1
|
Zhang MY, Ao JY, Liu N, Chen T, Lu SY. Exploring the constitutive activation mechanism of the class A orphan GPR20. Acta Pharmacol Sin 2025; 46:500-511. [PMID: 39256608 PMCID: PMC11747167 DOI: 10.1038/s41401-024-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
GPR20, an orphan G protein-coupled receptor (GPCR), shows significant expression in intestinal tissue and represents a potential therapeutic target to treat gastrointestinal stromal tumors. GPR20 performs high constitutive activity when coupling with Gi. Despite the pharmacological importance of GPCR constitutive activation, determining the mechanism has long remained unclear. In this study, we explored the constitutive activation mechanism of GPR20 through large-scale unbiased molecular dynamics simulations. Our results unveil the allosteric nature of constitutively activated GPCR signal transduction involving extracellular and intracellular domains. Moreover, the constitutively active state of the GPR20 requires both the N-terminal cap and Gi protein. The N-terminal cap of GPR20 functions like an agonist and mediates long-range activated conformational shift. Together with the previous study, this study enhances our knowledge of the self-activation mechanism of the orphan receptor, facilitates the drug discovery efforts that target GPR20.
Collapse
Affiliation(s)
- Ming-Yang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Yang Ao
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Institute of Hepatobiliary and Pancreatic Surgery, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China.
| | - Shao-Yong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Tsang CH, Kozielewicz P. Exploring G Protein-Coupled Receptors in Hematological Cancers. ACS Pharmacol Transl Sci 2024; 7:4000-4009. [PMID: 39698279 PMCID: PMC11651347 DOI: 10.1021/acsptsci.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Hematological cancers, such as lymphomas and leukemias, pose significant challenges in oncology, necessitating a deeper understanding of their molecular landscape to enhance therapeutic strategies. This article critically examines and discusses recent research on the roles of G protein-coupled receptors (GPCRs) in myeloma, lymphomas, and leukemias with a particular focus on pediatric acute lymphoblastic (lymphocytic) leukemia (ALL). By utilizing RNA sequencing (RNA-seq), we analyzed GPCR expression patterns in pediatric ALL samples (aged 3-12 years old), with a further focus on Class A orphan GPCRs. Our analysis revealed distinct GPCR expression profiles in pediatric ALL, identifying several candidates with aberrant upregulated expression compared with healthy counterparts. Among these GPCRs, GPR85, GPR65, and GPR183 have varying numbers of studies in the field of hematological cancers and pediatric ALL. Furthermore, we explored missense mutations of pediatric ALL in relation to the RNA gene expression findings, providing insights into the genetic underpinnings of this disease. By integrating both RNA-seq and missense mutation data, this article aims to provide an insightful and broader perspective on the potential correlations between specific GPCR and their roles in pediatric ALL.
Collapse
Affiliation(s)
- Choi Har Tsang
- Molecular Pharmacology of GPCRs, Department Physiology & Pharmacology,
Karolinska Institutet, Biomedicum, 171 65 Stockholm,
Sweden
| | - Pawel Kozielewicz
- Molecular Pharmacology of GPCRs, Department Physiology & Pharmacology,
Karolinska Institutet, Biomedicum, 171 65 Stockholm,
Sweden
| |
Collapse
|
3
|
Isu U, Polasa A, Moradi M. Differential Behavior of Conformational Dynamics in Active and Inactive States of Cannabinoid Receptor 1. J Phys Chem B 2024; 128:8437-8447. [PMID: 39169808 PMCID: PMC11382280 DOI: 10.1021/acs.jpcb.4c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor that regulates critical physiological processes including pain, appetite, and cognition. Understanding the conformational dynamics of CB1 associated with transitions between inactive and active signaling states is imperative for developing targeted modulators. Using microsecond-level all-atom molecular dynamics simulations, we identified marked differences in the conformational ensembles of inactive and active CB1 in apo. The inactive state exhibited substantially increased structural heterogeneity and plasticity compared to the more rigidified active state in the absence of stabilizing ligands. Transmembrane helices TM3 and TM7 were identified as distinguishing factors modulating the state-dependent dynamics. TM7 displayed amplified fluctuations selectively in the inactive state simulations attributed to disruption of conserved electrostatic contacts anchoring it to surrounding helices in the active state. Additionally, we identified significant reorganizations in key salt bridge and hydrogen bond networks contributing to the CB1 activation/inactivation. For instance, D213-Y224 hydrogen bond and D184-K192 salt bridge showed marked rearrangements between the states. Collectively, these findings reveal the specialized role of TM7 in directing state-dependent CB1 dynamics through electrostatic switch mechanisms. By elucidating the intrinsic enhanced flexibility of inactive CB1, this study provides valuable insights into the conformational landscape enabling functional transitions. Our perspective advances understanding of CB1 activation mechanisms and offers opportunities for structure-based drug discovery targeting the state-specific conformational dynamics of this receptor.
Collapse
Affiliation(s)
- Ugochi
H. Isu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
4
|
Lu Y, Hatzipantelis CJ, Langmead CJ, Stewart GD. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia. Br J Pharmacol 2024; 181:2095-2113. [PMID: 37605621 DOI: 10.1111/bph.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Schizophrenia remains a sizable socio-economic burden that continues to be treated with therapeutics based on 70-year old science. All currently approved therapeutics primarily target the dopamine D2 receptor to achieve their efficacy. Whilst dopaminergic dysregulation is a key feature in this disorder, the targeting of dopaminergic machinery has yielded limited efficacy and an appreciable side effect burden. Over the recent decades, numerous drugs that engage non-dopaminergic G protein-coupled receptors (GPCRs) have yielded a promise of efficacy without the deleterious side effect profile, yet none have successfully completed clinical studies and progressed to the market. More recently, there has been increased attention around non-dopaminergic GPCR-targeting drugs, which demonstrated efficacy in some schizophrenia symptom domains. This provides renewed hope that effective schizophrenia treatment may lie outside of the dopaminergic space. Despite the potential for muscarinic receptor- (and other well-characterised GPCR families) targeting drugs to treat schizophrenia, they are often plagued with complications such as lack of receptor subtype selectivity and peripheral on-target side effects. Orphan GPCR studies have opened a new avenue of exploration with many demonstrating schizophrenia-relevant mechanisms and a favourable expression profile, thus offering potential for novel drug development. This review discusses centrally expressed orphan GPCRs: GPR3, GPR6, GPR12, GPR52, GPR85, GPR88 and GPR139 and their relationship to schizophrenia. We review their expression, signalling mechanisms and cellular function, in conjunction with small molecule development and structural insights. We seek to provide a snapshot of the growing evidence and development potential of new classes of schizophrenia therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Yao Lu
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| |
Collapse
|
5
|
Isu UH, Polasa A, Moradi M. Differential Behavior of Conformational Dynamics in Active and Inactive States of Cannabinoid Receptor 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589939. [PMID: 38659869 PMCID: PMC11042334 DOI: 10.1101/2024.04.17.589939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The cannabinoid receptor CB1 is a G protein-coupled receptor that regulates critical physiological processes including pain, appetite, and cognition. Understanding the conformational dynamics of CB1 associated with transitions between inactive and active signaling states is imperative for developing targeted modulators. Using microsecond-level all-atom molecular dynamics simulations, we identified marked differences in the conformational ensembles of inactive and active CB1 states in apo conditions. The inactive state exhibited substantially increased structural heterogeneity and plasticity compared to the more rigidified active state in the absence of stabilizing ligands. Transmembrane helices TM3 and TM7 were identified as distinguishing factors modulating the state-dependent dynamics. TM7 displayed amplified fluctuations selectively in the inactive state simulations attributed to disruption of conserved electrostatic contacts anchoring it to surrounding helices in the active state. Additionally, we identified significant reorganization of key salt bridge and hydrogen bond networks known to control CB1 activation between states. For instance, a conserved D213-Y224 hydrogen bond and D184-K192 salt bridge interactions showed marked rearrangements between the states. Collectively, these findings reveal the specialized role of TM7 in directing state-dependent CB1 dynamics through electrostatic switch mechanisms. By elucidating the intrinsic enhanced flexibility of inactive CB1, this study provides valuable insights into the conformational landscape enabling functional transitions. Our perspective advances understanding of CB1 activation mechanisms and offers opportunities for structure-based drug discovery targeting the state-specific conformational dynamics of this receptor.
Collapse
|
6
|
Majumdar S, Chiu YT, Pickett JE, Roth BL. Illuminating the understudied GPCR-ome. Drug Discov Today 2024; 29:103848. [PMID: 38052317 DOI: 10.1016/j.drudis.2023.103848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the target of >30% of approved drugs. Despite their popularity, many of the >800 human GPCRs remain understudied. The Illuminating the Druggable Genome (IDG) project has generated many tools leading to important insights into the function and druggability of these so-called 'dark' receptors. These tools include assays, such as PRESTO-TANGO and TRUPATH, billions of small molecules made available via the ZINC virtual library, solved orphan GPCR structures, GPCR knock-in mice, and more. Together, these tools are illuminating the remaining 'dark' GPCRs.
Collapse
Affiliation(s)
- Sreeparna Majumdar
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yi-Ting Chiu
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Julie E Pickett
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Jobe A, Vijayan R. Orphan G protein-coupled receptors: the ongoing search for a home. Front Pharmacol 2024; 15:1349097. [PMID: 38495099 PMCID: PMC10941346 DOI: 10.3389/fphar.2024.1349097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
G protein-coupled receptors (GPCRs) make up the largest receptor superfamily, accounting for 4% of protein-coding genes. Despite the prevalence of such transmembrane receptors, a significant number remain orphans, lacking identified endogenous ligands. Since their conception, the reverse pharmacology approach has been used to characterize such receptors. However, the multifaceted and nuanced nature of GPCR signaling poses a great challenge to their pharmacological elucidation. Considering their therapeutic relevance, the search for native orphan GPCR ligands continues. Despite limited structural input in terms of 3D crystallized structures, with advances in machine-learning approaches, there has been great progress with respect to accurate ligand prediction. Though such an approach proves valuable given that ligand scarcity is the greatest hurdle to orphan GPCR deorphanization, the future pairings of the remaining orphan GPCRs may not necessarily take a one-size-fits-all approach but should be more comprehensive in accounting for numerous nuanced possibilities to cover the full spectrum of GPCR signaling.
Collapse
Affiliation(s)
- Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Gerlach L, Beyer ASL, Kaemmerer D, Sänger J, Evert K, Schulz S, Lupp A. Expression of G protein-coupled receptor GPR19 in normal and neoplastic human tissues. Sci Rep 2023; 13:18993. [PMID: 37923782 PMCID: PMC10624815 DOI: 10.1038/s41598-023-46395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
Little is known about the expression of the orphan G protein-coupled receptor GPR19 at the protein level. Therefore, we developed a rabbit antibody, targeting human GPR19. After verification of the antibody specificity using GPR19-expressing cell lines and a GPR19-specific siRNA, the antibody was used for immunohistochemical staining of a variety of formalin-fixed, paraffin-embedded normal and neoplastic human tissue samples. In normal tissues, GPR19 expression was detected in a distinct cell population within the cortex, in single cells of the pancreatic islets, in intestinal ganglia, gastric chief cells, and in endocrine cells of the bronchial tract, the gastrointestinal tract, and the prostate. Among the 30 different tumour entities investigated, strong GPR19 expression was found in adenocarcinomas, typical and atypical carcinoids of the lung, and small cell lung cancer. To a lesser extent, the receptor was also present in large cell neuroendocrine carcinomas of the lung, medullary thyroid carcinomas, parathyroid adenomas, pheochromocytomas, and a subpopulation of pancreatic neuroendocrine neoplasms. In lung tumours, a negative correlation with the expression of the proliferation marker Ki-67 and a positive interrelationship with patient survival was observed. Overall, our results indicate that in adenocarcinomas and neuroendocrine tumours of the lung GPR19 may serve as a suitable diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Lorena Gerlach
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | | | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Katja Evert
- Department of Pathology, University of Regensburg, Regensburg, Germany
- Institute of Pathology, University Medicine of Greifswald, Greifswald, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany.
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany.
| |
Collapse
|
9
|
Wu Z, Han Z, Tao L, Sun X, Su J, Hu J, Li C. Dynamic Insights into the Self-Activation Pathway and Allosteric Regulation of the Orphan G-Protein-Coupled Receptor GPR52. J Chem Inf Model 2023; 63:5847-5862. [PMID: 37651308 DOI: 10.1021/acs.jcim.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Within over 800 members of G-protein-coupled receptors, there are numerous orphan receptors whose endogenous ligands are largely unknown, providing many opportunities for novel drug discovery. However, the lack of an in-depth understanding of the intrinsic working mechanism for orphan receptors severely limits the related rational drug design. The G-protein-coupled receptor 52 (GPR52) is a unique orphan receptor that constitutively increases cellular 5'-cyclic adenosine monophosphate (cAMP) levels without binding any exogenous agonists and has been identified as a promising therapeutic target for central nervous system disorders. Although recent structural biology studies have provided snapshots of both active and inactive states of GPR52, the mechanism of the conformational transition between these states remains unclear. Here, an acceptable self-activation pathway for GPR52 was proposed through 6 μs Gaussian accelerated molecular dynamics (GaMD) simulations, in which the receptor spontaneously transitions from the active state to that matching the inactive crystal structure. According to the three intermediate states of the receptor obtained by constructing a reweighted potential of mean force, how the allosteric regulation occurs between the extracellular orthosteric binding pocket and the intracellular G-protein-binding site is revealed. Combined with the independent gradient model, several important microswitch residues and the allosteric communication pathway that directly links the two regions are both identified. Transfer entropy calculations not only reveal the complex allosteric signaling within GPR52 but also confirm the unique role of ECL2 in allosteric regulation, which is mutually validated with the results of GaMD simulations. Overall, this work elucidates the allosteric mechanism of GPR52 at the atomic level, providing the most detailed information to date on the self-activation of the orphan receptor.
Collapse
Affiliation(s)
- Zhixiang Wu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Lianci Tao
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xiaohan Sun
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jingjie Su
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Laboute T, Zucca S, Holcomb M, Patil DN, Garza C, Wheatley BA, Roy RN, Forli S, Martemyanov KA. Orphan receptor GPR158 serves as a metabotropic glycine receptor: mGlyR. Science 2023; 379:1352-1358. [PMID: 36996198 PMCID: PMC10751545 DOI: 10.1126/science.add7150] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
Glycine is a major neurotransmitter involved in several fundamental neuronal processes. The identity of the metabotropic receptor mediating slow neuromodulatory effects of glycine is unknown. We identified an orphan G protein-coupled receptor, GPR158, as a metabotropic glycine receptor (mGlyR). Glycine and a related modulator, taurine, directly bind to a Cache domain of GPR158, and this event inhibits the activity of the intracellular signaling complex regulator of G protein signaling 7-G protein β5 (RGS7-Gβ5), which is associated with the receptor. Glycine signals through mGlyR to inhibit production of the second messenger adenosine 3',5'-monophosphate. We further show that glycine, but not taurine, acts through mGlyR to regulate neuronal excitability in cortical neurons. These results identify a major neuromodulatory system involved in mediating metabotropic effects of glycine, with implications for understanding cognition and affective states.
Collapse
Affiliation(s)
- Thibaut Laboute
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Stefano Zucca
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dipak N. Patil
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Christina Garza
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Brittany A. Wheatley
- Department of Integrative Structural and Computational Biology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Raktim N. Roy
- Department of Integrative Structural and Computational Biology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
11
|
Greenwald E, Posner C, Bharath A, Lyons A, Salmerón C, Sriram K, Wiley SZ, Insel PA, Zhang J. GPCR Signaling Measurement and Drug Profiling with an Automated Live-Cell Microscopy System. ACS Sens 2023; 8:19-27. [PMID: 36602887 PMCID: PMC9994309 DOI: 10.1021/acssensors.2c01341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A major limitation of time-lapse microscopy combined with fluorescent biosensors, a powerful tool for quantifying spatiotemporal dynamics of signaling in single living cells, is low-experimental throughput. To overcome this limitation, we created a highly customizable, MATLAB-based platform: flexible automated liquid-handling combined microscope (FALCOscope) that coordinates an OpenTrons liquid handler and a fluorescence microscope to automate drug treatments, fluorescence imaging, and single-cell analysis. To test the feasibility of the FALCOscope, we quantified G protein-coupled receptor (GPCR)-stimulated Protein Kinase A activity and cAMP responses to GPCR agonists and antagonists. We also characterized cAMP dynamics induced by GPR68/OGR1, a proton-sensing GPCR, in response to variable extracellular pH values. GPR68-induced cAMP responses were more transient in acidic than neutral pH values, suggesting a pH-dependence for signal attenuation. Ogerin, a GPR68 positive allosteric modulator, enhanced cAMP response most strongly at pH 7.0 and sustained cAMP response for acidic pH values, thereby demonstrating the capability of the FALCOscope to capture allosteric modulation. At a high concentration, ogerin increased cAMP signaling independent of GPR68, likely via phosphodiesterase inhibition. The FALCOscope system thus enables enhanced throughput single-cell dynamic measurements and is a versatile system for interrogating spatiotemporal regulation of signaling molecules in living cells and for drug profiling and screening.
Collapse
Affiliation(s)
- Eric Greenwald
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Clara Posner
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ananya Bharath
- Department of Chemical Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Anne Lyons
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Cristina Salmerón
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Shu Z Wiley
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States.,Department of Medicine, University of California, San Diego, La Jolla, California 92093 United States
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States.,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Barsony J, Xu Q, Verbalis JG. Hyponatremia elicits gene expression changes driving osteoclast differentiation and functions. Mol Cell Endocrinol 2022; 554:111724. [PMID: 35843385 PMCID: PMC10586021 DOI: 10.1016/j.mce.2022.111724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Growing evidence indicates that chronic hyponatremia represents a significant risk for bone loss, osteoporosis, and fractures in our aging population. Our prior studies on a rat model of the syndrome of inappropriate antidiuretic hormone secretion indicated that chronic hyponatremia causes osteoporosis by increasing osteoclastic bone resorption, thereby liberating stored sodium from bone. Moreover, studies in RAW264.7 pre-osteoclastic cells showed increased osteoclast formation and resorptive activity in response to low extracellular fluid sodium ion concentration (low [Na+]). These studies implicated a direct stimulatory effect of low [Na+] rather than the low osmolality on cultured osteoclastic cells. In the present cellular studies, we explored gene expression changes triggered by low [Na+] using RNA sequencing and gene ontology analysis. Results were confirmed by mouse whole genome microarray, and quantitative RT-PCR. Findings confirmed gene expression changes supporting osteoclast growth and differentiation through stimulation of receptor activator of nuclear factor kappa-B ligand (RANKL), and PI3K/Akt pathways, and revealed additional pathways. New findings on low [Na+]-induced upregulation of lysosomal genes, mitochondrial energy production, MMP-9 expression, and osteoclast motility have supported the significance of osteoclast transcriptomic responses. Functional assays demonstrated that RANL and low [Na+] independently enhance osteoclast functions. Understanding the molecular mechanisms of hyponatremia-induced osteoporosis provides the basis for future studies identifying sodium-sensing mechanisms in osteoclasts, and potentially other bone cells, and developing strategies for treatment of bone fragility in the vulnerable aging population most affected by both chronic hyponatremia and osteoporosis. ISSUE SECTIONS: Signaling Pathways; Parathyroid, Bone, and Mineral Metabolism.
Collapse
Affiliation(s)
- Julianna Barsony
- Division of Endocrinology & Metabolism, Georgetown University, Washington, DC, 20007, USA.
| | - Qin Xu
- Division of Endocrinology & Metabolism, Georgetown University, Washington, DC, 20007, USA
| | - Joseph G Verbalis
- Division of Endocrinology & Metabolism, Georgetown University, Washington, DC, 20007, USA
| |
Collapse
|
13
|
G protein–coupled receptor 21 in macrophages: An in vitro study. Eur J Pharmacol 2022; 926:175018. [DOI: 10.1016/j.ejphar.2022.175018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022]
|
14
|
Gutiérrez-Ruiz JR, Villafaña S, Ruiz-Hernández A, Viruette-Pontigo D, Menchaca-Cervantes C, Aguayo-Cerón KA, Huang F, Hong E, Romero-Nava R. Expression profiles of GPR21, GPR39, GPR135, and GPR153 orphan receptors in different cancers. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:123-136. [PMID: 35021931 DOI: 10.1080/15257770.2021.2002892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 05/28/2023]
Abstract
Orphan receptors have unknown endogenous ligands, are expressed in different tissues, and participate in various diseases such as diabetes, hypertension and cancer. We studied the expression profiles of GPR21, GPR39, GPR135 and GPR153 orphan receptors in several tumour tissues. Cervical, breast, skin, prostate, and astrocytoma tissues were analysed for orphan receptor gene expression using Real time PCR analysis. GPR39 is over-expressed in cervical and prostate cancer tissues, and GPR21 and GPR135 receptors are significantly decreased in cervical, breast, skin, prostate, and astrocytoma tissues, when compared with healthy human fibroblasts. In conclusion, GPR21 and GPR135 receptor gene expression is reduced in cancerous tissues. GPR39 may have a role in the development and evolution of cervical and prostate cancer. These data suggest these receptors may be alternative molecules for new diagnostic approaches, and the design of novel therapeutics against oncological pathologies.
Collapse
Affiliation(s)
- Juan René Gutiérrez-Ruiz
- Escuela Superior de Medicina del Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México, México
- Secretaria de Salud del estado de Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Santiago Villafaña
- Escuela Superior de Medicina del Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México, México
| | - Armando Ruiz-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | | | | | - Karla Aidee Aguayo-Cerón
- Escuela Superior de Medicina del Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México, México
| | - Fengyang Huang
- Departamento de Investigación en Farmacología, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Enrique Hong
- Departamento de Farmacobiología sede Sur, CINVESTAV, Ciudad de México, México
| | - Rodrigo Romero-Nava
- Escuela Superior de Medicina del Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México, México
| |
Collapse
|
15
|
Cholesterol-dependent endocytosis of GPCRs: implications in pathophysiology and therapeutics. Biophys Rev 2021; 13:1007-1017. [DOI: 10.1007/s12551-021-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
|
16
|
Tiss A, Ben Boubaker R, Henrion D, Guissouma H, Chabbert M. Homology Modeling of Class A G-Protein-Coupled Receptors in the Age of the Structure Boom. Methods Mol Biol 2021; 2315:73-97. [PMID: 34302671 DOI: 10.1007/978-1-0716-1468-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With 700 members, G protein-coupled receptors (GPCRs) of the rhodopsin family (class A) form the largest membrane receptor family in humans and are the target of about 30% of presently available pharmaceutical drugs. The recent boom in GPCR structures led to the structural resolution of 57 unique receptors in different states (39 receptors in inactive state only, 2 receptors in active state only and 16 receptors in different activation states). In spite of these tremendous advances, most computational studies on GPCRs, including molecular dynamics simulations, virtual screening and drug design, rely on GPCR models obtained by homology modeling. In this protocol, we detail the different steps of homology modeling with the MODELLER software, from template selection to model evaluation. The present structure boom provides closely related templates for most receptors. If, in these templates, some of the loops are not resolved, in most cases, the numerous available structures enable to find loop templates with similar length for equivalent loops. However, simultaneously, the large number of putative templates leads to model ambiguities that may require additional information based on multiple sequence alignments or molecular dynamics simulations to be resolved. Using the modeling of the human bradykinin receptor B1 as a case study, we show how several templates are managed by MODELLER, and how the choice of template(s) and of template fragments can improve the quality of the models. We also give examples of how additional information and tools help the user to resolve ambiguities in GPCR modeling.
Collapse
Affiliation(s)
- Asma Tiss
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France.,Laboratoire de Génétique, Immunologie et Pathologies Humaines, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Rym Ben Boubaker
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France
| | - Daniel Henrion
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France
| | - Hajer Guissouma
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Marie Chabbert
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France.
| |
Collapse
|
17
|
Rao BD, Sarkar P, Chattopadhyay A. Selectivity in agonist and antagonist binding to Serotonin 1A receptors via G-protein coupling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183265. [PMID: 32156647 DOI: 10.1016/j.bbamem.2020.183265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of membrane proteins in higher eukaryotes, and facilitate information transfer from the extracellular environment to the cellular interior upon activation by ligands. Their role in diverse signaling processes makes them an attractive choice as drug targets. GPCRs are coupled to heterotrimeric G-proteins which represent an important interface through which signal transduction occurs across the plasma membrane upon activation by ligands. To obtain further insight into the molecular details of interaction of G-proteins with GPCRs, in this work, we explored the selectivity of binding of specific agonists and antagonists to the serotonin1A receptor under conditions of progressive G-protein inactivation. The serotonin1A receptor is an important neurotransmitter receptor belonging to the GPCR family and is a popular drug target. By use of a number of agents to inactivate G-proteins, we show here that the serotonin1A receptor displays differential discrimination between agonist and antagonist binding. Our results show a reduction in binding sites of the receptor upon treatment with G-protein inactivating agents. In addition, G-protein coupling efficiency was enhanced when G-proteins were inactivated using urea and alkaline pH. We envision that our results could be useful in achieving multiple signaling states of the receptor by fine tuning the conditions of G-protein inactivation and in structural biology of GPCRs bound to specific ligands.
Collapse
Affiliation(s)
- Bhagyashree D Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.
| |
Collapse
|
18
|
Development of the first in vivo GPR17 ligand through an iterative drug discovery pipeline: A novel disease-modifying strategy for multiple sclerosis. PLoS One 2020; 15:e0231483. [PMID: 32320409 PMCID: PMC7176092 DOI: 10.1371/journal.pone.0231483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
The GPR17 receptor, expressed on oligodendroglial precursors (OPCs, the myelin producing cells), has emerged as an attractive target for a pro-myelinating strategy in multiple sclerosis (MS). However, the proof-of-concept that selective GPR17 ligands actually exert protective activity in vivo is still missing. Here, we exploited an iterative drug discovery pipeline to prioritize novel and selective GPR17 pro-myelinating agents out of more than 1,000,000 compounds. We first performed an in silico high-throughput screening on GPR17 structural model to identify three chemically-diverse ligand families that were then combinatorially exploded and refined. Top-scoring compounds were sequentially tested on reference pharmacological in vitro assays with increasing complexity, ending with myelinating OPC-neuron co-cultures. Successful ligands were filtered through in silico simulations of metabolism and pharmacokinetics, to select the most promising hits, whose dose and ability to target the central nervous system were then determined in vivo. Finally, we show that, when administered according to a preventive protocol, one of them (named by us as galinex) is able to significantly delay the onset of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. This outcome validates the predictivity of our pipeline to identify novel MS-modifying agents.
Collapse
|
19
|
Corbière A, Vaudry H, Chan P, Walet-Balieu ML, Lecroq T, Lefebvre A, Pineau C, Vaudry D. Strategies for the Identification of Bioactive Neuropeptides in Vertebrates. Front Neurosci 2019; 13:948. [PMID: 31619945 PMCID: PMC6759750 DOI: 10.3389/fnins.2019.00948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/22/2019] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides exert essential functions in animal physiology by controlling e.g., reproduction, development, growth, energy homeostasis, cardiovascular activity and stress response. Thus, identification of neuropeptides has been a very active field of research over the last decades. This review article presents the various methods used to discover novel bioactive peptides in vertebrates. Initially identified on the basis of their biological activity, some neuropeptides have also been discovered for their ability to bind/activate a specific receptor or based on their biochemical characteristics such as C-terminal amidation which concerns half of the known neuropeptides. More recently, sequencing of the genome of many representative species has facilitated peptidomic approaches using mass spectrometry and in silico screening of genomic libraries. Through these different approaches, more than a hundred of bioactive neuropeptides have already been identified in vertebrates. Nevertheless, researchers continue to find new neuropeptides or to identify novel functions of neuropeptides that had not been detected previously, as it was recently the case for nociceptin.
Collapse
Affiliation(s)
- Auriane Corbière
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
| | - Hubert Vaudry
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France.,Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - Philippe Chan
- Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Marie-Laure Walet-Balieu
- Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Thierry Lecroq
- Normandie Univ, UNIROUEN, LITIS EA 4108, Information Processing in Biology & Health, Rouen, France
| | - Arnaud Lefebvre
- Normandie Univ, UNIROUEN, LITIS EA 4108, Information Processing in Biology & Health, Rouen, France
| | | | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France.,Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France.,Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
20
|
Smirnova NF, Conlon TM, Morrone C, Dorfmuller P, Humbert M, Stathopoulos GT, Umkehrer S, Pfeiffer F, Yildirim AÖ, Eickelberg O. Inhibition of B cell-dependent lymphoid follicle formation prevents lymphocytic bronchiolitis after lung transplantation. JCI Insight 2019; 4:123971. [PMID: 30728330 DOI: 10.1172/jci.insight.123971] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Lung transplantation (LTx) is the only therapeutic option for many patients with chronic lung disease. However, long-term survival after LTx is severely compromised by chronic rejection (chronic lung allograft dysfunction [CLAD]), which affects 50% of recipients after 5 years. The underlying mechanisms for CLAD are poorly understood, largely due to a lack of clinically relevant animal models, but lymphocytic bronchiolitis is an early sign of CLAD. Here, we report that lymphocytic bronchiolitis occurs early in a long-term murine orthotopic LTx model, based on a single mismatch (grafts from HLA-A2:B6-knockin donors transplanted into B6 recipients). Lymphocytic bronchiolitis is followed by formation of B cell-dependent lymphoid follicles that induce adjacent bronchial epithelial cell dysfunction in a spatiotemporal fashion. B cell deficiency using recipient μMT-/- mice prevented intrapulmonary lymphoid follicle formation and lymphocytic bronchiolitis. Importantly, selective inhibition of the follicle-organizing receptor EBI2, using genetic deletion or pharmacologic inhibition, prevented functional and histological deterioration of mismatched lung grafts. In sum, we provided what we believe to be a mouse model of chronic rejection and lymphocytic bronchiolitis after LTx and identified intrapulmonary lymphoid follicle formation as a target for pharmacological intervention of long-term allograft dysfunction after LTx.
Collapse
Affiliation(s)
- Natalia F Smirnova
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany.,Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Thomas M Conlon
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Carmela Morrone
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Peter Dorfmuller
- Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France.,Department of Pathology and INSERM U999, Pulmonary Hypertension, Pathophysiology and Novel Therapies, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France.,Department of Pathology and INSERM U999, Pulmonary Hypertension, Pathophysiology and Novel Therapies, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Stephan Umkehrer
- Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Franz Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Ali Ö Yildirim
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany.,Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
21
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
22
|
Nourbakhsh F, Atabaki R, Roohbakhsh A. The role of orphan G protein-coupled receptors in the modulation of pain: A review. Life Sci 2018; 212:59-69. [PMID: 30236869 DOI: 10.1016/j.lfs.2018.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise a large number of receptors. Orphan GPCRs are divided into six families. These groups contain orphan receptors for which the endogenous ligands are unclear. They have various physiological effects in the body and have the potential to be used in the treatment of different diseases. Considering their important role in the central and peripheral nervous system, their role in the treatment of pain has been the subject of some recent studies. At present, there are effective therapeutics for the treatment of pain including opioid medications and non-steroidal anti-inflammatory drugs. However, the side effects of these drugs and the risks of tolerance and dependence remain a major problem. In addition, neuropathic pain is a condition that does not respond to currently available analgesic medications well. In the present review article, we aimed to review the most recent findings regarding the role of orphan GPCRs in the treatment of pain. Accordingly, based on the preclinical findings, the role of GPR3, GPR7, GPR8, GPR18, GPR30, GPR35, GPR40, GPR55, GPR74, and GPR147 in the treatment of pain was discussed. The present study highlights the role of orphan GPCRs in the modulation of pain and implies that these receptors are potential new targets for finding better and more efficient therapeutics for the management of pain particularly neuropathic pain.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rabi Atabaki
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Abstract
G protein-coupled receptors (GPCRs) play an active role in numerous cellular processes, from cell proliferation to differentiation, by modulating gene transcription through various signal transduction pathways. Transcriptional regulation coupled to reporter gene expression may be used to study both G protein-dependent and G protein-independent responses activated by GPCR ligands. Reporter genes are typically used to monitor changes in receptor-mediated cellular responses at the transcription/translation level. Genetic reporter assays are based on reporter gene expression in response to activation of specific signaling cascade, followed by monitoring the presence of the reporter protein by directly measuring its enzymatic activity. These optimized genes are expressed under the control of a response element to assess its transcriptional activity that can be readily detected by a luminescent signal. Firefly luciferase gene has been widely used as a genetic reporter that responds rapidly to modulation of a GPCR by agonists or antagonists. Luciferase assays have been successfully developed for deorphanization of GPCRs, high-throughput screening (HTS) applications for drug discovery and deciphering both canonical and non-canonical signaling of numerous GPCRs. The protocol outlined for STAT3-driven luciferase assay could be adapted with appropriate changes to any aspect of GPCR signaling.
Collapse
Affiliation(s)
- Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
24
|
Haque ME, Kim IS, Jakaria M, Akther M, Choi DK. Importance of GPCR-Mediated Microglial Activation in Alzheimer's Disease. Front Cell Neurosci 2018; 12:258. [PMID: 30186116 PMCID: PMC6110855 DOI: 10.3389/fncel.2018.00258] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with impairment of cognition, memory deficits and behavioral abnormalities. Accumulation of amyloid beta (Aβ) is a characteristic hallmark of AD. Microglia express several GPCRs, which, upon activation by modulators, mediate microglial activation and polarization phenotype. This GPCR-mediated microglial activation has both protective and detrimental effects. Microglial GPCRs are involved in amyloid precursor protein (APP) cleavage and Aβ generation. In addition, microglial GPCRs are featured in the regulation of Aβ degradation and clearance through microglial phagocytosis and chemotaxis. Moreover, in response to Aβ binding on microglial Aβ receptors, they can trigger multiple inflammatory pathways. However, there is still a lack of insight into the mechanistic link between GPCR-mediated microglial activation and its pathological consequences in AD. Currently, the available drugs for the treatment of AD are mostly symptomatic and dominated by acetylcholinesterase inhibitors (AchEI). The selection of a specific microglial GPCR that is highly expressed in the AD brain and capable of modulating AD progression through Aβ generation, degradation and clearance will be a potential source of therapeutic intervention. Here, we have highlighted the expression and distribution of various GPCRs connected to microglial activation in the AD brain and their potential to serve as therapeutic targets of AD.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea
| | - In-Su Kim
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease, Konkuk University, Chungju, South Korea
| | - Md Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea.,Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease, Konkuk University, Chungju, South Korea
| |
Collapse
|
25
|
Recio C, Lucy D, Iveson P, Iqbal AJ, Valaris S, Wynne G, Russell AJ, Choudhury RP, O'Callaghan C, Monaco C, Greaves DR. The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease. Antioxid Redox Signal 2018; 29:237-256. [PMID: 29117706 DOI: 10.1089/ars.2017.7168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Great attention has been placed on the link between metabolism and immune function giving rise to the term "immunometabolism." It is widely accepted that inflammation and oxidative stress are key processes that underlie metabolic complications during obesity, diabetes, and atherosclerosis. Therefore, identifying the mechanisms and mediators that are involved in the regulation of both inflammation and metabolic homeostasis is of high scientific and therapeutic interest. Recent Advances: G protein-coupled receptors (GPCRs) that signal in response to metabolites have emerged as attractive therapeutic targets in inflammatory disease. Critical Issues and Future Directions: In this review, we discuss recent findings about the physiological role of the main metabolite-sensing GPCRs, their implication in immunometabolic disorders, their principal endogenous and synthetic ligands, and their potential as drug targets in inflammation and metabolic disease. Antioxid. Redox Signal. 29, 237-256.
Collapse
Affiliation(s)
- Carlota Recio
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Daniel Lucy
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Poppy Iveson
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Asif J Iqbal
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Sophia Valaris
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Graham Wynne
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Angela J Russell
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Robin P Choudhury
- 3 Radcliffe Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Chris O'Callaghan
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Claudia Monaco
- 5 Kennedy Institute for Rheumatology, University of Oxford , Oxford, Great Britain
| | - David R Greaves
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| |
Collapse
|
26
|
Porzionato A, Stocco E, Guidolin D, Agnati L, Macchi V, De Caro R. Receptor-Receptor Interactions of G Protein-Coupled Receptors in the Carotid Body: A Working Hypothesis. Front Physiol 2018; 9:697. [PMID: 29930516 PMCID: PMC6000251 DOI: 10.3389/fphys.2018.00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
In the carotid body (CB), a wide series of neurotransmitters and neuromodulators have been identified. They are mainly produced and released by type I cells and act on many different ionotropic and metabotropic receptors located in afferent nerve fibers, type I and II cells. Most metabotropic receptors are G protein-coupled receptors (GPCRs). In other transfected or native cells, GPCRs have been demonstrated to establish physical receptor–receptor interactions (RRIs) with formation of homo/hetero-complexes (dimers or receptor mosaics) in a dynamic monomer/oligomer equilibrium. RRIs modulate ligand binding, signaling, and internalization of GPCR protomers and they are considered of relevance for physiology, pharmacology, and pathology of the nervous system. We hypothesize that RRI may also occur in the different structural elements of the CB (type I cells, type II cells, and afferent fibers), with potential implications in chemoreception, neuromodulation, and tissue plasticity. This ‘working hypothesis’ is supported by literature data reporting the contemporary expression, in type I cells, type II cells, or afferent terminals, of GPCRs which are able to physically interact with each other to form homo/hetero-complexes. Functional data about cross-talks in the CB between different neurotransmitters/neuromodulators also support the hypothesis. On the basis of the above findings, the most significant homo/hetero-complexes which could be postulated in the CB include receptors for dopamine, adenosine, ATP, opioids, histamine, serotonin, endothelin, galanin, GABA, cannabinoids, angiotensin, neurotensin, and melatonin. From a methodological point of view, future studies should demonstrate the colocalization in close proximity (less than 10 nm) of the above receptors, through biophysical (i.e., bioluminescence/fluorescence resonance energy transfer, protein-fragment complementation assay, total internal reflection fluorescence microscopy, fluorescence correlation spectroscopy and photoactivated localization microscopy, X-ray crystallography) or biochemical (co-immunoprecipitation, in situ proximity ligation assay) methods. Moreover, functional approaches will be able to show if ligand binding to one receptor produces changes in the biochemical characteristics (ligand recognition, decoding, and trafficking processes) of the other(s). Plasticity aspects would be also of interest, as development and environmental stimuli (chronic continuous or intermittent hypoxia) produce changes in the expression of certain receptors which could potentially invest the dynamic monomer/oligomer equilibrium of homo/hetero-complexes and the correlated functional implications.
Collapse
Affiliation(s)
| | - Elena Stocco
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Luigi Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Macchi
- Department of Neuroscience, University of Padua, Padua, Italy
| | | |
Collapse
|
27
|
McVeigh P, McCammick E, McCusker P, Wells D, Hodgkinson J, Paterson S, Mousley A, Marks NJ, Maule AG. Profiling G protein-coupled receptors of Fasciola hepatica identifies orphan rhodopsins unique to phylum Platyhelminthes. Int J Parasitol Drugs Drug Resist 2018; 8:87-103. [PMID: 29474932 PMCID: PMC6114109 DOI: 10.1016/j.ijpddr.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are established drug targets. Despite their considerable appeal as targets for next-generation anthelmintics, poor understanding of their diversity and function in parasitic helminths has thwarted progress towards GPCR-targeted anti-parasite drugs. This study facilitates GPCR research in the liver fluke, Fasciola hepatica, by generating the first profile of GPCRs from the F. hepatica genome. Our dataset describes 147 high confidence GPCRs, representing the largest cohort of GPCRs, and the largest set of in silico ligand-receptor predictions, yet reported in any parasitic helminth. All GPCRs fall within the established GRAFS nomenclature; comprising three glutamate, 135 rhodopsin, two adhesion, five frizzled, one smoothened, and one secretin GPCR. Stringent annotation pipelines identified 18 highly diverged rhodopsins in F. hepatica that maintained core rhodopsin signatures, but lacked significant similarity with non-flatworm sequences, providing a new sub-group of potential flukicide targets. These facilitated identification of a larger cohort of 76 related sequences from available flatworm genomes, representing new members of existing groups (PROF1/Srfb, Rho-L, Rho-R, Srfa, Srfc) of flatworm-specific rhodopsins. These receptors imply flatworm specific GPCR functions, and/or co-evolution with unique flatworm ligands, and could facilitate the development of exquisitely selective anthelmintics. Ligand binding domain sequence conservation relative to deorphanised rhodopsins enabled high confidence ligand-receptor matching of seventeen receptors activated by acetylcholine, neuropeptide F/Y, octopamine or serotonin. RNA-Seq analyses showed expression of 101 GPCRs across various developmental stages, with the majority expressed most highly in the pathogenic intra-mammalian juvenile parasites. These data identify a broad complement of GPCRs in F. hepatica, including rhodopsins likely to have key functions in neuromuscular control and sensory perception, as well as frizzled and adhesion/secretin families implicated, in other species, in growth, development and reproduction. This catalogue of liver fluke GPCRs provides a platform for new avenues into our understanding of flatworm biology and anthelmintic discovery.
Collapse
Affiliation(s)
- Paul McVeigh
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Erin McCammick
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Paul McCusker
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Duncan Wells
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Jane Hodgkinson
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Angela Mousley
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Nikki J Marks
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron G Maule
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
28
|
The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol 2018; 153:62-74. [PMID: 29454621 DOI: 10.1016/j.bcp.2018.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs.
Collapse
|
29
|
Abstract
Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surrogate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently published active structures of GPCRs provide stimulating opportunities for building active molecular models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands, and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.
Collapse
Affiliation(s)
- Constantino Diaz
- Research Informatics, Evotec (France) SAS, 195 Route d'Espagne, 31036, Toulouse, France.
| | | | - Emilie Pihan
- Research Informatics, Evotec (France) SAS, 195 Route d'Espagne, 31036, Toulouse, France
| |
Collapse
|
30
|
Reasons to Be Nervous about Flukicide Discovery. Trends Parasitol 2017; 34:184-196. [PMID: 29269027 DOI: 10.1016/j.pt.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 01/21/2023]
Abstract
The majority of anthelmintics dysregulate neuromuscular function, a fact most prominent for drugs against nematode parasites. In contrast to the strong knowledge base for nematode neurobiology, resource and tool deficits have prevented similar advances in flatworm parasites since those driven by bioimaging, immunocytochemistry, and neuropeptide biochemistry 20-30 years ago. However, recent developments are encouraging a renaissance in liver fluke neurobiology that can now support flukicide discovery. Emerging data promote neuromuscular signalling components, and especially G protein-coupled receptors (GPCRs), as next-generation targets. Here, we summarise these data and expose some of the new opportunities to accelerate progress towards GPCR-targeted flukicides for Fasciola hepatica.
Collapse
|
31
|
Bobeck EN, Gomes I, Pena D, Cummings KA, Clem RL, Mezei M, Devi LA. The BigLEN-GPR171 Peptide Receptor System Within the Basolateral Amygdala Regulates Anxiety-Like Behavior and Contextual Fear Conditioning. Neuropsychopharmacology 2017; 42:2527-2536. [PMID: 28425495 PMCID: PMC5686498 DOI: 10.1038/npp.2017.79] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
Studies show that neuropeptide-receptor systems in the basolateral amygdala (BLA) play an important role in the pathology of anxiety and other mood disorders. Since GPR171, a recently deorphanized receptor for the abundant neuropeptide BigLEN, is expressed in the BLA, we investigated its role in fear and anxiety-like behaviors. To carry out these studies we identified small molecule ligands using a homology model of GPR171 to virtually screen a library of compounds. One of the hits, MS0021570_1, was identified as a GPR171 antagonist based on its ability to block (i) BigLEN-mediated activation of GPR171 in heterologous cells, (ii) BigLEN-mediated hyperpolarization of BLA pyramidal neurons, and (iii) feeding induced by DREADD-mediated activation of BigLEN containing AgRP neurons in the arcuate nucleus. The role of GPR171 in anxiety-like behavior or fear conditioning was evaluated following systemic or intra-BLA administration of MS0021570_1, as well as following lentiviral-mediated knockdown of GPR171 in the BLA. We find that systemic administration of MS0021570_1 attenuates anxiety-like behavior while intra-BLA administration or knockdown of GPR171 in the BLA reduces anxiety-like behavior and fear conditioning. These results indicate that the BigLEN-GPR171 system plays an important role in these behaviors and could be a novel target to develop therapeutics to treat psychiatric disorders.
Collapse
Affiliation(s)
- Erin N Bobeck
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Annenberg 19-84, New York, NY 10029, USA. Tel: +1 212 2418345, Fax: +1 212 9967214, E-mail: or
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darlene Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Kirstie A Cummings
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roger L Clem
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Annenberg 19-84, New York, NY 10029, USA. Tel: +1 212 2418345, Fax: +1 212 9967214, E-mail: or
| |
Collapse
|
32
|
Saravanan KM, Palanivel S, Yli-Harja O, Kandhavelu M. Identification of novel GPR17-agonists by structural bioinformatics and signaling activation. Int J Biol Macromol 2017; 106:901-907. [PMID: 28827203 DOI: 10.1016/j.ijbiomac.2017.08.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
G Protein-coupled Receptor 17 (GPR17) is phylogenetically related to the purinergic receptors emerged as a potential drug target for multiple sclerosis, Parkinson disease, Alzheimer disease and cancer. Unfortunately, the crystal structure of GPR17 is unresolved. With the interest in structure-based ligand discovery, we modeled the structure of GPR17. The model allowed us to identify two novel agonists, AC1MLNKK and T0510.3657 that selectively activate GPR17 which exhibit better interaction properties than previously known ligand, MDL29951. We report detailed protein-ligand interactions and the dynamics of GPR17-ligand interaction by molecular docking and molecular dynamics experiments. Ex vivo validation of GPR17-ligand interaction provides evidence that ligand T0510-3657 and AC1MLNKK inhibit the cAMP levels in GPR17-HEK293T cells, with a pEC50 of 4.79 and 4.64, respectively. In silico and ex vivo validation experiments provided the deep understanding of ligand binding with GPR17 and the present findings reported here may lead to use these two compounds as a potential activator of GPR17 for therapeutic intervention.
Collapse
Affiliation(s)
- Konda Mani Saravanan
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai, 600 025, India
| | - Suresh Palanivel
- Molecular Signaling Lab, Computational Systems Biology Research Group, Signal Processing Department, Tampere University of Technology, P.O. Box 553, 33101, Tampere, Finland
| | - Olli Yli-Harja
- Molecular Signaling Lab, Computational Systems Biology Research Group, Signal Processing Department, Tampere University of Technology, P.O. Box 553, 33101, Tampere, Finland; Institute for Systems Biology, 1441N 34th Street, Seattle, WA 98103-8904, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Computational Systems Biology Research Group, Signal Processing Department, Tampere University of Technology, P.O. Box 553, 33101, Tampere, Finland.
| |
Collapse
|
33
|
Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2017; 61:1382-1414. [PMID: 28737935 DOI: 10.1021/acs.jmedchem.7b00318] [Citation(s) in RCA: 689] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.
Collapse
Affiliation(s)
- Antoine Henninot
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - James C Collins
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - John M Nuss
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
34
|
Kamato D, Bhaskarala VV, Mantri N, Oh TG, Ling D, Janke R, Zheng W, Little PJ, Osman N. RNA sequencing to determine the contribution of kinase receptor transactivation to G protein coupled receptor signalling in vascular smooth muscle cells. PLoS One 2017; 12:e0180842. [PMID: 28719611 PMCID: PMC5515425 DOI: 10.1371/journal.pone.0180842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/22/2017] [Indexed: 02/02/2023] Open
Abstract
G protein coupled receptor (GPCR) signalling covers three major mechanisms. GPCR agonist engagement allows for the G proteins to bind to the receptor leading to a classical downstream signalling cascade. The second mechanism is via the utilization of the β-arrestin signalling molecule and thirdly via transactivation dependent signalling. GPCRs can transactivate protein tyrosine kinase receptors (PTKR) to activate respective downstream signalling intermediates. In the past decade GPCR transactivation dependent signalling was expanded to show transactivation of serine/threonine kinase receptors (S/TKR). Kinase receptor transactivation enormously broadens the GPCR signalling paradigm. This work utilizes next generation RNA-sequencing to study the contribution of transactivation dependent signalling to total protease activated receptor (PAR)-1 signalling. Transactivation, assessed as gene expression, accounted for 50 percent of the total genes regulated by thrombin acting through PAR-1 in human coronary artery smooth muscle cells. GPCR transactivation of PTKRs is approximately equally important as the transactivation of the S/TKR with 209 and 177 genes regulated respectively, via either signalling pathway. This work shows that genome wide studies can provide powerful insights into GPCR mediated signalling pathways.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- * E-mail:
| | - Venkata Vijayanand Bhaskarala
- Department of Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| | - Nitin Mantri
- Department of Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| | - Tae Gyu Oh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld, Australia
| | - Dora Ling
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Reearna Janke
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, China
| | - Narin Osman
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- Diabetes Complications Group, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Monash University, Departments of Medicine and Immunology, Central and Eastern Clinical School, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Oeckl P, Ferger B. Increased susceptibility of G-protein coupled receptor 6 deficient mice to MPTP neurotoxicity. Neuroscience 2016; 337:218-223. [PMID: 27651149 DOI: 10.1016/j.neuroscience.2016.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
Abstract
The G-protein coupled receptor 6 (GPR6) is a constitutive active orphan GPCR which is predominantly expressed in striatopallidal neurons. GPR6 deficiency in mice may alter the susceptibility of the nigrostriatal dopaminergic system relevant for Parkinson's disease (PD). Here, we investigated the effect of GPR6 deficiency in mice on neurotoxicity induced by the dopaminergic neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). GPR6-/-- and control mice were treated with MPTP (4×12.5mg/kg, i.p., 2h intervals) and analyzed after seven days. Striatal dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 4-hydroxy-3-methoxyphenylacetic acid (HVA) concentrations were measured by HPLC. The number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc) was analyzed by immunohistochemistry. In a separate group of mice, MPP+ (500μM for 20min) was administered via an intrastriatal microdialysis probe to measure the MPP+-induced DA release. MPTP produced a significant reduction in striatal DA, DOPAC, HVA and an increase in dopamine turnover in control and GPR6-/--mice. The MPTP-induced DA and HVA depletion was significantly more pronounced in GPR6-/--mice. Consistently, the MPTP-induced reduction of TH-positive neurons in the SPpc was significantly higher in GPR6-/--mice. Furthermore, the MPP+-induced dopamine release was significantly higher in GPR6-/--mice. In conclusion, we showed that MPTP induces an enhanced dopaminergic neurodegeneration in GPR6-/--mice indicated by alterations at the striatal and nigral level. We propose that GPR6 signaling is involved in the cascade of neurodegenerative events of the parkinsonian neurotoxin MPTP and suggest that pharmacological modulation of GPR6 might represent an entry point to further investigate GPR6 in PD.
Collapse
Affiliation(s)
- Patrick Oeckl
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, D-88397 Biberach an der Riss, Germany
| | - Boris Ferger
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, D-88397 Biberach an der Riss, Germany.
| |
Collapse
|
36
|
Golubev P, Bakulina O, Dar'in D, Krasavin M. Indoline-Based Constrained Peptidomimetic Motifs Obtained via the Joullié-Ugi Reaction of Indolenines. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pavel Golubev
- Institute of Chemistry; Saint Petersburg State University; 26 Universitetskii Prospect 198504 Peterhof Russian Federation
| | - Olga Bakulina
- Institute of Chemistry; Saint Petersburg State University; 26 Universitetskii Prospect 198504 Peterhof Russian Federation
| | - Dmitry Dar'in
- Institute of Chemistry; Saint Petersburg State University; 26 Universitetskii Prospect 198504 Peterhof Russian Federation
| | - Mikhail Krasavin
- Institute of Chemistry; Saint Petersburg State University; 26 Universitetskii Prospect 198504 Peterhof Russian Federation
| |
Collapse
|
37
|
Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, Ma'ayan A. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford) 2016; 2016:baw100. [PMID: 27374120 PMCID: PMC4930834 DOI: 10.1093/database/baw100] [Citation(s) in RCA: 1001] [Impact Index Per Article: 111.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/15/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022]
Abstract
Genomics, epigenomics, transcriptomics, proteomics and metabolomics efforts rapidly generate a plethora of data on the activity and levels of biomolecules within mammalian cells. At the same time, curation projects that organize knowledge from the biomedical literature into online databases are expanding. Hence, there is a wealth of information about genes, proteins and their associations, with an urgent need for data integration to achieve better knowledge extraction and data reuse. For this purpose, we developed the Harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins from over 70 major online resources. We extracted, abstracted and organized data into ∼72 million functional associations between genes/proteins and their attributes. Such attributes could be physical relationships with other biomolecules, expression in cell lines and tissues, genetic associations with knockout mouse or human phenotypes, or changes in expression after drug treatment. We stored these associations in a relational database along with rich metadata for the genes/proteins, their attributes and the original resources. The freely available Harmonizome web portal provides a graphical user interface, a web service and a mobile app for querying, browsing and downloading all of the collected data. To demonstrate the utility of the Harmonizome, we computed and visualized gene-gene and attribute-attribute similarity networks, and through unsupervised clustering, identified many unexpected relationships by combining pairs of datasets such as the association between kinase perturbations and disease signatures. We also applied supervised machine learning methods to predict novel substrates for kinases, endogenous ligands for G-protein coupled receptors, mouse phenotypes for knockout genes, and classified unannotated transmembrane proteins for likelihood of being ion channels. The Harmonizome is a comprehensive resource of knowledge about genes and proteins, and as such, it enables researchers to discover novel relationships between biological entities, as well as form novel data-driven hypotheses for experimental validation.Database URL: http://amp.pharm.mssm.edu/Harmonizome.
Collapse
Affiliation(s)
- Andrew D Rouillard
- Department of Pharmacology and Systems Therapeutics, Department of Genetics and Genomic Sciences, BD2K-LINCS Data Coordination and Integration Center (DCIC), Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregory W Gundersen
- Department of Pharmacology and Systems Therapeutics, Department of Genetics and Genomic Sciences, BD2K-LINCS Data Coordination and Integration Center (DCIC), Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas F Fernandez
- Department of Pharmacology and Systems Therapeutics, Department of Genetics and Genomic Sciences, BD2K-LINCS Data Coordination and Integration Center (DCIC), Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zichen Wang
- Department of Pharmacology and Systems Therapeutics, Department of Genetics and Genomic Sciences, BD2K-LINCS Data Coordination and Integration Center (DCIC), Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caroline D Monteiro
- Department of Pharmacology and Systems Therapeutics, Department of Genetics and Genomic Sciences, BD2K-LINCS Data Coordination and Integration Center (DCIC), Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael G McDermott
- Department of Pharmacology and Systems Therapeutics, Department of Genetics and Genomic Sciences, BD2K-LINCS Data Coordination and Integration Center (DCIC), Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, Department of Genetics and Genomic Sciences, BD2K-LINCS Data Coordination and Integration Center (DCIC), Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
38
|
Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci Rep 2016; 6:27002. [PMID: 27243589 PMCID: PMC4886680 DOI: 10.1038/srep27002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/12/2016] [Indexed: 01/06/2023] Open
Abstract
Type 2 diabetes is a chronic metabolic disorder primarily caused by insulin resistance to which obesity is a major contributor. Expression levels of an orphan G protein-coupled receptor (GPCR), GPR21, demonstrated a trend towards a significant increase in the epididymal fat pads of wild type high fat high sugar (HFHS)-fed mice. To gain further insight into the potential role this novel target may play in the development of obesity-associated type 2 diabetes, the signalling capabilities of the receptor were investigated. Overexpression studies in HEK293T cells revealed GPR21 to be a constitutively active receptor, which couples to Gαq type G proteins leading to the activation of mitogen activated protein kinases (MAPKs). Overexpression of GPR21 in vitro also markedly attenuated insulin signalling. Interestingly, the effect of GPR21 on the MAPKs and insulin signalling was reduced in the presence of serum, inferring the possibility of a native inhibitory ligand. Homology modelling and ligand docking studies led to the identification of a novel compound that inhibited GPR21 activity. Its effects offer potential as an anti-diabetic pharmacological strategy as it was found to counteract the influence of GPR21 on the insulin signalling pathway.
Collapse
|
39
|
Butini S, Nikolic K, Kassel S, Brückmann H, Filipic S, Agbaba D, Gemma S, Brogi S, Brindisi M, Campiani G, Stark H. Polypharmacology of dopamine receptor ligands. Prog Neurobiol 2016; 142:68-103. [PMID: 27234980 DOI: 10.1016/j.pneurobio.2016.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 01/11/2023]
Abstract
Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular.
Collapse
Affiliation(s)
- S Butini
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - K Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Kassel
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Brückmann
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - S Filipic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - D Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Gemma
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - S Brogi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - M Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - G Campiani
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - H Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
40
|
Yanai T, Kurosawa A, Nikaido Y, Nakajima N, Saito T, Osada H, Konno A, Hirai H, Takeda S. Identification and molecular docking studies for novel inverse agonists of SREB, super conserved receptor expressed in brain. Genes Cells 2016; 21:717-27. [PMID: 27184081 DOI: 10.1111/gtc.12378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/18/2016] [Indexed: 11/28/2022]
Abstract
The identification of novel synthetic ligands for G protein-coupled receptors (GPCRs) is important not only for understanding human physiology, but also for the development of novel drugs, especially for orphan GPCRs for which endogenous ligands are unknown. One of the orphan GPCR subfamilies, Super conserved Receptor Expressed in Brain (SREB), consists of GPR27, GPR85 and GPR173 and is expressed in the central nervous system. We report herein the identification of inverse agonists for the SREB family without their agonists. We carried out an in vitro screening of 5472 chemical compounds from the RIKEN NPDepo chemical library. The binding of [(35) S]GTPγS to the GPR173-Gsα fusion protein expressed in Sf9 cells was measured and resulted in the identification of 8 novel GPR173 inverse agonists. The most potent compound showed an IC50 of approximately 8 μm. The identified compounds were also antagonists for other SREB members, GPR27 and GPR85. These results indicated that the SREB family could couple Gs-type G proteins, and SREB-Gsα fusion proteins showed significant constitutive activities. Moreover, a molecular model of GPR173 was constructed using the screening results. The combination of computational and biological methods will provide a unique approach to ligand identification for orphan GPCRs and brain research.
Collapse
Affiliation(s)
- Toshihiro Yanai
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Aya Kurosawa
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Yoshiaki Nikaido
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Nozomi Nakajima
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Tamio Saito
- Collaboration Promotion Unit, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|