1
|
Lee H, Cho S, Kim D, Lee T, Kim HS. Bioelectric medicine: unveiling the therapeutic potential of micro-current stimulation. Biomed Eng Lett 2024; 14:367-392. [PMID: 38645592 PMCID: PMC11026362 DOI: 10.1007/s13534-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectric medicine (BEM) refers to the use of electrical signals to modulate the electrical activity of cells and tissues in the body for therapeutic purposes. In this review, we particularly focused on the microcurrent stimulation (MCS), because, this can take place at the cellular level with sub-sensory application unlike other stimuli. These extremely low-level currents mimic the body's natural electrical activity and are believed to promote various physiological processes. To date, MCS has limited use in the field of BEM with applications in several therapeutic purposes. However, recent studies provide hopeful signs that MCS is more scalable and widely applicable than what has been used so far. Therefore, this review delves into the landscape of MCS, shedding light on the multifaceted applications and untapped potential of MCS in the realm of healthcare. Particularly, we summarized the hierarchical mediation from cell to whole body responses by MCS including its physiological applications. Our final objective of this review is to contribute to the growing body of literature that unveils the captivating potential of BEM, with MCS poised at the intersection of technological innovation and the intricacies of the human body.
Collapse
Affiliation(s)
- Hana Lee
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| | - Seungkwan Cho
- Gfyhealth Inc., Seongnam, Gyeonggi 13488 South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| | - Taehyun Lee
- Gfyhealth Inc., Seongnam, Gyeonggi 13488 South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| |
Collapse
|
2
|
Shen Z, Yu M, Dong Z. Research Progress on the Pharmacodynamic Mechanisms of Sini Powder against Depression from the Perspective of the Central Nervous System. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040741. [PMID: 37109699 PMCID: PMC10141708 DOI: 10.3390/medicina59040741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Depression is a highly prevalent emotional disorder characterized by persistent low mood, diminished interest, and loss of pleasure. The pathological causes of depression are associated with neuronal atrophy, synaptic loss, and neurotransmitter activity decline in the central nervous system (CNS) resulting from injuries, such as inflammatory responses. In Traditional Chinese Medicine (TCM) theory, patients with depression often exhibit the liver qi stagnation syndrome type. Sini Powder (SNP) is a classic prescription for treating such depression-related syndrome types in China. This study systematically summarized clinical applications and experimental studies of SNP for treatments of depression. We scrutinized the active components of SNP with blood-brain barrier (BBB) permeability and speculated about the corresponding pharmacodynamic pathways relevant to depression treatment through intervening in the CNS. Therefore, this article can enhance our understanding of SNP's pharmacological mechanisms and formula construction for depression treatment. Moreover, a re-demonstration of this classic TCM prescription in the modern-science language is of great significance for future drug development and research.
Collapse
Affiliation(s)
- Zhongqi Shen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Meng Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenfei Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
3
|
Deng N, Qiao M, Li Y, Liang F, Li J, Liu Y. Anticancer effects of licochalcones: A review of the mechanisms. Front Pharmacol 2023; 14:1074506. [PMID: 36755942 PMCID: PMC9900005 DOI: 10.3389/fphar.2023.1074506] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Cancer is a disease with a high fatality rate representing a serious threat to human health. Researchers have tried to identify effective anticancer drugs. Licorice is a widely used traditional Chinese medicine with various pharmacological properties, and licorice-derived flavonoids include licochalcones like licochalcone A, licochalcone B, licochalcone C, licochalcone D, licochalcone E, and licochalcone H. By regulating the expression in multiple signaling pathways such as the EGFR/ERK, PI3K/Akt/mTOR, p38/JNK, JAK2/STAT3, MEK/ERK, Wnt/β-catenin, and MKK4/JNK pathways, and their downstream proteins, licochalcones can activate the mitochondrial apoptosis pathway and death receptor pathway, promote autophagy-related protein expression, inhibit the expression of cell cycle proteins and angiogenesis factors, regulate autophagy and apoptosis, and inhibit the proliferation, migration, and invasion of cancer cells. Among the licochalcones, the largest number of studies examined licochalcone A, far more than other licochalcones. Licochalcone A not only has prominent anticancer effects but also can be used to inhibit the efflux of antineoplastic drugs from cancer cells. Moreover, derivatives of licochalcone A exhibit strong antitumor effects. Currently, most results of the anticancer effects of licochalcones are derived from cell experiments. Thus, more clinical studies are needed to confirm the antineoplastic effects of licochalcones.
Collapse
Affiliation(s)
- Nan Deng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingming Qiao
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Ying Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengyan Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfeng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Yanfeng Liu,
| |
Collapse
|
4
|
Zhang J, Wu X, Zhong B, Liao Q, Wang X, Xie Y, He X. Review on the Diverse Biological Effects of Glabridin. Drug Des Devel Ther 2023; 17:15-37. [PMID: 36647530 PMCID: PMC9840373 DOI: 10.2147/dddt.s385981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Glabridin is a prenylated isoflavan from the roots of Glycyrrhiza glabra Linne and has posed great impact on the areas of drug development and medicine, due to various biological properties such as anti-inflammation, anti-oxidation, anti-tumor, anti-microorganism, bone protection, cardiovascular protection, neuroprotection, hepatoprotection, anti-obesity, and anti-diabetes. Many signaling pathways, including NF-κB, MAPK, Wnt/β-catenin, ERα/SRC-1, PI3K/AKT, and AMPK, have been implicated in the regulatory activities of glabridin. Interestingly, glabridin has been considered as an inhibitor of tyrosinase, P-glycoprotein (P-gp), and CYP2E1 and an activator of peroxisome proliferator-activated receptor γ (PPARγ), although their molecular regulating mechanisms still need further investigation. However, poor water solubility and low bioavailability have greatly limited the clinical applications of glabridin. Hopefully, several effective strategies, such as nanoemulsions, microneedles, and smartPearls formulation, have been developed for improvement.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xinhui Wu
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiao He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Correspondence: Xiao He, Email
| |
Collapse
|
5
|
Li MT, Xie L, Jiang HM, Huang Q, Tong RS, Li X, Xie X, Liu HM. Role of Licochalcone A in Potential Pharmacological Therapy: A Review. Front Pharmacol 2022; 13:878776. [PMID: 35677438 PMCID: PMC9168596 DOI: 10.3389/fphar.2022.878776] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Licochalcone A (LA), a useful and valuable flavonoid, is isolated from Glycyrrhiza uralensis Fisch. ex DC. and widely used clinically in traditional Chinese medicine. We systematically updated the latest information on the pharmacology of LA over the past decade from several authoritative internet databases, including Web of Science, Elsevier, Europe PMC, Wiley Online Library, and PubMed. A combination of keywords containing “Licochalcone A,” “Flavonoid,” and “Pharmacological Therapy” was used to help ensure a comprehensive review. Collected information demonstrates a wide range of pharmacological properties for LA, including anticancer, anti-inflammatory, antioxidant, antibacterial, anti-parasitic, bone protection, blood glucose and lipid regulation, neuroprotection, and skin protection. LA activity is mediated through several signaling pathways, such as PI3K/Akt/mTOR, P53, NF-κB, and P38. Caspase-3 apoptosis, MAPK inflammatory, and Nrf2 oxidative stress signaling pathways are also involved with multiple therapeutic targets, such as TNF-α, VEGF, Fas, FasL, PI3K, AKT, and caspases. Recent studies mainly focus on the anticancer properties of LA, which suggests that the pharmacology of other aspects of LA will need additional study. At the end of this review, current challenges and future research directions on LA are discussed. This review is divided into three parts based on the pharmacological effects of LA for the convenience of readers. We anticipate that this review will inspire further research.
Collapse
Affiliation(s)
- Meng-Ting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Mei Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong-Sheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Mei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Czigle S, Bittner Fialová S, Tóth J, Mučaji P, Nagy M. Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules 2022; 27:2881. [PMID: 35566230 PMCID: PMC9105531 DOI: 10.3390/molecules27092881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of gastrointestinal diseases is about 40%, with standard pharmacotherapy being long-lasting and economically challenging. Of the dozens of diseases listed by the Rome IV Foundation criteria, for five of them (heartburn, dyspepsia, nausea and vomiting disorder, constipation, and diarrhoea), treatment with herbals is an official alternative, legislatively supported by the European Medicines Agency (EMA). However, for most plants, the Directive does not require a description of the mechanisms of action, which should be related to the therapeutic effect of the European plant in question. This review article, therefore, summarizes the basic pharmacological knowledge of synthetic drugs used in selected functional gastrointestinal disorders (FGIDs) and correlates them with the constituents of medicinal plants. Therefore, the information presented here is intended as a starting point to support the claim that both empirical folk medicine and current and decades-old treatments with official herbal remedies have a rational basis in modern pharmacology.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (S.B.F.); (J.T.); (P.M.); (M.N.)
| | | | | | | | | | | |
Collapse
|
7
|
Kato M, Takayama Y, Sunagawa M. The Calcium-Activated Chloride Channel TMEM16A is Inhibitied by Liquiritigenin. Front Pharmacol 2021; 12:628968. [PMID: 33897420 PMCID: PMC8060913 DOI: 10.3389/fphar.2021.628968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
The transmembrane 16 (TMEM16) family contains 10 subtypes, and the function of each protein is different. TMEM16A is a calcium-activated chloride channel involved in physiological and pathological situations. Liquiritigenin is an aglycone derived from Glycyrrhiza glabra, and it is generated via the metabolism of enterobacterial flora. It has been known that liquiritigenin reduces pain sensation involving TMEM16A activation in primary sensory neurons. In addition, other pharmacological effects of liquiritigenin in physiological functions involving TMEM16A have been reported. However, the relationship between TMEM16A and liquiritigenin is still unknown. Therefore, we hypothesized that TMEM16A is inhibited by liquiritigenin. To confirm this hypothesis, we investigated the effect of liquiritigenin on TMEM16A currents evoked by intracellular free calcium in HEK293T cells transfected with TMEM16A. In this study, we found that liquiritigenin inhibited the mouse and human TMEM16A currents. To further confirm its selectivity, we also investigated its pharmacological effects on other ion channels, including transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), which are non-selective cation channels involved in pain sensation. However, liquiritigenin did not inhibit the currents of TRPV1 and TRPA1 induced by capsaicin and allyl isothiocyanate, respectively. Therefore, our findings indicate that selective TMEM16A inhibition could be one molecular mechanism that explains liquiritigenin-induced pain reduction. Additionally, we also investigated the inhibitory effects of estrogens on TMEM16A because liquiritigenin reportedly binds to the estrogen receptor. In this study, a pregnancy-dependent estrogen, estriol, significantly inhibited TMEM16A. However, the efficacy was weak. Although there is a possibility that TMEM16A activity could be suppressed during pregnancy, the physiological significance seems to be small. Thus, the inhibitory effect of estrogen might not be significant under physiological conditions. Furthermore, we investigated the effect of dihydrodaidzein, which is an analog of liquiritigenin that has a hydroxyphenyl at different carbon atom of pyranose. Dihydrodaidzein also inhibited mouse and human TMEM16A. However, the inhibitory effects were weaker than those of liquiritigenin. This suggests that the efficacy of TMEM16A antagonists depends on the hydroxyl group positions. Our finding of liquiritigenin-dependent TMEM16A inhibition could connect the current fragmented knowledge of the physiological and pathological mechanisms involving TMEM16A and liquiritigenin.
Collapse
Affiliation(s)
- Mami Kato
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Masataka Sunagawa
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Herbrechter R, Beltrán LR, Ziemba PM, Titt S, Lashuk K, Gottemeyer A, Levermann J, Hoffmann KM, Beltrán M, Hatt H, Störtkuhl KF, Werner M, Gisselmann G. Effect of 158 herbal remedies on human TRPV1 and the two-pore domain potassium channels KCNK2, 3 and 9. J Tradit Complement Med 2020; 10:446-453. [PMID: 32953560 PMCID: PMC7484967 DOI: 10.1016/j.jtcme.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/22/2022] Open
Abstract
Background and aim Herbal medicines are used to treat a broad number of maladies. However, the pharmacological profile of most remedies is poorly understood. We investigated the effect of herbal remedies from kampo, traditional Chinese medicine (TCM) and other phytotherapies on human two-pore domain potassium channels (KCNK channels; TREK-1, TASK-1 and TASK-3) as well as the human TRPV1 channel. KCNK channels are responsible for the background potassium current of excitable cells, thus essential for the maintenance of the resting membrane potential. Hence, modulators of KCNK channels are of medical significance, e.g. for the treatment of sleep disorders and pain. The transient receptor potential channel TRPV1 is a pain detector for noxious heat. Agonists of this receptor are still used for the treatment of pain in ectopic applications. Experimental procedure We evaluated the effect of 158 herbal remedies on these channels in a heterologous expression system (Xenopus laevis oocytes) using the two-electrode voltage-clamp technique with the aim of increasing the comprehension of their pharmacological profile. Results and conclusion Some remedies with modulating effects were identified such as Angelica pubescens (radix), which inhibit TASK-1 and TASK-3 channels. Furthermore, the modulatory effects of the most effective remedies on the two TASK family members TASK-1 and TASK-3 correlate positively, reflecting their close relation. For the TRPV1 channel Terminalia chebula and Alchemilla xanthochlora were identified as potentiators. This study identifies a variety of herbal remedies as modulators of human K2P and TRPV1 channels and gives new insights into the pharmacological profile of these herbal remedies. Effect of kampo and TCM herbs on human two-pore domain potassium and TRP channels. Effect of 158 herbal remedies on heterologously expressed ion channels. Angelica pubescens (radix) extracts inhibit KCNK3 and KCNK9 channels. Modulatory effects of effective remedies on KCNK3 and KCNK9 correlate positively. Terminalia chebula and Alchemilla xanthochlora are TRPV1 potentiators.
Collapse
Affiliation(s)
- Robin Herbrechter
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | | | - Paul M Ziemba
- AG Physiology of Senses, Ruhr-University Bochum, Bochum, Germany
| | - Sascha Titt
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | - Konstantin Lashuk
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | - André Gottemeyer
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | - Janina Levermann
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | - Katrin M Hoffmann
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | - Madeline Beltrán
- Department of Receptor Biochemistry, Ruhr-University-Bochum, Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | - Klemens F Störtkuhl
- Department of Receptor Biochemistry, Ruhr-University-Bochum, Bochum, Germany
| | - Markus Werner
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| |
Collapse
|
9
|
Bruder M, Polo G, Trivella DBB. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Nat Prod Rep 2020; 37:488-514. [PMID: 32048675 DOI: 10.1039/c9np00064j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to 2018Over the last decade more than two hundred single natural products were confirmed as natural allosteric modulators (alloNPs) of proteins. The compounds are presented and discussed with the support of a chemical space, constructed using a principal component analysis (PCA) of molecular descriptors from chemical compounds of distinct databases. This analysis showed that alloNPs are dispersed throughout the majority of the chemical space defined by natural products in general. Moreover, a cluster of alloNPs was shown to occupy a region almost devoid of allosteric modulators retrieved from a dataset composed mainly of synthetic compounds, further highlighting the importance to explore the entire natural chemical space for probing allosteric mechanisms. The protein targets which alloNPs bind to comprised 81 different proteins, which were classified into 5 major groups, with enzymes, in particular hydrolases, being the main representative group. The review also brings a critical interpretation on the mechanisms by which alloNPs display their molecular action on proteins. In the latter analysis, alloNPs were classified according to their final effect on the target protein, resulting in 3 major categories: (i) local alteration of the orthosteric site; (ii) global alteration in protein dynamics that change function; and (iii) oligomer stabilisation or protein complex destabilisation via protein-protein interaction in sites distant from the orthosteric site. G-protein coupled receptors (GPCRs), which use a combination of the three types of allosteric regulation found, were also probed by natural products. In summary, the natural allosteric modulators reviewed herein emphasise their importance for exploring alternative chemotherapeutic strategies, potentially pushing the boundaries of the druggable space of pharmacologically relevant drug targets.
Collapse
Affiliation(s)
- Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), National Centre for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil.
| | | | | |
Collapse
|
10
|
Zengin G, Ferrante C, Gnapi DE, Sinan KI, Orlando G, Recinella L, Diuzheva A, Jekő J, Cziáky Z, Chiavaroli A, Leone S, Brunetti L, Picot-Allain C, Mahomoodally MF, Angelini P, Covino S, Venanzoni R, Tirillini B, Menghini L. Comprehensive approaches on the chemical constituents and pharmacological properties of flowers and leaves of American basil (Ocimum americanum L). Food Res Int 2019; 125:108610. [DOI: 10.1016/j.foodres.2019.108610] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/06/2019] [Accepted: 08/11/2019] [Indexed: 01/06/2023]
|
11
|
Zengin G, Ferrante C, Orlando G, Zheleva-Dimitrova D, Gevrenova R, Recinella L, Chiavaroli A, Leone S, Brunetti L, Aumeeruddy MZ, Aktumsek A, Mahomoodally MF, Angelini P, Covino S, Venanzoni R, Tirillini B, Menghini L. Chemical profiling and pharmaco-toxicological activity of Origanum sipyleum extracts: Exploring for novel sources for potential therapeutic agents. J Food Biochem 2019; 43:e13003. [PMID: 31393014 DOI: 10.1111/jfbc.13003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
Abstract
The phytochemical, antiradical, and enzyme inhibition profile of three solvent extracts (ethyl acetate, methanol, water) of Origanum sipyleum were assessed. We also performed a pharmacological study in order to explore protective effects induced by extracts in inflamed colon. LC-MS analysis revealed that the extracts contained different classes of phenolics. The aqueous extract showed the highest antioxidant and acetylcholinesterase (AChE) inhibitory effects. Total phenol and flavonoid contents were highest in aqueous and ethyl acetate extract, respectively. All extracts were effective in reducing colon pro-oxidant and pro-inflammatory biomarkers. The extracts revealed also able to inhibit fungal and bacterial species involved in ulcerative colitis, including Candida albicans, Candida tropicalis, Staphylococcus aureus, and Staphylococcus thyphimurium. Finally, we also showed the antiproliferative effects exerted by the EA extracts on human colon cancer HCT116 cell line. Concluding, our results indicated that O. sipyleum extracts displayed promising therapeutic properties which warrants further validation. PRACTICAL APPLICATIONS: The present phytochemical and biological studies, including antioxidant, anti-inflammatory, and antimicrobic assessments, showed significant protective effects exerted by O. sipyleum extracts in an experimental model of ulcerative colitis. The results are intriguing and suggest potential applications O. sipyleum extracts as sources of natural agents for the management of clinical symptoms related to ulcerative colitis, characterized by increased burden of oxidative stress and microbiome dysbiosis.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | | | | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Covino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Bruno Tirillini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
12
|
Ferrante C, Recinella L, Ronci M, Orlando G, Di Simone S, Brunetti L, Chiavaroli A, Leone S, Politi M, Tirillini B, Angelini P, Covino S, Venanzoni R, Vladimir-Knežević S, Menghini L. Protective effects induced by alcoholic Phlomis fruticosa and Phlomis herba-venti extracts in isolated rat colon: Focus on antioxidant, anti-inflammatory, and antimicrobial activities in vitro. Phytother Res 2019; 33:2387-2400. [PMID: 31322313 DOI: 10.1002/ptr.6429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
Phlomis fruticosa L. and P. herba-venti are species belonging to the Lamiaceae family, which have been traditionally used to prepare tonic and digestive drinks. Multiple studies also demonstrated the inhibitory effects of P. fruticosa extracts and essential oil against oxidative/proinflammatory pathways and bacterial strains deeply involved in ulcerative colitis. Considering these findings, the present study evaluated the effects of alcoholic P. fruticosa and P. herba-venti leaf extracts in isolated rat colon challenged with Escherichia coli lipopolysaccharide (LPS), an ex vivo experimental paradigm of ulcerative colitis. In this context, we assayed colon levels of pro-oxidant and proinflammatory biomarkers, including nitrites, malondialdehyde (MDA), lactate dehydrogenase (LDH), and serotonin (5-HT). Additionally, the extracts have been tested in order to evaluate possible inhibitory effects on specific bacterial and fungal strains involved in ulcerative colitis. Alcoholic P. fruticosa and P. herba-venti extracts were able to blunt LPS-induced nitrite, MDA, 5-HT, and LDH levels in isolated rat colon. The same extracts also inhibited the growth of Pseudomonas aeruginosa, E. coli, Staphylococcus aureus, Candida albicans and Candida tropicalis. In conclusion, our findings show a potential role exerted by alcoholic P. fruticosa and P. herba-venti in managing the clinical symptoms related to ulcerative colitis.
Collapse
Affiliation(s)
- Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Simonetta Di Simone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Matteo Politi
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Bruno Tirillini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Covino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20/II, 10000, Zagreb, Croatia
| | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
13
|
Protective Effects of Licochalcone A Ameliorates Obesity and Non-Alcoholic Fatty Liver Disease Via Promotion of the Sirt-1/AMPK Pathway in Mice Fed a High-Fat Diet. Cells 2019; 8:cells8050447. [PMID: 31083505 PMCID: PMC6562591 DOI: 10.3390/cells8050447] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Licochalcone A is a chalcone isolated from Glycyrrhiza uralensis. It showed anti-tumor and anti-inflammatory properties in mice with acute lung injuries and regulated lipid metabolism through the activation of AMP-activated protein kinase (AMPK) in hepatocytes. However, the effects of licochalcone A on reducing weight gain and improving nonalcoholic fatty liver disease (NAFLD) are unclear. Thus, the present study investigated whether licochalcone A ameliorated weight loss and lipid metabolism in the liver of high-fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed an HFD to induce obesity and NAFLD, and then were injected intraperitoneally with licochalcone A. In another experiment, a fatty liver cell model was established by incubating HepG2 hepatocytes with oleic acid and treating the cells with licochalcone A to evaluate lipid metabolism. Our results demonstrated that HFD-induced obese mice treated with licochalcone A had decreased body weight as well as inguinal and epididymal adipose tissue weights compared with HFD-treated mice. Licochalcone A also ameliorated hepatocyte steatosis and decreased liver tissue weight and lipid droplet accumulation in liver tissue. We also found that licochalcone A significantly regulated serum triglycerides, low-density lipoprotein, and free fatty acids, and decreased the fasting blood glucose value. Furthermore, in vivo and in vitro, licochalcone A significantly decreased expression of the transcription factor of lipogenesis and fatty acid synthase. Licochalcone A activated the sirt-1/AMPK pathway to reduce fatty acid chain synthesis and increased lipolysis and β-oxidation in hepatocytes. Licochalcone A can potentially ameliorate obesity and NAFLD in mice via activation of the sirt1/AMPK pathway.
Collapse
|
14
|
Zengin G, Ferrante C, Senkardes I, Gevrenova R, Zheleva-Dimitrova D, Menghini L, Orlando G, Recinella L, Chiavaroli A, Leone S, Brunetti L, Picot-Allain CMN, Rengasamy KR, Mahomoodally MF. Multidirectional biological investigation and phytochemical profile of Rubus sanctus and Rubus ibericus. Food Chem Toxicol 2019; 127:237-250. [PMID: 30914354 DOI: 10.1016/j.fct.2019.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
In the present study, the biological properties, including, the enzyme inhibitory and antioxidant activities, as well as, the phytochemical profile of the ethyl acetate, methanol, and water extracts of Rubus sanctus Schreb. and Rubus ibericus Juz. leaves were determined using in vitro bioassays. Wide range of phytochemicals, including, hydroxybenzoic acids, hydroxycinnamic acids, acylquinic acids, ellagitannins, flavonoids, and triterpenoid saponins were determined using UHPLC-ESI/HRMS technique. The ethyl acetate and methanol extracts of the studied Rubus species effectively inhibited acetyl and butyryl cholinesterase. On the other hand, R. sanctus water extract showed low inhibition against α-amylase and prominent inhibitory action against α-glucosidase. Data collected from this study reported the radical scavenging and reducing potential of the studied Rubus species. Investigation of the protective effects of the different extracts of R. sanctus and R. ibericus in experimental model of ulcerative colitis was performed. The extracts were also tested on spontaneous migration of human colon cancer cells (HCT116) in wound healing experimental paradigm. Only R. sanctus methanol extract inhibited spontaneous HCT116 migration in the wound healing test. Our results suggested that R. sanctus and R. ibericus may be potential candidates as sources of biologically-active compounds for the development of nutraceuticals, pharmaceuticals, and/or cosmetics.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey.
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Ismail Senkardes
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Bulgaria
| | | | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy.
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | | | - Kannan Rr Rengasamy
- Department of Bio-resources and Food Science, Konkuk University, Seoul, South Korea
| | | |
Collapse
|
15
|
Kim HJ, Lee GS, Kim H, Kim BJ. Hwangryunhaedok-tang induces the depolarization of pacemaker potentials through 5-HT 3 and 5-HT 4 receptors in cultured murine small intestine interstitial cells of Cajal. World J Gastroenterol 2017; 23:5313-5323. [PMID: 28839431 PMCID: PMC5550780 DOI: 10.3748/wjg.v23.i29.5313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/18/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the effects of a water extract of Hwangryunhaedok-tang (HHTE) on the pacemaker potentials of mouse interstitial cells of Cajal (ICCs). METHODS We dissociated ICCs from small intestines and cultured. ICCs were immunologically identified using an anti-c-kit antibody. We used the whole-cell patch-clamp configuration to record the pacemaker potentials generated by cultured ICCs under the current clamp mode (I = 0). All experiments were performed at 30 °C-32 °C. RESULTS HHTE dose-dependently depolarized ICC pacemaker potentials. Pretreatment with a 5-HT3 receptor antagonist (Y25130) or a 5-HT4 receptor antagonist (RS39604) blocked HHTE-induced pacemaker potential depolarizations, whereas pretreatment with a 5-HT7 receptor antagonist (SB269970) did not. Intracellular GDPβS inhibited HHTE-induced pacemaker potential depolarization and pretreatment with a Ca2+-free solution or thapsigargin abolished the pacemaker potentials. In the presence of a Ca2+-free solution or thapsigargin, HHTE did not depolarize ICC pacemaker potentials. In addition, HHTE-induced pacemaker potential depolarization was unaffected by a PKC inhibitor (calphostin C) or a Rho kinase inhibitor (Y27632). Of the four ingredients of HHT, Coptidis Rhizoma and Gardeniae Fructus more effectively inhibited pacemaker potential depolarization. CONCLUSION These results suggest that HHTE dose-dependently depolarizes ICC pacemaker potentials through 5-HT3 and 5-HT4 receptors via external and internal Ca2+ regulation and via G protein-, PKC- and Rho kinase-independent pathways.
Collapse
|
16
|
Hoffmann KM, Herbrechter R, Ziemba PM, Lepke P, Beltrán L, Hatt H, Werner M, Gisselmann G. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors. Front Pharmacol 2016; 7:219. [PMID: 27524967 PMCID: PMC4965468 DOI: 10.3389/fphar.2016.00219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022] Open
Abstract
Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications.
Collapse
Affiliation(s)
- Katrin M Hoffmann
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Robin Herbrechter
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Paul M Ziemba
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Peter Lepke
- Kronen Apotheke Wuppertal Wuppertal, Germany
| | - Leopoldo Beltrán
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Markus Werner
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
17
|
Hoffmann KM, Beltrán L, Ziemba PM, Hatt H, Gisselmann G. Potentiating effect of glabridin from Glycyrrhiza glabra on GABA A receptors. Biochem Biophys Rep 2016; 6:197-202. [PMID: 29214227 PMCID: PMC5689168 DOI: 10.1016/j.bbrep.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 10/25/2022] Open
Abstract
Extracts from Glycyrrhiza are traditionally used for the treatment of insomnia and anxiety. Glabridin is one of the main flavonoid compounds from Glycyrrhiza glabra and displays a broad range of biological properties. In the present work, we investigated the effect of glabridin on GABAA receptors. For this purpose, we employed the two-electrode voltage-clamp technique on Xenopus laevis oocytes expressing recombinant GABAA receptors. Through this approach, we observed that glabridin presents a strong potentiating effect on GABAA α1β(1-3)γ2 receptors. The potentiation was slightly dependent on the β subunit and was most pronounced at the α1β2γ2 subunit combination, which forms the most abundant GABAA receptor in the CNS. Glabridin potentiated with an EC50 of 6.3±1.7 µM and decreased the EC50 of the receptor for GABA by approximately 12-fold. The potentiating effect of glabridin is flumazenil-insensitive and does not require the benzodiazepine binding site. Glabridin acts on the β subunit of GABAA receptors by a mechanism involving the M286 residue, which is a key amino acid at the binding site for general anesthetics, such as propofol and etomidate. Our results demonstrate that GABAA receptors are strongly potentiated by one of the main flavonoid compounds from Glycyrrhiza glabra and suggest that glabridin could contribute to the reported hypnotic effect of Glycyrrhiza extracts.
Collapse
Affiliation(s)
- Katrin M Hoffmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Leopoldo Beltrán
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Paul M Ziemba
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Günter Gisselmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| |
Collapse
|