1
|
Huang L, Wei M, Li H, Yu M, Wan L, Zhao R, Gao Q, Sun L, Hou X, Mo Y, Huang Q, Zhen L, Yang X, Li J, Wang N, Zhang C, Jin H, Zhou L, Xu Y, Lin H, Zhang X, Li B, Han Y, Yuan J, Zhang R, Wu F, Zhong H, Wei C. GP73-dependent regulation of exosome biogenesis promotes colorectal cancer liver metastasis. Mol Cancer 2025; 24:151. [PMID: 40414849 DOI: 10.1186/s12943-025-02350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
Colorectal cancer (CRC) liver metastasis is the main cause of cancer-related mortality. How liver influences intercellular communication to support CRC liver metastasis remains unknown. Herein, we link GP73, whose chronic upregulation in hepatocytes triggers non-obese metabolic-dysfunction associated steatotic liver disease (MASLD) in mice, with exosome biogenesis and CRC liver metastasis. Mice with high liver GP73 expression exhibited increased CRC liver metastasis in an exosome-dependent manner. GP73 modulated the cholesterol contents in endosomal compartments to promote exosome production. Quantitative proteomics revealed GP73 reshaped hepatocyte exosomal proteome and produced NAV2-rich exosomes. Clinically, serum GP73 levels positively correlated with exosomal NAV2 levels in CRC patients with liver metastasis. Knockdown of liver NAV2 suppressed enhanced CRC liver metastasis in GP73-induced non-obese mice, and GP73 blockade mitigated the increased CRC liver metastasis in obese mice fed by high-fat diet or high-fructose diet. Our findings suggest GP73 blockade as a potential therapeutic strategy for mitigating CRC liver metastasis.
Collapse
Affiliation(s)
- Linfei Huang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Meng Wei
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Huilong Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Mingxin Yu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, State Key Laboratory of Digestive Health, Beijing Key Laboratory of Early Gastrointestinal Cancer Medicine and Medical Devices, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Luming Wan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Ruzhou Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Qi Gao
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Lijuan Sun
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Xufeng Hou
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Yunhai Mo
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Qing Huang
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Lan Zhen
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Xiaopan Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Jingfei Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Nan Wang
- Department of Radiotherapy, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, Shanxi, 046000, China
| | - Chundong Zhang
- Department of Surgical Oncology and Central Laboratory, the Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning, 110032, China
| | - Haoran Jin
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong Distrct, Shenyang, Liaoning, 110042, China
| | - Li Zhou
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Yixin Xu
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Haotian Lin
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Xuhui Zhang
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Boan Li
- Clinical Laboratory, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, No. 100 Xisihuan Middle Road, Beijing, 100039, China.
| | - Yue Han
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan South Road, Chaoyang District, Beijing, 100021, China.
| | - Jing Yuan
- Capital Institute of Pediatrics, Capital Center for Children's Health, Capital Medical University, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong Distrct, Shenyang, Liaoning, 110042, China.
| | - Feixiang Wu
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China.
| | - Hui Zhong
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China.
| | - Congwen Wei
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
2
|
Szternel Ł, Sobucki B, Wieprzycka L, Krintus M, Panteghini M. Golgi protein 73 in liver fibrosis. Clin Chim Acta 2025; 565:119999. [PMID: 39401651 DOI: 10.1016/j.cca.2024.119999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/17/2024]
Abstract
Golgi protein 73 (GP73) is implicated in key pathogenic processes, particularly those related to inflammation and fibrogenesis. In the last years, its measurement has emerged as a promising biomarker for detection of liver fibrosis (LF), a common consequence of chronic liver disease that can progress to cirrhosis and eventually hepatocellular carcinoma. GP73 concentrations in blood appear significantly increased in LF patients, correlating with disease severity, making this biomarker a possible non-invasive alternative for detecting and monitoring this condition regardless of etiology. Understanding the molecular mechanisms involving GP73 expression could also lead to new therapeutic strategies aimed at modulating its synthesis or function to prevent or reverse LF. Despite its clinical potential, GP73 as a LF biomarker faces several challenges. The lack of demonstrated comparability among different assays as well as the lack of knowledge of individual variability can make difficult the result interpretation. Further research is therefore needed focusing on robust clinical validation of GP73 as a LF biomarker. Addressing analytical, biological, and clinical limitations will be critical to exploiting its potential for improving detection and monitoring of advanced LF.
Collapse
Affiliation(s)
- Łukasz Szternel
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Bartłomiej Sobucki
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Laura Wieprzycka
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Magdalena Krintus
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland.
| | - Mauro Panteghini
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
3
|
Feng P, Hu X, Zhou S, Liu X, Zeng L, Liu Y. Golgi protein 73: the driver of inflammation in the immune and tumor microenvironment. Front Immunol 2025; 15:1508034. [PMID: 39845976 PMCID: PMC11750648 DOI: 10.3389/fimmu.2024.1508034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Golgi Protein 73 (GP73) is a Golgi-resident protein that is highly expressed in primary tumor tissues. Initially identified as an oncoprotein, GP73 has been shown to promote tumor development, particularly by mediating the transport of proteins related to epithelial-mesenchymal transition (EMT), thus facilitating tumor cell EMT. Though our previous review has summarized the functional roles of GP73 in intracellular signal transduction and its various mechanisms in promoting EMT, recent studies have revealed that GP73 plays a crucial role in regulating the tumor and immune microenvironment. GP73 can modulate intracellular signaling pathways to influence cytokine and chemokine networks, resulting in inflammation caused by viral and bacterial infection or immune diseases, and leading tumor microenvironment deteriorated. Additionally, extracellular GP73 can also regulate signaling pathways of target cells by binding to their cell-surface receptors or entering the acceptor cells, thereby facilitating inflammation or promoting tumor development. In this review, we aim to summarize the findings, providing insights for future investigations on GP73 and its potential as a therapeutic target in ameliorating chronic inflammation in the immune and tumor microenvironment.
Collapse
Affiliation(s)
- Pingping Feng
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Sining Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xianyong Liu
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Yiming Liu
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Liu J, Feng C, Zhao R, Song H, Huang L, Jiang N, Yang X, Liu L, Duan C, Wan L, Gao Q, Sun L, Hou X, Liu M, Zhang Y, Zhang X, Zhang D, Wang Y, Li Y, Ma X, Zhong H, Min M, Wei C, Cao Y, Yang X. GP73 reinforces cytotoxic T-cell function by regulating HIF-1α and increasing antitumor efficacy. J Immunother Cancer 2025; 13:e009265. [PMID: 39762082 PMCID: PMC11749480 DOI: 10.1136/jitc-2024-009265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/23/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Immunotherapy that targets immune checkpoints has achieved revolutionary success, but its application in solid tumors remains limited, highlighting the need for reliable enhancement of the efficacy of immunotherapy. Golgi protein 73 (GP73), a Golgi membrane protein, has been implicated in various cellular processes, including immune regulation. Recent studies suggested that GP73 may play a role in modulating the immune response in patients with cancer. In this study, we investigated the mechanism by which GP73 regulates T-cell-mediated antitumor immunity within the tumor microenvironment. METHODS We used T-cell specific GP73 knockout mice to establish MC38 and B16 tumor models to investigate the impact of GP73-deficient T cells on tumor growth. Single-cell sequencing was subsequently employed to classify tumor-infiltrating immune cells and assess changes in cytokines and metabolic genes. Through RNA sequencing, real-time quantitative PCR, western blotting, flow cytometry, seahorse analysis, glucose uptake, and L-lactic acid secretion assays, we explored how GP73 regulates hypoxia-inducible factor 1α (HIF-1α) to influence T-cell antitumor functionality. Furthermore, we established adoptive transfer experiments to study the ability of GP73-overexpressing T cells to combat tumors. Blood samples of patient with clinical tumor were collected to assess the relationship between immunotherapy efficacy and T-cell GP73 levels. RESULTS In this study, the absence of GP73 in mouse T cells promoted tumor growth and metastasis, accompanied by a decrease in the proportion of cytotoxic CD8+T cell subsets infiltrating the tumor and an increase in exhausted CD8+ T-cell subsets. Further analysis revealed that the effector function of CD8+T cells in tumors relies on glycolysis regulated by HIF-1α rather than immune checkpoints. GP73-deficient T cells exhibit severely impaired glycolysis in hypoxic environments, whereas ectopic GP73 expression restores HIF-1α levels. In adoptive immunotherapy, overexpression of GP73 in T cells inhibits tumor growth. In cytotoxicity assays, knockdown of GP73 affected the ability of CD8+T cells to kill target cells. Clinically, tumor immunotherapy partial response patients present significantly elevated levels of GP73 expression in T cells. CONCLUSIONS These findings reveal the role of GP73 in regulating T-cell glycolysis and may lead to new therapeutic strategies for the prognosis and treatment of clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Jialong Liu
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
- Clinical Diagnosis Laboratory, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, Beijing, China
| | - Chao Feng
- Department of Basic Medical Sciences, 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, Shandong, China
- Department of Clinical Laboratory, The 969th Hospital of PLA, Hohhot, Inner Mongolia, China
| | - Ruzhou Zhao
- Department of Genetic Engineering, Academy of Military Medical Sciences, Beijing, Beijing, China
| | - Hongbin Song
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
| | - Linfei Huang
- Department of Genetic Engineering, Academy of Military Medical Sciences, Beijing, Beijing, China
| | - Nan Jiang
- Department of Pharmacy, PLA General Hospital Medical Supplies Center Department of Pharmacy, Beijing, Beijing, China
| | - Xiaopan Yang
- Department of Genetic Engineering, Academy of Military Medical Sciences, Beijing, Beijing, China
| | - Lanlan Liu
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
| | - Cuijuan Duan
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
| | - Luming Wan
- Department of Genetic Engineering, Academy of Military Medical Sciences, Beijing, Beijing, China
| | - Qi Gao
- Beijing Hotgen Biotech Co., Ltd, Beijing, Beijing, China
| | - Lijuan Sun
- Beijing Hotgen Biotech Co., Ltd, Beijing, Beijing, China
| | - Xufeng Hou
- Beijing Hotgen Biotech Co., Ltd, Beijing, Beijing, China
| | - Muyi Liu
- Department of Genetic Engineering, Academy of Military Medical Sciences, Beijing, Beijing, China
| | - Yanhong Zhang
- Department of Genetic Engineering, Academy of Military Medical Sciences, Beijing, Beijing, China
| | - Xuemiao Zhang
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
| | - Dandan Zhang
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
| | - Yufei Wang
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
| | - Yong Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xueping Ma
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
| | - Hui Zhong
- Beijing Hotgen Biotech Co., Ltd, Beijing, Beijing, China
| | - Min Min
- Department of Gastroenterlology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
| | - Congwen Wei
- Department of Genetic Engineering, Academy of Military Medical Sciences, Beijing, Beijing, China
| | - Yuan Cao
- Department of Basic Medical Sciences, 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, Shandong, China
| | - Xiaoli Yang
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
| |
Collapse
|
5
|
Liu Y, Hu X, Zhou S, Sun T, Shen F, Zeng L. Golgi Protein 73 Promotes Angiogenesis in Hepatocellular Carcinoma. RESEARCH (WASHINGTON, D.C.) 2024; 7:0425. [PMID: 39022745 PMCID: PMC11251733 DOI: 10.34133/research.0425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Golgi protein 73 (GP73), a resident protein of the Golgi apparatus, is notably elevated in hepatocellular carcinoma (HCC). While its critical role in remodeling the tumor microenvironment (TME) is recognized, the intricate mechanisms are not fully understood. This study reveals that GP73 in HCC cells interacts with prolyl hydroxylase-2 (PHD-2) in a competitive manner, thereby impeding the hydroxylation of hypoxia-induced factor-1α (HIF-1α). The effect above promotes the production and secretion of vascular endothelial growth factor A (VEGFA). Moreover, exosomal GP73 derived from HCC cells can be internalized by human umbilical vein endothelial cells (HUVECs) and competitively interact with HECTD1, an E3 ubiquitin ligase targeting growth factor receptor-bound protein 2 (GRB2). This interaction stabilizes GRB2, thereby activating the Ras-mitogen-activated protein kinase (MAPK) signaling pathway. Consequently, escalated levels of GP73 intensify VEGF production in HCC cells and potentiate mitogenic signaling in vascular endothelial cells, fostering angiogenesis in the TME. Our findings propose that GP73 might serve as a novel target for anti-angiogenic therapy in HCC.
Collapse
Affiliation(s)
- Yiming Liu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province,
Hangzhou City University School of Medicine, Hangzhou 310015, China
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital,
Zhejiang University School of Medicine, Hangzhou 310017, China
- Cancer Center,
Zhejiang University, Hangzhou 310058, China
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital,
Zhejiang University School of Medicine, Hangzhou 310017, China
- Cancer Center,
Zhejiang University, Hangzhou 310058, China
| | - Sining Zhou
- Life Sciences Institute,
Zhejiang University, Hangzhou 310058, China
| | - Ting Sun
- Department of Pathology, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feiyan Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province,
Hangzhou City University School of Medicine, Hangzhou 310015, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province,
Hangzhou City University School of Medicine, Hangzhou 310015, China
| |
Collapse
|
6
|
Ye J, Gao X, Huang X, Huang S, Zeng D, Luo W, Zeng C, Lu C, Lu L, Huang H, Mo K, Huang J, Li S, Tang M, Wu T, Mai R, Luo M, Xie M, Wang S, Li Y, Lin Y, Liang R. Integrating Single-Cell and Spatial Transcriptomics to Uncover and Elucidate GP73-Mediated Pro-Angiogenic Regulatory Networks in Hepatocellular Carcinoma. RESEARCH (WASHINGTON, D.C.) 2024; 7:0387. [PMID: 38939041 PMCID: PMC11208919 DOI: 10.34133/research.0387] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/21/2024] [Indexed: 06/29/2024]
Abstract
Hepatocellular carcinoma (HCC) was characterized as being hypervascular. In the present study, we generated a single-cell spatial transcriptomic landscape of the vasculogenic etiology of HCC and illustrated overexpressed Golgi phosphoprotein 73 (GP73) HCC cells exerting cellular communication with vascular endothelial cells with high pro-angiogenesis potential via multiple receptor-ligand interactions in the process of tumor vascular development. Specifically, we uncovered an interactive GP73-mediated regulatory network coordinated with c-Myc, lactate, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway, and endoplasmic reticulum stress (ERS) signals in HCC cells and elucidated its pro-angiogenic roles in vitro and in vivo. Mechanistically, we found that GP73, the pivotal hub gene, was activated by histone lactylation and c-Myc, which stimulated the phosphorylation of downstream STAT3 by directly binding STAT3 and simultaneously enhancing glucose-regulated protein 78 (GRP78)-induced ERS. STAT3 potentiates GP73-mediated pro-angiogenic functions. Clinically, serum GP73 levels were positively correlated with HCC response to anti-angiogenic regimens and were essential for a prognostic nomogram showing good predictive performance for determining 6-month and 1-year survival in patients with HCC treated with anti-angiogenic therapy. Taken together, the aforementioned data characterized the pro-angiogenic roles and mechanisms of a GP73-mediated network and proved that GP73 is a crucial tumor angiogenesis niche gene with favorable anti-angiogenic potential in the treatment of HCC.
Collapse
Affiliation(s)
- Jiazhou Ye
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
| | - Xing Gao
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xi Huang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Shilin Huang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Dandan Zeng
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Wenfeng Luo
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Can Zeng
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Lu Lu
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Hongyang Huang
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Kaixiang Mo
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Julu Huang
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Shizhou Li
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Minchao Tang
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Tianzhun Wu
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Rongyun Mai
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Min Luo
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Mingzhi Xie
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Shan Wang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yongqiang Li
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yan Lin
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Rong Liang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| |
Collapse
|
7
|
Wang Y, Hu D, Wan L, Yang S, Liu S, Wang Z, Li J, Li J, Zheng Z, Cheng C, Wang Y, Wang H, Tian X, Chen W, Li S, Zhang J, Zha X, Chen J, Zhang H, Xu KF. GOLM1 Promotes Pulmonary Fibrosis through Upregulation of NEAT1. Am J Respir Cell Mol Biol 2024; 70:178-192. [PMID: 38029327 DOI: 10.1165/rcmb.2023-0151oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal progressive disease with elusive molecular mechanisms and limited therapeutic options. Aberrant activation of fibroblasts is a central hallmark of lung fibrosis. Here, we report that Golgi membrane protein 1 (GOLM1, also known as GP73 or GOLPH2) was increased in the lungs of patients with pulmonary fibrosis and mice with bleomycin (BLM)-induced pulmonary fibrosis. Loss of GOLM1 inhibited proliferation, differentiation, and extracellular matrix deposition of fibroblasts, whereas overexpression of GOLM1 exerted the opposite effects. Similarly, worsening pulmonary fibrosis after BLM treatment was observed in GOLM1-knock-in mice, whereas BLM-treated Golm1-knockout mice exhibited alleviated pulmonary fibrosis and collagen deposition. Furthermore, we identified long noncoding RNA NEAT1 downstream of GOLM1 as a potential mediator of pulmonary fibrosis through increased GOLM1 expression. Depletion of NEAT1 inhibited fibroblast proliferation and extracellular matrix production and reversed the profibrotic effects of GOLM1 overexpression. Additionally, we identified KLF4 as a downstream mediator of GOLM1 signaling to NEAT1. Our findings suggest that GOLM1 plays a pivotal role in promoting pulmonary fibrosis through the GOLM1-KLF4-NEAT1 signaling axis. Targeting GOLM1 and its downstream pathways may represent a novel therapeutic strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yani Wang
- Department of Pulmonary and Critical Care Medicine and
| | - Danjing Hu
- Department of Pulmonary and Critical Care Medicine and
| | - Linyan Wan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuhui Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song Liu
- Medical Science Center, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jie Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Li
- Department of Pulmonary and Critical Care Medicine and
| | - Zhoude Zheng
- Department of Pulmonary and Critical Care Medicine and
| | | | - Yanan Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanghang Wang
- Department of Pulmonary and Critical Care Medicine and
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine and
| | - Wenhui Chen
- Department of Lung Transplantation, Centre for Lung Transplantation, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and
| | - Ji Zhang
- Lung Transplantation Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jingyu Chen
- Lung Transplantation Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine and
| |
Collapse
|
8
|
Wang Q, Shi X, Li PP, Gao L, Zhou Y, Li L, Ye H, Fu X, Li P. microRNA profilings identify plasma biomarkers and targets associated with pediatric epilepsy patients. Pediatr Res 2024; 95:996-1008. [PMID: 37884644 PMCID: PMC10920196 DOI: 10.1038/s41390-023-02864-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Although previous studies show that microRNAs (miRNAs) can potentially be used as diagnostic markers for epilepsy, there are very few analyses of pediatric epilepsy patients. METHODS miRNA profiles using miRNA-seq was performed on plasma samples from 14 pediatric epileptic patients and 14 healthy children. miRNA miR-27a-3p that were significantly changed between two groups were further evaluated. The potential target genes of miR-27a-3p were screened through unbiased mRNA-seq and further validated using Western blot and immunohistochemistry in HEK-293T cells and in the brains of mice with epilepsy induced by lithium chloride-pilocarpine. RESULTS We found 82 upregulated and 76 downregulated miRNAs in the plasma from pediatric patients compared with controls (p < 0.01), of which miR-27a-3p exhibited a very low p value (p < 0.0001) and validated in additional plasma samples. Two genes, GOLM1 and LIMK1, whose mRNA levels were decreased (p < 0.001) with the increase of miR-27a-3p were further validated in both HEK-293T cells and in epileptic mice. CONCLUSIONS MiR-27a-3p exhibits potential as a diagnostic and therapeutic marker for epilepsy. We postulate that additional studies on the downstream targets of miR-27a-3p will unravel its roles in epileptogenesis or disease progression. IMPACT A total of 158 differentially expressed miRNAs were detected in plasma between epileptic and control children. Plasma miR-27a-3p was one of the miRNAs with a low p value. GOLM1 and LIMK1 were validated as downstream target genes of miR-27a-3p. miR-27a-3p has potential as a diagnostic and therapeutic marker for epilepsy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Xulai Shi
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Ping-Ping Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Li Gao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Yueyuan Zhou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Luyao Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Hao Ye
- School of life Science and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325000, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China.
| | - Peijun Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325000, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
9
|
Zhu J, Wu K, Liu S, Masca A, Zhong H, Yang T, Ghoneim DH, Surendran P, Liu T, Yao Q, Liu T, Fahle S, Butterworth A, Alam MA, Vadgama JV, Deng Y, Deng HW, Wu C, Wu Y, Wu L. Proteome-wide association study and functional validation identify novel protein markers for pancreatic ductal adenocarcinoma. Gigascience 2024; 13:giae012. [PMID: 38608280 PMCID: PMC11010651 DOI: 10.1093/gigascience/giae012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy, largely due to the paucity of reliable biomarkers for early detection and therapeutic targeting. Existing blood protein biomarkers for PDAC often suffer from replicability issues, arising from inherent limitations such as unmeasured confounding factors in conventional epidemiologic study designs. To circumvent these limitations, we use genetic instruments to identify proteins with genetically predicted levels to be associated with PDAC risk. Leveraging genome and plasma proteome data from the INTERVAL study, we established and validated models to predict protein levels using genetic variants. By examining 8,275 PDAC cases and 6,723 controls, we identified 40 associated proteins, of which 16 are novel. Functionally validating these candidates by focusing on 2 selected novel protein-encoding genes, GOLM1 and B4GALT1, we demonstrated their pivotal roles in driving PDAC cell proliferation, migration, and invasion. Furthermore, we also identified potential drug repurposing opportunities for treating PDAC. SIGNIFICANCE PDAC is a notoriously difficult-to-treat malignancy, and our limited understanding of causal protein markers hampers progress in developing effective early detection strategies and treatments. Our study identifies novel causal proteins using genetic instruments and subsequently functionally validates selected novel proteins. This dual approach enhances our understanding of PDAC etiology and potentially opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Jingjing Zhu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaiʻi at Mānoa, Honolulu, HI 96813, USA
| | - Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Shuai Liu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaiʻi Cancer Center, University of Hawaiʻi at Mānoa, Honolulu, HI 96813, USA
| | - Alexandra Masca
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaiʻi Cancer Center, University of Hawaiʻi at Mānoa, Honolulu, HI 96813, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaiʻi Cancer Center, University of Hawaiʻi at Mānoa, Honolulu, HI 96813, USA
| | - Tai Yang
- Department of Biostatistics, University of Michigan–Ann Arbor, Ann Arbor, MI 48109, USA
| | - Dalia H Ghoneim
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaiʻi Cancer Center, University of Hawaiʻi at Mānoa, Honolulu, HI 96813, USA
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK
| | - Tanxin Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Qizhi Yao
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sarah Fahle
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK
| | - Adam Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaiʻi at Mānoa, Honolulu, HI 96813, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaiʻi Cancer Center, University of Hawaiʻi at Mānoa, Honolulu, HI 96813, USA
| |
Collapse
|
10
|
Jing F, Li X, Jiang H, Sun J, Guo Q. Combating drug resistance in hepatocellular carcinoma: No awareness today, no action tomorrow. Biomed Pharmacother 2023; 167:115561. [PMID: 37757493 DOI: 10.1016/j.biopha.2023.115561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the sixth most common cancer worldwide, is associated with a high degree of malignancy and poor prognosis. Patients with early HCC may benefit from surgical resection to remove tumor tissue and a margin of healthy tissue surrounding it. Unfortunately, most patients with HCC are diagnosed at an advanced or distant stage, at which point resection is not feasible. Systemic therapy is now routinely prescribed to patients with advanced HCC; however, drug resistance has become a major obstacle to the treatment of HCC and exploring purported mechanisms promoting drug resistance remains a challenge. Here, we focus on the determinants of drug resistance from the perspective of non-coding RNAs (ncRNAs), liver cancer stem cells (LCSCs), autophagy, epithelial-mesenchymal transition (EMT), exosomes, ferroptosis, and the tumor microenvironment (TME), with the aim to provide new insights into HCC treatment.
Collapse
Affiliation(s)
- Fanbo Jing
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Li
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Jiang
- Qingdao Haici Hospital, Qingdao 266000, China
| | - Jialin Sun
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Lin YF, Li MH, Huang RH, Zhang SZ, Xu XF, Zhou HM, Liu MH, Liao XX, Liao LZ, Guo Y, Zhuang XD. GP73 enhances the ox-LDL-induced inflammatory response in THP-1 derived macrophages via affecting NLRP3 inflammasome signaling. Int J Cardiol 2023; 387:131109. [PMID: 37271284 DOI: 10.1016/j.ijcard.2023.05.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/29/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease with its molecular basis incompletely understood. Here, we determined whether the Golgi phosphoprotein 73 (GP73), a novel protein highly related to inflammation and disrupted lipid metabolism, was involved in the development of atherosclerosis. METHODS Public microarray databases of human vascular samples were analyzed for expression patterns. Apolipoprotein-E-gene-deficient (ApoE-/-) mice (8-week-old) were randomly assigned to either a chow diet group or a high-fat diet group. The levels of serum GP73, lipid profiles and key inflammatory cytokines were determined by ELISA. The aortic root plaque was isolated and used for by Oil Red O staining. PMA-differentiated THP-1 macrophages were transfected with GP73 small interfering RNA (siRNA) or infected with adenovirus expressing GP73, and then stimulated with oxidized low density lipoprotein (ox-LDL). The expressions of pro-inflammatory cytokines and signal pathway key targets were determined by ELISA kit and Western blot respectively. In addition, ichloro-dihydro-fluorescein diacetate (DCFH-DA) was used to measure the intracellular ROS levels. RESULTS The expressions of GP73 and NLRP3 were substantially upregulated in human atherosclerotic lesions. There were significant linear correlations between GP73 and inflammatory cytokines expressions. High-fat diet-induced atherosclerosis and increased levels of plasma inflammatory mediators (IL-1β, IL-18, and TNF-α) were observed in ApoE-/- mice. Besides, the expressions of GP73 in the aorta and serum were significantly upregulated and positively correlated with the NLRP3 expression. In the THP-1 derived macrophages, ox-LDL treatment upregulated the expressions of GP73 and NLRP3 proteins and activated the inflammatory responses in a concentration-dependent and time-dependent manner. Silencing of GP73 attenuated the inflammatory response and rescued the decreased migration induced by ox-LDL, inhibiting the NLRP3 inflammasome signaling and the ROS and p-NF-κB activation. CONCLUSIONS We demonstrated that GP73 promoted the ox-LDL-induced inflammation in macrophages by affecting the NF-κB/NLRP3 inflammasome signaling, and may play a role in atherosclerosis.
Collapse
Affiliation(s)
- Yi-Fen Lin
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Miao-Hong Li
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Ri-Hua Huang
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Shao-Zhao Zhang
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xing-Feng Xu
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Hui-Min Zhou
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Meng-Hui Liu
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xin-Xue Liao
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Li-Zhen Liao
- Guangdong Engineering Research Center for Light and Health, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yue Guo
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xiao-Dong Zhuang
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
12
|
Frans MT, Kuipers EM, Bianchi F, van den Bogaart G. Unveiling the impact of GOLM1/GP73 on cytokine production in cancer and infectious disease. Immunol Cell Biol 2023; 101:727-734. [PMID: 37332154 DOI: 10.1111/imcb.12664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
The Golgi membrane protein GOLM1/GP73/GOLPH2 has been found to impact cytokine production in both infectious disease and cancer. In viral infections, GOLM1 levels are increased, and this lowers the production of type I interferons and other inflammatory cytokines. However, elevated GOLM1 expression levels due to mutations are linked to a higher production of interleukin (IL)-6 during Candida infections, potentially explaining an increased susceptibility to candidemia in individuals carrying these mutations. In cancer, the protease Furin produces a soluble form of GOLM1 that has oncogenic properties by promoting the production of the chemokine CCL2 and suppressing the production of inflammatory cytokines such as IL-12 and interferon gamma. This review will focus on the role of GOLM1 in cytokine production, highlighting how it can both promote and inhibit cytokine production. It is crucial to understand this in order to effectively target GOLM1 for therapeutic purposes in diseases associated with abnormal cytokine production, including cancer and infectious disease.
Collapse
Affiliation(s)
- Myrthe T Frans
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ella M Kuipers
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Hu X, Yuan S, Zhou S, Sun T, Wang C, Ying S, Zhu H, Luo J, Jin H, Liu Y. Golgi-protein 73 facilitates vimentin polymerization in hepatocellular carcinoma. Int J Biol Sci 2023; 19:3694-3708. [PMID: 37564210 PMCID: PMC10411459 DOI: 10.7150/ijbs.85431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
Golgi-protein 73 (GP73) is highly expressed in hepatocellular carcinoma (HCC) and, as a secretory protein, it has been proposed as a serum biomarker indicating progression of HCC. The underlying mechanism by which GP73 may promote HCC metastasis is still poorly understood. In this study, we discovered that GP73 interacted with vimentin to facilitate Serine/Threonine-protein phosphatase PP1-alpha (PP1A)-mediated dephosphorylation of vimentin at S56 and facilitated vimentin polymerization, which blocked vimentin degradation via TRIM56-mediated ubiquitin/proteasome-dependent pathway. Strikingly, Clomipramine, a 5-hydroxytryptamine receptor (5-HTR) agonist approved for the treatment of depression, impaired GP73-mediated vimentin polymerization to effectively inhibit metastasis of HCC with high GP73 expression, which provided a new strategy against HCC metastasis. Lastly, it was found that serum GP73 (sGP73) correlated positively with vimentin in primary tissues of HCC, suggesting that sGP73 might serve as a potential serum biomarker for companion diagnosis of HCC with highly expressed vimentin. In summary, this study reveals the process of GP73-mediated vimentin polymerization and proves that Clomipramine serves as a potential drug targeting vimentin for metastatic HCC patients with high sGP73 level.
Collapse
Affiliation(s)
- Xinyang Hu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Shijin Yuan
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Sining Zhou
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ting Sun
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chaoqun Wang
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang 322100, China
| | - Shilong Ying
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Heping Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jingfeng Luo
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yiming Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Cho WC, Wong CF, Li KP, Fong AH, Fung KY, Au JS. miR-145 as a Potential Biomarker and Therapeutic Target in Patients with Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:10022. [PMID: 37373169 PMCID: PMC10298104 DOI: 10.3390/ijms241210022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Our previous study found that miR-145 was downregulated in non-small cell lung cancer (NSCLC) tissues and that it could inhibit the cell proliferation in transfected NSCLC cells. In this study, we found that miR-145 was downregulated in NSCLC plasma samples compared to healthy controls. A receiver operating characteristic curve analysis indicated that plasma miR-145 expression was correlated with NSCLC in patient samples. We further revealed that the transfection of miR-145 inhibited the proliferation, migration, and invasion of NSCLC cells. Most importantly, miR-145 significantly delayed the tumor growth in a mouse model of NSCLC. We further identified GOLM1 and RTKN as the direct targets of miR-145. A cohort of paired tumors and adjacent non-malignant lung tissues from NSCLC patients was used to confirm the downregulated expression and diagnostic value of miR-145. The results were highly consistent between our plasma and tissue cohorts, confirming the clinical value of miR-145 in different sample groups. In addition, we also validated the expressions of miR-145, GOLM1, and RTKN using the TCGA database. Our findings suggested that miR-145 is a regulator of NSCLC and it plays an important role in NSCLC progression. This microRNA and its gene targets may serve as potential biomarkers and novel molecular therapeutic targets in NSCLC patients.
Collapse
Affiliation(s)
- William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Chi F. Wong
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Kwan P. Li
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Alvin H. Fong
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - King Y. Fung
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Joseph S. Au
- Oncology Center, Hong Kong Adventist Hospital, Hong Kong SAR, China
| |
Collapse
|
15
|
Liang J, Yan R, Chen C, Yao X, Guo F, Wu R, Zhou Z, Chen J, Li G. A novel fluorescent strategy for Golgi protein 73 determination based on aptamer/nitrogen-doped graphene quantum dots/molybdenum disulfide @ reduced graphene oxide nanosheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122538. [PMID: 36842207 DOI: 10.1016/j.saa.2023.122538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The effective detection of biomarkers associated with hepatocellular carcinoma (HCC) is of great importance. Golgi protein 73 (GP73), a serum biomarker of HCC, has better diagnostic value than Alpha-fetoprotein (AFP) has been reported. In this paper, highly accurate fluorescence sensing platform for detecting GP73 was constructed based on fluorescence resonance energy transfer (FRET), in which nitrogen-doped graphene quantum dots (NGQDs) labelling with GP73 aptamer (GP73Apt) was used as fluorescence probe, and molybdenum disulfide @ reduced graphene oxide (MoS2@RGO) nanosheets was used as fluorescent receptors. MoS2@RGO nanosheets can quench the fluorescence of NGQDs-GP73Apt owing to FRET mechanisms. In the presence of GP73, the NGQDs-GP73Apt specifically bound with GP73 to from the deployable structures, making NGQDs-GP73Apt far away from MoS2@RGO nanosheets, blocking the FRET process, resulting in fluorescence recovery of NGQDs-GP73Apt. Under optimal conditions, the recovery intensity of fluorescence in the detection system is linearly related to the concentration of GP73 in the range of 5 ng/mL - 100 ng/mL and the limit of detection is 4.54 ng/mL (S/N = 3). Moreover, detection of GP73 was performed in human serum samples with good recovery (97.21-100.83%). This platform provides a feasible method for the early diagnosis of HCC, and can be easily extended to the detection of other biomarkers.
Collapse
Affiliation(s)
- Jintao Liang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Ruijie Yan
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Chunguan Chen
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Xiaoqing Yao
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, China
| | - Fei Guo
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Runqiang Wu
- Department of Clinical Laboratory, The 924st Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, China
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Jiejing Chen
- Department of Clinical Laboratory, The 924st Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, China.
| | - Guiyin Li
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, China.
| |
Collapse
|
16
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
17
|
Shahini E, Pasculli G, Solimando AG, Tiribelli C, Cozzolongo R, Giannelli G. Updating the Clinical Application of Blood Biomarkers and Their Algorithms in the Diagnosis and Surveillance of Hepatocellular Carcinoma: A Critical Review. Int J Mol Sci 2023; 24:4286. [PMID: 36901717 PMCID: PMC10001986 DOI: 10.3390/ijms24054286] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The most common primary liver cancer is hepatocellular carcinoma (HCC), and its mortality rate is increasing globally. The overall 5-year survival of patients with liver cancer is currently 10-20%. Moreover, because early diagnosis can significantly improve prognosis, which is highly correlated with tumor stage, early detection of HCC is critical. International guidelines advise using α-FP biomarker with/without ultrasonography for HCC surveillance in patients with advanced liver disease. However, traditional biomarkers are sub-optimal for risk stratification of HCC development in high-risk populations, early diagnosis, prognostication, and treatment response prediction. Since about 20% of HCCs do not produce α-FP due to its biological diversity, combining α-FP with novel biomarkers can enhance HCC detection sensitivity. There is a chance to offer promising cancer management methods in high-risk populations by utilizing HCC screening strategies derived from new tumor biomarkers and prognostic scores created by combining biomarkers with distinct clinical parameters. Despite numerous efforts to identify molecules as potential biomarkers, there is no single ideal marker in HCC. When combined with other clinical parameters, the detection of some biomarkers has higher sensitivity and specificity in comparison with a single biomarker. Therefore, newer biomarkers and models, such as the Lens culinaris agglutinin-reactive fraction of Alpha-fetoprotein (α-FP), α-FP-L3, Des-γ-carboxy-prothrombin (DCP or PIVKA-II), and the GALAD score, are being used more frequently in the diagnosis and prognosis of HCC. Notably, the GALAD algorithm was effective in HCC prevention, particularly for cirrhotic patients, regardless of the cause of their liver disease. Although the role of these biomarkers in surveillance is still being researched, they may provide a more practical alternative to traditional imaging-based surveillance. Finally, looking for new diagnostic/surveillance tools may help improve patients' survival. This review discusses the current roles of the most used biomarkers and prognostic scores that may aid in the clinical management of HCC patients.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| | - Giuseppe Pasculli
- National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| | - Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), University of Bari “A. Moro”, 70121 Bari, Italy
| | | | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| | - Gianluigi Giannelli
- Scientific Director, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
18
|
Xi Y, Zhang T, Sun W, Liang R, Ganesh S, Chen H. GOLM1 and FAM49B: Potential Biomarkers in HNSCC Based on Bioinformatics and Immunohistochemical Analysis. Int J Mol Sci 2022; 23:ijms232315433. [PMID: 36499755 PMCID: PMC9737887 DOI: 10.3390/ijms232315433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide. We aimed to identify potential genetic markers that could predict the prognosis of HNSCC. A total of 44 samples of GSE83519 from Gene Expression Omnibus (GEO) datasets and 546 samples of HNSCC from The Cancer Genome Atlas (TCGA) were adopted. The differently expressed genes (DEGs) of the samples were screened by GEO2R. We integrated the expression information of DEGs with clinical data from GES42743 using the weighted gene co-expression network analysis (WGCNA). A total of 17 hub genes were selected by the module membership (|MM| > 0.8), and the gene significance (|GS| > 0.3) was selected from the turquoise module. GOLM1 and FAM49B genes were chosen based on single-gene analysis results. Survival analysis showed that the higher expression of GOLM1 and FAM49B genes was correlated with a worse prognosis of HNSCC patients. Immunohistochemistry and multiplex immunofluorescence techniques verified that GOLM1 and FAM49B genes were highly expressed in HNSCC cells, and high expressions of GOLM1 were associated with the pathological grades of HNSCC. In conclusion, our study illustrated a new insight that GOLM1 and FAM49B genes might be used as potential biomarkers to determine the development of HNSCC, while GOLM1 and FAM49B have the possibility to be prognostic indicators for HNSCC.
Collapse
Affiliation(s)
- Yue Xi
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Tiange Zhang
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wei Sun
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ruobing Liang
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Sridha Ganesh
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: ; Tel.: +86-27-6781-1732
| |
Collapse
|
19
|
Yan Q, Sun YS, An R, Liu F, Fang Q, Wang Z, Xu T, Chen L, Du J. Application and progress of the detection technologies in hepatocellular carcinoma. Genes Dis 2022. [PMID: 37492708 PMCID: PMC10363596 DOI: 10.1016/j.gendis.2022.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a very high incidence and fatality rate, and in most cases, it is already at an advanced stage when diagnosed. Therefore, early prevention and detection of HCC are two of the most effective strategies. However, the methods recommended in the practice guidelines for the detection of HCC cannot guarantee high sensitivity and specificity except for the liver biopsy, which is known as the "gold standard". In this review, we divided the detection of HCC into pre-treatment diagnosis and post-treatment monitoring, and found that in addition to the traditional imaging detection and liver biopsy, alpha fetoprotein (AFP), lens culinaris-agglutinin-reactive fraction of AFP (AFP-L3), protein induced by vitamin K absence or antagonist-II (PIVKA-II) and other biomarkers are excellent biomarkers for HCC, especially when they are combined together. Most notably, the emerging liquid biopsy shows great promise in detecting HCC. In addition, lactic dehydrogenase (LDH), suppressor of cytokine signaling (SOCS) and other relevant biomarkers may become promising biomarkers for HCC post-treatment monitoring. Through the detailed introduction of the diagnostic technology of HCC, we can have a detailed understanding of its development process and then obtain some enlightenment from the diagnosis, to improve the diagnostic rate of HCC and reduce its mortality.
Collapse
|