1
|
Janssen LM, Lemaire F, Marain NF, Ronsmans S, Heylen N, Vanstapel A, Velde GV, Vanoirbeek JA, Pollard KM, Ghosh M, Hoet PH. Differential pulmonary toxicity and autoantibody formation in genetically distinct mouse strains following combined exposure to silica and diesel exhaust particles. Part Fibre Toxicol 2024; 21:8. [PMID: 38409078 PMCID: PMC10898103 DOI: 10.1186/s12989-024-00569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory and systemic health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of occupational-level silica and ambient-level DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. RESULTS The findings highlight the distinct effects of silica and diesel exhaust particles (DEP) on lung injury, inflammation, and autoantibody formation in C57BL/6J and NOD/ShiLtJ mice. Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside mild fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Moreover, antinuclear antibodies correlated with extent of lung inflammation in NOD/ShiLTJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. However, aside from contributing to airway hyperreactivity specifically in NOD/ShiLtJ mice, the ambient-level DEP did not significantly amplify the effects induced by silica. There was no evidence of synergistic or additive interaction between these specific doses of silica and DEP in inducing lung damage or inflammation in either of the mouse strains. CONCLUSION Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of ambient-level DEP on these silica-induced effects was minimal.
Collapse
Affiliation(s)
- Lisa Mf Janssen
- Environment and Health Unit, KU Leuven, Leuven, Belgium
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | | | - Nora Fopke Marain
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Steven Ronsmans
- Environment and Health Unit, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | | | - Arno Vanstapel
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| | - Jeroen Aj Vanoirbeek
- Environment and Health Unit, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | | | - Manosij Ghosh
- Environment and Health Unit, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Peter Hm Hoet
- Environment and Health Unit, KU Leuven, Leuven, Belgium.
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Janssen LM, Lemaire F, Marain NF, Ronsmans S, Heylen N, Vanstapel A, Velde GV, Vanoirbeek JA, Pollard KM, Ghosh M, Hoet PH. Differential Pulmonary Toxicity and Autoantibody Formation in Genetically Distinct Mouse Strains Following Combined Exposure to Silica and Diesel Exhaust Particles. RESEARCH SQUARE 2023:rs.3.rs-3408546. [PMID: 37886437 PMCID: PMC10602120 DOI: 10.21203/rs.3.rs-3408546/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of silica and DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. Results Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside limited fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. Conclusion Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of diesel exhaust particles on these silica-induced effects was minimal.
Collapse
|
3
|
Andrade da Silva LH, Vieira JB, Cabral MR, Antunes MA, Lee D, Cruz FF, Hanes J, Rocco PRM, Morales MM, Suk JS. Development of nintedanib nanosuspension for inhaled treatment of experimental silicosis. Bioeng Transl Med 2023; 8:e10401. [PMID: 36925690 PMCID: PMC10013831 DOI: 10.1002/btm2.10401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022] Open
Abstract
Silicosis is an irreversible and progressive fibrotic lung disease caused by massive inhalation of crystalline silica dust at workplaces, affecting millions of industrial workers worldwide. A tyrosine kinase inhibitor, nintedanib (NTB), has emerged as a potential silicosis treatment due to its inhibitory effects on key signaling pathways that promote silica-induced pulmonary fibrosis. However, chronic and frequent use of the oral NTB formulation clinically approved for treating other fibrotic lung diseases often results in significant side effects. To this end, we engineered a nanocrystal-based suspension formulation of NTB (NTB-NS) possessing specific physicochemical properties to enhance drug retention in the lung for localized treatment of silicosis via inhalation. Our NTB-NS formulation was prepared using a wet-milling procedure in presence of Pluronic F127 to endow the formulation with nonadhesive surface coatings to minimize interactions with therapy-inactivating delivery barriers in the lung. We found that NTB-NS, following intratracheal administration, provided robust anti-fibrotic effects and mechanical lung function recovery in a mouse model of silicosis, whereas a 100-fold greater oral NTB dose given with a triple dosing frequency failed to do so. Importantly, several key pathological phenotypes were fully normalized by NTB-NS without displaying notable local or systemic adverse effects. Overall, NTB-NS may open a new avenue for localized treatment of silicosis and potentially other fibrotic lung diseases.
Collapse
Affiliation(s)
- Luisa Helena Andrade da Silva
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health – NanoSAÚDE/FAPERJRio de JaneiroBrazil
| | - Juliana Borges Vieira
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de JaneiroBrazil
| | - Marianna Ribeiro Cabral
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de JaneiroBrazil
| | - Mariana Alves Antunes
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de JaneiroBrazil
| | - Daiheon Lee
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of OphthalmologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de JaneiroBrazil
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of OphthalmologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health – NanoSAÚDE/FAPERJRio de JaneiroBrazil
| | - Marcelo Marcos Morales
- Laboratory of Cellular and Molecular PhysiologyCarlos Chagas Filho Biophysics Institute, Federal University of Rio de JaneiroRio de JaneiroBrazil
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of OphthalmologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
4
|
Li X, Berg NK, Mills T, Zhang K, Eltzschig HK, Yuan X. Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury. Front Immunol 2021; 11:604944. [PMID: 33519814 PMCID: PMC7840604 DOI: 10.3389/fimmu.2020.604944] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and inflammation often coincide in pathogenic conditions such as acute respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant contributors to morbidity and mortality for the general population. For example, the recent global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading cause of death in the United States. Hypoxia signaling plays a diverse role in both acute and chronic lung inflammation, which could partially be explained by the divergent function of downstream target pathways such as adenosine signaling. Particularly, hypoxia signaling activates adenosine signaling to inhibit the inflammatory response in ARDS, while in chronic lung diseases, it promotes inflammation and tissue injury. In this review, we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS and chronic lung diseases, as well as the current strategy for therapeutic targeting of the adenosine signaling pathway.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Nathanial K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaiying Zhang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Ferreira TPT, Lima JGME, Farias-Filho FA, Jannini de Sá YAP, de Arantes ACS, Guimarães FV, Carvalho VDF, Hogaboam C, Wallace J, Martins MA, Silva PMRE. Intranasal Flunisolide Suppresses Pathological Alterations Caused by Silica Particles in the Lungs of Mice. Front Endocrinol (Lausanne) 2020; 11:388. [PMID: 32625168 PMCID: PMC7311565 DOI: 10.3389/fendo.2020.00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Silicosis is an occupational disease triggered by the inhalation of fine particles of crystalline silica and characterized by inflammation and scarring in the form of nodular lesions in the lungs. In spite of the therapeutic arsenal currently available, there is no specific treatment for the disease. Flunisolide is a potent corticosteroid shown to be effective for controlling chronic lung inflammatory diseases. In this study, the effect of flunisolide on silica-induced lung pathological changes in mice was investigated. Swiss-Webster mice were injected intranasally with silica particles and further treated with flunisolide from day 21 to 27 post-silica challenge. Lung function was assessed by whole body invasive plethysmography. Granuloma formation was evaluated morphometrically, collagen deposition by Picrus sirius staining and quantitated by Sircol. Chemokines and cytokines were evaluated using enzyme-linked immunosorbent assay. The sensitivity of lung fibroblasts was also examined in in vitro assays. Silica challenge led to increased leukocyte numbers (mononuclear cells and neutrophils) as well as production of the chemokine KC/CXCL-1 and the cytokines TNF-α and TGF-β in the bronchoalveolar lavage. These alterations paralleled to progressive granuloma formation, collagen deposition and impairment of lung function. Therapeutic administration of intranasal flunisolide inhibited granuloma and fibrotic responses, noted 28 days after silica challenge. The upregulation of MIP-1α/CCL-3 and MIP-2/CXCL-2 and the cytokines TNF-α and TGF-β, as well as deposition of collagen and airway hyper-reactivity to methacholine were shown to be clearly sensitive to flunisolide, as compared to silica-challenge untreated mice. Additionally, flunisolide effectively suppressed the responses of proliferation and MCP-1/CCL-2 production from IL-13 stimulated lung fibroblasts from silica- or saline-challenged mice. In conclusion, we report that intranasal treatment with the corticosteroid flunisolide showed protective properties on pathological features triggered by silica particles in mice, suggesting that the compound may constitute a promising strategy for the treatment of silicosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cory Hogaboam
- Department of Medicine, Cedars-Sinai Medical Center, Women's Guild Lung Institute, Los Angeles, CA, United States
| | - John Wallace
- Departments of Physiology and Pharmacology, and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia Machado Rodrigues e Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Patrícia Machado Rodrigues e Silva
| |
Collapse
|
6
|
Korkutata M, Saitoh T, Cherasse Y, Ioka S, Duo F, Qin R, Murakoshi N, Fujii S, Zhou X, Sugiyama F, Chen JF, Kumagai H, Nagase H, Lazarus M. Enhancing endogenous adenosine A2A receptor signaling induces slow-wave sleep without affecting body temperature and cardiovascular function. Neuropharmacology 2019; 144:122-132. [DOI: 10.1016/j.neuropharm.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 01/20/2023]
|