1
|
Raymakers L, Passchier EM, Verdonschot MEL, Evers M, Chan C, Kuijpers KC, Raicu GM, Molenaar IQ, van Santvoort HC, Strijbis K, Intven MPW, Daamen LA, Leusen JHW, Olofsen PA. The Efficacy of Targeted Monoclonal IgA Antibodies Against Pancreatic Ductal Adenocarcinoma. Cells 2025; 14:632. [PMID: 40358156 PMCID: PMC12071589 DOI: 10.3390/cells14090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
The efficacy of immunotherapy in pancreatic ductal adenocarcinoma (PDAC) remains limited. The tumor microenvironment (TME), characterized by the accumulation of suppressive myeloid cells including neutrophils, attributes to immunotherapy resistance in PDAC. IgA monoclonal antibodies (mAbs) can activate neutrophils to kill tumor cells; this can be further enhanced by blocking the myeloid immune checkpoint CD47. In this study, we investigated the potential of this therapeutic strategy for PDAC. We determined the expression of tumor-associated antigens (TAAs) on PDAC cell lines and fresh patient samples, and the results showed that the TAAs epithelial cell adhesion molecule (EpCAM), trophoblast cell surface antigen 2 (TROP2) and mucin-1 (MUC1), as well as CD47 were consistently expressed on PDAC. In line with this, we showed that IgA mAbs against EpCAM can activate neutrophils to lyse various PDAC cell lines and tumor cells, which can be augmented by addition of CD47 blockade. In addition, we observed that neutrophils were present in patient tumors and expressed the receptor for IgA. In conclusion, our results indicate that a combination of IgA mAb with CD47 blockade is a promising preclinical treatment strategy for PDAC, which merits further investigation.
Collapse
Affiliation(s)
- Léon Raymakers
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
- Division of Imaging & Oncology, University Medical Center Utrecht Cancer Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.P.W.I.); (L.A.D.)
| | - Elsemieke M. Passchier
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| | - Meggy E. L. Verdonschot
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| | - Mitchell Evers
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| | - Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| | - Karel C. Kuijpers
- Department of Pathology, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, St. Antonius Hospital Nieuwegein, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands (G.M.R.)
| | - G. Mihaela Raicu
- Department of Pathology, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, St. Antonius Hospital Nieuwegein, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands (G.M.R.)
| | - I. Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (I.Q.M.); (H.C.v.S.)
| | - Hjalmar C. van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (I.Q.M.); (H.C.v.S.)
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands;
| | - Martijn P. W. Intven
- Division of Imaging & Oncology, University Medical Center Utrecht Cancer Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.P.W.I.); (L.A.D.)
| | - Lois A. Daamen
- Division of Imaging & Oncology, University Medical Center Utrecht Cancer Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.P.W.I.); (L.A.D.)
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (I.Q.M.); (H.C.v.S.)
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| | - Patricia A. Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| |
Collapse
|
2
|
Zeng L, Tang Y, Huang X, Pei W, Liao Y, Liu J. Combined impact of prognostic nutritional index, fibrinogen-to-albumin ratio, and neutrophil-to-lymphocyte ratio on surgical outcomes and prognosis in hepatocellular carcinoma. Am J Cancer Res 2025; 15:439-451. [PMID: 40084351 PMCID: PMC11897630 DOI: 10.62347/rtmf3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
This study evaluated the predictive value of the prognostic nutritional index (PNI), fibrinogen-to-albumin ratio (FAR), and neutrophil-to-lymphocyte ratio (NLR) for overall survival in hepatocellular carcinoma (HCC) patients. A total of 283 HCC cases from Hunan Provincial People's Hospital were included in the analysis, with 45 additional patients as external validation. The relationship between these indices and patient prognosis was further evaluated using the Kaplan-Meier method and Cox regression analysis. Receiver operating characteristic (ROC) curve analysis was performed to assess the predictive performance of these indices for overall survival (OS) and to determine the optimal cutoff values. ROC curve analysis revealed that the area under the curve (AUC) for PNI, FAR, and NLR was 0.723, 0.857, and 0.872, respectively. Multivariate analysis identified hepatitis history, intraoperative blood transfusion, FAR, NLR, and PNI as independent prognostic factors (all P<0.05). The resulting prediction model demonstrated strong performance in both the training (C-index =0.917) and external validation (C-index =0.853) cohorts, with AUCs of 0.889 and 0.931 for 6-month and 1-year prediction in the validation set, respectively. These findings suggest that preoperative levels of peripheral blood PNI, FAR, and NLR are closely associated with the surgical prognosis of HCC patients. The prognostic prediction model developed based on these indices exhibits good predictive efficacy.
Collapse
Affiliation(s)
- Liuhaonan Zeng
- Department of Anesthesiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital) Changsha 410000, Hunan, China
| | - Yixun Tang
- Department of Anesthesiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital) Changsha 410000, Hunan, China
| | - Xiaoling Huang
- Department of Anesthesiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital) Changsha 410000, Hunan, China
| | - Wanmin Pei
- Department of Anesthesiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital) Changsha 410000, Hunan, China
| | - Yongqiong Liao
- Department of Anesthesiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital) Changsha 410000, Hunan, China
| | - Jitong Liu
- Department of Anesthesiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital) Changsha 410000, Hunan, China
| |
Collapse
|
3
|
Ristić D, Bärnthaler T, Gruden E, Kienzl M, Danner L, Herceg K, Sarsembayeva A, Kargl J, Schicho R. GPR55 in the tumor microenvironment of pancreatic cancer controls tumorigenesis. Front Immunol 2025; 15:1513547. [PMID: 39885986 PMCID: PMC11779727 DOI: 10.3389/fimmu.2024.1513547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025] Open
Abstract
Background The G protein-coupled receptor 55 (GPR55) is part of an expanded endocannabinoid system (ECS), and plays a pro-tumorigenic role in different cancer models, including pancreatic cancer. Next to cancer cells, various cells of the immune tumor microenvironment (TME) express receptors of the ECS that critically determine tumor growth. The role of GPR55 in cancer cells has been widely described, but its role in the immune TME is not well understood. Methods We intended to uncover the role of GPR55 in tumor immunity in a model of pancreatic ductal adenocarcinoma (PDAC). To this end, a KPCY tumor cell line or a GPR55-overexpressing KPCY cell line (KPCY55) from murine PDAC were subcutaneously injected into wildtype (WT) and GPR55 knockout (KO) mice, and immune cell populations were evaluated by flow cytometry. Results Deficiency of GPR55 in the TME led to reduced tumor weight and volume, and altered the immune cell composition of tumors, favoring an anti-tumorigenic environment by increasing the number of CD3+ T cells, particularly CD8+ T cells, and the expression of PDL1 on macrophages. RNA-seq pathway analysis revealed higher T cell activity in KPCY55 tumors of GPR55 KO vs. WT mice. In addition, tumors from GPR55 KO mice displayed increased levels of T cell chemokines Cxcl9 and Cxcl10. Migration of T cells from GPR55 KO mice towards CXCL9 was increased in comparison to T cells from WT mice, suggesting that a CXCR3/CXCL9 axis was involved in T cell influx into tumors of GPR55 KO mice. Notably, anti-PD-1 immunotherapy increased tumor burden in WT mice, while this effect was absent in the GPR55 KO mice. Conclusion Our study indicates that GPR55 in TME cells may drive tumor growth by suppressing T cell functions, such as migration, in a model of PDAC, making it an interesting target for immunotherapies.
Collapse
MESH Headings
- Animals
- Tumor Microenvironment/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Mice
- Mice, Knockout
- Cell Line, Tumor
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/metabolism
- Carcinogenesis/immunology
- Carcinogenesis/genetics
- Humans
- Disease Models, Animal
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice, Inbred C57BL
- Macrophages/immunology
Collapse
|
4
|
Zakurdaev EI, Bagateliya ZA, Titov KS, Elkhouli E, Chizhikov NP, Kharina DV. The Role of Tumor-Associated Neutrophils in Early Luminal HER2-Negative Breast Cancer Progression. Asian Pac J Cancer Prev 2025; 26:207-213. [PMID: 39874003 PMCID: PMC12082427 DOI: 10.31557/apjcp.2025.26.1.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/11/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVES To study the predictive role of tumor-associated neutrophils in early luminal HER2-negative breast cancer. MATERIALS AND METHODS This is a retrospective study conducted on 60 women cases aged from 31 to 79 years underwent surgery for luminal HER2-negative ductal breast cancer in tertiary care cancer centre. We first estimated basic morphological signs: tumor size, tumor grade (by Nottingham Histologic Score), tumor infiltrating lymphocytes (TILs), Lymphovascular invasion, hormonal receptors status, proliferative index, and regional lymph nodes metastasis. The expression of intratumoral neutrophils was studied by CD15 immunohistochemistry which was performed using tissue microarrays. The total number of intratumoral neutrophils, were counted in 5 high-power fields. RESULTS According to the Nottingham histologic score system, grade I cases were detected in 10 cases (16%), grade II in 34 cases (57%), and grade III in 16 cases (27%). Lymphovascular invasion was determined in 23 cases (38%), and perineural invasion in 14 cases (23%). Number of TILs varied from 0 to 14 (counted in 5 HPF) and averaged 4.2±0.5. Luminal A tumor phenotype was detected in 35 cases (58%), and luminal B HER2-negative in 25 cases (42%). Nineteen (32%) women had metastases in regional lymph nodes (N+). The number of tumor microenvironment neutrophils in luminal HER2-negative breast carcinomas ranged from 1 to 10 (counted in 5 HPF) with an average value of 2.7±0.4. High tumor-associated neutrophils concentration significantly correlated with tumor size (<5mm and >20mm) with p=0.05, high grade (p=0.01), high proliferative index ((r=0.67; p=0.05), TILs (p=0.05), Lymphovascular space invasion (p=0.01)and positive regional lymph nodes metastasis (p=0.001), but not perineural invasion (p=0.1) and also, did not correlate with the expression of estrogen (r=0.18) and progesterone (r=0.14) receptors. CONCLUSION Tumor-associated neutrophils strongly predict a worse prognosis in early luminal HER2-negative breast cancer.
Collapse
MESH Headings
- Humans
- Female
- Neutrophils/pathology
- Neutrophils/metabolism
- Neutrophils/immunology
- Middle Aged
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/surgery
- Retrospective Studies
- Receptor, ErbB-2/metabolism
- Aged
- Adult
- Lymphatic Metastasis
- Prognosis
- Disease Progression
- Follow-Up Studies
- Lymphocytes, Tumor-Infiltrating/pathology
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Biomarkers, Tumor/metabolism
- Neoplasm Invasiveness
- Receptors, Estrogen/metabolism
Collapse
Affiliation(s)
| | | | | | - Ekbal Elkhouli
- Pathology Department, Mansoura University, Mansoura, Egypt.
| | | | | |
Collapse
|
5
|
Guo M, Sheng W, Yuan X, Wang X. Neutrophils as promising therapeutic targets in pancreatic cancer liver metastasis. Int Immunopharmacol 2024; 140:112888. [PMID: 39133956 DOI: 10.1016/j.intimp.2024.112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024]
Abstract
Pancreatic cancer is characterized by an extremely poor prognosis and presents significant treatment challenges. Liver metastasis is the leading cause of death in patients with pancreatic cancer. Recent studies have highlighted the significant impact of neutrophils on tumor occurrence and progression, as well as their crucial role in the pancreatic cancer tumor microenvironment. Neutrophil infiltration plays a critical role in the progression and prognosis of pancreatic cancer. Neutrophils contribute to pancreatic cancer liver metastasis through various mechanisms, including angiogenesis, immune suppression, immune evasion, and epithelial-mesenchymal transition (EMT). Therefore, targeting neutrophils holds promise as an important therapeutic strategy for inhibiting pancreatic cancer liver metastasis. This article provides a summary of research findings on the involvement of neutrophils in pancreatic cancer liver metastasis and analyzes their potential as therapeutic targets. This research may provide new insights for the treatment of pancreatic cancer and improve the prognosis of patients with this disease.
Collapse
Affiliation(s)
- Minjie Guo
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wanying Sheng
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Yuan
- Cancer Institute of Jiangsu University, Zhenjiang, China.
| | - Xu Wang
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
6
|
Dobos NK, Garay T, Herold M, Simon A, Madar-Dank V, Balka G, Gajdacsi J, Dank M, Szasz AM, Herold Z. Immune Marker and C-Reactive Protein Dynamics and Their Prognostic Implications in Modulated Electro-Hyperthermia Treatment in Advanced Pancreatic Cancer: A Retrospective Analysis. IMMUNO 2024; 4:385-399. [DOI: 10.3390/immuno4040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Background: Previous research has suggested that modulated electro-hyperthermia (mEHT) can be used to induce anti-tumor immune effects and to extend patient survival. The use of mEHT in advanced pancreatic cancer is beneficial; however, its immune-mediating effects were never investigated. Methods: A retrospective observational study was conducted. Leukocyte counts, C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), and granulocyte-to-lymphocyte ratio (GLR) were measured at baseline, midpoint, and after mEHT treatment. Results: A total of 73 mEHT treated pancreatic cancer patients were included. The time elapsed between tumor diagnosis and the first mEHT treatment was 4.40 ± 5.70 months. While no change could be observed between the baseline and the first follow-up visits, the total white blood cell (WBC), neutrophil, and granulocyte count, CRP, NLR, and GLR were significantly higher at the second follow-up compared to both previous visits. Higher levels of the latter parameters following the last mEHT treatment were signaling significantly poor prognostic signs, and so were their longitudinal changes. Conclusions: After the initiation of mEHT, immune markers stabilize with the treatment, but this positive effect is eroded over time by progressive disease. Monitoring the changes in these markers and the occurrence of their increase is a prognostic marker of shorter survival.
Collapse
Affiliation(s)
- Nikolett Kitti Dobos
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
| | - Tamas Garay
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
| | - Magdolna Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, H-1088 Budapest, Hungary
| | - Alexandra Simon
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
| | | | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Jozsef Gajdacsi
- Clinical Center, Semmelweis University, H-1083 Budapest, Hungary
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
| |
Collapse
|
7
|
Donahue KL, Watkoske HR, Kadiyala P, Du W, Brown K, Scales MK, Elhossiny AM, Espinoza CE, Lasse Opsahl EL, Griffith BD, Wen Y, Sun L, Velez-Delgado A, Renollet NM, Morales J, Nedzesky NM, Baliira RK, Menjivar RE, Medina-Cabrera PI, Rao A, Allen B, Shi J, Frankel TL, Carpenter ES, Bednar F, Zhang Y, Pasca di Magliano M. Oncogenic KRAS-Dependent Stromal Interleukin-33 Directs the Pancreatic Microenvironment to Promote Tumor Growth. Cancer Discov 2024; 14:1964-1989. [PMID: 38958646 PMCID: PMC11450371 DOI: 10.1158/2159-8290.cd-24-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer-associated fibroblasts (CAF). The mechanisms underlying this conversion, including the regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to therapeutically target CAFs have so far failed. Herein, we show that signals from epithelial cells expressing oncogenic KRAS-a hallmark pancreatic cancer mutation-activate fibroblast autocrine signaling, which drives the expression of the cytokine IL33. Stromal IL33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces interleukin-33 (IL33) secretion. Using compartment-specific IL33 knockout mice, we observed that lack of stromal IL33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells, and lymphocytes. Notably, loss of stromal IL33 leads to an increase in CD8+ T-cell infiltration and activation and, ultimately, reduced tumor growth. Significance: This study provides new insights into the mechanisms underlying the programming of CAFs and shows that during this process, expression of the cytokine IL33 is induced. CAF-derived IL33 has pleiotropic effects on the tumor microenvironment, supporting its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Hannah R. Watkoske
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan.
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| | | | | | | | - Yukang Wen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nur M. Renollet
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Jacqueline Morales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nicholas M. Nedzesky
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | | | - Rosa E. Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Cancer Data Science Resource, University of Michigan, Ann Arbor, Michigan.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, Michigan.
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Eileen S. Carpenter
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Filip Bednar
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
8
|
Jin Y, Christenson ES, Zheng L, Li K. Neutrophils in pancreatic ductal adenocarcinoma: bridging preclinical insights to clinical prospects for improved therapeutic strategies. Expert Rev Clin Immunol 2024; 20:945-958. [PMID: 38690749 DOI: 10.1080/1744666x.2024.2348605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a dismal five-year survival rate of less than 10%. Neutrophils are key components of the innate immune system, playing a pivotal role in the PDAC immune microenvironment. AREAS COVERED This review provides a comprehensive survey of the pivotal involvement of neutrophils in the tumorigenesis and progression of PDAC. Furthermore, it synthesizes preclinical and clinical explorations aimed at targeting neutrophils within the milieu of PDAC, subsequently proposing a conceptual framework to propel further inquiry focused on enhancing the therapeutic efficacy of PDAC through neutrophil-targeted strategies. PubMed and Web of Science databases were utilized for researching neutrophils in pancreatic cancer publications prior to 2024. EXPERT OPINION Neutrophils play roles in promoting tumor growth and metastasis in PDAC and are associated with poor prognosis. However, the heterogeneity and plasticity of neutrophils and their complex relationships with other immune cells and extracellular matrix also provide new insights for immunotherapy targeting neutrophils to achieve a better prognosis for PDAC.
Collapse
Affiliation(s)
- Yi Jin
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Eric S Christenson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Guo S, Wang Z. Unveiling the immunosuppressive landscape of pancreatic ductal adenocarcinoma: implications for innovative immunotherapy strategies. Front Oncol 2024; 14:1349308. [PMID: 38590651 PMCID: PMC10999533 DOI: 10.3389/fonc.2024.1349308] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), stands as the fourth leading cause of cancer-related deaths in the United States, marked by challenging treatment and dismal prognoses. As immunotherapy emerges as a promising avenue for mitigating PDAC's malignant progression, a comprehensive understanding of the tumor's immunosuppressive characteristics becomes imperative. This paper systematically delves into the intricate immunosuppressive network within PDAC, spotlighting the significant crosstalk between immunosuppressive cells and factors in the hypoxic acidic pancreatic tumor microenvironment. By elucidating these mechanisms, we aim to provide insights into potential immunotherapy strategies and treatment targets, laying the groundwork for future studies on PDAC immunosuppression. Recognizing the profound impact of immunosuppression on PDAC invasion and metastasis, this discussion aims to catalyze the development of more effective and targeted immunotherapies for PDAC patients.
Collapse
Affiliation(s)
- Songyu Guo
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhenxia Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
10
|
Imanishi M, Inoue T, Fukushima K, Yamashita R, Nakayama R, Nojima M, Kondo K, Gomi Y, Tsunematsu H, Goto K, Miyamoto L, Funamoto M, Denda M, Ishizawa K, Otaka A, Fujino H, Ikeda Y, Tsuchiya K. CA9 and PRELID2; hypoxia-responsive potential therapeutic targets for pancreatic ductal adenocarcinoma as per bioinformatics analyses. J Pharmacol Sci 2023; 153:232-242. [PMID: 37973221 DOI: 10.1016/j.jphs.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
A strong hypoxic environment has been observed in pancreatic ductal adenocarcinoma (PDAC) cells, which contributes to drug resistance, tumor progression, and metastasis. Therefore, we performed bioinformatics analyses to investigate potential targets for the treatment of PDAC. To identify potential genes as effective PDAC treatment targets, we selected all genes whose expression level was related to worse overall survival (OS) in The Cancer Genome Atlas (TCGA) database and selected only the genes that matched with the genes upregulated due to hypoxia in pancreatic cancer cells in the dataset obtained from the Gene Expression Omnibus (GEO) database. Although the extracted 107 hypoxia-responsive genes included the genes that were slightly enriched in angiogenic factors, TCGA data analysis revealed that the expression level of endothelial cell (EC) markers did not affect OS. Finally, we selected CA9 and PRELID2 as potential targets for PDAC treatment and elucidated that a CA9 inhibitor, U-104, suppressed pancreatic cancer cell growth more effectively than 5-fluorouracil (5-FU) and PRELID2 siRNA treatment suppressed the cell growth stronger than CA9 siRNA treatment. Thus, we elucidated that specific inhibition of PRELID2 as well as CA9, extracted via exhaustive bioinformatic analyses of clinical datasets, could be a more effective strategy for PDAC treatment.
Collapse
Affiliation(s)
- Masaki Imanishi
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan.
| | - Takahisa Inoue
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan; Department of Pharmacy, Tokushima University Hospital, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Japan.
| | - Ryosuke Yamashita
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Ryo Nakayama
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Masataka Nojima
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Kosuke Kondo
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Yoshiki Gomi
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Honoka Tsunematsu
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Kohei Goto
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Licht Miyamoto
- Laboratory of Pharmacology and Food Science, Department of Nutrition and Life Science, Faculty of Health and Medical Sciences, Kanagawa Institute of Technology, Japan
| | - Masafumi Funamoto
- Department of Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Masaya Denda
- Department of Bioorganic Synthetic Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Japan; Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Japan; Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Japan
| | - Akira Otaka
- Department of Bioorganic Synthetic Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| |
Collapse
|
11
|
Cammarota AL, Falco A, Basile A, Molino C, Chetta M, D’Angelo G, Marzullo L, De Marco M, Turco MC, Rosati A. Pancreatic Cancer-Secreted Proteins: Targeting Their Functions in Tumor Microenvironment. Cancers (Basel) 2023; 15:4825. [PMID: 37835519 PMCID: PMC10571538 DOI: 10.3390/cancers15194825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a ravaging disease with a poor prognosis, requiring a more detailed understanding of its biology to foster the development of effective therapies. The unsatisfactory results of treatments targeting cell proliferation and its related mechanisms suggest a shift in focus towards the inflammatory tumor microenvironment (TME). Here, we discuss the role of cancer-secreted proteins in the complex TME tumor-stroma crosstalk, shedding lights on druggable molecular targets for the development of innovative, safer and more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Anna Basile
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Carlo Molino
- General Surgery Unit, A.O.R.N. Cardarelli, 80131 Naples, Italy;
| | - Massimiliano Chetta
- Medical and Laboratory Genetics Unit, A.O.R.N., Cardarelli, 80131 Naples, Italy;
| | - Gianni D’Angelo
- Department of Computer Science, University of Salerno, 84084 Fisciano, Italy;
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
12
|
Guo J, Wang S, Gao Q. An integrated overview of the immunosuppression features in the tumor microenvironment of pancreatic cancer. Front Immunol 2023; 14:1258538. [PMID: 37771596 PMCID: PMC10523014 DOI: 10.3389/fimmu.2023.1258538] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. It is characterized by a complex and immunosuppressive tumor microenvironment (TME), which is primarily composed of tumor cells, stromal cells, immune cells, and acellular components. The cross-interactions and -regulations among various cell types in the TME have been recognized to profoundly shape the immunosuppression features that meaningfully affect PDAC biology and treatment outcomes. In this review, we first summarize five cellular composition modules by integrating the cellular (sub)types, phenotypes, and functions in PDAC TME. Then we discuss an integrated overview of the cross-module regulations as a determinant of the immunosuppressive TME in PDAC. We also briefly highlight TME-targeted strategies that potentially improve PDAC therapy.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Ma R, Liu W, Sun T, Dang C, Li K. Clinical significance of FBXO43 in hepatocellular carcinoma and its impact on tumor cell proliferation, migration and invasion. PeerJ 2023; 11:e15373. [PMID: 37250703 PMCID: PMC10211365 DOI: 10.7717/peerj.15373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Background The effects of FBXO43 on hepatocellular carcinoma (HCC) and its clinical significance have not yet been determined. This study aims to determine the clinical significance of FBXO43 in HCC and its impact on the biological functions of HCC cells. Methods Data from TCGA database were downloaded to investigate the expression of FBXO43 in HCC and its correlation with prognosis and immune infiltration. Immunohistochemical staining images of FBXO43 in HCC were acquired from the HPA website. HCC cells (BEL-7404 and SMMC-7721) were transfected with the lentivirus targeting FBXO43 to decrease FBXO43 expression in HCC cells. Western blotting assay was conducted to evaluate the expression level of FBXO43 protein. MTT assay was used to detect the proliferation of HCC cells. The migration and invasion of HCC cells were investigated by performing scratch wound-healing and Transwell invasion assays, respectively. Results In comparison to normal tissues, FBXO43 is overexpressed in HCC tissue, and high FBXO43 expression is linked to late T stage, TNM stage and tumor grade. Elevated FBXO43 expression is a risk factor for HCC. In patients with high FBXO43 expression, the overall survival, disease-specific survival, progression-free survival and disease-free survival are poorer. The proliferation, migration and invasion of HCC cells are significantly attenuated in FBXO43 knockdown cells. Also, TCGA data analysis reveals that FBXO43 exhibits a positive correlation with immunosuppression of HCC. Conclusion FBXO43 is overexpressed in HCC, and is linked to late tumor stage, worse prognosis and tumor immunosuppression. FBXO43 knockdown restrains the proliferation, migration and invasion of HCC.
Collapse
Affiliation(s)
- Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wenbo Liu
- Department of Plastic and Cosmetic Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shannxi, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|