1
|
Yang Q, Kang Y, Tang W, Li M, Zhao C. Interplay of gut microbiota in Kawasaki disease: role of gut microbiota and potential treatment strategies. Future Microbiol 2025; 20:357-369. [PMID: 40013895 PMCID: PMC11938985 DOI: 10.1080/17460913.2025.2469432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Kawasaki disease (KD) is an acute systemic immune vasculitis with predominant involvement of the medium and small arteries. It mostly affects pediatric patients, representing the most common form of pediatric vasculitis in children less than 5 years old. Numerous diseases, especially those related to the immune system, have established links with the intestinal flora. Recent studies have investigated the intestinal flora changes throughout the management of KD. There was gut microbiota dysbiosis in pediatric KD at the acute phase, particularly the downregulation of short-chain fat acids-producing microbiota and the over-proliferation of opportunistic pathogens. The relationship between the response to therapies in individuals with KD and specific microbiota remains uncertain. Targeted microbial supplements and dietary regulation may serve as potential measures to alleviate KD complications and thus improve prognosis. This review provides an overview of the current understanding of the interplay of the gut microbiota and KD. Furthermore, it discusses the possibility of altering the gut microbiota to reinstate a healthy condition.
Collapse
Affiliation(s)
- Qing Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yaqing Kang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Tang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Saad K, Abd-Ellatif M, Abdel-Hakem NE, Ali A, Khalil OA, Emad T, Abo-Gazia O, Eldamaty A, Omar YM, Alzu'bi M, Bazzazeh M, Afifi A, El-Ashry AH, Taha SA, Atef Abdelsattar Ibrahim H, Alruwaili T, Elhoufey A, Dailah HG, Elgenidy A. Analysis of gut microbiota variations in patients with Henoch-Schönlein purpura: a comprehensive systematic review. Int Urol Nephrol 2025:10.1007/s11255-025-04406-4. [PMID: 39976893 DOI: 10.1007/s11255-025-04406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/30/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVE The primary purpose of our study was to perform a comprehensive systematic review, aiming to bring out the association between gut microbiota, Henoch-Schönlein Purpura (HSP) and Henoch-Schönlein nephritis (HSPN) patients. METHODS A systematic review was performed using five electronic databases, including Medline (through PubMed), Scopus, Embase, Cochrane, and Web of Science, from inspection up to March 21, 2024, to detect the studies that assessed the gut microbiota variation in Henoch-Schönlein Purpura (HSP) and Henoch-Schönlein nephritis (HSPN) patients. RESULTS Microbial diversity, richness, and composition in HSP patients are decreased compared to the healthy control group. In addition, HSP patients display a different microbiota structure and show a significant difference in taxonomic abundance between HSP and health control, which differs from one level to another. At the phylum level, Bacteroidetes, Fusobacteria, and Blastocladiomycota were more abundant; at the class level, Bacteroidetes were more abundant; at the order level, Bacteroidetes were more abundant in the HSP group-stage and site of HSP involvement effect on microbiota. Gastrointestinal tract involvement is characterized by increased abundance of Streptococcus and Fusobacteria and a decrease in Faecalibacterium. Kidney involvement is characterized by increased abundance of Streptococcus spp, which can be used as an indicator of disease severity. Escherichia-Shigella can be used as a diagnostic for the recurrence of HSP because its abundance is higher than primary HSP. CONCLUSION Gut microbiota can be utilized to assess the severity, recurrence, and site of HSP infection by analyzing the diversity, richness, and abundance of specific microorganisms associated with the condition.
Collapse
Affiliation(s)
- Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt.
| | | | - Nehal E Abdel-Hakem
- Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City, Egypt
| | | | | | - Tasbih Emad
- Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Omar Abo-Gazia
- Faculty of Medicine, Al-Azhar University, New Damietta Branch, Damietta, Egypt
| | | | - Yusof M Omar
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | - Ahmed Afifi
- University of Texas MD Anderson Cancer Center, Houston, USA
| | - Amira H El-Ashry
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sherin A Taha
- Pediatric Department, Faculty of Medicine, Suez University, Suez, Egypt
| | | | - Thamer Alruwaili
- Department of Pediatrics, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amira Elhoufey
- Department of Community Health Nursing, Alddrab University College, Jazan University, 45142, Jazan, Saudi Arabia
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
3
|
Kusumi K, Islam MS, Banker H, Safadi FF, Raina R. Navigating the microbial maze: unraveling the connection between gut microbiome and pediatric kidney and urinary tract disease. Pediatr Nephrol 2025; 40:339-353. [PMID: 38829563 DOI: 10.1007/s00467-024-06357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 06/05/2024]
Abstract
The gut microbiome is made up of trillions of bacteria, viruses, archaea, and microbes that play a significant role in the maintenance of normal physiology in humans. Recent research has highlighted the effects of the microbiome and its dysbiosis in the pathogenesis and maintenance of kidney disease, especially chronic kidney disease (CKD) and its associated cardiovascular disease. While studies have addressed the kidney-microbiome axis in adults, how dysbiosis may uniquely impact pediatric kidney disease patients is not well-established. This narrative review highlights all relevant studies focusing on the microbiome and pediatric kidney disease that were published between 7/2015 and 7/2023. This review highlights pediatric-specific considerations including growth and bone health as well as emphasizing the need for increased pediatric research. Understanding microbiome-kidney interactions may allow for novel, less invasive interventions such as dietary changes and the use of probiotics to improve preventive care and ameliorate long-term morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Kirsten Kusumi
- Pediatric Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | - Rupesh Raina
- Division of Nephrology, Department of Pediatrics, Akron Children's Hospital, Akron, OH, USA.
- Northeast Ohio Medical University, Rootstown, OH, USA.
- Akron Nephrology Associates, Cleveland Clinic Akron General, Akron, OH, USA.
| |
Collapse
|
4
|
Li J, Xu Y, Sun T, Zhang X, Liang H, Lin W, Yu H, Yang B, Yang H. Exploration of the pathogenesis of nephrotic syndrome and traditional Chinese medicine intervention based on gut microbiota. Front Immunol 2024; 15:1430356. [PMID: 39717782 PMCID: PMC11663840 DOI: 10.3389/fimmu.2024.1430356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Nephrotic syndrome (NS) represents a prevalent syndrome among various chronic kidney disease pathologies and is known for its higher severity and worse prognosis compared with chronic glomerulonephritis. Understanding its pathogenesis and identifying more effective treatment modalities have long been a concern of kidney specialists. With the introduction of the gut-kidney axis concept and the progress in omics technologies, alterations in the gut microbiota have been observed in primary and secondary NS. This link has been extensively researched in conditions such as diabetic nephropathy and immunoglobulin A (IgA) nephropathy. Thus, dysbiosis of the gut microbiota is seen as a crucial contributing factor in NS; however, there is a lack of comprehensive reviews that elucidate the changes in the gut microbiota across different NS conditions and that describe its mechanistic role in the disease. Moreover, serving as an innate regulator of the gut microbiota, traditional Chinese medicine (TCM) has the potential to exert a profound impact on the expression of inflammation-promoting agents, decreasing the levels of endotoxins and uremic toxins. In addition, it strengthens the stability of the intestinal barrier while controlling the metabolic function of the body through its efficient modulation of the gut microbiota. This intricate process yields far-reaching consequences for NS.
Collapse
Affiliation(s)
- Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yupei Xu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Tianhao Sun
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huimin Liang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wei Lin
- Department of Nephrology, Traditional Chinese Hospital of Xiamen, Xiamen, China
| | - Hangxing Yu
- Department of Nephrology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
5
|
Castañeda S, Quiroga-Colina P, Floranes P, Uriarte-Ecenarro M, Valero-Martínez C, Vicente-Rabaneda EF, González-Gay MA. IgA Vasculitis (Henoch-Schönlein Purpura): An Update on Treatment. J Clin Med 2024; 13:6621. [PMID: 39518760 PMCID: PMC11546386 DOI: 10.3390/jcm13216621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Objective: IgA vasculitis (IgAV), previously named as Henoch-Schönlein purpura, is the most frequent systemic vasculitis in children. In adults, IgAV is less common although it is associated with more severe disease. In fact, the frequency of glomerulonephritis (referred to as IgAV nephritis) in adults is higher than in children and tends to present more severely, with around 10-30% of those affected eventually progressing to end-stage renal disease. In this review, we describe the pathophysiology, main clinical features, diagnosis of the disease, and latest clinical data regarding IgAV therapy. Methods: A narrative literature review, primarily based on articles published in PubMed, was conducted. In addition to discussing the main aspects of glucocorticoids and conventional disease-modifying drugs used in the management of IgAV, this review focuses on the latest information reported regarding biologics and potential future therapies. Results: Glucocorticoids are the first-line therapy for IgAV, especially in adults with severe manifestations. Colchicine, dapsone, and methotrexate can be useful for controlling minor manifestations. Several immunomodulatory agents, such as cyclosporine A, tacrolimus, and mycophenolate mofetil, have shown favorable results as glucocorticoid-sparing agents. Leflunomide has shown promising results but requires further study. The use of rituximab has demonstrated efficacy in reducing relapse frequency, lowering the cumulative glucocorticoid burden, and achieving long-term remission of the disease in children and adults with IgAV. Immunoglobulins and plasma exchange therapy can also be useful in difficult and life-threatening situations. Other potential therapies with encouraging results include TRF-budesonide, B-cell-directed therapy, B-cell-depleting agents, sodium-glucose cotransporter-2 inhibitors, endothelin receptor antagonists, and complement pathway inhibitors. Conclusions: Glucocorticoids are the first-line therapy for IgAV, especially in adults with severe manifestations. The role of various immunomodulatory therapies, such as calcineurin inhibitors and mycophenolate mofetil, remains promising, while rituximab reduces the long-term side effects of glucocorticoids and can help achieve disease remission. Other potential therapies with encouraging results require further research.
Collapse
Affiliation(s)
- Santos Castañeda
- Rheumatology Division, H. Universitario La Princesa, IIS-Princesa, 28006 Madrid, Spain; (P.Q.-C.); (P.F.); (M.U.-E.); (C.V.-M.); (E.F.V.-R.)
- Department of Medicine, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Patricia Quiroga-Colina
- Rheumatology Division, H. Universitario La Princesa, IIS-Princesa, 28006 Madrid, Spain; (P.Q.-C.); (P.F.); (M.U.-E.); (C.V.-M.); (E.F.V.-R.)
| | - Paz Floranes
- Rheumatology Division, H. Universitario La Princesa, IIS-Princesa, 28006 Madrid, Spain; (P.Q.-C.); (P.F.); (M.U.-E.); (C.V.-M.); (E.F.V.-R.)
| | - Miren Uriarte-Ecenarro
- Rheumatology Division, H. Universitario La Princesa, IIS-Princesa, 28006 Madrid, Spain; (P.Q.-C.); (P.F.); (M.U.-E.); (C.V.-M.); (E.F.V.-R.)
| | - Cristina Valero-Martínez
- Rheumatology Division, H. Universitario La Princesa, IIS-Princesa, 28006 Madrid, Spain; (P.Q.-C.); (P.F.); (M.U.-E.); (C.V.-M.); (E.F.V.-R.)
| | - Esther F. Vicente-Rabaneda
- Rheumatology Division, H. Universitario La Princesa, IIS-Princesa, 28006 Madrid, Spain; (P.Q.-C.); (P.F.); (M.U.-E.); (C.V.-M.); (E.F.V.-R.)
- Department of Medicine, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Miguel A. González-Gay
- Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, 39011 Santander, Spain
- Rheumatology Division, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| |
Collapse
|
6
|
Li J, Li J, Liu Y, Zeng J, Liu Y, Wu Y. Large-scale bidirectional Mendelian randomization study identifies new gut microbiome significantly associated with immune thrombocytopenic purpura. Front Microbiol 2024; 15:1423951. [PMID: 39027091 PMCID: PMC11257036 DOI: 10.3389/fmicb.2024.1423951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction A variety of studies have shown a link between the gut microbiota and autoimmune diseases, but the causal relationship with Henoch-Schönlein purpura (HSP) and immune thrombocytopenic purpura (ITP) is unknown. Methods This study investigated the bidirectional causality between gut microbiota and HSP and ITP using Mendelian randomization (MR). Large-scale genetic data of gut microbiota at phylum to species level from the MiBioGen consortium and the Dutch Microbiome Project were utilized. Genome-wide association studies (GWAS) summary statistics for HSP and ITP came from FinnGen R10. Various MR methods were applied to infer causal relationships, including inverse variance weighted (IVW), maximum likelihood (ML), cML-MA, MR-Egger, weighted median, weighted model, and MR-PRESSO. Multiple sensitivity analyses and Bonferroni correction were conducted to enhance robustness and reliability. Results Based on the IVW estimates, 23 bacterial taxa were identified to have suggestive associations with HSP and ITP. Remarkably, after Bonferroni correction, family Alcaligenaceae (OR = 2.86, 95% CI = 1.52-5.37; IVW, p = 1.10 × 10-3, ML, p = 1.40 × 10-3) was significantly associated with ITP as a risk factor, while family Bacteroidales S24 7group (OR = 0.46, 95% CI = 0.29-0.74; IVW, p = 1.40 × 10-3) was significantly associated with ITP as a protective factor. No significant associations between HSP and ITP and gut microbiota were found in reverse analyses. Conclusion Our study provides evidence of causal effects of gut microbiota on HSP and ITP, highlighting the importance of further research to clarify the underlying mechanisms and develop targeted therapeutic interventions for these autoimmune diseases.
Collapse
Affiliation(s)
- Jiawei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxiao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juanhuan Zeng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Ho PY, Chou YC, Koh YC, Lin WS, Chen WJ, Tseng AL, Gung CL, Wei YS, Pan MH. Lactobacillus rhamnosus 069 and Lactobacillus brevis 031: Unraveling Strain-Specific Pathways for Modulating Lipid Metabolism and Attenuating High-Fat-Diet-Induced Obesity in Mice. ACS OMEGA 2024; 9:28520-28533. [PMID: 38973907 PMCID: PMC11223209 DOI: 10.1021/acsomega.4c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024]
Abstract
Obesity is a global health crisis, marked by excessive fat in tissues that function as immune organs, linked to microbiota dysregulation and adipose inflammation. Investigating the effects of Lactobacillus rhamnosus SG069 (LR069) and Lactobacillus brevis SG031 (LB031) on obesity and lipid metabolism, this research highlights adipose tissue's critical immune-metabolic role and the probiotics' potential against diet-induced obesity. Mice fed a high-fat diet were treated with either LR069 or LB031 for 12 weeks. Administration of LB031 boosted lipid metabolism, indicated by higher AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and increased the M2/M1 macrophage ratio, indicating LB031's anti-inflammatory effect. Meanwhile, LR069 administration not only led to significant weight loss by enhancing lipolysis which evidenced by increased phosphorylation of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) but also elevated Akkermansia and fecal acetic acid levels, showing the gut microbiota's pivotal role in its antiobesity effects. LR069 and LB031 exhibit distinct effects on lipid metabolism and obesity, underscoring their potential for precise interventions. This research elucidates the unique impacts of these strains on metabolic health and highlights the intricate relationship between gut microbiota and obesity, advancing our knowledge of probiotics' therapeutic potential.
Collapse
Affiliation(s)
- Pin-Yu Ho
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Ya-Chun Chou
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Wei-Sheng Lin
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Food Science, National Quemoy University, Quemoy County 89250, Taiwan, ROC
| | - Wei-Jen Chen
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Ai-Lun Tseng
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Chiau-Ling Gung
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Yu-Shan Wei
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Public Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan, ROC
- Department
of Food Nutrition and Health Biotechnology, Asia University, 500,
Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC
| |
Collapse
|
8
|
Tan DSY, Akelew Y, Snelson M, Nguyen J, O’Sullivan KM. Unravelling the Link between the Gut Microbiome and Autoimmune Kidney Diseases: A Potential New Therapeutic Approach. Int J Mol Sci 2024; 25:4817. [PMID: 38732038 PMCID: PMC11084259 DOI: 10.3390/ijms25094817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota and short chain fatty acids (SCFA) have been associated with immune regulation and autoimmune diseases. Autoimmune kidney diseases arise from a loss of tolerance to antigens, often with unclear triggers. In this review, we explore the role of the gut microbiome and how disease, diet, and therapy can alter the gut microbiota consortium. Perturbations in the gut microbiota may systemically induce the translocation of microbiota-derived inflammatory molecules such as liposaccharide (LPS) and other toxins by penetrating the gut epithelial barrier. Once in the blood stream, these pro-inflammatory mediators activate immune cells, which release pro-inflammatory molecules, many of which are antigens in autoimmune diseases. The ratio of gut bacteria Bacteroidetes/Firmicutes is associated with worse outcomes in multiple autoimmune kidney diseases including lupus nephritis, MPO-ANCA vasculitis, and Goodpasture's syndrome. Therapies that enhance SCFA-producing bacteria in the gut have powerful therapeutic potential. Dietary fiber is fermented by gut bacteria which in turn release SCFAs that protect the gut barrier, as well as modulating immune responses towards a tolerogenic anti-inflammatory state. Herein, we describe where the current field of research is and the strategies to harness the gut microbiome as potential therapy.
Collapse
Affiliation(s)
- Diana Shu Yee Tan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| | - Yibeltal Akelew
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| | - Matthew Snelson
- School of Biological Science, Monash University, Clayton, VIC 3168, Australia;
| | - Jenny Nguyen
- The Alfred Centre, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Kim Maree O’Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| |
Collapse
|
9
|
Liang Y, Zhao C, Zhao L, Sheng D, Chen B, Zhao G, Wang Q, Zhang L. Taxonomic and functional shifts of gut microbiome in immunoglobulin A vasculitis children and their mothers. Front Pediatr 2024; 12:1356529. [PMID: 38410769 PMCID: PMC10895042 DOI: 10.3389/fped.2024.1356529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
Objectives To examine the gut microbiota characteristics in children with immunoglobulin A vasculitis and their interrelationships with the host, while evaluate the vertical inheritance of microbiota in the development and progression of IgA vasculitis. Methods This study investigated the gut microbiome of 127 IgA vasculitis mother-child pairs and 62 matched healthy mother-child pairs, and compared the gut microbial composition of different groups. The pathway enrichment analysis evaluated potential gut microbiome-mediated pathways involved in the pathophysiology of IgA vasculitis. The Spearman correlation analysis illustrated the relationships between clinical variables and bacterial biomarkers. Results This study identified distinct intestinal microbiome in IgA vasculitis children compared to healthy children, and further pointed out the association in gut microbiota between IgA vasculitis children's and their mother's. The relative abundance of Megamonas and Lactobacillus in IgAV children was positively correlated with that in their mothers. The pathway enrichment analysis found microbial biosynthesis of vitamins and essential amino acids was upregulated in children with IgA vasculitis. Correlation analysis showed bacterial biomarkers were correlated with indicators of blood coagulation. Conclusion Children with IgA vasculitis have unique bacterial biomarkers and may affect coagulation function, and their gut microbiome was closely associated with that of their mothers. The observed association in gut microbiota between IgA vasculitis children and their mothers suggested a potential intergenerational influence of the maternal microbiota on the development or progression of IgA vasculitis in children.
Collapse
Affiliation(s)
- Yijia Liang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changying Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Chen
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qinghua Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Williams CEC, Lamond M, Marro J, Chetwynd AJ, Oni L. A narrative review of potential drug treatments for nephritis in children with IgA vasculitis (HSP). Clin Rheumatol 2023; 42:3189-3200. [PMID: 37755547 PMCID: PMC10640478 DOI: 10.1007/s10067-023-06781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Immunoglobulin A (IgA) vasculitis (IgAV, also known as Henoch-Schoenlein purpura, HSP) is the most common vasculitis of childhood. It usually presents with a simple, self-limiting disease course; however, a small subset of patients may develop kidney involvement (IgAV-N) which occurs 4-12 weeks after disease onset and is the biggest contributor to long-term morbidity. Treatment currently targets patients with established kidney involvement; however; there is a desire to work towards early prevention of inflammation during the window of opportunity between disease presentation and onset of significant nephritis. There are no clinical trials evaluating drugs which may prevent or halt the progression of nephritis in children with IgAV apart from the early use of corticosteroids which have no benefit. This article summarises the latest scientific evidence and clinical trials that support potential therapeutic targets for IgAV-N that are currently being developed based on the evolving understanding of the pathophysiology of IgAV-N. These span the mucosal immunity, B-cell and T-cell modulation, RAAS inhibition, and regulation of complement pathways, amongst others. Novel drugs that may be considered for use in early nephritis include TRF-budesonide; B-cell inhibiting agents including belimumab, telitacicept, blisibimod, VIS649, and BION-1301; B-cell depleting agents such as rituximab, ofatumumab, and bortezomib; sparsentan; angiotensin converting enzyme inhibitors (ACE-Is); and complement pathway inhibitors including avacopan, iptacopan, and narsoplimab. Further clinical trials, as well as pre-clinical scientific studies, are needed to identify mechanistic pathways as there may be an opportunity to prevent nephritis in this condition. Key Points • Kidney involvement is the main cause of long-term morbidity and mortality in IgA vasculitis despite the current treatment recommendations. • The evolving understanding of the pathophysiology of IgA vasculitis is allowing exploration of novel treatment options which target underlying immune pathways. • Novel treatments currently being trialled in IgA nephropathy may have benefit in IgA vasculitis due to the similarities in the underlying pathophysiology, such as TRF-budesonide, B-cell modulators, and complement inhibitors. • Further studies, including clinical trials of novel drugs, are urgently needed to improve the long-term outcomes for children with IgA vasculitis nephritis.
Collapse
Affiliation(s)
- Chloe E C Williams
- Royal Liverpool and Broadgreen University Hospital Trusts, Liverpool, UK
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Megan Lamond
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Julien Marro
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Andrew J Chetwynd
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Louise Oni
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Paediatric Nephrology, Institute in the Park Building, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Eaton Road, Liverpool, L12 2AP, UK.
| |
Collapse
|
11
|
Zhang Y, Zhou M, Zhou Y, Guan X. Dietary components regulate chronic diseases through gut microbiota: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6752-6766. [PMID: 37225671 DOI: 10.1002/jsfa.12732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
In recent years, gut microbiota as an immune organ has gradually become the mainstream of research. When the composition of the gut microbiota is changed significantly, this may affect human health. This review details the major microbiota composition and metabolites in the gut and discusses chronic diseases based on gut dysbiosis, including obesity, liver injury, colon cancer, atherosclerosis, and central nervous system diseases. We comprehensively summarize the changes in abundance of relevant gut microbiota by ingesting different diet components (such as food additives, dietary polyphenols, polysaccharides, fats, proteins) and their influence on the microbial quorum sensing system, thereby regulating related diseases. We believe that quorum sensing can be used as a new entry point to explain the mechanism of ingesting dietary components to improve gut microbiota and thereby regulate related diseases. This review hopes to provide a theoretical basis for future research on improving disease symptoms by ingesting functional foods containing dietary components. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Ming Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqin Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| |
Collapse
|
12
|
Xu H, Xu Z, Long S, Li Z, Jiang J, Zhou Q, Huang X, Wu X, Wei W, Li X. The role of the gut microbiome and its metabolites in cerebrovascular diseases. Front Microbiol 2023; 14:1097148. [PMID: 37125201 PMCID: PMC10140324 DOI: 10.3389/fmicb.2023.1097148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
The gut microbiome is critically involved in maintaining normal physiological function in the host. Recent studies have revealed that alterations in the gut microbiome contribute to the development and progression of cerebrovascular disease via the microbiota-gut-brain axis (MGBA). As a broad communication network in the human body, MGBA has been demonstrated to have significant interactions with various factors, such as brain structure and function, nervous system diseases, etc. It is also believed that the species and composition of gut microbiota and its metabolites are intrinsically linked to vascular inflammation and immune responses. In fact, in fecal microbiota transplantation (FMT) research, specific gut microbiota and downstream-related metabolites have been proven to not only participate in various physiological processes of human body, but also affect the occurrence and development of cerebrovascular diseases directly or indirectly through systemic inflammatory immune response. Due to the high mortality and disability rate of cerebrovascular diseases, new treatments to improve intestinal dysbacteriosis have gradually attracted widespread attention to better ameliorate the poor prognosis of cerebrovascular diseases in a non-invasive way. This review summarizes the latest advances in the gut microbiome and cerebrovascular disease research and reveals the profound impact of gut microbiota dysbiosis and its metabolites on cerebrovascular diseases. At the same time, we elucidated molecular mechanisms whereby gut microbial metabolites regulate the expression of specific interleukins in inflammatory immune responses. Moreover, we further discuss the feasibility of novel therapeutic strategies targeting the gut microbiota to improve the outcome of patients with cerebrovascular diseases. Finally, we provide new insights for standardized diagnosis and treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ziyue Xu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jiazhi Jiang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Qiangqiang Zhou
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiaopeng Huang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiaohui Wu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Hu X, Fan R, Song W, Qing J, Yan X, Li Y, Duan Q, Li Y. Landscape of intestinal microbiota in patients with IgA nephropathy, IgA vasculitis and Kawasaki disease. Front Cell Infect Microbiol 2022; 12:1061629. [PMID: 36590596 PMCID: PMC9800820 DOI: 10.3389/fcimb.2022.1061629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Objective To explore the common differential flora of IgAN, Kawasaki disease and IgA vasculitis by screening and analyzing the differential intestinal flora between the three disease groups of IgAN, Kawasaki disease and IgA vasculitis and their healthy controls. Methods Papers on 16srRNA sequencing-related intestinal flora of IgAN, Kawasaki disease and IgA vasculitis were searched in databases, the literature was systematically collated and analysed, the original data was download from the relevant databases, and then the operational taxonomic unit and species classification analysis were performed. Besides, Alpha diversity analysis and Beta diversity analysis were performed to screen for IgAN, Kawasaki disease and I1gA vasculitis groups and finally compare the common intestinal differential flora among the three groups. Results Among the common differential flora screened, Lachnospiracea_incertae_sedis was lower in both the IgAN and Kawasaki disease groups than in the respective healthy controls; Coprococcus was low in the IgAN group but high in the IgA vasculitis group. Fusicatenibacter was lower in both the Kawasaki disease and IgA vasculitis groups than in their respective healthy controls, and Intestinibacter was low in the Kawasaki disease group, but its expression was high in the IgA vasculitis group. Conclusion The dysbiosis of the intestinal flora in the three groups of patients with IgAN, Kawasaki disease and IgA vasculitis, its effect on the immunity of the organism and its role in the development of each disease group remain unclear, and the presence of their common differential flora may further provide new ideas for the association of the pathogenesis of the three diseases.
Collapse
Affiliation(s)
- Xueli Hu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ru Fan
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianbo Qing
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaheng Li
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi Duan
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China,Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China,*Correspondence: Yafeng Li,
| |
Collapse
|