1
|
Kahraman Esen H, Biltekin B, Korkmaz M, Haluk Güvenç B. Population Kinetics and Protein Profiles of Co-Cultured Adult and Fetus Rabbit Bladder Smooth Muscle Cells. UROLOGY RESEARCH & PRACTICE 2025; 50:240-246. [PMID: 39873448 PMCID: PMC11883674 DOI: 10.5152/tud.2025.24120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/26/2024] [Indexed: 01/30/2025]
Abstract
Objective Bladder tissue models have been developed using smooth muscle cells (SMCs) on various scaffolds to mimic bladder morphology and physiology. This study investigates the effects of co-culturing fetal and adult SMCs on growth properties and protein profiles to understand cellular interactions and population kinetics. Methods Bladder tissue samples from 10 adult and 10 fetal New Zealand rabbits were divided into 5 groups: adult SMCs (A), fetal SMCs (F), 50%A+50%F (A+F), 75%A+25%F (3A+F), and 25%A+75%F (A+3F). Population doubling time (PDT) of 3 × 106 cells from each group was measured after 48 and 72 hours. Protein concentrations were estimated by spectrophotometric analysis and analyzed via SDS-PAGE gel electrophoresis. Cells exhibited typical SMC morphology, confirmed by positive staining for α-SMA and MYH11. Results Median cell counts of single cultures were significantly higher than co-cultures (P < .05), but cell viability was comparable (P > .05). Population doubling time at 72 hours for A, F, A+F, 3A+F, and A+3F were 89.4, 92.0, 89.4, 127.9, and 145.0 hours, respectively. Protein concentrations were similar between fetal and adult co-cultures (P > .05). Electrophoresis at 48 hours revealed a unique 80kDa band in adult cells and a 32kDa band in co-cultured cells. Conclusion Co-culturing resulted in increased PDT, altered protein concentrations, and changes in protein profiles, while each cell population maintained its phenotype. Fetal bladder SMCs maintained their morphology and viability when co-cultured with adult SMCs, resulting in a significant limitation in the cumulative proliferation rate. This may be dependent on alterations of protein profiles of adult and fetal SMCs promoted by rearrangements in co-cultures.
Collapse
Affiliation(s)
- Hayrunisa Kahraman Esen
- Department of Pediatric Surgery, University of Health Sciences Faculty of Medicine, Fatih Sultan Mehmet Training and Research Hospital, İstanbul, Türkiye
| | - Burcu Biltekin
- Department of Histology and Embryology, Atlas University Faculty of Medicine, İstanbul, Türkiye
| | - Mevlit Korkmaz
- Department of Child Development, Biruni University Faculty of Health Sciences, İstanbul, Türkiye
| | - B. Haluk Güvenç
- Department of Pediatric Surgery, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Türkiye
| |
Collapse
|
2
|
张 秀, 王 家, 解 慧. [Application and progress of bio-derived materials in bladder regeneration and repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1299-1306. [PMID: 39542618 PMCID: PMC11563737 DOI: 10.7507/1002-1892.202404099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 11/17/2024]
Abstract
Objective To summarize the research progress of bio-derived materials used for bladder regeneration and repair. Methods The recent domestic and foreign sutudies on bio-derived materials used for bladder regeneration and repair, including classification, morphology optimization process, tissue regeneration strategies, and relevant clinical trials, were summarized and analyzed. Results Numerous types of bio-derived materials are employed in bladder regeneration and repair, characterized by their low immunogenicity and high inducible activity. Surface modification, gelation, and other morphology optimization process have significantly broadened the application scope of bio-derived materials. These advancements have effectively addressed complications, such as perforation and urolith formation, that may arise during bladder regeneration and repair. The strategy of tissue regeneration utilizing bio-derived materials, targeting the regeneration of bladder epithelium, smooth muscle, blood vessels, and nerves, offers a novel approach to achieving functional regeneration of bladder. Bio-derived materials show great promise for use in bladder regeneration and repair, yet the results from clinical trials with these materials have been less than satisfactory. Conclusion Bio-derived materials are widely used in bladder regeneration and repair due to the good biocompatibility, low immunogenicity, and degradable properties, yet face a series of problems, and there are no commercialized bladder tissue engineering grafts used in clinical treatment.
Collapse
Affiliation(s)
- 秀珍 张
- 四川大学华西医院干细胞与组织工程研究中心(成都 610041)Stem Cell and Tissue Engineering Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - 家玮 王
- 四川大学华西医院干细胞与组织工程研究中心(成都 610041)Stem Cell and Tissue Engineering Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - 慧琪 解
- 四川大学华西医院干细胞与组织工程研究中心(成都 610041)Stem Cell and Tissue Engineering Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
3
|
Goedegebuure M, Bury MI, Wang X, Sanfelice P, Cammarata F, Wang L, Sharma TT, Rajinikanth N, Karra V, Siddha V, Sharma AK, Ameer GA. A biodegradable microgrooved and tissue mechanocompatible citrate-based scaffold improves bladder tissue regeneration. Bioact Mater 2024; 41:553-563. [PMID: 39246838 PMCID: PMC11380464 DOI: 10.1016/j.bioactmat.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Chronic bladder dysfunction due to bladder disease or trauma is detrimental to affected patients as it can lead to increased risk of upper urinary tract dysfunction. Current treatment options include surgical interventions that enlarge the bladder with autologous bowel tissue to alleviate pressure on the upper urinary tract. This highly invasive procedure, termed bladder augmentation enterocystoplasty (BAE), significantly increases the risk of patient morbidity and mortality due to the incompatibility between bowel and bladder tissue. Therefore, patients would significantly benefit from an alternative treatment strategy that can regenerate healthy tissue and restore overall bladder function. Previous research has demonstrated the potential of citrate-based scaffolds co-seeded with bone marrow-derived stem/progenitor cells as an alternative graft for bladder augmentation. Recognizing that contact guidance can potentially influence tissue regeneration, we hypothesized that microtopographically patterned scaffolds would modulate cell responses and improve overall quality of the regenerated bladder tissue. We fabricated microgrooved (MG) scaffolds using the citrate-based biomaterial poly (1,8-octamethylene-citrate-co-octanol) (POCO) and co-seeded them with human bone marrow-derived mesenchymal stromal cells (MSCs) and CD34+ hematopoietic stem/progenitor cells (HSPCs). MG POCO scaffolds supported MSC and HSPC attachment, and MSC alignment within the microgrooves. All scaffolds were characterized and assessed for bladder tissue regeneration in an established nude rat bladder augmentation model. In all cases, normal physiological function was maintained post-augmentation, even without the presence of stem/progenitor cells. Urodynamic testing at 4-weeks post-augmentation for all experimental groups demonstrated that bladder capacity increased and bladder compliance was normal. Histological evaluation of the regenerated tissue revealed that cell-seeded scaffolds restored normal bladder smooth muscle content and resulted in increased revascularization and peripheral nerve regeneration. The presence of microgrooves on the cell-seeded scaffolds increased microvasculature formation by 20 % and urothelial layer thickness by 25 % in the regenerating tissue. Thus, this work demonstrates that microtopography engineering can influence bladder tissue regeneration to improve overall anatomical structure and re-establish bladder physiology.
Collapse
Affiliation(s)
- Madeleine Goedegebuure
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
| | - Matthew I. Bury
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Xinlong Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
| | - Pasquale Sanfelice
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Federico Cammarata
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Larry Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tiffany T. Sharma
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nachiket Rajinikanth
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vikram Karra
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vidhika Siddha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Arun K. Sharma
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
- International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Chemistry for Life Processes Institute, Northwestern University, Chicago, IL, USA
| |
Collapse
|
4
|
Juul N, Amoushahi M, Willacy O, Ji M, Villa C, Ajalloueian F, Chamorro C, Fossum M. Autologous micrografting improves regeneration of tissue-engineered urinary conduits in vivo. Sci Rep 2024; 14:22028. [PMID: 39322716 PMCID: PMC11424640 DOI: 10.1038/s41598-024-72876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Urogenital reconstructive malformation surgery is sometimes hampered by lack of tissue for the repair. We have previously shown that autologous micrografting allows for single-staged scaffold cellularization after surgical implantation. Here, a collagen-based scaffold reinforced with biodegradable mesh and a stent was implanted as a bladder conduit in ten full-grown female minipigs. We aimed to assess short-term regenerative outcomes, safety, and feasibility of implanting tubular urinary micrografted scaffolds versus acellular controls. Five scaffolds were embedded with autologous urothelial micrografts harvested perioperatively. After six weeks, all animals were assessed by cystoscopy, CT-urography, and microanatomical assessment of the urinary conduits. The procedure proved technically feasible within the confines of a regular surgical theater, with duration-times comparable to corresponding conventional procedures. No animals experienced postoperative complications, and all implanted conduits were patent at follow-up. Improved tissue regeneration was observed in the micrografted conduits compared with the acellular controls, including increased luminal epithelialization, increased cell proliferation, decreased cell apoptosis, and increased conduit vascularization. We concluded that single-staged on-site construction and implantation of tissue engineered urinary conduits proved feasible and safe, with improved regenerative potentials in micrografted conduits. This study presents a new approach to urinary conduits, and merits further investigations for advancement towards clinical translation.
Collapse
Affiliation(s)
- Nikolai Juul
- Laboratory of Tissue Engineering, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Mahboobeh Amoushahi
- Laboratory of Tissue Engineering, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Willacy
- Laboratory of Tissue Engineering, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Micki Ji
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Villa
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Fatemeh Ajalloueian
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Clara Chamorro
- Laboratory of Tissue Engineering, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Fossum
- Laboratory of Tissue Engineering, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark.
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Nasrollahian S, Moradi F, Hadi N, Ranjbar S, Ranjbar R. An update on alternative therapy for Escherichia coli causing urinary tract infections; a narrative review. Photodiagnosis Photodyn Ther 2024; 46:104075. [PMID: 38574879 DOI: 10.1016/j.pdpdt.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Urinary tract infections (UTIs) are the most common type of nosocomial infection and severe health issues because of the difficulties and frequent recurrence. Today, alternative methods such as sonodynamic therapy (SDT), photodynamic therapy (PDT) and herbal materials use for treating infections like UTI in many countries. METHOD We conducted searches of the biomedical databases (Google Scholar, Scopus, PubMed, and Web of sciences) to identify related studies from 2008 to 2023. RESULT SDT aims to use ultrasound to activate a sonosensitizer, which causes a biological effect by raising reactive oxygen species (ROS). When bacteria are exposed to ROS, several important effects occur: oxidative damage, DNA damage, protein dysfunction etc. SDT with herbal medicine significantly reduced the number of colony-forming units and bactericidal activity for Klebsiella pneumonia and E. coli. PDT is a promising treatment for cancer and microbial infections, combining a photosensitiser, light and tissue molecular oxygen. It involves a photosensitizer, light source, and oxygen, with variations affecting microbial binding and bactericidal activity. Factors affecting antibacterial properties include plant type, growing conditions, harvesting, and processing. This review highlights the recent advancements in sonodynamic, photodynamic, herbal, and bio-material-based approaches in the treatment of E. coli infections. CONCLUSIONS These alternative therapies offer exciting prospects for addressing UTIs, especially in cases where traditional antibiotic treatments may be less effective. Further research and clinical studies are warranted to fully explore the potential of these innovative treatment modalities in combating UTIs and improving patient outcomes.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahal Hadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Ranjbar
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Arabzadeh Bahri R, Peisepar M, Maleki S, Esmaeilpur Abianeh F, A Basti F, Kolahdooz A. Current evidence regarding alternative techniques for enterocystoplasty using regenerative medicine methods: a systematic review. Eur J Med Res 2024; 29:163. [PMID: 38475865 PMCID: PMC10929228 DOI: 10.1186/s40001-024-01757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Enterocystoplasty is the most commonly used treatment for bladder reconstruction. However, it has some major complications. In this study, we systematically reviewed the alternative techniques for enterocystoplasty using different scaffolds. A comprehensive search was conducted in PubMed, Embase, and Cochrane Library, and a total of 10 studies were included in this study. Five different scaffolds were evaluated, including small intestinal submucosa (SIS), biodegradable scaffolds seeded with autologous bladder muscle and urothelial cells, dura mater, human cadaveric bladder acellular matrix graft, and bovine pericardium. The overall results revealed that bladder reconstruction using regenerative medicine is an excellent alternative method to enterocystoplasty regarding the improvement of bladder capacity, bladder compliance, and maximum detrusor pressure; however, more large-scale studies are required.
Collapse
Affiliation(s)
- Razman Arabzadeh Bahri
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maral Peisepar
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Maleki
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Esmaeilpur Abianeh
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh A Basti
- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Ali Kolahdooz
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
7
|
Margolis EA, Friend NE, Rolle MW, Alsberg E, Putnam AJ. Manufacturing the multiscale vascular hierarchy: progress toward solving the grand challenge of tissue engineering. Trends Biotechnol 2023; 41:1400-1416. [PMID: 37169690 PMCID: PMC10593098 DOI: 10.1016/j.tibtech.2023.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
In human vascular anatomy, blood flows from the heart to organs and tissues through a hierarchical vascular tree, comprising large arteries that branch into arterioles and further into capillaries, where gas and nutrient exchange occur. Engineering a complete, integrated vascular hierarchy with vessels large enough to suture, strong enough to withstand hemodynamic forces, and a branching structure to permit immediate perfusion of a fluidic circuit across scales would be transformative for regenerative medicine (RM), enabling the translation of engineered tissues of clinically relevant size, and perhaps whole organs. How close are we to solving this biological plumbing problem? In this review, we highlight advances in engineered vasculature at individual scales and focus on recent strategies to integrate across scales.
Collapse
Affiliation(s)
- Emily A Margolis
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA
| | - Nicole E Friend
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA
| | - Marsha W Rolle
- Worcester Polytechnic Institute, Department of Biomedical Engineering, Worcester, MA, USA
| | - Eben Alsberg
- University of Illinois at Chicago, Department of Biomedical Engineering, Chicago, IL, USA
| | - Andrew J Putnam
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Juul N, Ajalloueian F, Willacy O, Chamorro CI, Fossum M. Advancing autologous urothelial micrografting and composite tubular grafts for future single-staged urogenital reconstructions. Sci Rep 2023; 13:15584. [PMID: 37730755 PMCID: PMC10511703 DOI: 10.1038/s41598-023-42092-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Urogenital reconstructive surgery can be impeded by lack of tissue. Further developments within the discipline of tissue engineering may be part of a solution to improve clinical outcomes. In this study, we aimed to design an accessible and easily assembled tubular graft with autologous tissue, which could be constructed and implanted as a single-staged surgical procedure within the premises of an ordinary operating room. The ultimate goals would be to optimize current treatment-options for long-term urinary diversion. Therefore, we evaluated the optimal composition of a collagen-based scaffold with urothelial micrografts in vitro, and followingly implanted the construct in vivo as a bladder conduit. The scaffold was evaluated in relation to cell regeneration, permeability, and biomechanical properties. After establishing an optimized scaffold in vitro, consisting of high-density collagen with submerged autologous micrografts and reinforced with a mesh and stent, the construct was successfully implanted in an in vivo minipig model. The construct assemblance and surgical implantation proved feasible within the timeframe of a routine surgical intervention, and the animal quickly recovered postoperatively. Three weeks post-implantation, the conduit demonstrated good host-integration with a multilayered luminal urothelium. Our findings have encouraged us to support its use in more extensive preclinical large-animal studies.
Collapse
Affiliation(s)
- Nikolai Juul
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Fatemeh Ajalloueian
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Oliver Willacy
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Clara Ibel Chamorro
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Fossum
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Juul N, Willacy O, Mamand DR, Andaloussi SE, Eisfeldt J, Chamorro CI, Fossum M. Insights into cellular behavior and micromolecular communication in urothelial micrografts. Sci Rep 2023; 13:13589. [PMID: 37604899 PMCID: PMC10442416 DOI: 10.1038/s41598-023-40049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Autologous micrografting is a technique currently applied within skin wound healing, however, the potential use for surgical correction of other organs with epithelial lining, including the urinary bladder, remains largely unexplored. Currently, little is known about the micrograft expansion potential and the micromolecular events that occur in micrografted urothelial cells. In this study, we aimed to evaluate the proliferative potential of different porcine urothelial micrograft sizes in vitro, and, furthermore, to explore how urothelial micrografts communicate and which microcellular events are triggered. We demonstrated that increased tissue fragmentation subsequently potentiated the yield of proliferative cells and the cellular expansion potential, which confirms, that the micrografting principles of skin epithelium also apply to uroepithelium. Furthermore, we targeted the expression of the extracellular signal-regulated kinase (ERK) pathway and demonstrated that ERK activation occurred predominately at the micrograft borders and that ERK inhibition led to decreased urothelial migration and proliferation. Finally, we successfully isolated extracellular vesicles from the micrograft culture medium and evaluated their contents and relevance within various enriched biological processes. Our findings substantiate the potential of applying urothelial micrografting in future tissue-engineering models for reconstructive urological surgery, and, furthermore, highlights certain mechanisms as potential targets for future wound healing treatments.
Collapse
Affiliation(s)
- Nikolai Juul
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Henrik Harpestrengs Vej 4C, 2100, Copenhagen, Denmark.
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Oliver Willacy
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Henrik Harpestrengs Vej 4C, 2100, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Doste R Mamand
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Jesper Eisfeldt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Clara I Chamorro
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Henrik Harpestrengs Vej 4C, 2100, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Fossum
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Henrik Harpestrengs Vej 4C, 2100, Copenhagen, Denmark.
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Barros Araújo CB, da Silva Soares IL, da Silva Lima DP, Barros RM, de Lima Damasceno BPG, Oshiro-Junior JA. Polyvinyl Alcohol Nanofibers Blends as Drug Delivery System in Tissue Regeneration. Curr Pharm Des 2023; 29:1149-1162. [PMID: 37157221 DOI: 10.2174/1381612829666230508144912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 05/10/2023]
Abstract
Nanofibers have shown promising clinical results in the process of tissue regeneration since they provide a similar structure to the extracellular matrix of different tissues, high surface-to-volume ratio and porosity, flexibility, and gas permeation, offering topographical features that stimulate cell adhesion and proliferation. Electrospinning is one of the most used techniques for manufacturing nanomaterials due to its simplicity and low cost. In this review, we highlight the use of nanofibers produced with polyvinyl alcohol and polymeric associations (PVA/blends) as a matrix for release capable of modifying the pharmacokinetic profile of different active ingredients in the regeneration of connective, epithelial, muscular, and nervous tissues. Articles were selected by three independent reviewers by analyzing the databases, such as Web of Science, PubMed, Science Direct, and Google Scholar (last 10 years). Descriptors used were "nanofibers", "poly (vinyl alcohol)", "muscle tissue", "connective tissue", "epithelial tissue", and "neural tissue engineering". The guiding question was: How do different compositions of polyvinyl alcohol polymeric nanofibers modify the pharmacokinetics of active ingredients in different tissue regeneration processes? The results demonstrated the versatility of the production of PVA nanofibers by solution blow technique with different actives (lipo/hydrophilic) and with pore sizes varying between 60 and 450 nm depending on the polymers used in the mixture, which influences the drug release that can be controlled for hours or days. The tissue regeneration showed better cellular organization and greater cell proliferation compared to the treatment with the control group, regardless of the tissue analyzed. We highlight that, among all blends, the combinations PVA/PCL and PVA/CS showed good compatibility and slow degradation, indicating their use in prolonged times of biodegradation, thus benefiting tissue regeneration in bone and cartilage connective tissues, acting as a physical barrier that results in guided regeneration, and preventing the invasion of cells from other tissues with increased proliferation rate.
Collapse
Affiliation(s)
- Camila Beatriz Barros Araújo
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Ingrid Larissa da Silva Soares
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
- Research Center in Pharmaceutical Sciences, UNIFACISA University Center, Manoel Cardoso Palhano, Campina Grande, 58408-326, Paraíba, Brazil
| | - Diego Paulo da Silva Lima
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Rafaella Moreno Barros
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - João Augusto Oshiro-Junior
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
- Research Center in Pharmaceutical Sciences, UNIFACISA University Center, Manoel Cardoso Palhano, Campina Grande, 58408-326, Paraíba, Brazil
| |
Collapse
|
11
|
Salemi S, Schori LJ, Gerwinn T, Horst M, Eberli D. Myostatin Overexpression and Smad Pathway in Detrusor Derived from Pediatric Patients with End-Stage Lower Urinary Tract Dysfunction. Int J Mol Sci 2023; 24:ijms24054462. [PMID: 36901894 PMCID: PMC10003571 DOI: 10.3390/ijms24054462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Cell therapies and tissue engineering approaches using smooth muscle cells (SMCs) may provide treatment alternatives for end-stage lower urinary tract dysfunction (ESLUTD). Myostatin, a negative regulator of muscle mass, is a promising target to improve muscle function through tissue engineering. The ultimate goal of our project was to investigate the expression of myostatin and its potential impact in SMCs derived from healthy pediatric bladders and pediatric ESLUTD patients. Human bladder tissue samples were evaluated histologically, and SMCs were isolated and characterized. The proliferation of SMCs was assessed by WST-1 assay. The expression pattern of myostatin, its pathway and the contractile phenotype of the cells were investigated at gene and protein levels by real-time PCR, flow cytometry, immunofluorescence, WES and gel contraction assay. Our results show that myostatin is expressed in human bladder smooth muscle tissue and in isolated SMCs at gene and protein levels. A higher expression of myostatin was detected in ESLUTD-derived compared to control SMCs. Histological assessment of bladder tissue confirmed structural changes and decreased muscle-to-collagen ratios in ESLUTD bladders. A decrease in cell proliferation and in the expression of key contractile genes and proteins, α-SMA, calponin, smoothelin and MyH11, as well as a lower degree of in vitro contractility was observed in ESLUTD-derived compared to control SMCs. A reduction in the myostatin-related proteins Smad 2 and follistatin, and an upregulation in the proteins p-Smad 2 and Smad 7 were observed in ESLUTD SMC samples. This is the first demonstration of myostatin expression in bladder tissue and cells. The increased expression of myostatin and the changes in the Smad pathways were observed in ESLUTD patients. Therefore, myostatin inhibitors could be considered for the enhancement of SMCs for tissue engineering applications and as a therapeutic option for patients with ESLUTD and other smooth muscle disorders.
Collapse
Affiliation(s)
- Souzan Salemi
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, 8952 Schlieren, Switzerland
- Correspondence: ; Tel.: +41-795-788-654
| | - Larissa J. Schori
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, 8952 Schlieren, Switzerland
| | - Tim Gerwinn
- Division of Pediatric Urology, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Maya Horst
- Division of Pediatric Urology, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Daniel Eberli
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, 8952 Schlieren, Switzerland
| |
Collapse
|
12
|
Fu Z, Xiao S, Wang P, Zhao J, Ling Z, An Z, Shao J, Fu W. Injectable, stretchable, toughened, bioadhesive composite hydrogel for bladder injury repair †. RSC Adv 2023; 13:10903-10913. [PMID: 37033438 PMCID: PMC10076968 DOI: 10.1039/d3ra00402c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
The bladder is exposed to constant internal and external mechanical forces due to its deformation and the dynamic environment in which it is placed, which can hamper its repair after an injury. Traditional hydrogel materials have limitations regarding their use in the bladder owing to their poor mechanical and tissue adhesion properties. In this study, a composite hydrogel composed of methacrylate gelatine, methacrylated silk fibroin, and Pluronic F127 diacrylate was developed, which combines the characteristics of natural and synthetic polymers. The mechanical properties of the novel hydrogel, such as stretchability, viscoelasticity, and toughness, were improved by virtue of a particular molecular design strategy whereby covalent and non-covalent bond interactions create a cross-linking effect. In addition, the composite hydrogel has important usability properties; it can be injected in liquid format and rapidly transformed into a gel via photo-initiated crosslinking. This was demonstrated on an isolated porcine bladder where the hydrogel closed arbitrarily-shaped tissue defects within 90 s of its application, verifying its effective bioadhesive and sealing properties. This composite hydrogel has great potential for application in bladder injury repair as a tissue-engineering scaffold. An injectable, stretchable, toughened, bioadhesive composite hydrogel offers a new application strategy for sutureless repair and tissue regeneration of injured bladders.![]()
Collapse
Affiliation(s)
- Zhouyang Fu
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Shuwei Xiao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Department of Urology, Air Force Medical CenterBeijing100142China
| | - Pengchao Wang
- Medical School of Chinese PLABeijing100853China
- Department of Urology, Hainan Hospital of PLA General HospitalHainan572013China
| | - Jian Zhao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Zhengyun Ling
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Ziyan An
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Jinpeng Shao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Weijun Fu
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
| |
Collapse
|
13
|
Tissue Engineering and Regenerative Medicine in Pediatric Urology: Urethral and Urinary Bladder Reconstruction. Int J Mol Sci 2022; 23:ijms23126360. [PMID: 35742803 PMCID: PMC9224288 DOI: 10.3390/ijms23126360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
In the case of pediatric urology there are several congenital conditions, such as hypospadias and neurogenic bladder, which affect, respectively, the urethra and the urinary bladder. In fact, the gold standard consists of a urethroplasty procedure in the case of urethral malformations and enterocystoplasty in the case of urinary bladder disorders. However, both surgical procedures are associated with severe complications, such as fistulas, urethral strictures, and dehiscence of the repair or recurrence of chordee in the case of urethroplasty, and metabolic disturbances, stone formation, urine leakage, and chronic infections in the case of enterocystoplasty. With the aim of overcoming the issue related to the lack of sufficient and appropriate autologous tissue, increasing attention has been focused on tissue engineering. In this review, both the urethral and the urinary bladder reconstruction strategies were summarized, focusing on pediatric applications and evaluating all the biomaterials tested in both animal models and patients. Particular attention was paid to the capability for tissue regeneration in dependence on the eventual presence of seeded cell and growth factor combinations in several types of scaffolds. Moreover, the main critical features needed for urinary tissue engineering have been highlighted and specifically focused on for pediatric application.
Collapse
|
14
|
Sharma S, Basu B. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials 2021; 281:121331. [PMID: 35016066 DOI: 10.1016/j.biomaterials.2021.121331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Urinary bladder is a dynamic organ performing complex physiological activities. Together with ureters and urethra, it forms the lower urinary tract that facilitates urine collection, low-pressure storage, and volitional voiding. However, pathological disorders are often liable to cause irreversible damage and compromise the normal functionality of the bladder, necessitating surgical intervention for a reconstructive procedure. Non-urinary autologous grafts, primarily derived from gastrointestinal tract, have long been the gold standard in clinics to augment or to replace the diseased bladder tissue. Unfortunately, such treatment strategy is commonly associated with several clinical complications. In absence of an optimal autologous therapy, a biomaterial based bioengineered platform is an attractive prospect revolutionizing the modern urology. Predictably, extensive investigative research has been carried out in pursuit of better urological biomaterials, that overcome the limitations of conventional gastrointestinal graft. Against the above backdrop, this review aims to provide a comprehensive and one-stop update on different biomaterial-based strategies that have been proposed and explored over the past 60 years to restore the dynamic function of the otherwise dysfunctional bladder tissue. Broadly, two unique perspectives of bladder tissue engineering and total alloplastic bladder replacement are critically discussed in terms of their status and progress. While the former is pivoted on scaffold mediated regenerative medicine; in contrast, the latter is directed towards the development of a biostable bladder prosthesis. Together, these routes share a common aspiration of designing and creating a functional equivalent of the bladder wall, albeit, using fundamentally different aspects of biocompatibility and clinical needs. Therefore, an attempt has been made to systematically analyze and summarize the evolution of various classes as well as generations of polymeric biomaterials in urology. Considerable emphasis has been laid on explaining the bioengineering methodologies, pre-clinical and clinical outcomes. Some of the unaddressed challenges, including vascularization, innervation, hollow 3D prototype fabrication and urinary encrustation, have been highlighted that currently delay the successful commercial translation. More importantly, the rapidly evolving and expanding concepts of bioelectronic medicine are discussed to inspire future research efforts towards the further advancement of the field. At the closure, crucial insights are provided to forge the biomaterial assisted reconstruction as a long-term therapeutic strategy in urological practice for patients' care.
Collapse
Affiliation(s)
- Swati Sharma
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
15
|
Biomaterials and Their Biomedical Applications: From Replacement to Regeneration. Processes (Basel) 2021. [DOI: 10.3390/pr9111949] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The history of biomaterials dates back to the mists of time: human beings had always used exogenous materials to facilitate wound healing and try to restore damaged tissues and organs. Nowadays, a wide variety of materials are commercially available and many others are under investigation to both maintain and restore bodily functions. Emerging clinical needs forced the development of new biomaterials, and lately discovered biomaterials allowed for the performing of new clinical applications. The definition of biomaterials as materials specifically conceived for biomedical uses was raised when it was acknowledged that they have to possess a fundamental feature: biocompatibility. At first, biocompatibility was mainly associated with biologically inert substances; around the 1970s, bioactivity was first discovered and the definition of biomaterials was consequently extended. At present, it also includes biologically derived materials and biological tissues. The present work aims at walking across the history of biomaterials, looking towards the scientific literature published on this matter. Finally, some current applications of biomaterials are briefly depicted and their future exploitation is hypothesized.
Collapse
|
16
|
Caneparo C, Sorroza-Martinez L, Chabaud S, Fradette J, Bolduc S. Considerations for the clinical use of stem cells in genitourinary regenerative medicine. World J Stem Cells 2021; 13:1480-1512. [PMID: 34786154 PMCID: PMC8567446 DOI: 10.4252/wjsc.v13.i10.1480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The genitourinary tract can be affected by several pathologies which require repair or replacement to recover biological functions. Current therapeutic strategies are challenged by a growing shortage of adequate tissues. Therefore, new options must be considered for the treatment of patients, with the use of stem cells (SCs) being attractive. Two different strategies can be derived from stem cell use: Cell therapy and tissue therapy, mainly through tissue engineering. The recent advances using these approaches are described in this review, with a focus on stromal/mesenchymal cells found in adipose tissue. Indeed, the accessibility, high yield at harvest as well as anti-fibrotic, immunomodulatory and proangiogenic properties make adipose-derived stromal/SCs promising alternatives to the therapies currently offered to patients. Finally, an innovative technique allowing tissue reconstruction without exogenous material, the self-assembly approach, will be presented. Despite advances, more studies are needed to translate such approaches from the bench to clinics in urology. For the 21st century, cell and tissue therapies based on SCs are certainly the future of genitourinary regenerative medicine.
Collapse
Affiliation(s)
- Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Luis Sorroza-Martinez
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| |
Collapse
|
17
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
18
|
Han S, Nie K, Li J, Sun Q, Wang X, Li X, Li Q. 3D Electrospun Nanofiber-Based Scaffolds: From Preparations and Properties to Tissue Regeneration Applications. Stem Cells Int 2021; 2021:8790143. [PMID: 34221024 PMCID: PMC8225450 DOI: 10.1155/2021/8790143] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Electrospun nanofibers have been frequently used for tissue engineering due to their morphological similarities with the extracellular matrix (ECM) and tunable chemical and physical properties for regulating cell behaviors and functions. However, most of the existing electrospun nanofibers have a closely packed two-dimensional (2D) membrane with the intrinsic shortcomings of limited cellular infiltration, restricted nutrition diffusion, and unsatisfied thickness. Three-dimensional (3D) electrospun nanofiber-based scaffolds can provide stem cells with 3D microenvironments and biomimetic fibrous structures. Thus, they have been demonstrated to be good candidates for in vivo repair of different tissues. This review summarizes the recent developments in 3D electrospun nanofiber-based scaffolds (ENF-S) for tissue engineering. Three types of 3D ENF-S fabricated using different approaches classified into electrospun nanofiber 3D scaffolds, electrospun nanofiber/hydrogel composite 3D scaffolds, and electrospun nanofiber/porous matrix composite 3D scaffolds are discussed. New functions for these 3D ENF-S and properties, such as facilitated cell infiltration, 3D fibrous architecture, enhanced mechanical properties, and tunable degradability, meeting the requirements of tissue engineering scaffolds were discovered. The applications of 3D ENF-S in cartilage, bone, tendon, ligament, skeletal muscle, nerve, and cardiac tissue regeneration are then presented with a discussion of current challenges and future directions. Finally, we give summaries and future perspectives of 3D ENF-S in tissue engineering and clinical transformation.
Collapse
Affiliation(s)
- Shanshan Han
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Kexin Nie
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Qingqing Sun
- Center for Functional Sensor and Actuator, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
19
|
Shih KW, Chen WC, Chang CH, Tai TE, Wu JC, Huang AC, Liu MC. Non-Muscular Invasive Bladder Cancer: Re-envisioning Therapeutic Journey from Traditional to Regenerative Interventions. Aging Dis 2021; 12:868-885. [PMID: 34094648 PMCID: PMC8139208 DOI: 10.14336/ad.2020.1109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Non-muscular invasive bladder cancer (NMIBC) is one of the most common cancer and major cause of economical and health burden in developed countries. Progression of NMIBC has been characterized as low-grade (Ta) and high grade (carcinoma in situ and T1). The current surgical intervention for NMIBC includes transurethral resection of bladder tumor; however, its recurrence still remains a challenge. The BCG-based immunotherapy is much effective against low-grade NMIBC. BCG increases the influx of T cells at bladder cancer site and inhibits proliferation of bladder cancer cells. The chemotherapy is another traditional approach to address NMIBC by supplementing BCG. Notwithstanding, these current therapeutic measures possess limited efficacy in controlling NMIBC, and do not provide comprehensive long-term relief. Hence, biomaterials and scaffolds seem an effective medium to deliver therapeutic agents for restructuring bladder post-treatment. The regenerative therapies such as stem cells and PRP have also been explored for possible solution to NMIBC. Based on above-mentioned approaches, we have comprehensively analyzed therapeutic journey from traditional to regenerative interventions for the treatment of NMIBC.
Collapse
Affiliation(s)
- Kuan-Wei Shih
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Wei-Chieh Chen
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,2Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hsin Chang
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,4Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11031, Taiwan
| | - Ting-En Tai
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Jeng-Cheng Wu
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,5Department of Education, Taipei Medical University Hospital, Taipei 11031, Taiwan.,6Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Andy C Huang
- 8Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei,11221, Taiwan.,9Department of Urology, Department of Surgery, Taipei City Hospital Ren-Ai Branch, Taipei 10629, Taiwan
| | - Ming-Che Liu
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,2Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,7Clinical Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.,10School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Kurdi BA, Ababneh NA, Abuharfeil N, Al Demour S, Awidi AS. Use of conditioned media (CM) and xeno-free serum substitute on human adipose-derived stem cells (ADSCs) differentiation into urothelial-like cells. PeerJ 2021; 9:e10890. [PMID: 33850639 PMCID: PMC8019311 DOI: 10.7717/peerj.10890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Background Congenital abnormalities, cancers as well as injuries can cause irreversible damage to the urinary tract, which eventually requires tissue reconstruction. Smooth muscle cells, endothelial cells, and urothelial cells are the major cell types required for the reconstruction of lower urinary tract. Adult stem cells represent an accessible source of unlimited repertoire of untransformed cells. Aim Fetal bovine serum (FBS) is the most vital supplement in the culture media used for cellular proliferation and differentiation. However, due to the increasing interest in manufacturing xeno-free stem cell-based cellular products, optimizing the composition of the culture media and the serum-type used is of paramount importance. In this study, the effects of FBS and pooled human platelet (pHPL) lysate were assessed on the capacity of human adipose-derived stem cells (ADSCs) to differentiate into urothelial-like cells. Also, we aimed to compare the ability of both conditioned media (CM) and unconditioned urothelial cell media (UCM) to induce urothelial differentiation of ADCS in vitro. Methods ADSCs were isolated from human lipoaspirates and characterized by flow cytometry for their ability to express the most common mesenchymal stem cell (MSCs) markers. The differentiation potential was also assessed by differentiating them into osteogenic and adipogenic cell lineages. To evaluate the capacity of ADSCs to differentiate towards the urothelial-like lineage, cells were cultured with either CM or UCM, supplemented with either 5% pHPL, 2.5% pHPL or 10% FBS. After 14 days of induction, cells were utilized for gene expression and immunofluorescence analysis. Results ADSCs cultured in CM and supplemented with FBS exhibited the highest upregulation levels of the urothelial cell markers; cytokeratin-18 (CK-18), cytokeratin-19 (CK-19), and Uroplakin-2 (UPK-2), with a 6.7, 4.2- and a 2-folds increase in gene expression, respectively. Meanwhile, the use of CM supplemented with either 5% pHPL or 2.5% pHPL, and UCM supplemented with either 5% pHPL or 2.5% pHPL showed low expression levels of CK-18 and CK-19 and no upregulation of UPK-2 level was observed. In contrast, the use of UCM with FBS has increased the levels of CK-18 and CK-19, however to a lesser extent compared to CM. At the cellular level, CK-18 and UPK-2 were only detected in CM/FBS supplemented group. Growth factor analysis revealed an increase in the expression levels of EGF, VEGF and PDGF in all of the differentiated groups. Conclusion Efficient ADSCs urothelial differentiation is dependent on the use of conditioned media. The presence of high concentrations of proliferation-inducing growth factors present in the pHPL reduces the efficiency of ADSCs differentiation towards the urothelial lineage. Additionally, the increase in EGF, VEGF and PDGF during the differentiation implicates them in the mechanism of urothelial cell differentiation.
Collapse
Affiliation(s)
- Ban Al- Kurdi
- Cell Therapy Center, University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| | | | - Nizar Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Saddam Al Demour
- Department of Urology, School of medicine, University of Jordan, Amman, Jordan, University of Jordan, Amman, Jordan
| | - Abdalla S Awidi
- Cell Therapy Center, University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| |
Collapse
|
21
|
Gensler M, Leikeim A, Möllmann M, Komma M, Heid S, Müller C, Boccaccini AR, Salehi S, Groeber-Becker F, Hansmann J. 3D printing of bioreactors in tissue engineering: A generalised approach. PLoS One 2020; 15:e0242615. [PMID: 33253240 PMCID: PMC7703892 DOI: 10.1371/journal.pone.0242615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
3D printing is a rapidly evolving field for biological (bioprinting) and non-biological applications. Due to a high degree of freedom for geometrical parameters in 3D printing, prototype printing of bioreactors is a promising approach in the field of Tissue Engineering. The variety of printers, materials, printing parameters and device settings is difficult to overview both for beginners as well as for most professionals. In order to address this problem, we designed a guidance including test bodies to elucidate the real printing performance for a given printer system. Therefore, performance parameters such as accuracy or mechanical stability of the test bodies are systematically analysed. Moreover, post processing steps such as sterilisation or cleaning are considered in the test procedure. The guidance presented here is also applicable to optimise the printer settings for a given printer device. As proof of concept, we compared fused filament fabrication, stereolithography and selective laser sintering as the three most used printing methods. We determined fused filament fabrication printing as the most economical solution, while stereolithography is most accurate and features the highest surface quality. Finally, we tested the applicability of our guidance by identifying a printer solution to manufacture a complex bioreactor for a perfused tissue construct. Due to its design, the manufacture via subtractive mechanical methods would be 21-fold more expensive than additive manufacturing and therefore, would result in three times the number of parts to be assembled subsequently. Using this bioreactor we showed a successful 14-day-culture of a biofabricated collagen-based tissue construct containing human dermal fibroblasts as the stromal part and a perfusable central channel with human microvascular endothelial cells. Our study indicates how the full potential of biofabrication can be exploited, as most printed tissues exhibit individual shapes and require storage under physiological conditions, after the bioprinting process.
Collapse
Affiliation(s)
- Marius Gensler
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| | - Anna Leikeim
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Marc Möllmann
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| | - Miriam Komma
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Susanne Heid
- Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Müller
- Department Biomaterials, University of Bayreuth, Bayreuth, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sahar Salehi
- Department Biomaterials, University of Bayreuth, Bayreuth, Germany
| | - Florian Groeber-Becker
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| | - Jan Hansmann
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Faculty of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany
| |
Collapse
|
22
|
Ichanti H, Sladic S, Kalies S, Haverich A, Andrée B, Hilfiker A. Characterization of Tissue Engineered Endothelial Cell Networks in Composite Collagen-Agarose Hydrogels. Gels 2020; 6:gels6030027. [PMID: 32899293 PMCID: PMC7559300 DOI: 10.3390/gels6030027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Scaffolds constitute an important element in vascularized tissues and are therefore investigated for providing the desired mechanical stability and enabling vasculogenesis and angiogenesis. In this study, supplementation of hydrogels containing either MatrigelTM and rat tail collagen I (MatrigelTM/rCOL) or human collagen (hCOL) with SeaPlaqueTM agarose were analyzed with regard to construct thickness and formation and characteristics of endothelial cell (EC) networks compared to constructs without agarose. Additionally, the effect of increased rCOL content in MatrigelTM/rCOL constructs was studied. An increase of rCOL content from 1 mg/mL to 3 mg/mL resulted in an increase of construct thickness by approximately 160%. The high rCOL content, however, impaired the formation of an EC network. The supplementation of MatrigelTM/rCOL with agarose increased the thickness of the hydrogel construct by approximately 100% while supporting the formation of a stable EC network. The use of hCOL/agarose composite hydrogels led to a slight increase in the thickness of the 3D hydrogel construct and supported the formation of a multi-layered EC network compared to control constructs. Our findings suggest that agarose/collagen-based composite hydrogels are promising candidates for tissue engineering of vascularized constructs as cell viability is maintained and the formation of a stable and multi-layered EC network is supported.
Collapse
Affiliation(s)
- Houda Ichanti
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (H.I.); (S.S.); (A.H.)
| | - Sanja Sladic
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (H.I.); (S.S.); (A.H.)
| | - Stefan Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany;
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (H.I.); (S.S.); (A.H.)
| | - Birgit Andrée
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (H.I.); (S.S.); (A.H.)
- Correspondence: (B.A.); (A.H.); Tel.: +49-511-532-8913 (B.A.); +49-511-532-8998 (A.H.)
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (H.I.); (S.S.); (A.H.)
- Correspondence: (B.A.); (A.H.); Tel.: +49-511-532-8913 (B.A.); +49-511-532-8998 (A.H.)
| |
Collapse
|
23
|
Efficient smooth muscle cell differentiation of iPS cells on curcumin-incorporated chitosan/collagen/polyvinyl-alcohol nanofibers. In Vitro Cell Dev Biol Anim 2020; 56:313-321. [PMID: 32307668 PMCID: PMC7223336 DOI: 10.1007/s11626-020-00445-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022]
Abstract
Bladder dysfunction is one of the most common diseases that occur for a number of reasons and the current treatment modalities do not improve much in its recovery process. Tissue engineering in the last two decades has given great hope for the treatment of these disorders. In this study, a composite nanofibrous scaffold was fabricated from chitosan, collagen, and polyvinyl-alcohol polymer blend while curcumin incorporated in scaffold fibers. The scaffold supportive functions from smooth muscle cell differentiation were studied when human-induced pluripotent stem cells were cultured on the scaffolds under differentiation medium. Biocompatibility of the fabricated scaffold increased significantly by incorporating curcumin in the scaffold fibers, where protein adsorption, cell attachment, and viability were increased in the nanofiber/curcumin group compared with the other groups. In addition, the expression level of smooth muscle cell-related genes, including alpha-smooth muscle actin (αSMA), smooth muscle 22 alpha (SM-22a), Caldesmon1, and Calponin1in the stem cells upregulated while cultured in the presence of curcumin, but this increase was significantly improved while cells cultured on the nanofibers/curcumin. In addition, αSMA protein in the cells cultured on the nanofibers/curcumin expressed significantly higher than those cells cultured on the nanofibers without curcumin. It can be concluded that smooth muscle cell differentiation of the induced pluripotent stem cells promoted by curcumin and this promotion was synergistically improved while curcumin incorporated in the nanofibers. Graphical abstract ![]()
Collapse
|
24
|
Mokhames Z, Rezaie Z, Ardeshirylajimi A, Basiri A, Taheri M, Omrani MD. VEGF-incorporated PVDF/collagen nanofibrous scaffold for bladder wall regeneration and angiogenesis. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zakiye Mokhames
- Department of Molecular Diagnostic, Emam Ali Educational and Therapeutic Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Rezaie
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Abbas TO, Ali TA, Uddin S. Urine as a Main Effector in Urological Tissue Engineering-A Double-Edged Sword. Cells 2020; 9:cells9030538. [PMID: 32110928 PMCID: PMC7140397 DOI: 10.3390/cells9030538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
In order to reconstruct injured urinary tract tissues, biodegradable scaffolds with autologous seeded cells are explored in this work. However, when cells are obtained via biopsy from individuals who have damaged organs due to infection, congenital disorders, or cancer, this can result in unhealthy engineered cells and donor site morbidity. Thus, neo-organ construction through an alternative cell source might be useful. Significant advancements in the isolation and utilization of urine-derived stem cells have provided opportunities for this less invasive, limitless, and versatile source of cells to be employed in urologic tissue-engineered replacement. These cells have a high potential to differentiate into urothelial and smooth muscle cells. However, urinary tract reconstruction via tissue engineering is peculiar as it takes place in a milieu of urine that imposes certain risks on the implanted cells and scaffolds as a result of the highly cytotoxic nature of urine and its detrimental effect on both growth and differentiation of these cells. Both of these projections should be tackled thoughtfully when designing a suitable approach for repairing urinary tract defects and applying the needful precautions is vital.
Collapse
Affiliation(s)
- Tariq O. Abbas
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
- Pediatric Urology Section, Sidra Medicine, Doha 26999, Qatar
- College of Medicine, Qatar University, Doha 2713, Qatar
- Surgery Department, Weill Cornell Medicine—Qatar, Doha 24144, Qatar
- Correspondence: or ; Tel.: +974-550-93-651
| | - Tayyiba A. Ali
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (T.A.A.); (S.U.)
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (T.A.A.); (S.U.)
| |
Collapse
|
26
|
Design of a Mechatronics Model of Urinary Bladder and Realization and Evaluation of Its Prototype. Appl Bionics Biomech 2020; 2019:9431781. [PMID: 31949475 PMCID: PMC6948342 DOI: 10.1155/2019/9431781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/03/2019] [Accepted: 11/27/2019] [Indexed: 11/18/2022] Open
Abstract
Annually, there are many bladder cancer patients undergoing radical cystectomy (RC) with urinary diversion worldwide. Until 2019, intestinal cystoplasty is still the gold standard for bladder replacement, but this therapy is always associated with severe complications. An ideal bladder substitute without using intestinal tissue remains a challenge today. In this work, an artificial mechatronics bladder (AMB) as a brand new bladder replacement approach is developed. We studied the main physiological function characteristics of a natural urinary bladder from teaching books and relevant papers. According to these characteristics, we completed an overall design of AMB and made a prototype in lab. The prototype successfully realized the functions of a natural bladder in vitro. It can expand to store urine in real time when urine is flowing into it. It can send a urination alarm when it is fully filled and can void urine automatically after receiving remote control signals. According to relevant papers and our test experience, if the prototype could be smaller and lighter and manufactured with good biocompatibility materials such as PTFE, we think it is possible for AMB to be implanted in an animal's body, and we deduce AMB could realize the functions of a natural urinary bladder in vivo. After thorough validation from animal testing, we hope AMB can be a good clinical option for bladder removal patients in the future.
Collapse
|