1
|
Locatelli M, Farina C. Role of copper in central nervous system physiology and pathology. Neural Regen Res 2025; 20:1058-1068. [PMID: 38989937 PMCID: PMC11438321 DOI: 10.4103/nrr.nrr-d-24-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024] Open
Abstract
Copper is a transition metal and an essential element for the organism, as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs, including the central nervous system. Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B, Menkes disease and Wilson's disease, respectively, and also in multifactorial neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology, reports about unbalances in copper levels and/or distribution under disease, describes relevant animal models for human disorders where copper metabolism genes are dysregulated, and discusses relevant therapeutic approaches modulating copper availability. Overall, alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
Collapse
Affiliation(s)
- Martina Locatelli
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Roy S, Kakoty V, Sahebkar A, Md S, Kesharwani P. Environmental pollutants and alpha-synuclein toxicity in Parkinson's disease. Pathol Res Pract 2024; 263:155605. [PMID: 39353322 DOI: 10.1016/j.prp.2024.155605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's Disease (PD) is a chronic and progressive neurodebilitating disorder that affects both motor and non-motor functions. PD is the second most commonly occurring brain disorder after Alzheimer's disease. The incidence rate of PD was found to be 17 per 100000 per year. The prevalence of the disease is at its peak at age 70 and older. One of the major reasons for the failure to devise a complete therapeutic cure for PD is an inability to identify the exact pathological cause. Recent research has also stated that PD originates in the gut way before the symptoms begin to manifest in an affected person. This might be due to the transmission of pathological alpha-synuclein (α-syn) from the gut to the brain via the vagus nerve. The involvement of toxic environmental exposure in the generation of major disorders like cancer, brain disorders etc, is not an entirely new notion. Our genes are affected directly by the environment. Simultaneously, a number of environmental pollutants may contribute significantly to the trigger of alpha-synuclein misfolding in the brain during PD. In the present review, we will mainly focus on understanding the pathological cascade of PD and how it is triggered by environmental pollutants.
Collapse
Affiliation(s)
- Sudhamoy Roy
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi G.T Road, Phagwara, Punjab 144411, India
| | - Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi G.T Road, Phagwara, Punjab 144411, India; College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
3
|
Wang R, Hou L, Lu H, Zhang Y, Guo T, Zhou B, Zhao H, Xing M. Unveiling the interplay of MAPK/NF-κB/MLKL axis in brain health: Omega-3 as a promising candidates against copper neurotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122791. [PMID: 39357438 DOI: 10.1016/j.jenvman.2024.122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Excessive intake of copper (Cu) may lead to increased inflammatory responses in brain, which can cause damage to neurons and glial cells, thereby affecting normal brain function. Omega-3 (ω-3) is a common dietary supplement, particularly rich in DHA in the brain, known for its anti-inflammatory properties and its role in lipid balance regulation and structural maintenance. Here, ω-3 is supplemented to Cu-exposed chickens to assess its neuroprotection in vivo and in vitro. Pathologically, ω-3 significantly alleviated structural and functional abnormalities in brain under excess Cu, including barrier disruption, neuronal shrinkage necroptosis and increased release of inflammatory factors such as IL-1β. The molecular docking analyses unveiled high enrichment values of inflammation and MAPK pathway, with IL-1β gene enrichment the highest value. Mechanistically, DHA stabilized the active site of IL-1β, thereby reducing the activation of NF-κB signal and phosphorylation of MAPK/MLKL cascades, ultimately mitigating Cu-induced inflammatory effects. These mechanisms elucidate the action mode of Cu neurotoxicity from aspect of MAPK/NF-κB/MLKL axis and the promising neuroprotection of ω-3.
Collapse
Affiliation(s)
- Ruoqi Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Boran Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
4
|
Binesh A, Venkatachalam K. Copper in Human Health and Disease: A Comprehensive Review. J Biochem Mol Toxicol 2024; 38:e70052. [PMID: 39503199 DOI: 10.1002/jbt.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
This comprehensive review discusses the crucial role of copper in human health and disease as an essential trace mineral. It emphasizes the significance of copper while addressing potential risks from imbalances in copper levels, be it excessive or inadequate. The review outlines various challenges in copper research, including toxicity concerns, data limitations, metabolic complexities, genetic influences, nutrient interactions, and resource constraints. Despite these challenges, the review identifies specific research areas needing exploration, such as copper homeostasis regulation, transport mechanisms, gut microbiome interactions, immune function, neurodegenerative diseases, cardiovascular health, cancer, fertility, and reproductive health. The purpose of this review is to explore the important role of copper in human health and disease, which highlights the delicate balance required to avoid deficiency or toxicity. For the researchers and scientists, it provides the gaps in the research, so it aims to provide insights that could advance diagnostic and therapeutic strategies across various medical disciplines.
Collapse
Affiliation(s)
- Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Burkhart A, Johnsen KB, Skjørringe T, Nielsen AH, Routhe LJ, Hertz S, Møller LB, Thomsen LL, Moos T. Normalization of Fetal Cerebral and Hepatic Iron by Parental Iron Therapy to Pregnant Rats with Systemic Iron Deficiency without Anemia. Nutrients 2024; 16:3264. [PMID: 39408231 PMCID: PMC11479134 DOI: 10.3390/nu16193264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Iron (Fe) is a co-factor for enzymes of the developing brain necessitating sufficient supply. We investigated the effects of administering ferric derisomaltose/Fe isomaltoside (FDI) subcutaneously to Fe-deficient (ID) pregnant rats on cerebral and hepatic concentrations of essential metals and the expression of iron-relevant genes. METHODS Pregnant rats subjected to ID were injected with FDI on the day of mating (E0), 14 days into pregnancy (E14), or the day of birth (postnatal (P0)). The efficacy was evaluated by determination of cerebral and hepatic Fe, copper (Cu), and zinc (Zn) and gene expression of ferroportin, hepcidin, and ferritin H + L in pups on P0 and as adults on P70. RESULTS Females fed an ID diet (5.2 mg/kg Fe) had offspring with significantly lower cerebral and hepatic Fe compared to female controls fed a standard diet (158 mg/kg Fe). Cerebral Cu increased irrespective of supplying a standard diet or administering FDI combined with the standard diet. Hepatic hepcidin mRNA was significantly lower following ID. Cerebral hepcidin mRNA was hardly detectable irrespective of iron status. CONCLUSIONS In conclusion, administering FDI subcutaneously to ID pregnant rats on E0 normalizes fetal cerebral and hepatic Fe. When applied at later gestational ages, supplementation with additional Fe to the offspring is needed to normalize cerebral and hepatic Fe.
Collapse
Affiliation(s)
- Annette Burkhart
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (A.B.); (T.S.); (L.J.R.)
| | - Kasper Bendix Johnsen
- Section of Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Tina Skjørringe
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (A.B.); (T.S.); (L.J.R.)
| | - Asbjørn Haaning Nielsen
- Division of Water and Soil, Department of the Built Environment, Aalborg University, 9220 Aalborg, Denmark;
| | - Lisa Juul Routhe
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (A.B.); (T.S.); (L.J.R.)
| | - Sandra Hertz
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (A.B.); (T.S.); (L.J.R.)
| | - Lisbeth Birk Møller
- Center for Applied Human Genetics, Kennedy Center, Copenhagen University Hospital, 2600 Glostrup, Denmark;
| | | | - Torben Moos
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (A.B.); (T.S.); (L.J.R.)
| |
Collapse
|
6
|
Wang W, Zhang Z, Liu J, Kong L, Wang W, Leung CH, Wang J. Development of a NIR Iridium(III) Complex-Based Probe for the Selective Detection of Iron(II) Ions. BIOSENSORS 2024; 14:369. [PMID: 39194598 DOI: 10.3390/bios14080369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
As a commonly used metal ion, iron(II) (Fe2+) ions pose a potential threat to ecosystems and human health. Therefore, it is particularly important to develop analytical techniques for the rapid and accurate detection of Fe2+ ions. However, the development of near-infrared (NIR) luminescence probes with good photostability for Fe2+ ions remain challenging. In this work, we report a novel iridium(III) complex-based luminescence probe for the sensitive and rapid detection of Fe2+ ions in a solution based on an Fe2+-mediated reduction reaction. This probe is capable of sensitively detecting Fe2+ ions with a limit of detection (LOD) of 0.26 μM. Furthermore, this probe shows high photostability, and its luminescence remains stable under 365 nm irradiation over a time period of 30 min. To our knowledge, this is first iridium(III) complex-based NIR probe for the detection of Fe2+ ions. We believe that this work provides a new method for the detection of Fe2+ ions and has great potential for future applications in water quality testing and human monitoring.
Collapse
Affiliation(s)
- Wanyi Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Research & Development Institute, Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Zixi Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Research & Development Institute, Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Jingqi Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Research & Development Institute, Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Lingtan Kong
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Research & Development Institute, Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Wanhe Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Research & Development Institute, Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Jing Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Research & Development Institute, Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| |
Collapse
|
7
|
Zhong G, Wang X, Li J, Xie Z, Wu Q, Chen J, Wang Y, Chen Z, Cao X, Li T, Liu J, Wang Q. Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds. Curr Neuropharmacol 2024; 22:1650-1671. [PMID: 38037913 PMCID: PMC11284712 DOI: 10.2174/1570159x22666231103085859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 12/02/2023] Open
Abstract
Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Bo Y, Mu L, Yang Z, Li W, Jin M. Research progress on ferroptosis in gliomas (Review). Oncol Lett 2024; 27:36. [PMID: 38108075 PMCID: PMC10722542 DOI: 10.3892/ol.2023.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Glioma is the most prevalent type of brain tumor characterized by a poor 5-year survival rate and a high mortality rate. Malignant gliomas are commonly treated by surgery, chemotherapy and radiotherapy. However, due to toxicity and resistance to chemoradiotherapy, these treatments can be ineffective. Anxiety and depression are highly prevalent in patients with glioma, adversely affecting disease prognosis and posing societal concerns. Ferroptosis is a type of non-apoptotic, iron-dependent cell death characterized by the accumulation of lethal reactive oxygen species produced by iron metabolism, and it serves a key role in numerous diseases. Regulation of iron phagocytosis may serve as a therapeutic strategy for the development of novel glioma treatments. The present review discusses the mechanisms underlying the occurrence and regulation of ferroptosis, its role in the genesis and evolution of gliomas, and its association with glioma-related anxiety and depression. By exploring potential targets for glioma treatment, the present review provides a theoretical basis for the development of novel therapeutic strategies against glioma.
Collapse
Affiliation(s)
- Yujie Bo
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Luyan Mu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhao Yang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenhao Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ming Jin
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
9
|
Pan I, Umapathy S, Issac PK, Rahman MM, Guru A, Arockiaraj J. The bioaccessibility of adsorped heavy metals on biofilm-coated microplastics and their implication for the progression of neurodegenerative diseases. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1264. [PMID: 37782357 DOI: 10.1007/s10661-023-11890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MP) tiny fragments (< 5 mm) of conventional and specialized industrial polymers are persistent and ubiquitous in both aquatic and terrestrial ecosystem. Breathing, ingestion, consumption of food stuffs, potable water, and skin are possible routes of MP exposure that pose potential human health risk. Various microorganisms including bacteria, cyanobacteria, and microalgae rapidly colonized on MP surfaces which initiate biofilm formation. It gradually changed the MP surface chemistry and polymer properties that attract environmental metals. Physicochemical and environmental parameters like polymer type, dissolved organic matter (DOM), pH, salinity, ion concentrations, and microbial community compositions regulate metal adsorption on MP biofilm surface. A set of highly conserved proteins tightly regulates metal uptake, subcellular distribution, storage, and transport to maintain cellular homeostasis. Exposure of metal-MP biofilm can disrupt that cellular homeostasis to induce toxicities. Imbalances in metal concentrations therefore led to neuronal network dysfunction, ROS, mitochondrial damage in diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Prion disorder. This review focuses on the biofilm development on MP surfaces, factors controlling the growth of MP biofilm which triggered metal accumulation to induce neurotoxicological consequences in human body and stategies to reestablish the homeostasis. Thus, the present study gives a new approach on the health risks of heavy metals associated with MP biofilm in which biofilms trigger metal accumulation and MPs serve as a vector for those accumulated metals causing metal dysbiosis in human body.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India.
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
10
|
Liu J, Wu Q, Wu Q, Zhong G, Liang Y, Gu Y, Hu Y, Wang W, Hao N, Fang S, Li W, Pan H, Wang Q, Fang J. Modulating endoplasmic reticulum stress in APP/PS1 mice by Gomisin B and Osthole in Bushen-Yizhi formula: Synergistic effects and therapeutic implications for Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155023. [PMID: 37586159 DOI: 10.1016/j.phymed.2023.155023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with no effective cure. Targeting endoplasmic reticulum (ER) stress pathway may offer a novel approach to ameliorate cognitive deficits in AD. Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine (TCM) prescription, has shown potential benefits for AD. To facilitate the development of new therapeutic agents for AD, it is important to identify the active components and the underlying mechanisms of BSYZ against AD. PURPOSE The aim of this study was to systematically screen the active components of BSYZ that could improve learning and memory impairment in AD by modulating ER stress pathway. METHODS A drug-target (D-T) network was constructed to analyze the herbal components of BSYZ. Network proximity method was used to identify the potential anti-AD components that targeted ER stress and evaluate their synergistic effects. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and the literature evidence were considered to select promising candidates for further validation. The selected components were tested in vitro using an AD cell model (APPswe-SH-SY5Y). In vivo anti-AD effects of the components were assessed in APP/PS1 double-transgenic mice. RESULTS 58 potential anti-AD components targeting ER stress were detected by network proximity analysis, and 13 out of them were selected based on ADMET properties and literature evidence. In vitro experiments confirmed that 5 components, namely gomisin B, β-Carotene, imperatorin, chrysophanol, and osthole (OST), exhibited anti-AD effects on the APPswe-SH-SY5Y model. Moreover, network proximity analysis suggested that OST and Gomisin B might have synergistic effects on modulating ER stress. In vivo experiments demonstrated that OST, Gomisin B, OST+Gomisin B, and BSYZ all improved learning and memory function in APP/PS1 mice. Gomisin B and OST also restored cellular morphology and tissue structure in APP/PS1 mice. Thioflavine-S (Th-S) staining revealed that they reduced amyloid plaque deposition in the brain tissue of AD model mice. The qPCR results indicated that BSYZ, OST, and Gomisin B differentially regulated IRE1α, PERK, EIF2α, DDIT3, and Caspase 12 expression levels, while the OST and Gomisin B co-administration group showed better efficacy. This trend was further confirmed by immunofluorescence experiments. CONCLUSION This study identified the active components of BSYZ that could ameliorate learning and memory impairment in AD by targeting ER stress pathway. OST and Gomisin B exhibited synergistic effects on modulating ER stress and reducing amyloid plaque deposition in vivo. Overall, our study elucidated the molecular mechanisms of BSYZ and its active components in attenuating AD symptoms which suggested the therapeutic potential of TCM for AD.
Collapse
Affiliation(s)
- Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, 529099, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
| | - Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
| | - Yunhui Hu
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300402, China
| | - Wenjia Wang
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300402, China
| | - Ning Hao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
11
|
Chen G, Zhang J, Teng W, Luo Y, Ji X. FDX1 inhibits thyroid cancer malignant progression by inducing cuprotosis. Heliyon 2023; 9:e18655. [PMID: 37554785 PMCID: PMC10404994 DOI: 10.1016/j.heliyon.2023.e18655] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Cuprotosis is a recently identified cell death form that caused by intracellular copper accumulation and regulated by FDX1. This work aimed to explore the role of cuprotosis and the pivotal regulatory gene FDX1 in thyroid cancer development. We observed that expression of FDX1 in tumor section was notably lower than that in non-tumor sections in clinical samples. Induction of cuprotosis by elesclomol (ES) significantly repressed the in vitro and in vivo growth of thyroid cancer cells, simultaneously elevated Cu level and expression of FDX1, whereas depletion of FDX1 abolished these effects. Knockdown of FDX1 decreased the lipoylation level of DLAT and DLST in thyroid cancer cells, alleviated cuprotosis-induced cell death, simultaneously upregulated the levels of PA and α-KG. These findings demonstrated that FDX1 promotes the cuprotosis of thyroid cancer cells via regulating the lipoylation of DLAT.
Collapse
Affiliation(s)
- Gaoxiang Chen
- Department of Thyroid and Breast Surgery, Ningbo Medical Center Lihuili Hospital, No.57 XingNing Road, Ningbo, Zhejiang Province, China
| | - Jianan Zhang
- Department of Thyroid and Breast Surgery, Ningbo Medical Center Lihuili Hospital, No.57 XingNing Road, Ningbo, Zhejiang Province, China
| | - Weifeng Teng
- Department of Thyroid and Breast Surgery, Ningbo Medical Center Lihuili Hospital, No.57 XingNing Road, Ningbo, Zhejiang Province, China
| | - Yong Luo
- Department of Thyroid and Breast Surgery, Ningbo Medical Center Lihuili Hospital, No.57 XingNing Road, Ningbo, Zhejiang Province, China
| | - Xiaochun Ji
- Department of Thyroid and Breast Surgery, Ningbo Medical Center Lihuili Hospital, No.57 XingNing Road, Ningbo, Zhejiang Province, China
| |
Collapse
|
12
|
Schildroth S, Friedman A, White RF, Kordas K, Placidi D, Bauer JA, Webster TF, Coull BA, Cagna G, Wright RO, Smith D, Lucchini RG, Horton M, Claus Henn B. Associations of an industry-relevant metal mixture with verbal learning and memory in Italian adolescents: The modifying role of iron status. ENVIRONMENTAL RESEARCH 2023; 224:115457. [PMID: 36773645 PMCID: PMC10117691 DOI: 10.1016/j.envres.2023.115457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Biomarker concentrations of metals are associated with neurodevelopment, and these associations may be modified by nutritional status (e.g., iron deficiency). No prior study on associations of metal mixtures with neurodevelopment has assessed effect modification by iron status. OBJECTIVES We aimed to quantify associations of an industry-relevant metal mixture with verbal learning and memory among adolescents, and to investigate the modifying role of iron status on those associations. METHODS We used cross-sectional data from 383 Italian adolescents (10-14 years) living in proximity to ferroalloy industry. Verbal learning and memory was assessed using the California Verbal Learning Test for Children (CVLT-C), and metals were quantified in hair (manganese, copper, chromium) or blood (lead) using inductively coupled plasma mass spectrometry. Serum ferritin, a proxy for iron status, was measured using immunoassays. Covariate-adjusted associations of the metal mixture with CVLT subtests were estimated using Bayesian Kernel Machine Regression, and modification of the mixture associations by ferritin was examined. RESULTS Compared to the 50th percentile of the metal mixture, the 90th percentile was associated with a 0.12 standard deviation [SD] (95% CI = -0.27, 0.50), 0.16 SD (95% CI = -0.11, 0.44), and 0.11 SD (95% CI = -0.20, 0.43) increase in the number of words recalled for trial 5, long delay free, and long delay cued recall, respectively. For an increase from its 25th to 75th percentiles, copper was beneficially associated the recall trials when other metals were fixed at their 50th percentiles (for example, trial 5 recall: β = 0.31, 95% CI = 0.14, 0.48). The association between copper and trial 5 recall was stronger at the 75th percentile of ferritin, compared to the 25th or 50th percentiles. CONCLUSIONS In this metal mixture, copper was beneficially associated with neurodevelopment, which was more apparent at higher ferritin concentrations. These findings suggest that metal associations with neurodevelopment may depend on iron status, which has important public health implications.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA.
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA; Department of Neurology, Boston University, Boston MA, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Julia A Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston MA, USA
| | - Giuseppa Cagna
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz CA, USA
| | - Roberto G Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, Florida International University, Miami FL, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| |
Collapse
|
13
|
Li S, Ritz B, Gong Y, Cockburn M, Folle AD, Del Rosario I, Yu Y, Zhang K, Castro E, Keener AM, Bronstein J, Paul KC. Proximity to residential and workplace pesticides application and the risk of progression of Parkinson's diseases in Central California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160851. [PMID: 36526213 PMCID: PMC11121507 DOI: 10.1016/j.scitotenv.2022.160851] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pesticide exposure has consistently been associated with Parkinson's disease (PD) onset. Yet, fewer epidemiologic studies have examined whether pesticides influence PD motor and non-motor symptom progression. OBJECTIVES Using a geographic information system tool that integrates agricultural pesticide use reports and land use records to derive ambient exposures at residences and workplaces, we assessed associations between specific pesticides previously related to PD onset with PD symptom progression in two PD patient cohorts living in agricultural regions of California. METHODS We calculated the pounds of pesticide applied agriculturally near each participant's residential or occupational addresses from 1974 to the year of PD diagnosis, using a geographic information system tool that links the California Pesticide Use Reports database to land use data. We examined 53 pesticides selected a priori as they have previously been associated with PD onset. We longitudinally followed two PD patient cohorts (PEG1 N = 242, PEG2 N = 259) for an average of 5.0 years (SD ± 3.5) and 2.7 years (SD ± 1.6) respectively and assessed PD symptoms using the movement disorder specialist-administered Unified Parkinson's disease Rating Scale part III (UPDRS), Mini-Mental State Examination (MMSE), and Geriatric Depression Scale (GDS). Weighted time-to-event regression models were implemented to estimate effects. RESULTS Ten agricultural pesticides, including copper sulfate (pentahydrate), 2-methyl-4-chlorophenoxyacetic acid (MCPA) dimethylamine salt, tribufos, sodium cacodylate, methamidophos, ethephon, propargite, bromoxynil octanoate, monosodium methanearsonate (MSMA), and dicamba, were associated with faster symptom progression. Among these pesticides, residential or workplace proximity to higher amounts of copper sulfate (pentahydrate) and MCPA (dimethylamine salt) was associated with all three progression endpoints (copper sulfate: HRs = 1.22-1.36, 95 % CIs = 1.03-1.73; MCPA: HRs = 1.27-1.35, 95 % CIs = 1.02-1.70). CONCLUSIONS Our findings suggest that pesticide exposure may not only be relevant for PD onset but also PD progression phenotypes. We have implicated ten specific pesticide active ingredients in faster PD motor and non-motor decline.
Collapse
Affiliation(s)
- Shiwen Li
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Yufan Gong
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, USA
| | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Yu Yu
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Emily Castro
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Adrienne M Keener
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jeff Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Inhibition of VDAC1 Rescues A β 1-42-Induced Mitochondrial Dysfunction and Ferroptosis via Activation of AMPK and Wnt/ β-Catenin Pathways. Mediators Inflamm 2023; 2023:6739691. [PMID: 36816741 PMCID: PMC9937775 DOI: 10.1155/2023/6739691] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 02/12/2023] Open
Abstract
Beta-amyloid (Aβ) accumulation in the brains of Alzheimer's disease (AD) patients leads to mitochondrial dysfunction and ferroptosis in neurons. Voltage-dependent anion channel 1 (VDAC1) is a major protein in the mitochondrial outer membrane. It has been reported that VDAC1 associated with mitochondrial dysfunction and ferroptosis. However, the mechanism by which VDAC1 regulates mitochondrial dysfunction and ferroptosis of neurons in AD remains unclear. This study is aimed at investigating the mechanism of action of VDAC1 in mitochondrial dysfunction and ferroptosis in neurons of the AD model. In this study, we determined cell viability after treatment with Aβ 1-42 via the MTT assay. The SOD, MDA, ROS, and MMP production was measured via the SOD kit, MDA kit, DCFDA staining, and JC-1 staining. The memory abilities of mice were detected via the Morris water maze test. The expression of AMPK/mTOR, Wnt/β-catenin, and GPX4 regulated by VDAC1 was detected via western blotting. Our present study showed that PC12 cells had decreased cell viability, increased LDH release, and decreased GPX4 expression after Aβ 1-42 treatment. Meanwhile, Aβ 1-42 induced MMP and SOD downregulation and increased MDA and ROS generation in PC12 cells. In addition, the expression of VDAC1 is increased in the brain tissue of AD mice and Aβ 1-42-treated PC12 cells. Further investigation of the role of VDAC1 in regulating AD found that all effects induced by Aβ 1-42 were reversed by inhibition of VDAC1. Additionally, inhibition of VDAC1 activates the AMPK/mTOR and Wnt/β-catenin pathways. Taken together, these findings demonstrate that inhibition of VDAC1 alleviates mitochondrial dysfunction and ferroptosis in AD neurons by activating AMPK/mTOR and Wnt/β-catenin.
Collapse
|
15
|
Azemin WA, Alias N, Ali AM, Shamsir MS. Structural and functional characterisation of HepTH1-5 peptide as a potential hepcidin replacement. J Biomol Struct Dyn 2023; 41:681-704. [PMID: 34870559 DOI: 10.1080/07391102.2021.2011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia.,Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nadiawati Alias
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Johor, Malaysia
| |
Collapse
|
16
|
Du Y, Chen X, Zhang B, Jin X, Wan Z, Zhan M, Yan J, Zhang P, Ke P, Huang X, Han L, Zhang Q. Identification of Copper Metabolism Related Biomarkers, Polygenic Prediction Model, and Potential Therapeutic Agents in Alzheimer's Disease. J Alzheimers Dis 2023; 95:1481-1496. [PMID: 37694370 DOI: 10.3233/jad-230565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND The underlying pathogenic genes and effective therapeutic agents of Alzheimer's disease (AD) are still elusive. Meanwhile, abnormal copper metabolism is observed in AD brains of both human and mouse models. OBJECTIVE To investigate copper metabolism-related gene biomarkers for AD diagnosis and therapy. METHODS The AD datasets and copper metabolism-related genes (CMGs) were downloaded from GEO and GeneCards database, respectively. Differentially expressed CMGs (DE-CMGs) performed through Limma, functional enrichment analysis and the protein-protein interaction were used to identify candidate key genes by using CytoHubba. And these candidate key genes were utilized to construct a prediction model by logistic regression analysis for AD early diagnosis. Furthermore, ROC analysis was conducted to identify a single gene with AUC values greater than 0.7 by GSE5281. Finally, the single gene biomarker was validated by quantitative real-time polymerase chain reaction (qRT-PCR) in AD clinical samples. Additionally, immune cell infiltration in AD samples and potential therapeutic drugs targeting the identified biomarkers were further explored. RESULTS A polygenic prediction model for AD based on copper metabolism was established by the top 10 genes, which demonstrated good diagnostic performance (AUC values). COX11, LDHA, ATOX1, SCO1, and SOD1 were identified as blood biomarkers for AD early diagnosis. 20 agents targeting biomarkers were retrieved from DrugBank database, some of which have been proven effective for the treatment of AD. CONCLUSIONS The five blood biomarkers and copper metabolism-associated model can differentiate AD patients from non-demented individuals and aid in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuanyuan Du
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Chen
- Clinical Laboratory, Yangzhou Wutaishan Hospital, Yangzhou, Jiangsu, China
| | - Bin Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Jin
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zemin Wan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Min Zhan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Pengwei Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Peifeng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Liqiao Han
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Qiaoxuan Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Hagarty-Waite KA, Totten MS, Pierce M, Armah SM, Erikson KM. Influence of Sex and Strain on Hepatic and Adipose Tissue Trace Element Concentrations and Gene Expression in C57BL/6J and DBA/2J High Fat Diet Models. Int J Mol Sci 2022; 23:ijms232213778. [PMID: 36430257 PMCID: PMC9697485 DOI: 10.3390/ijms232213778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The objective of this study was to determine the influence of sex and strain on the dysregulation of trace element concentration and associative gene expression due to diet induced obesity in adipose tissue and the liver. Male and female C57BL/6J (B6J) and DBA/2J (D2J) were randomly assigned to a normal-fat diet (NFD) containing 10% kcal fat/g or a mineral-matched high-fat diet (HFD) containing 60% kcal fat/g for 16 weeks. Liver and adipose tissue were assessed for copper, iron, manganese, and zinc concentrations and related changes in gene expression. Notable findings include three-way interactions of diet, sex, and strain amongst adipose tissue iron concentrations (p = 0.005), adipose hepcidin expression (p = 0.007), and hepatic iron regulatory protein (IRP) expression (p = 0.012). Cd11c to Cd163 ratio was increased in adipose tissue due to HFD amongst all biological groups except B6J females, for which tissue iron concentrations were reduced due to HFD (p = 0.002). Liver divalent metal transporter 1 (DMT-1) expression was increased due to HFD amongst B6J males (p < 0.005) and females (p < 0.004), which coincides with the reduction in hepatic iron concentrations found in these biological groups (p < 0.001). Sex, strain, and diet affected trace element concentration, the expression of genes that regulate trace element homeostasis, and the expression of macrophages that contribute to tissue iron-handling in adipose tissue. These findings suggest that sex and strain may be key factors that influence the adaptive capacity of iron mismanagement in adipose tissue and its subsequent consequences, such as insulin resistance.
Collapse
Affiliation(s)
| | - Melissa S. Totten
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
- Department of Chemistry and Physics, Salem College, Winston-Salem, NC 27101, USA
| | - Matthew Pierce
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Seth M. Armah
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
- Correspondence:
| |
Collapse
|
18
|
Zhao J, Wang Y, Tao L, Chen L. Iron Transporters and Ferroptosis in Malignant Brain Tumors. Front Oncol 2022; 12:861834. [PMID: 35530363 PMCID: PMC9071296 DOI: 10.3389/fonc.2022.861834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Malignant brain tumors represent approximately 1.5% of all malignant tumors. The survival rate among patients is relatively low and the mortality rate of pediatric brain tumors ranks first among all childhood malignant tumors. At present malignant brain tumors remain incurable. Although some tumors can be treated with surgery and chemotherapy, new treatment strategies are urgent owing to the poor clinical prognosis. Iron is an essential trace element in many biological processes of the human body. Iron transporters play a crucial role in iron absorption and transport. Ferroptosis, an iron-dependent form of nonapoptotic cell death, is characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS) derived from iron metabolism. Recently, compelling evidence has shown that inducing ferroptosis of tumor cells is a potential therapeutic strategy. In this review, we will briefly describe the significant regulatory factors of ferroptosis, iron, its absorption and transport under physiological conditions, especially the function of iron transporters. Then we will summarize the relevant mechanisms of ferroptosis and its role in malignant brain tumors, wherein the role of transporters is not to be ignored. Finally, we will introduce the current research progress in the treatment of malignant brain tumors by inducing ferroptosis in order to explain the current biological principles of potential treatment targets and treatment strategies for malignant brain tumors.
Collapse
Affiliation(s)
- Jingyu Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Yaqi Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Lei Tao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ligong Chen,
| |
Collapse
|
19
|
Comparative assessment of blood Metal/metalloid levels, clinical heterogeneity, and disease severity in amyotrophic lateral sclerosis patients. Neurotoxicology 2022; 89:12-19. [PMID: 35007622 DOI: 10.1016/j.neuro.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is an unremitting neurodegenerative (ND) disease characterized by progressive and fatal loss of motor neuron function. While underlying mechanisms for ALS susceptibility are complex, current understanding suggests that interactions between age, genetic, and environmental factors may be the key. Environmental exposure to metal/metalloids has been implicated in various ND diseases including ALS, Alzheimer's Disease (AD), and Parkinson's Disease (PD). However, most of currently available population-based ALS studies in relation to metal exposure are based on individuals from European ancestry, while East Asian populations, especially cohorts from China, are less well-characterized. This study aims to examine the association between metal/metalloid levels and ALS onset by evaluating blood cadmium (Cd), lead (Pb), Cu, Zn, calcium (Ca), magnesium (Mg), and iron (Fe) levels in controls and sporadic ALS patients from North Western China. We report that Cu and Fe levels are found at higher levels in ALS patients compared to the controls. Spinal and bulbar onset patients show significant difference in Ca levels. Moreover, Cd, Pb, Cu, and Ca levels are positively correlated with high disease severity. Results from this study may provide new insights for understanding not only the role of metal/metalloids in ALS susceptibility, but also progression and forms of onset.
Collapse
|
20
|
|
21
|
Adamson SXF, Zheng W, Agim ZS, Du S, Fleming S, Shannahan J, Cannon J. Systemic Copper Disorders Influence the Olfactory Function in Adult Rats: Roles of Altered Adult Neurogenesis and Neurochemical Imbalance. Biomolecules 2021; 11:1315. [PMID: 34572528 PMCID: PMC8471899 DOI: 10.3390/biom11091315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Disrupted systemic copper (Cu) homeostasis underlies neurodegenerative diseases with early symptoms including olfactory dysfunction. This study investigated the impact of Cu dyshomeostasis on olfactory function, adult neurogenesis, and neurochemical balance. Models of Cu deficiency (CuD) and Cu overload (CuO) were established by feeding adult rats with Cu-restricted diets plus ip. injection of a Cu chelator (ammonium tetrathiomolybdate) and excess Cu, respectively. CuD reduced Cu levels in the olfactory bulb (OB), subventricular zone (SVZ), rostral migratory stream (RMS), and striatum, while CuO increased Cu levels in these areas. The buried pellet test revealed both CuD and CuO prolonged the latency to uncover food. CuD increased neural proliferation and stem cells in the SVZ and newly differentiated neurons in the OB, whereas CuO caused opposite alterations, suggesting a "switch"-type function of Cu in regulating adult neurogenesis. CuO increased GABA in the OB, while both CuD and CuO reduced DOPAC, HVA, 5-HT and the DA turnover rate in olfactory-associated brain regions. Altered mRNA expression of Cu transport and storage proteins in tested brain areas were observed under both conditions. Together, results support an association between systemic Cu dyshomeostasis and olfactory dysfunction. Specifically, altered adult neurogenesis along the SVZ-RMS-OB pathway and neurochemical imbalance could be the factors that may contribute to olfactory dysfunction.
Collapse
Affiliation(s)
- Sherleen Xue-Fu Adamson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zeynep Sena Agim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sarah Du
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sheila Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Jason Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Mitonuclear mismatch alters nuclear gene expression in naturally introgressed Rhinolophus bats. Front Zool 2021; 18:42. [PMID: 34488775 PMCID: PMC8419968 DOI: 10.1186/s12983-021-00424-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 01/23/2023] Open
Abstract
Background Mitochondrial function involves the interplay between mitochondrial and nuclear genomes. Such mitonuclear interactions can be disrupted by the introgression of mitochondrial DNA between taxa or divergent populations. Previous studies of several model systems (e.g. Drosophila) indicate that the disruption of mitonuclear interactions, termed mitonuclear mismatch, can alter nuclear gene expression, yet few studies have focused on natural populations. Results Here we study a naturally introgressed population in the secondary contact zone of two subspecies of the intermediate horseshoe bat (Rhinolophus affinis), in which individuals possess either mitonuclear matched or mismatched genotypes. We generated transcriptome data for six tissue types from five mitonuclear matched and five mismatched individuals. Our results revealed strong tissue-specific effects of mitonuclear mismatch on nuclear gene expression with the largest effect seen in pectoral muscle. Moreover, consistent with the hypothesis that genes associated with the response to oxidative stress may be upregulated in mitonuclear mismatched individuals, we identified several such gene candidates, including DNASE1L3, GPx3 and HSPB6 in muscle, and ISG15 and IFI6 in heart. Conclusion Our study reveals how mitonuclear mismatch arising from introgression in natural populations is likely to have fitness consequences. Underlying the processes that maintain mitonuclear discordance is a step forward to understand the role of mitonuclear interactions in population divergence and speciation. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00424-x.
Collapse
|
23
|
Signore MA, De Pascali C, Giampetruzzi L, Siciliano PA, Francioso L. Gut-on-Chip microphysiological systems: Latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
24
|
Colombo E, Triolo D, Bassani C, Bedogni F, Di Dario M, Dina G, Fredrickx E, Fermo I, Martinelli V, Newcombe J, Taveggia C, Quattrini A, Comi G, Farina C. Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proc Natl Acad Sci U S A 2021; 118:e2025804118. [PMID: 34183414 PMCID: PMC8271600 DOI: 10.1073/pnas.2025804118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Demyelination is a key pathogenic feature of multiple sclerosis (MS). Here, we evaluated the astrocyte contribution to myelin loss and focused on the neurotrophin receptor TrkB, whose up-regulation on the astrocyte finely demarcated chronic demyelinated areas in MS and was paralleled by neurotrophin loss. Mice lacking astrocyte TrkB were resistant to demyelination induced by autoimmune or toxic insults, demonstrating that TrkB signaling in astrocytes fostered oligodendrocyte damage. In vitro and ex vivo approaches highlighted that astrocyte TrkB supported scar formation and glia proliferation even in the absence of neurotrophin binding, indicating TrkB transactivation in response to inflammatory or toxic mediators. Notably, our neuropathological studies demonstrated copper dysregulation in MS and model lesions and TrkB-dependent expression of copper transporter (CTR1) on glia cells during neuroinflammation. In vitro experiments evidenced that TrkB was critical for the generation of glial intracellular calcium flux and CTR1 up-regulation induced by stimuli distinct from neurotrophins. These events led to copper uptake and release by the astrocyte, and in turn resulted in oligodendrocyte loss. Collectively, these data demonstrate a pathogenic demyelination mechanism via the astrocyte release of copper and open up the possibility of restoring copper homeostasis in the white matter as a therapeutic target in MS.
Collapse
Affiliation(s)
- Emanuela Colombo
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Daniela Triolo
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Claudia Bassani
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Francesco Bedogni
- San Raffaele Rett Research Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marco Di Dario
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giorgia Dina
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Evelien Fredrickx
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Isabella Fermo
- Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Vittorio Martinelli
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, WC1N 1PJ, London, UK
| | - Carla Taveggia
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giancarlo Comi
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Cinthia Farina
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy;
| |
Collapse
|
25
|
Chansiw N, Kulprachakarn K, Paradee N, Prommaban A, Srichairatanakool S. Protection of Iron-Induced Oxidative Damage in Neuroblastoma (SH-SY5Y) Cells by Combination of 1-(N-Acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one and Green Tea Extract. Bioinorg Chem Appl 2021; 2021:5539666. [PMID: 33986790 PMCID: PMC8079199 DOI: 10.1155/2021/5539666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/11/2021] [Indexed: 01/03/2023] Open
Abstract
Iron is a crucial trace element and essential for many cellular processes; however, excessive iron accumulation can induce oxidative stress and cell damage. Neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, have been associated with altered iron homoeostasis causing altered iron distribution and accumulation in brain tissue. This study aims to investigate the protective effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) in combination with green tea extract (GTE) on iron-induced oxidative stress in neuroblastoma (SH-SY5Y) cells. Cells were cultured in medium with or without ferric chloride loading. Their viability and mitochondrial activity were assessed using MTT and JC-1 staining methods. Levels of the cellular labile iron pool (LIP), reactive oxygen species (ROS), and lipid-peroxidation products were determined using calcein acetoxymethyl ester, 2',7'-dichlorohydrofluorescein diacetate, and TBARS-based assays, respectively. The viability of iron-loaded cells was found to be significantly increased after treatment with CM1 (10 µM) for 24 h. CM1 co-treatment with GTE resulted in a greater protective effect than their monotherapy. Combination of CM1 and GTE also reduced mitochondrial disruption and LIP content and ROS and TBARS production. In conclusion, the combination of CM1 and GTE exhibits protection against iron-induced oxidative stress in neuroblastoma cells.
Collapse
Affiliation(s)
- Nittaya Chansiw
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kanokwan Kulprachakarn
- Research Institute for Health Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narisara Paradee
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Adchara Prommaban
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somdet Srichairatanakool
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
26
|
Totten MS, Pierce DM, Erikson KM. The influence of sex and strain on trace element dysregulation in the brain due to diet-induced obesity. J Trace Elem Med Biol 2021; 63:126661. [PMID: 33035813 DOI: 10.1016/j.jtemb.2020.126661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The objective of this study was to identify interaction effects between diet, sex, and strain on trace element dysregulation and gene expression alterations due to diet-induced obesity (DIO) in the hippocampus, striatum, and midbrain. METHODS Male and female C57BL/6 J (B6 J) and DBA/2 J (D2 J) mice were fed either a low fat (10 % kcal) diet (LFD) or high fat (60 % kcal) diet (HFD) for 16 weeks, then assessed for trace element concentrations and gene expression patterns in the brain. RESULTS In the hippocampus, zinc was significantly increased by 48 % in D2 J males but decreased by 44 % in D2 J females, and divalent metal transporter 1 was substantially upregulated in B6 J males due to DIO. In the striatum, iron was significantly elevated in B6 J female mice, and ceruloplasmin was significantly upregulated in D2 J female mice due to DIO. In the midbrain, D2 J males fed a HFD had a 48 % reduction in Cu compared to the LFD group, and D2 J females had a 37 % reduction in Cu compared to the control group. CONCLUSIONS The alteration of trace element homeostasis and gene expression due to DIO was brain-region dependent and was highly influenced by sex and strain. A significant three-way interaction between diet, sex, and strain was discovered for zinc in the hippocampus (for mice fed a HFD, zinc increased in male D2 Js, decreased in female D2 Js, and had no effect in B6 J mice). A significant diet by sex interaction was observed for iron in the striatum (iron increased only in female mice fed a HFD). A main effect of decreased copper in the midbrain was found for the D2 J strain fed a HFD. These results emphasize the importance of considering sex and genetics as biological factors when investigating potential associations between DIO and neurodegenerative disease.
Collapse
Affiliation(s)
- Melissa S Totten
- Department of Nutrition, UNC Greensboro, 1400 Spring Garden Street, Greensboro, NC, 27412, United States.
| | - Derek M Pierce
- Department of Nutrition, UNC Greensboro, 1400 Spring Garden Street, Greensboro, NC, 27412, United States.
| | - Keith M Erikson
- Department of Nutrition, UNC Greensboro, 1400 Spring Garden Street, Greensboro, NC, 27412, United States.
| |
Collapse
|
27
|
Ucuncu E, Rajamani K, Wilson MSC, Medina-Cano D, Altin N, David P, Barcia G, Lefort N, Banal C, Vasilache-Dangles MT, Pitelet G, Lorino E, Rabasse N, Bieth E, Zaki MS, Topcu M, Sonmez FM, Musaev D, Stanley V, Bole-Feysot C, Nitschké P, Munnich A, Bahi-Buisson N, Fossoud C, Giuliano F, Colleaux L, Burglen L, Gleeson JG, Boddaert N, Saiardi A, Cantagrel V. MINPP1 prevents intracellular accumulation of the chelator inositol hexakisphosphate and is mutated in Pontocerebellar Hypoplasia. Nat Commun 2020; 11:6087. [PMID: 33257696 PMCID: PMC7705663 DOI: 10.1038/s41467-020-19919-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1−/− induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis. Tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, the authors describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the MINPP1 gene, characterised by intracellular imbalance of inositol polyphosphate metabolism.
Collapse
Affiliation(s)
- Ekin Ucuncu
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Karthyayani Rajamani
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Miranda S C Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
| | - Daniel Medina-Cano
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Nami Altin
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Pierre David
- Transgenesis Platform, Laboratoire d'Expérimentation Animale et Transgenèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, 75015, Paris, France
| | - Giulia Barcia
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France.,Département de Génétique Médicale, AP-HP, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Nathalie Lefort
- Université de Paris, iPSC Core Facility, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Céline Banal
- Université de Paris, iPSC Core Facility, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | | | - Gaële Pitelet
- Service de Neuropédiatrie, CHU Nice, 06200, Nice, France
| | - Elsa Lorino
- ESEAN, 44200 Nantes, Service de maladies chroniques de l'enfant, CHU Nantes, 44093, Nantes, France
| | - Nathalie Rabasse
- Service de pédiatrie, hôpital d'Antibes-Juan-les-Pins, 06600, Antibes-Juan-les-Pins, France
| | - Eric Bieth
- Service de Génétique Médicale, CHU Toulouse, 31059, Toulouse, France
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Meral Topcu
- Department of Child Neurology, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Fatma Mujgan Sonmez
- Guven Hospital, Child Neurology Department, Ankara, Turkey.,Department of Child Neurology, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Damir Musaev
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christine Bole-Feysot
- Université de Paris, Genomics Platform, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Patrick Nitschké
- Université de Paris, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Arnold Munnich
- Université de Paris, Translational Genetics Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Nadia Bahi-Buisson
- Université de Paris, Genetics and Development of the Cerebral Cortex Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Catherine Fossoud
- Centre de Référence des Troubles des Apprentissages, Hôpitaux Pédiatriques de Nice CHU-Lenval, 06200, Nice, France
| | - Fabienne Giuliano
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nice, 06202, Nice, France
| | - Laurence Colleaux
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Lydie Burglen
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France.,Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, 75012, Paris, France
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nathalie Boddaert
- Département de radiologie pédiatrique, INSERM UMR 1163 and INSERM U1000, AP-HP, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK.
| | - Vincent Cantagrel
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France.
| |
Collapse
|
28
|
Dales JP, Desplat-Jégo S. Metal Imbalance in Neurodegenerative Diseases with a Specific Concern to the Brain of Multiple Sclerosis Patients. Int J Mol Sci 2020; 21:E9105. [PMID: 33266021 PMCID: PMC7730295 DOI: 10.3390/ijms21239105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence that deregulation of metals contributes to a vast range of neurodegenerative diseases including multiple sclerosis (MS). MS is a chronic inflammatory disease of the central nervous system (CNS) manifesting disability and neurological symptoms. The precise origin of MS is unknown, but the disease is characterized by focal inflammatory lesions in the CNS associated with an autoimmune reaction against myelin. The treatment of this disease has mainly been based on the prescription of immunosuppressive and immune-modulating agents. However, the rate of progressive disability and early mortality is still worrisome. Metals may represent new diagnostic and predictive markers of severity and disability as well as innovative candidate drug targets for future therapies. In this review, we describe the recent advances in our understanding on the role of metals in brain disorders of neurodegenerative diseases and MS patients.
Collapse
Affiliation(s)
- Jean-Philippe Dales
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Pavillon Etoile, Pôle de Biologie, Service d’anatomie-pathologie, CEDEX 20, 13915 Marseille, France
| | - Sophie Desplat-Jégo
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Pôle de Biologie, Service d’Immunologie, 13005 Marseille, France
| |
Collapse
|
29
|
Al-Radaideh A, El-Haj N, Hijjawi N. Iron deposition and atrophy in cerebral grey matter and their possible association with serum iron in relapsing-remitting multiple sclerosis. Clin Imaging 2020; 69:238-242. [PMID: 32977196 DOI: 10.1016/j.clinimag.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The present study was carried out to investigate any possible linkage between cerebral grey matter volumetric, iron changes, white matter's lesions load and serum iron levels in a group of relapsing-remitting multiple sclerosis (RRMS) patients. MATERIALS AND METHODS Sixty-five RRMS patients along with thirty-four age-matched healthy controls (HCs) were recruited. Serum samples were isolated from blood samples which were collected in vacutainer plain tubes individually from both groups. Both groups were scanned at 1.5 T magnetic resonance imaging (MRI) using the following 3D sequences; T1-weighted gradient echo (MPRAGE), T2*-weighted gradient echo and T2-weighted fluid-attenuated inversion recovery (FLAIR). RESULTS Significant differences were observed between the RRMS patients and HCs for cortical and deep grey matter (dGM) volumes where cortical and dGM volumes in RRMS patient were significantly smaller than those in HCs. While iron deposition in the cortex, putamen (PT) and globus pallidus (GP) of RRMS patients were significantly higher than those of HCs, iron levels in thalamus (TH) and serum were significantly lower in RRMS compared to those in HCs. Except for T2 lesion load, none of volumetric measures showed any association with patients' disability status. Cerebral grey matter's iron changes did not show any association with those of serum. CONCLUSION Smaller cortical and subcortical grey matter volumes in RRMS patients compared to HCs were detected. None of the volumetric measures showed any association with patients' disability status. RRMS patients showed increased iron levels in the PT, GP and cortex and decreased levels in the TH and serum.
Collapse
Affiliation(s)
- Ali Al-Radaideh
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Nawal El-Haj
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
30
|
Zhu X, Victor TW, Ambi A, Sullivan JK, Hatfield J, Xu F, Miller LM, Van Nostrand WE. Copper accumulation and the effect of chelation treatment on cerebral amyloid angiopathy compared to parenchymal amyloid plaques. Metallomics 2020; 12:539-546. [PMID: 32104807 DOI: 10.1039/c9mt00306a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Accumulation of fibrillar amyloid β-protein (Aβ) in parenchymal plaques and in blood vessels of the brain, the latter condition known as cerebral amyloid angiopathy (CAA), are hallmark pathologies of Alzheimer's disease (AD) and related disorders. Cerebral amyloid deposits have been reported to accumulate various metals, most notably copper and zinc. Here we show that, in human AD, copper is preferentially accumulated in amyloid-containing brain blood vessels compared to parenchymal amyloid plaques. In light of this observation, we evaluated the effects of reducing copper levels in Tg2576 mice, a transgenic model of AD amyloid pathologies. The copper chelator, tetrathiomolybdate (TTM), was administered to twelve month old Tg2576 mice for a period of five months. Copper chelation treatment significantly reduced both CAA and parenchymal plaque load in Tg2576 mice. Further, copper chelation reduced parenchymal plaque copper content but had no effect on CAA copper levels in this model. These findings indicate that copper is associated with both CAA deposits and parenchymal amyloid plaques in humans, but less in Tg2576 mice. TTM only reduces copper levels in plaques in Tg2576 mice. Reducing copper levels in the brain may beneficially lower amyloid pathologies associated with AD.
Collapse
Affiliation(s)
- Xiayoue Zhu
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yan N, Zhang J. Iron Metabolism, Ferroptosis, and the Links With Alzheimer's Disease. Front Neurosci 2020; 13:1443. [PMID: 32063824 PMCID: PMC7000453 DOI: 10.3389/fnins.2019.01443] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Iron is an essential transition metal for numerous biologic processes in mammals. Iron metabolism is regulated via several coordination mechanisms including absorption, utilization, recycling, and storage. Iron dyshomeostasis can result in intracellular iron retention, thereby damaging cells, tissues, and organs through free oxygen radical generation. Numerous studies have shown that brain iron overload is involved in the pathological mechanism of neurodegenerative disease including Alzheimer’s disease (AD). However, the underlying mechanisms have not been fully elucidated. Ferroptosis, a newly defined iron-dependent form of cell death, which is distinct from apoptosis, necrosis, autophagy, and other forms of cell death, may provide us a new viewpoint. Here, we set out to summarize the current knowledge of iron metabolism and ferroptosis, and review the contributions of iron and ferroptosis to AD.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Iron Redox Chemistry and Implications in the Parkinson's Disease Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4609702. [PMID: 31687080 PMCID: PMC6803728 DOI: 10.1155/2019/4609702] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
The etiology of Parkinson's disease (PD) is linked with cellular inclusions in the substantia nigra pars compacta region of the brain that are enriched in the misfolded presynaptic protein α-synuclein (αS) and death of the dopaminergic neurons. Brain iron homeostasis governs both neurotransmission and neurodegeneration; hence, the role of iron in PD progression and neuronal health is apparent. Elevated iron deposits become prevalent in the cerebral region upon aging and even more so in the PD brain. Structural as well as oxidative modifications can result from coordination of αS with redox active iron, which could have functional and/or pathological implications. In this review, we will discuss iron-mediated αS aggregation, alterations in iron metabolism, and the role of the iron-dopamine couple. Moreover, iron interactions with N-terminally acetylated αS, the physiologically relevant form of the human protein, will be addressed to shed light on the current understanding of protein dynamics and the physiological environment in the disease state. Oxidative pathways and biochemical alterations resulting from aberrant iron-induced chemistry are the principal focus of this review in order to highlight the plethora of research that has uncovered this emerging dichotomy of iron playing both functional and disruptive roles in PD pathology.
Collapse
|
33
|
Markova V, Holm C, Pinborg AB, Thomsen LL, Moos T. Impairment of the Developing Human Brain in Iron Deficiency: Correlations to Findings in Experimental Animals and Prospects for Early Intervention Therapy. Pharmaceuticals (Basel) 2019; 12:ph12030120. [PMID: 31416268 PMCID: PMC6789712 DOI: 10.3390/ph12030120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Due to the necessity of iron for a variety of cellular functions, the developing mammalian organism is vulnerable to iron deficiency, hence causing structural abnormalities and physiological malfunctioning in organs, which are particularly dependent on adequate iron stores, such as the brain. In early embryonic life, iron is already needed for proper development of the brain with the proliferation, migration, and differentiation of neuro-progenitor cells. This is underpinned by the widespread expression of transferrin receptors in the developing brain, which, in later life, is restricted to cells of the blood–brain and blood–cerebrospinal fluid barriers and neuronal cells, hence ensuring a sustained iron supply to the brain, even in the fully developed brain. In embryonic human life, iron deficiency is thought to result in a lower brain weight, with the impaired formation of myelin. Studies of fully developed infants that have experienced iron deficiency during development reveal the chronic and irreversible impairment of cognitive, memory, and motor skills, indicating widespread effects on the human brain. This review highlights the major findings of recent decades on the effects of gestational and lactational iron deficiency on the developing human brain. The findings are correlated to findings of experimental animals ranging from rodents to domestic pigs and non-human primates. The results point towards significant effects of iron deficiency on the developing brain. Evidence would be stronger with more studies addressing the human brain in real-time and the development of blood biomarkers of cerebral disturbance in iron deficiency. Cerebral iron deficiency is expected to be curable with iron substitution therapy, as the brain, privileged by the cerebral vascular transferrin receptor expression, is expected to facilitate iron extraction from the circulation and enable transport further into the brain.
Collapse
Affiliation(s)
- Veronika Markova
- Department of Obstetrics and Gynaecology, Hvidovre Hospital, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Pharmacosmos A/S, 4300 Holbæk, Denmark
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Charlotte Holm
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Anja Bisgaard Pinborg
- Fertility Clinic, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lars Lykke Thomsen
- Pharmacosmos A/S, 4300 Holbæk, Denmark
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
34
|
Maternal copper status and neuropsychological development in infants and preschool children. Int J Hyg Environ Health 2019; 222:503-512. [PMID: 30713056 DOI: 10.1016/j.ijheh.2019.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/17/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Copper (Cu) is an essential element involved in biological processes; however, excessive Cu could be harmful because of its reactive nature. Very few studies have evaluated its potential neurotoxic effects. We aimed to evaluate the association between maternal Cu levels and children's neuropsychological development. METHODS Study subjects were mother-child pairs from the Spanish INMA (i.e. Childhood and Environment) Project. Cu was measured by inductively coupled plasma mass spectrometry in serum samples taken at the first trimester of pregnancy (2003-2005). Neuropsychological development was assessed using the Bayley Scales of Infant Development (BSID) at 12 months (n = 651) and the McCarthy Scales of Children's Abilities (MSCA) at 5 years of age (n = 490). Covariates were obtained by questionnaires during pregnancy and childhood. Multivariate linear and non-linear models were built in order to study the association between maternal Cu and child neuropsychological development. RESULTS The mean ± standard deviation of maternal Cu concentrations was 1606 ± 272 μg/L. In the multivariate analysis, a negative linear association was found between maternal Cu concentrations and both the BSID mental scale (beta = -0.051; 95% confidence intervals [CI]: -0.102, -0.001) and the MSCA verbal scale (beta = -0.044; 95%CI:-0.094, 0.006). Boys obtained poorer scores than girls, with increasing Cu at 12 months (interaction p-value = 0.040 for the mental scale and 0.074 for the psychomotor scale). This effect modification disappeared at 5 years of age. The association between Cu and the MSCA scores (verbal, perceptive performance, global memory and motor, general cognitive, and executive function scales) was negative for those children with lowest maternal iron concentrations (<938μg/L). CONCLUSION The Cu concentrations observed in our study were within the reference range established for healthy pregnant women in previous studies. The results of this study contribute to the body of scientific knowledge with important information on the possible neurotoxic capability of Cu during pregnancy.
Collapse
|
35
|
Abstract
With the development of research, more and more evidences suggested that mutations in the genes associated with brain iron metabolism induced diseases in the brain. Brain iron metabolism disorders might be one cause of neurodegenerative diseases. This review mainly summarizes the normal process of iron entry into the brain across the blood-brain barrier, and the distribution and transportation of iron among neurons and glial cells, as well as the underlying regulation mechanisms. To understand the mechanisms of iron metabolism in the brain will provide theoretical basis to prevent and cure brain diseases related to iron metabolism disorders.
Collapse
Affiliation(s)
- Peng Yu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20, Nanerhuan Eastern Road, Shijiazhuang, Hebei Province, 050024, China.
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20, Nanerhuan Eastern Road, Shijiazhuang, Hebei Province, 050024, China.
| |
Collapse
|
36
|
The "Frail" Brain Blood Barrier in Neurodegenerative Diseases: Role of Early Disruption of Endothelial Cell-to-Cell Connections. Int J Mol Sci 2018; 19:ijms19092693. [PMID: 30201915 PMCID: PMC6164949 DOI: 10.3390/ijms19092693] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
The main neurovascular unit of the Blood Brain Barrier (BBB) consists of a cellular component, which includes endothelial cells, astrocytes, pericytes, microglia, neurons, and oligodendrocytes as well as a non-cellular component resulting from the extracellular matrix. The endothelial cells are the major vital components of the BBB able to preserve the brain homeostasis. These cells are situated along the demarcation line between the bloodstream and the brain. Therefore, an alteration or the progressive disruption of the endothelial layer may clearly impair the brain homeostasis. The proper functioning of the brain endothelial cells is generally ensured by two elements: (1) the presence of junction proteins and (2) the preservation of a specific polarity involving an apical-luminal and a basolateral-abluminal membrane. This review intends to identify the molecular mechanisms underlying BBB function and their changes occurring in early stages of neurodegenerative processes in order to develop novel therapeutic strategies aimed to counteract neurodegenerative disorders.
Collapse
|
37
|
Belova AN, Solovieva VS, Boyko AN. [Anemia and dysregulation of iron metabolism in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:10-17. [PMID: 30160662 DOI: 10.17116/jnevro201811808210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anemia is one of the common diseases comorbid with multiple sclerosis (MS). This article reviews the prevalence and types of anemia in MS patients. It has been shown that anemia is often accompanied by a decrease in serum iron level. The authors present the data on iron metabolism in patients with MS and MRI findings concerning deposits of iron in the gray matter of the brain. The causal relationship between abnormalities in iron metabolism and MS remains unclear; this study allows to approach the understanding of the MS pathogenesis and to increase the efficacy of therapy for this disease.
Collapse
Affiliation(s)
- A N Belova
- Privolzskyi Federal Medical Research Center, Nizhny Novgorod, Russia
| | - V S Solovieva
- City Clinical Hospital #3, Regional Center fo Multiple Sclerosis, Nizhny Novgorod, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia; Center for Demyelination Diseases 'Neuroclinic', Moscow, Russia
| |
Collapse
|
38
|
Vela D. Hepcidin, an emerging and important player in brain iron homeostasis. J Transl Med 2018; 16:25. [PMID: 29415739 PMCID: PMC5803919 DOI: 10.1186/s12967-018-1399-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/31/2018] [Indexed: 02/08/2023] Open
Abstract
Hepcidin is emerging as a new important factor in brain iron homeostasis. Studies suggest that there are two sources of hepcidin in the brain; one is local and the other comes from the circulation. Little is known about the molecular mediators of local hepcidin expression, but inflammation and iron-load have been shown to induce hepcidin expression in the brain. The most important source of hepcidin in the brain are glial cells. Role of hepcidin in brain functions has been observed during neuronal iron-load and brain hemorrhage, where secretion of abundant hepcidin is related with the severity of brain damage. This damage can be reversed by blocking systemic and local hepcidin secretion. Studies have yet to unveil its role in other brain conditions, but the rationale exists, since these conditions are characterized by overexpression of the factors that stimulate brain hepcidin expression, such as inflammation, hypoxia and iron-overload.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Prishtina, Martyr's Boulevard n.n., 10000, Prishtina, Kosova.
| |
Collapse
|
39
|
Kaindlstorfer C, Jellinger KA, Eschlböck S, Stefanova N, Weiss G, Wenning GK. The Relevance of Iron in the Pathogenesis of Multiple System Atrophy: A Viewpoint. J Alzheimers Dis 2018; 61:1253-1273. [PMID: 29376857 PMCID: PMC5798525 DOI: 10.3233/jad-170601] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/16/2022]
Abstract
Iron is essential for cellular development and maintenance of multiple physiological processes in the central nervous system. The disturbance of its homeostasis leads to abnormal iron deposition in the brain and causes neurotoxicity via generation of free radicals and oxidative stress. Iron toxicity has been established in the pathogenesis of Parkinson's disease; however, its contribution to multiple system atrophy (MSA) remains elusive. MSA is characterized by cytoplasmic inclusions of misfolded α-synuclein (α-SYN) in oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). Remarkably, the oligodendrocytes possess high amounts of iron, which together with GCI pathology make a contribution toward MSA pathogenesis likely. Consistent with this observation, the GCI density is associated with neurodegeneration in central autonomic networks as well as olivopontocerebellar and striatonigral pathways. Iron converts native α-SYN into a β-sheet conformation and promotes its aggregation either directly or via increasing levels of oxidative stress. Interestingly, α-SYN possesses ferrireductase activity and α-SYN expression underlies iron mediated translational control via RNA stem loop structures. Despite a correlation between progressive putaminal atrophy and iron accumulation as well as clinical decline, it remains unclear whether pathologic iron accumulation in MSA is a secondary event in the cascade of neuronal degeneration rather than a primary cause. This review summarizes the current knowledge of iron in MSA and gives evidence for perturbed iron homeostasis as a potential pathogenic factor in MSA-associated neurodegeneration.
Collapse
Affiliation(s)
| | | | - Sabine Eschlböck
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
40
|
Connor DE, Chaitanya GV, Chittiboina P, McCarthy P, Scott LK, Schrott L, Minagar A, Nanda A, Alexander JS. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:169-183. [PMID: 28549769 PMCID: PMC7303909 DOI: 10.1016/j.pathophys.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Proteomic analysis of cerebrospinal fluid (CSF) has shown great promise in identifying potential markers of injury in neurodegenerative diseases [1-13]. Here we compared CSF proteomes in healthy individuals, with patients diagnosed with traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) in order to characterize molecular biomarkers which might identify these different clinical states and describe different molecular mechanisms active in each disease state. METHODS Patients presenting to the Neurosurgery service at the Louisiana State University Hospital-Shreveport with an admitting diagnosis of TBI or SAH were prospectively enrolled. Patients undergoing CSF sampling for diagnostic procedures were also enrolled as controls. CSF aliquots were subjected to 2-dimensional gel electrophoresis (2D GE) and spot percentage densities analyzed. Increased or decreased spot expression (compared to controls) was defined in terms of in spot percentages, with spots showing consistent expression change across TBI or SAH specimens being followed up by Matrix-Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). Polypeptide masses generated were matched to known standards using a search of the NCBI and/or GenPept databases for protein matches. Eight hundred fifteen separately identifiable polypeptide migration spots were identified on 2D GE gels. MALDI-MS successfully identified 13 of 22 selected 2D GE spots as recognizable polypeptides. RESULTS Statistically significant changes were noted in the expression of fibrinogen, carbonic anhydrase-I (CA-I), peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, serotransferrin (Tf) and N-terminal haptoglobin (Hp) in TBI and SAH specimens, as compared to controls. The greatest mean fold change among all specimens was seen in CA-I and Hp at 30.7 and -25.7, respectively. TBI specimens trended toward greater mean increases in CA-I and Prx-2 and greater mean decreases in Hp and Tf. CONCLUSIONS Consistent CSF elevation of CA-I and Prx-2 with concurrent depletion of Hp and Tf may represent a useful combination of biomarkers for the prediction of severity and prognosis following brain injury.
Collapse
Affiliation(s)
- David E Connor
- Baptist Health Neurosurgery Arkansas, Little Rock, AR, United States.
| | - Ganta V Chaitanya
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States.
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD, United States.
| | - Paul McCarthy
- Department of Medicine, Sect. of Nephrology, University of Maryland, Baltimore, MD, United States.
| | - L Keith Scott
- Department of Critical Care Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Lisa Schrott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Anil Nanda
- Department of Neurosurgery, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| |
Collapse
|
41
|
Yuan S, Chen S, Xi Z, Liu Y. Copper-finger protein of Sp1: the molecular basis of copper sensing. Metallomics 2017; 9:1169-1175. [PMID: 28759062 DOI: 10.1039/c7mt00184c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The cellular copper level is strictly regulated since excessive copper is harmful to cells. It has been proposed that the expression of copper transport protein hCtr1 is transcriptionally regulated by specificity protein 1 (Sp1) in response to the cellular copper level. However, it is not known how Sp1, a zinc-finger-protein (ZFP), can sense copper ions in cells. Here we found that Sp1 demonstrates high binding affinity to cuprous ions, even stronger than Cu-Atox1 binding. Cu(i) can displace Zn(ii) in Sp1, resulting in a well-folded 'Copper-Finger-Protein' (CFP). Although only very little structural alteration occurs upon copper binding, CFP cannot recognize the promoter of hCtr1, therefore copper binding interrupts the transcription. This result indicates that, in addition to apo-to-holo alteration, metal substitution can also lead to transcriptional switch in metal sensing. This work provides insight into the copper sensing mechanism of Sp1 at the molecular level.
Collapse
Affiliation(s)
- Siming Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | |
Collapse
|
42
|
Gao G, You LH, Chang YZ. Iron Metabolism in Parkinson’s Disease. OXIDATIVE STRESS AND REDOX SIGNALLING IN PARKINSON’S DISEASE 2017. [DOI: 10.1039/9781782622888-00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the central nervous system, iron is involved in many biologically important processes such as oxygen transport and storage, electron transport, energy metabolism, and antioxidant and DNA synthesis. Parkinson’s disease (PD) is a common neurodegenerative disease characterized by loss of dopaminergic neurons in the substantia nigra. Extensive research has reported that iron is heavily accumulated in the dopaminergic neurons in substantia nigra (SN) of PD patients. Changes in the expression of key iron transporters have also been observed in PD patients. Excessive iron accumulation can induce neuronal damage through reactive oxygen species production, which can cause oxidative stress increased membrane lipid peroxidation, DNA damage and protein oxidation and misfolding. This chapter provides a review about brain iron metabolism in PD, the role of iron transporters expression and function on brain iron homeostasis and distribution of intracellular iron. This knowledge will be of benefit to novel therapeutic targets for PD.
Collapse
Affiliation(s)
- Guofen Gao
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang Hebei Province 050024 China
| | - Lin-Hao You
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang Hebei Province 050024 China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang Hebei Province 050024 China
| |
Collapse
|
43
|
Patton SM, Wang Q, Hulgan T, Connor JR, Jia P, Zhao Z, Letendre SL, Ellis RJ, Bush WS, Samuels DC, Franklin DR, Kaur H, Iudicello J, Grant I, Kallianpur AR. Cerebrospinal fluid (CSF) biomarkers of iron status are associated with CSF viral load, antiretroviral therapy, and demographic factors in HIV-infected adults. Fluids Barriers CNS 2017; 14:11. [PMID: 28427421 PMCID: PMC5399327 DOI: 10.1186/s12987-017-0058-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/01/2017] [Indexed: 02/06/2023] Open
Abstract
Background HIV-associated neurocognitive disorder (HAND) remains common, despite antiretroviral therapy (ART). HIV dysregulates iron metabolism, but cerebrospinal fluid (CSF) levels of iron and iron-transport proteins in HIV-infected (HIV+) persons are largely unknown. The objectives of this study were to characterize CSF iron-related biomarkers in HIV+ adults and explore their relationships to known predictors of HAND. Methods We quantified total iron, transferrin and heavy-chain (H)-ferritin by immunoassay in CSF sampled by lumbar puncture in 403 HIV+ participants in a multi-center, observational study and evaluated biomarker associations with demographic and HIV-related correlates of HAND [e.g., age, sex, self-reported race/ethnicity, ART, and detectable plasma virus and CSF viral load (VL)] by multivariable regression. In a subset (N = 110) with existing CSF: serum albumin (QAlb) measurements, QAlb and comorbidity severity were also included as covariates to account for variability in the blood–CSF-barrier. Results Among 403 individuals (median age 43 years, 19% women, 56% non-Whites, median nadir CD4+ T cell count 180 cells/µL, 46% with undetectable plasma virus), men had 25% higher CSF transferrin (median 18.1 vs. 14.5 µg/mL), and 71% higher H-ferritin (median 2.9 vs. 1.7 ng/mL) than women (both p-values ≤0.01). CSF iron was 41% higher in self-reported Hispanics and 27% higher in (non-Hispanic) Whites than in (non-Hispanic) Blacks (median 5.2 and 4.7 µg/dL in Hispanics and Whites, respectively, vs. 3.7 µg/dL in Blacks, both p ≤ 0.01); these findings persisted after adjustment for age, sex, and HIV-specific factors. Median H-ferritin was 25% higher (p < 0.05), and transferrin 14% higher (p = 0.06), in Whites than Blacks. Transferrin and H-ferritin were 33 and 50% higher, respectively, in older (age > 50 years) than in younger persons (age ≤ 35 years; both p < 0.01), but these findings lost statistical significance in subset analyses that adjusted for QAlb and comorbidity. After these additional adjustments, associations were observed for CSF iron and transferrin with race/ethnicity as well as CSF VL, for transferrin with sex and ART, and for H-ferritin with plasma virus detectability and significant comorbidity (all p < 0.05). Conclusions CSF iron biomarkers are associated with demographic factors, ART, and CSF VL in HIV+ adults. Future studies should investigate a role for CNS iron dysregulation, to which an altered blood-CSF barrier may contribute, in HAND. Electronic supplementary material The online version of this article (doi:10.1186/s12987-017-0058-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie M Patton
- Department of Neurosurgery, Penn State Hershey Medical Center, 500 University Drive, Mailbox H110, Hershey, PA, 17033, USA.
| | - Quan Wang
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Todd Hulgan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, 500 University Drive, Mailbox H110, Hershey, PA, 17033, USA
| | - Peilin Jia
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Scott L Letendre
- Department of Medicine, University of California-San Diego, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neurology, University of California-San Diego, San Diego, CA, USA
| | - William S Bush
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Donald R Franklin
- Department of Medicine, University of California-San Diego, San Diego, CA, USA
| | - Harpreet Kaur
- Genomic Medicine Institute, Cleveland Clinic/Lerner Research Institute, Cleveland, OH, USA
| | - Jennifer Iudicello
- Department of Psychiatry, University of California-San Diego, San Diego, CA, USA
| | - Igor Grant
- Department of Psychiatry, University of California-San Diego, San Diego, CA, USA
| | - Asha R Kallianpur
- Genomic Medicine Institute, Cleveland Clinic/Lerner Research Institute, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
44
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
45
|
Qu Z, Li P, Zhang X, Han K. A turn-on fluorescent chemodosimeter based on detelluration for detecting ferrous iron (Fe 2+) in living cells. J Mater Chem B 2016; 4:887-892. [PMID: 32263161 DOI: 10.1039/c5tb02090e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A turn-on fluorescent probe for the detection of Fe2+ is facilely synthesized via a nucleophile substitution reaction. The fluorescent probe, N-butyl-4-phenyltellanyl-1,8-naphthalimide (Naph-Te), shows excellent selectivity to Fe2+ in a mixed solution of acetonitrile and phosphate buffer under aerobic conditions. The coexistence of biological abundant metal ions such as Na+, K+, Ca2+ and Mg2+ has little effect on the fluorescence signal. This turn-on response is achieved via a redox-involved reaction triggered by Fe2+ at neutral pH and room temperature, which removes the heavy-atom effect of the tellurium atom on the naphthalimide fluorophore to afford a fluorescent product (N-butyl-4-hydroxyl-1,8-naphthalimide). The probe has excellent cell membrane permeability and is further applied successfully to monitor supplementary Fe2+ in live HL-7702 cells using a laser confocal fluorescence microscope.
Collapse
Affiliation(s)
- Zongjin Qu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, P. R. China.
| | | | | | | |
Collapse
|
46
|
Lin K, Yu Z, Yu Y, Liao X, Huang P, Guo C, Lin D. Distinct effects of Cu2+-binding on oligomerization of human and rabbit prion proteins. Acta Biochim Biophys Sin (Shanghai) 2015; 47:842-50. [PMID: 26350098 DOI: 10.1093/abbs/gmv081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022] Open
Abstract
The cellular prion protein (PrP(C)) is a kind of cell-surface Cu(2+)-binding glycoprotein. The oligomerization of PrP(C) is highly related to transmissible spongiform encephalopathies (TSEs). Cu(2+) plays a vital role in the oligomerization of PrP(C), and participates in the pathogenic process of TSE diseases. It is expected that Cu(2+)-binding has different effects on the oligomerization of TSE-sensitive human PrP(C) (HuPrP(C)) and TSE-resistant rabbit PrP(C) (RaPrP(C)). However, the details of the distinct effects remain unclear. In the present study, we measured the interactions of Cu(2+) with HuPrP(C) (91-230) and RaPrP(C) (91-228) by isothermal titration calorimetry, and compared the effects of Cu(2+)-binding on the oligomerization of both PrPs. The measured dissociation constants (Kd) of Cu(2+) were 11.1 ± 2.1 μM for HuPrP(C) and 21.1 ± 3.1 μM for RaPrP(C). Cu(2+)-binding promoted the oligomerization of HuPrP(C) more significantly than that of RaPrP(C). The far-ultraviolet circular dichroism spectroscopy experiments showed that Cu(2+)-binding induced more significant secondary structure change and increased more β-sheet content for HuPrP(C) compared with RaPrP(C). Moreover, the urea-induced unfolding transition experiments indicated that Cu(2+)-binding decreased the conformational stability of HuPrP(C) more distinctly than that of RaPrP(C). These results suggest that RaPrP(C) possesses a low susceptibility to Cu(2+), potentially weakening the risk of Cu(2+)-induced TSE diseases. Our work sheds light on the Cu(2+)-promoted oligomerization of PrP(C), and may be helpful for further understanding the TSE-resistance of rabbits.
Collapse
Affiliation(s)
- Kejiang Lin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 21009, China
| | - Ziyao Yu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 21009, China
| | - Yuanhui Yu
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinli Liao
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pei Huang
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 21009, China High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
47
|
Wang G, Shao A, Hu W, Xue F, Zhao H, Jin X, Li G, Sun Z, Wang L. Changes of ferrous iron and its transporters after intracerebral hemorrhage in rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10671-10679. [PMID: 26617777 PMCID: PMC4637592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Ferrous iron is a major source inducing oxidative stress after intracerebral hemorrhage (ICH). Divalent metal transporter1 (DMT1) is the important and well-known plasma membrane transport protein which was proved to be involved in the transport of free ferrous iron in mammals. Ferroportin 1 (FPN1) is the unique exporter of ferrous iron from mammalian cells. The role of DMT1 and FPN1 in brain after ICH is still not elucidated. Therefore, we measure the expression of DMT1 and FPN1, to explore the correlations between ferrous iron and its specific transporters after ICH. METHODS Ninety-six Sprague-Dawley rats received intra-striatal infusions of 0.5 U type IV collagenase to establish ICH model. Ferrous iron content in brain was determined using Turnbull's method. DMT1 and FPN1 expression were examined by immunohistochemical staining and Real-Time quantitative polymerase chain reaction (RT-PCR). With the use of confocal laser microscopy, we determined the colocalization of DMT1 and FPN1 at 1, 3, 7 and 14 days after ICH. RESULTS Ferrous iron deposition was shown in the perihematomal zone as early as 1 day after ICH; it reached a peak after 7 days and was not elevated within 14 days following ICH. The expression of the DMT1 upregulated and reached to peak at day 7 after ICH. FPN1 reached a plateau at 3 days post-ICH. Expression levels of DMT1 and FPN1 were in parallel with ferrous iron deposition. There was a positive correlation between FPN1 and DMT1. DMT1 mainly localized in the cytoplasm of glias and neurons. FPN1 were mostly distributed on the membrane of endothelial cells and glias. Confocal microscope showed that DMT1 colocalized with FPN1. CONCLUSIONS DMT1 and FPN1 are positively influenced by ferrous iron status in brain after ICH. DMT1 and FPN1 attenuate iron overload after ICH via increasing transmembrane iron export.
Collapse
Affiliation(s)
- Gaiqing Wang
- Department of Neurology, The Second Hospital, Shanxi Medical University382 Wuyi Avenue, Taiyuan 030001, Shanxi, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Weimin Hu
- Department of Neurology, The Second Hospital, Shanxi Medical University382 Wuyi Avenue, Taiyuan 030001, Shanxi, China
| | - Fang Xue
- Department of Neurology, The Second Hospital, Shanxi Medical University382 Wuyi Avenue, Taiyuan 030001, Shanxi, China
| | - Hongping Zhao
- Department of Neurology, Shanxi Large HospitalTaiyuan 030000, Shanxi,China
| | - Xiaojie Jin
- Department of Neurology, Tianjin First Center HospitalTianjin 300192, China
| | - Guanglai Li
- Department of Neurology, The Second Hospital, Shanxi Medical University382 Wuyi Avenue, Taiyuan 030001, Shanxi, China
| | - Zhitang Sun
- Department of Neurology, The Second Hospital, Shanxi Medical University382 Wuyi Avenue, Taiyuan 030001, Shanxi, China
| | - Li Wang
- Department of Neurology, The Second Hospital, Shanxi Medical University382 Wuyi Avenue, Taiyuan 030001, Shanxi, China
| |
Collapse
|
48
|
McCarthy RC, Kosman DJ. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood-brain barrier. Front Mol Neurosci 2015; 8:31. [PMID: 26236187 PMCID: PMC4500905 DOI: 10.3389/fnmol.2015.00031] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023] Open
Abstract
The transcellular trafficking of iron from the blood into the brain interstitium depends on iron uptake proteins in the apical membrane of brain microvascular capillary endothelial cells and efflux proteins at the basolateral, abluminal membrane. In this review, we discuss the three mechanisms by which these cells take-up iron from the blood and the sole mechanism by which they efflux this iron into the abluminal space. We then focus on the regulation of this efflux pathway by exocrine factors that are released from neighboring astrocytes. Also discussed are the cytokines secreted by capillary cells that regulate the expression of these glial cell signals. Among the interstitial factors that regulate iron efflux into the brain is the Amyloid precursor protein (APP). The role of this amyliodogenic species in brain iron metabolism is discussed. Last, we speculate on the potential relationship between iron transport at the blood-brain barrier and neurological disorders associated with iron mismanagement.
Collapse
Affiliation(s)
- Ryan C McCarthy
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo Buffalo, NY, USA
| | - Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo Buffalo, NY, USA
| |
Collapse
|
49
|
Fu S, Jiang W, Zheng W. Age-dependent increase of brain copper levels and expressions of copper regulatory proteins in the subventricular zone and choroid plexus. Front Mol Neurosci 2015; 8:22. [PMID: 26106293 PMCID: PMC4458609 DOI: 10.3389/fnmol.2015.00022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022] Open
Abstract
Our recent data suggest a high accumulation of copper (Cu) in the subventricular zone (SVZ) along the wall of brain ventricles. Anatomically, SVZ is in direct contact with cerebrospinal fluid (CSF), which is secreted by a neighboring tissue choroid plexus (CP). Changes in Cu regulatory gene expressions in the SVZ and CP as the function of aging may determine Cu levels in the CSF and SVZ. This study was designed to investigate the associations between age, Cu levels, and Cu regulatory genes in SVZ and plexus. The SVZ and CP were dissected from brains of 3-week, 10-week, or 9-month old male rats. Analyses by atomic absorption spectroscopy revealed that the SVZ of adult and old animals contained the highest Cu level compared with other tested brain regions. Significantly positive correlations between age and Cu levels in SVZ and plexus were observed; the SVZ Cu level of old animals was 7.5- and 5.8-fold higher than those of young and adult rats (p < 0.01), respectively. Quantitation by qPCR of the transcriptional expressions of Cu regulatory proteins showed that the SVZ expressed the highest level of Cu storage protein metallothioneins (MTs), while the CP expressed the high level of Cu transporter protein Ctr1. Noticeably, Cu levels in the SVZ were positively associated with type B slow proliferating cell marker Gfap (p < 0.05), but inversely associated with type A proliferating neuroblast marker Dcx (p < 0.05) and type C transit amplifying progenitor marker Nestin (p < 0.01). Dmt1 had significant positive correlations with age and Cu levels in the plexus (p < 0.01). These findings suggest that Cu levels in all tested brain regions are increased as the function of age. The SVZ shows a different expression pattern of Cu-regulatory genes from the CP. The age-related increase of MTs and decrease of Ctr1 may contribute to the high Cu level in this neurogenesis active brain region.
Collapse
Affiliation(s)
- Sherleen Fu
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| | - Wendy Jiang
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| |
Collapse
|
50
|
Fu S, O'Neal S, Hong L, Jiang W, Zheng W. Elevated adult neurogenesis in brain subventricular zone following in vivo manganese exposure: roles of copper and DMT1. Toxicol Sci 2015; 143:482-98. [PMID: 25575534 DOI: 10.1093/toxsci/kfu249] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The brain subventricular zone (SVZ) is a source of neural precursor cells; these cells travel along the rostral migratory stream (RMS) to destination areas in the process of adult neurogenesis. Recent x-ray fluorescence (XRF) studies reveal an extensive accumulation of copper (Cu) in the SVZ. Earlier human and animal studies also suggest an altered Cu homeostasis after manganese (Mn) exposure. This study was designed to test the hypothesis that Mn exposure by acting on the divalent metal transporter-1 (DMT1) altered Cu levels in SVZ and RMS, thereby affecting adult neurogenesis. Adult rats received intraperitoneal (i.p.) injections of 6 mg Mn/kg as MnCl2 once daily for 4 weeks with concomitant injections of bromodeoxyuridine (BrdU) for 5 days in the last week. In control rats, Cu levels were significantly higher in the SVZ than other brain regions examined. Mn exposure significantly reduced Cu concentrations in the SVZ (P < 0.01). Immunohistochemical data showed that in vivo Mn exposure significantly increased numbers of BrdU(+) cells, which were accompanied with increased GFAP(+) astrocytic stem cells and DCX(+) neuroblasts in SVZ and RMS. Quantitative RT-PCR and Western blot confirmed the increased expression of DMT1 in SVZ following in vivo Mn exposure, which contributed to Mn accumulation in the neurogenesis pathway. Taken together, these results indicate a clear disruptive effect of Mn on adult neurogenesis; the effect appears due partly to Mn induction of DMT1 and its interference with cellular Cu regulation in SVZ and RMS. The future research directions based on these observations are also discussed.
Collapse
Affiliation(s)
- Sherleen Fu
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Stefanie O'Neal
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Lan Hong
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Wendy Jiang
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|