Wenbo Liu
- Central Laboratory, The First Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong, China
| |
Collapse
|
12
|
Fu J, Xie X, Yao H, Xiao H, Li Z, Wang Z, Ju R, Zhao Y, Liu Z, Zhang N. The Effectiveness of Traditional Chinese Medicine in Treating Malignancies via Regulatory Cell Death Pathways and the Tumor Immune Microenvironment: A Review of Recent Advances. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:137-160. [PMID: 38328830 DOI: 10.1142/s0192415x2450006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Traditional Chinese Medicine (TCM) has achieved high clinical efficacy in treating malignancies in recent years and is thus gradually becoming an important therapy for patients with advanced tumor for its benefits in reducing side effects and improving patients' immune status. However, it has not been internationally recognized for cancer treatment because TCM's anti-tumor mechanism is not fully elucidated, limiting its clinical application and international promotion. This review traced the mechanism of the TCM-mediated tumor cell death pathway and its effect on remodeling the tumor immune microenvironment, its direct impact on the microenvironment, its anti-tumor effect in combination with immunotherapy, and the current status of clinical application of TCM on tumor treatment. TCM can induce tumor cell death in many regulatory cell death (RCD) pathways, including apoptosis, autophagy, pyroptosis, necroptosis, and ferroptosis. In addition, TCM-induced cell death could increase the immune cells' infiltration with an anti-tumor effect in the tumor tissue and elevate the proportion of these cells in the spleen or peripheral blood, enhancing the anti-tumor capacity of the tumor-bearing host. Moreover, TCM can directly affect immune function by increasing the population or activating the sub-type immune cells with an anti-tumor role. It was concluded that TCM could induce a pan-tumor death modality, remodeling the local TIME differently. It can also improve the systemic immune status of tumor-bearing hosts. This review aims to establish a theoretical basis for the clinical application of TCM in tumor treatment and to provide a reference for TCM's potential in combination with immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Jingya Fu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
- The First Affiliated Hospital of Nanyang Medical College Nanyang 473000, P. R. China
| | - Xiaoxia Xie
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
| | - Huimin Yao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Haijuan Xiao
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Zhenzhi Wang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| |
Collapse
|
13
|
Wang L, Huang H, Li X, Ouyang L, Wei X, Xie J, Liu D, Tan P, Hu Z. A review on the research progress of traditional Chinese medicine with anti-cancer effect targeting ferroptosis. Chin Med 2023; 18:132. [PMID: 37833746 PMCID: PMC10571466 DOI: 10.1186/s13020-023-00838-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation. It can be triggered by various mechanisms, including the glutathione peroxidase 4 (GPX4)-glutathione (GSH) axis, iron metabolism, lipid metabolism, the GTP cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4) pathway, and the ferroptosis suppressor protein 1 (FSP1)-coenzyme Q10 axis. The redox balance is disrupted when ferroptosis occurs in cells, which is fatal to cancer cells. Additionally, some tumor-associated genes are involved in ferroptosis. Hence, targeting ferroptosis might be an effective strategy for treating cancer. Several small-molecule compounds exhibit anti-tumor effects through ferroptosis, including sorafenib and altretamine, which induce ferroptosis by inhibiting System-Xc and GPX4 respectively, but many problems, such as poor druggability, still exist. Some studies have shown that many traditional Chinese medicine (TCM) induce ferroptosis by inhibiting GPX4, solute carrier family 7 member 11 (SLC7A11), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), or by increasing the expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), transferrin (TF), and transferrin receptor 1 (TFR1). These changes can lead to the lysosomal degradation of ferritin, accumulation of iron, lipid peroxidation and the production of reactive oxygen species (ROS), which in turn can promote anti-tumor activities or synergistic effects with chemotherapeutic drugs. In this study, we elucidated the underlying mechanisms of ferroptosis, and the anti-tumor pharmacology of TCM targeting ferroptosis including prescriptions, Chinese herbs, extracts, and natural compounds. Our findings might act as valuable reference for research on anti-tumor drugs targeting ferroptosis, especially those drugs developed from TCM.
Collapse
Affiliation(s)
- Longyan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Huiming Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xingxing Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Lishan Ouyang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xuejiao Wei
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jinxin Xie
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Dongxiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Peng Tan
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3Rd Ring East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
14
|
Wu SX, Xiong RG, Cheng J, Xu XY, Tang GY, Huang SY, Zhou DD, Saimaiti A, Gan RY, Li HB. Preparation, Antioxidant Activities and Bioactive Components of Kombucha Beverages from Golden-Flower Tea ( Camellia petelotii) and Honeysuckle-Flower Tea ( Lonicera japonica). Foods 2023; 12:3010. [PMID: 37628009 PMCID: PMC10453153 DOI: 10.3390/foods12163010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Kombucha is a fermented tea known for its health benefits. In this study, golden-flower tea (Camellia petelotii) and honeysuckle-flower tea (Lonicera japonica) were first used as raw materials to prepare kombucha beverages. The antioxidant activities, total phenolic contents, concentrations of bioactive components, and sensory scores of two kombucha beverages were assessed. Additionally, effects of fermentation with or without tea residues on kombucha beverages were compared. The results found that two kombucha beverages possessed strong antioxidant activities and high scores of sensory analysis. In addition, fermentation with golden-flower tea residues could remarkably enhance the antioxidant activity (maximum 2.83 times) and total phenolic contents (3.48 times), while fermentation with honeysuckle tea residues had a minor effect. Furthermore, concentrations of several bioactive compounds could be increased by fermentation with golden-flower tea residues, but fermentation with honeysuckle-flower tea residues had limited effects. Moreover, the fermentation with or without tea residues showed no significant difference on sensory scores of golden-flower tea kombucha and honeysuckle-flower tea kombucha, and golden-flower tea kombucha had higher sensory scores than honeysuckle-flower tea kombucha. Therefore, it might be a better strategy to produce golden-flower tea kombucha by fermentation with tea residues, while honeysuckle-flower tea kombucha could be prepared without tea residues.
Collapse
Affiliation(s)
- Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Jin Cheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Xiao-Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (X.-Y.X.); (G.-Y.T.)
| | - Guo-Yi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (X.-Y.X.); (G.-Y.T.)
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| |
Collapse
|
15
|
Lin X, Yang X, Yang Y, Zhang H, Huang X. Research progress of traditional Chinese medicine as sensitizer in reversing chemoresistance of colorectal cancer. Front Oncol 2023; 13:1132141. [PMID: 36994201 PMCID: PMC10040588 DOI: 10.3389/fonc.2023.1132141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/27/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, the incidences and mortalities from colorectal cancer (CRC) have been increasing; therefore, there is an urgent need to discover newer drugs that enhance drug sensitivity and reverse drug tolerance in CRC treatment. With this view, the current study focuses on understanding the mechanism of CRC chemoresistance to the drug as well as exploring the potential of different traditional Chinese medicine (TCM) in restoring the sensitivity of CRC to chemotherapeutic drugs. Moreover, the mechanism involved in restoring sensitivity, such as by acting on the target of traditional chemical drugs, assisting drug activation, increasing intracellular accumulation of anticancer drugs, improving tumor microenvironment, relieving immunosuppression, and erasing reversible modification like methylation, have been thoroughly discussed. Furthermore, the effect of TCM along with anticancer drugs in reducing toxicity, increasing efficiency, mediating new ways of cell death, and effectively blocking the drug resistance mechanism has been studied. We aimed to explore the potential of TCM as a sensitizer of anti-CRC drugs for the development of a new natural, less-toxic, and highly effective sensitizer to CRC chemoresistance.
Collapse
Affiliation(s)
- Xiang Lin
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushang Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangbin Zhang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xuan Huang,
| |
Collapse
|
16
|
Lin S, Qin HZ, Li ZY, Zhu H, Long L, Xu LB. Gallic acid suppresses the progression of triple-negative breast cancer HCC1806 cells via modulating PI3K/AKT/EGFR and MAPK signaling pathways. Front Pharmacol 2022; 13:1049117. [PMID: 36523491 PMCID: PMC9744937 DOI: 10.3389/fphar.2022.1049117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/15/2022] [Indexed: 11/04/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a severe threat to women's health because of its aggressive nature, early age of onset, and high recurrence rate. Therefore, in this study, we aimed to evaluate the anti-tumor effects of Gallic acid (GA) on the TNBC HCC1806 cells in vitro. The cell proliferation was detected by MTT and plate clone formation assays, cell apoptosis, cell cycle, and mitochondrial membrane potential (MMP) were analyzed by flow cytometry and Hoechst 33258 staining assays, and the intracellular reactive oxygen species (ROS) accumulation were also investigated. Real-Time PCR and western blot were examined to explore the mechanism of action. The results indicated that GA suppressed HCC1806 cells proliferation and promoted HCC1806 cells apoptosis. Meanwhile, GA treatment changed the morphology of the HCC1806 cells. In addition, GA blocked the HCC1806 cells cycle in the S phase, and it induced cells apoptosis accompanied by ROS accumulation and MMP depolarization. Real-Time PCR results suggested that GA increased Bax, Caspase-3, Caspase-9, P53, JINK and P38 mRNA expression, and decreased Bcl-2, PI3K, AKT and EGFR mRNA expression. Western blotting results suggested that GA increased Bax, cleaved-Caspase-3, cleaved-Caspase-9, P53, P-ERK1/2, P-JNK, P-P38 proteins expression, and decreased Bcl-2, P-PI3K, P-AKT, P-EGFR proteins expression. Furthermore, molecular docking suggested that GA has the high affinity for PI3K, AKT, EGFR, ERK1/2, JNK, and P38. In conclusion, GA could suppress HCC1806 cells proliferation and promote HCC1806 cells apoptosis through the mitochondrial apoptosis pathway and induces ROS generation which further inhibits PI3K/AKT/EGFR and activates MAPK signaling pathways. Our study will provide some new references for using GA in the treatment of TNBC.
Collapse
Affiliation(s)
- Si Lin
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hui-Zhen Qin
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Ze-Yu Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hua Zhu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Li Long
- Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Li-Ba Xu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
17
|
Genome Survey and SSR Analysis of Camellia nitidissima Chi (Theaceae). Genet Res (Camb) 2022; 2022:5417970. [PMID: 36407084 PMCID: PMC9646326 DOI: 10.1155/2022/5417970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Camellia nitidissima Chi (CNC), a species of golden Camellia, is well known as "the queen of camellias." It is an ornamental, medicinal, and edible plant grown in China. In this study, we conducted a genome survey sequencing analysis and simple sequence repeat (SSR) identification of CNC using the Illumina sequencing platform. The 21-mer analysis predicted its genome size to be 2,778.82 Mb, with heterozygosity and repetition rates of 1.42% and 65.27%, respectively. The CNC genome sequences were assembled into 9,399,197 scaffolds, covering ∼2,910 Mb and an N50 of 869 base pair. Its genomic characteristics were found to be similar to those of Camellia oleifera. In addition, 1,940,616 SSRs were identified from the genome data, including mono-(61.85%), di-(28.71%), tri-(6.51%), tetra-(1.85%), penta-(0.57%), and hexanucleotide motifs (0.51%). We believe these data will provide a useful foundation for the development of novel molecular markers for CNC as well as for further whole-genome sequencing of CNC.
Collapse
|
18
|
Li SY, Wang WJ, Li QY, Yang PH, Li XL, Yan Y, Yuan Y, Feng YB, Hong M. Using omics approaches to dissect the therapeutic effects of Chinese herbal medicines on gastrointestinal cancers. Front Pharmacol 2022; 13:884822. [PMID: 36210831 PMCID: PMC9538923 DOI: 10.3389/fphar.2022.884822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chinese herbal medicines offer a rich source of anti-cancer drugs. Differences between the pharmacology of Chinese herbal medicines and modern synthetic chemicals hinder the development of drugs derived from herbal products. To address this challenge, novel omics approaches including transcriptomics, proteomics, genomics, metabolomics, and microbiomics have been applied to dissect the pharmacological benefits of Chinese herbal medicines in cancer treatments. Numerous Chinese herbal medicines have shown potential anti-tumor effects on different gastrointestinal (GI) cancers while eliminating the side effects associated with conventional cancer therapies. The present study aimed to provide an overview of recent research focusing on Chinese herbal medicines in GI cancer treatment, based on omics approaches. This review also illustrates the potential utility of omics approaches in herbal-derived drug discovery. Omics approaches can precisely and efficiently reveal the key molecular targets and intracellular interaction networks of Chinese herbal medicines in GI cancer treatment. This study summarizes the application of different omics-based approaches in investigating the effects and mechanisms of Chinese herbal medicines in GI cancers. Future research directions are also proposed for this area of study.
Collapse
Affiliation(s)
- Si-Yi Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, Guangzhou, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Wei-Jia Wang
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People’s Hospital, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Qiu-Yue Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng-Hui Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-Long Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Yan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Yuan
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People’s Hospital, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Yi-Bin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Yi-Bin Feng, ; Ming Hong,
| | - Ming Hong
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People’s Hospital, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
- *Correspondence: Yi-Bin Feng, ; Ming Hong,
| |
Collapse
|
19
|
Zhang X, Ma Y, Ma J, Yang L, Song Q, Wang H, Lv G. Glutathione Peroxidase 4 as a Therapeutic Target for Anti-Colorectal Cancer Drug-Tolerant Persister Cells. Front Oncol 2022; 12:913669. [PMID: 35719967 PMCID: PMC9203854 DOI: 10.3389/fonc.2022.913669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022] Open
Abstract
Background Despite the effectiveness of chemotherapy and targeted therapy for colorectal cancer, drug resistance drives therapy failure and tumor relapse. Increasing evidence has suggested that cancer cells can enter a reversible drug-tolerant persister state to survive chemotherapy or targeted agents. However, the traits and treatable vulnerabilities of anti-colorectal cancer drug-tolerant persister cells is not yet known. Methods In this study, we established 5-fluorouracil and AZ628-tolerant persister cell models in two colorectal cancer cell lines, namely HCT116 and SW620, and revealed the characteristics of colorectal cancer persister cells by cell viability assay and flow cytometry. We investigated the efficacy and mechanism of ferroptosis inducers RSL3 and FIN56 on persister cells, which are glutathione peroxidase 4 inhibitors. In the xenograft mouse model, we further evaluated the inhibitory effect of RSL3 on tumor regrowth. Results Colorectal cancer persister cells, which were enriched in the residual cancer cell population, exhibited reduced drug sensitivity, were largely quiescent and expressed high levels of stem cell-related genes and mesenchymal markers but not epithelial markers. The persister cells were more sensitive and underwent ferroptosis induced by glutathione peroxidase 4 inhibitors. Mechanistically, glutathione peroxidase 4 and ferrous iron, which are pivotal ferroptosis regulators, were upregulated in residual cells or tumors, and were hence potential therapeutic targets of persister cells. In the xenograft model, we confirmed that inhibition of glutathione peroxidase 4 restrained tumor regrowth after discontinuation of anti-cancer drug treatment. Moreover, biopsies obtained from patients with colorectal cancer undergoing neoadjuvant chemoradiotherapy revealed upregulated glutathione peroxidase 4 and ferritin heavy chain 1. High glutathione peroxidase 4 expression correlates with a worse prognosis in colorectal cancer patients. Conclusions Our work reveals that the upregulated glutathione peroxidase 4 and ferrous iron in anti-colorectal cancer drug-tolerant persister cells were potential therapeutic targets. Glutathione peroxidase 4 inhibition combined with chemotherapy or targeted therapy may be a promising therapy for colorectal cancer.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Yang
- Department of Gastroenterology of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qingzhi Song
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoqing Lv
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
20
|
Xu J, Shen X, Sun D, Zhu Y. Cordycepin Suppresses The Malignant Phenotypes of Colon Cancer Cells through The GSK3ß/ß-catenin/cyclin D1 Signaling Pathway. CELL JOURNAL 2022; 24:255-260. [PMID: 35717567 PMCID: PMC9445518 DOI: 10.22074/cellj.2022.8160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Cordycepin, also known as 3'-deoxyadenosine, is the main bioactive ingredient of Cordyceps militaris and possesses various pharmacological effects. This study was performed to investigate the role of cordycepin in regulating the biological behaviors of colon cancer cells and the potential mechanism behind it. MATERIALS AND METHODS In this experimental study, after treatment of colon cancer cells with different concentrations of cordycepin, inhibition of proliferation was detected by the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Colon cancer cell migration and invasion abilities were analyzed by wound healing and Transwell assays. Flow cytometry was performed to detect cell apoptosis. A lung metastasis model in nude mice was utilized to examine the effect of cordycepin on the metastasis of colon cancer cells in in vivo. Western blot was used to quantify GSK3β, β-catenin and cyclin D1 expression levels. RESULTS Cordycepin inhibited colon cancer cell proliferation, migration and invasion, induced apoptosis in vitro, and inhibited lung metastasis of colon cancer cells in vivo. GSK-3β inhibitor (CHIR99021) treatment abolished the effects of cordycepin on cell viability, migration, invasion and apoptosis. Additionally, cordycepin promoted the expressions of GSK3β, and inhibited β-catenin and cyclin D1 in colon cancer cells, while co-treatment with CHIR99021 reversed the above effects. CONCLUSION Cordycepin suppresses the malignant phenotypes of colon cancer through the GSK3β/β-catenin/cyclin D1 signaling pathway.
Collapse
Affiliation(s)
- Jie Xu
- Department of General Surgery, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Xia Shen
- Department of Emergency, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Daozhong Sun
- Department of General Surgery, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Yanjie Zhu
- Department of Dermatology, The Second People's Hospital of Yuhang District, Hangzhou, Zhejiang, China,Department of DermatologyThe Second People's Hospital of Yuhang DistrictHangzhouZhejiangChina
| |
Collapse
|