1
|
Kasti A, Katsas K, Nikolaki MD, Triantafyllou K. The Role and the Regulation of NLRP3 Inflammasome in Irritable Bowel Syndrome: A Narrative Review. Microorganisms 2025; 13:171. [PMID: 39858939 PMCID: PMC11767632 DOI: 10.3390/microorganisms13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic disorder of the gastrointestinal tract. Its pathogenesis involves multiple factors, including visceral hypersensitivity and immune activation. NLRP3 inflammasome is part of the nucleotide-binding oligomerization domain-like receptor (NLR) family, a crucial component of the innate immune system. Preclinical studies have demonstrated that inhibiting NLRP3 reduces visceral sensitivity and IBS symptoms, like abdominal pain, and diarrhea, suggesting that targeting the NLRP3 might represent a novel therapeutic approach for IBS. This review aims to assess the NLRP3 inhibitors (tranilast, β-hydroxybutyrate, Chang-Kang-fang, paeoniflorin, coptisine, BAY 11-7082, and Bifidobacterium longum), highlighting the signaling pathways, and their potential role in IBS symptoms management was assessed. Although premature, knowledge of the action of synthetic small molecules, phytochemicals, organic compounds, and probiotics might make NLRP3 a new therapeutic target in the quiver of physicians' therapeutic choices for IBS symptoms management.
Collapse
Affiliation(s)
- Arezina Kasti
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Konstantinos Katsas
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Maroulla D. Nikolaki
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Internal Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Athens, Greece
| |
Collapse
|
2
|
Ferrao Blanco MN, Lesage R, Kops N, Fahy N, Bekedam FT, Chavli A, Bastiaansen-Jenniskens YM, Geris L, Chambers MG, Pitsillides AA, Narcisi R, van Osch GJ. A multi-model approach identifies ALW-II-41-27 as a promising therapy for osteoarthritis-associated inflammation and endochondral ossification. Heliyon 2024; 10:e40871. [PMID: 39717596 PMCID: PMC11664402 DOI: 10.1016/j.heliyon.2024.e40871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
Low-grade inflammation and pathological endochondral ossification are key processes underlying the progression of osteoarthritis, the most prevalent joint disease worldwide. In this study, we employed a multi-faceted approach, integrating publicly available datasets, in silico analyses, in vitro experiments and in vivo models to identify new therapeutic candidates targeting these processes. Data mining of transcriptomic datasets identified EPHA2, a receptor tyrosine kinase associated with cancer, as being linked to both inflammation and endochondral ossification in osteoarthritis. A computational model of cellular signaling networks in chondrocytes predicted that in silico activation of EPHA2 in healthy chondrocytes increases inflammatory mediators and induces hypertrophic differentiation, a hallmark of endochondral ossification. We then evaluated the effect of EPHA2 inhibition using the tyrosine kinase inhibitor ALW-II-41-27 in cultured human chondrocytes from individuals with osteoarthritis, demonstrating significant reductions in both inflammation and hypertrophy. Additionally, systemic subcutaneous administration of ALW-II-41-27 in a mouse osteoarthritic model attenuated joint degeneration by reducing local inflammation and pathological endochondral ossification. Collectively, this study demonstrates a novel drug discovery pipeline that integrates computational, experimental, and animal models, paving the way for the development of disease-modifying treatments for osteoarthritis.
Collapse
Affiliation(s)
- Mauricio N. Ferrao Blanco
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Raphaelle Lesage
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
- Biomechanics Section, KU Leuven, Belgium
| | - Nicole Kops
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Niamh Fahy
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Applied Science, Technological University of the Shannon: Midlands Midwest, Limerick, Ireland
| | - Fjodor T. Bekedam
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Athina Chavli
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
- Biomechanics Section, KU Leuven, Belgium
- GIGA In Silico Medicine, University of Liège, Belgium
| | - Mark G. Chambers
- Lilly Research Laboratories, Eli Lilly Pharmaceuticals, Indianapolis, USA
| | | | - Roberto Narcisi
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, University of Technology Delft, Delft, the Netherlands
| |
Collapse
|
3
|
Zhang Q, Ran T, Li S, Han L, Chen S, Lin G, Wu H, Wu H, Feng S, Chen J, Zhang Q, Zhao X. Catalpol ameliorates liver fibrosis via inhibiting aerobic glycolysis by EphA2/FAK/Src signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156047. [PMID: 39321687 DOI: 10.1016/j.phymed.2024.156047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Hepatic fibrosis is a pathological process in a variety of acute or chronic liver injuries. Catalpol (CAT), an iridoid glycoside found in Rehmannia glutinosa, has several pharmacological properties, including anti-inflammatory, antidiabetic and anti-fibrotic effects. Nevertheless, there is currently no report on whether CAT regulates the aerobic glycolysis of hepatic stellate cells (HSCs) to inhibit liver fibrosis. OBJECTIVE This study aimed to investigate the protective effects of CAT on hepatic fibrosis and elucidate its underlying mechanisms. METHODS To explore whether CAT improved liver fibrosis in vivo and in vitro, hepatic fibrosis was induced to mice by intraperitoneally injecting carbon tetrachloride (CCl4). Additionally, LX-2 cells were stimulated with transforming growth factor-β (TGF-β) to simulate fibrosis in vitro. Serum markers of liver injury were examined by using an automatic biochemical analyzer. Histopathological staining, Immunofluorescence (IF) staining, Western blot (WB) analysis, co-immunoprecipitation (Co-IP), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), etc. were employed to identify the targeting between CAT and EphA2 and detect the expression of aerobic glycolysis related proteins, fiber markers and signaling pathways that are responsible for CAT's anti-fibrotic effects of CAT. RESULTS Results showed that CAT significantly inhibited hepatic injury, fibrogenesis and inflammation in mice treated with CCl4. This was demonstrated by the enhancement of fibrosis markers, liver function indices, and histopathology. In addition, CAT significantly inhibited the activation of HSCs in TGF-β-induced LX-2 cells, as indicated by decreased proliferation, migration, and expression of collagen I and a-SMA. The study results also suggested that CAT may exert anti-fibrotic effects by inhibiting glycolysis in activated HSCs and in CCl4-treated mice. Mechanistically, CAT directly targets Ephrin type-A receptor 2 (EphA2) to reduce binding with focal adhesion kinases (FAK) and significantly inhibits the FAK/Src pathway. In addition, the pharmacological inhibition of EphA2 cannot further increase the therapeutic effects of CAT on liver fibrosis in vivo and in vitro. CONCLUSION The study findings generally demonstrated that CAT presented a novel therapeutic method to treat hepatic fibrosis; this method which inhibits the aerobic glycolysis of activated HSCs through the EphA2/FAK/Src signaling pathway.
Collapse
Affiliation(s)
- Qingxiu Zhang
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Tao Ran
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Shiliang Li
- Department of Vascular Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Lu Han
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Shaojie Chen
- Guizhou Medical University, Guiyang 550000, China.
| | - Guoyuan Lin
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Huayue Wu
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Huan Wu
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Shu Feng
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Jiyu Chen
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Qian Zhang
- Department of Nephrology, The Guizhou provincial people's Hospital, Guiyang 550000, China.
| | - Xueke Zhao
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| |
Collapse
|
4
|
Lu C, Liu D, Wu Q, Zeng J, Xiong Y, Luo T. EphA2 blockage ALW-II-41-27 alleviates atherosclerosis by remodeling gut microbiota to regulate bile acid metabolism. NPJ Biofilms Microbiomes 2024; 10:108. [PMID: 39426981 PMCID: PMC11490535 DOI: 10.1038/s41522-024-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Coronary artery disease (CAD), a critical condition resulting from systemic inflammation, metabolic dysfunction, and gut microbiota dysbiosis, poses a global public health challenge. ALW-II-41-27, a specific inhibitor of the EphA2 receptor, has shown anti-inflammatory prosperities. However, the impact of ALW-II-41-27 on atherosclerosis has not been elucidated. This study aimed to examine the roles of pharmacologically inhibiting EphA2 and the underlying mechanism in ameliorating atherosclerosis. ALW-II-41-27 was administered to apoE-/- mice fed a high-fat diet via intraperitoneal injection. We first discovered that ALW-II-41-27 led to a significant reduction in atherosclerotic plaques, evidenced by reduced lipid and macrophage accumulation, alongside an increase in collagen and smooth muscle cell content. ALW-II-41-27 also significantly lowered plasma and hepatic cholesterol levels, as well as the colonic inflammation. Furthermore, gut microbiota was analyzed by metagenomics and plasma metabolites by untargeted metabolomics. ALW-II-41-27-treated mice enriched Enterococcus, Akkermansia, Eggerthella and Lactobaccilus, accompanied by enhanced secondary bile acids production. To explore the causal link between ALW-II-41-27-associated gut microbiota and atherosclerosis, fecal microbiota transplantation was employed. Mice that received ALW-II-41-27-treated mouse feces exhibited the attenuated atherosclerotic plaque. In clinical, lower plasma DCA and HDCA levels were determined in CAD patients using quantitative metabolomics and exhibited a negative correlation with higher monocytes EphA2 expression. Our findings underscore the potential of ALW-II-41-27 as a novel therapeutic agent for atherosclerosis, highlighting its capacity to modulate gut microbiota composition and bile acid metabolism, thereby offering a promising avenue for CAD.
Collapse
Affiliation(s)
- Cong Lu
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Liu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiao Wu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zeng
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xiong
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tiantian Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
5
|
Qiu C, Sun N, Zeng S, Chen L, Gong F, Tian J, Xiong Y, Peng L, He H, Ming Y. Unveiling the therapeutic promise of EphA2 in glioblastoma: a comprehensive review. Discov Oncol 2024; 15:501. [PMID: 39331302 PMCID: PMC11436538 DOI: 10.1007/s12672-024-01380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM), a primary brain tumor, exhibits remarkable invasiveness and is characterized by its intricate location, infiltrative behavior, the presence of both the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), phenotypic diversity, an immunosuppressive microenvironment with limited development yet rich vascularity, as well as the resistant nature of glioblastoma stem cells (GSCs) towards traditional chemotherapy and radiotherapy. These formidable factors present substantial obstacles in the quest for effective GBM treatments. Following extensive research spanning three decades, the hepatocellular receptor A2 (EphA2) receptor tyrosine kinase has emerged as a promising molecular target with translational potential in the realm of cancer therapy. Numerous compounds aimed at targeting EphA2 have undergone rigorous evaluation and clinical investigation. This article provides a comprehensive account of the distinctive roles played by canonical and non-canonical EphA2 signaling in various contexts, while also exploring the involvement of the EphA2-ephrin A1 signaling axis in GBM pathogenesis. Additionally, the review offers an overview of completed clinical trials targeting EphA2 for GBM treatment, shedding light on both the prospects and challenges associated with EphA2-directed interventions in the domain of cancer therapeutics.
Collapse
Affiliation(s)
- Caohang Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ning Sun
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shan Zeng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Feilong Gong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Junjie Tian
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yu Xiong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Haiping He
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China.
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
6
|
Vatankhah M, Panahizadeh R, Safari A, Ziyabakhsh A, Mohammadi-Ghalehbin B, Soozangar N, Jeddi F. The role of Nrf2 signaling in parasitic diseases and its therapeutic potential. Heliyon 2024; 10:e32459. [PMID: 38988513 PMCID: PMC11233909 DOI: 10.1016/j.heliyon.2024.e32459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
In response to invading parasites, one of the principal arms of innate immunity is oxidative stress, caused by reactive oxygen species (ROS). However, oxidative stresses play dual functions in the disease, whereby free radicals promote pathogen removal, but they can also trigger inflammation, resulting in tissue injuries. A growing body of evidence has strongly supported the notion that nuclear factor erythroid 2-related factor 2 (NRF) signaling is one of the main antioxidant pathways to combat this oxidative burst against parasites. Given the important role of NRF2 in oxidative stress, in this review, we investigate the activation mechanism of the NRF2 antioxidant pathway in different parasitic diseases, such as malaria, leishmaniasis, trypanosomiasis, toxoplasmosis, schistosomiasis, entamoebiasis, and trichinosis.
Collapse
Affiliation(s)
- Mohammadamin Vatankhah
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Safari
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Kottom TJ, Carmona EM, Limper AH. Targeting host tyrosine kinase receptor EphA2 signaling via small-molecule ALW-II-41-27 inhibits macrophage pro-inflammatory signaling responses to Pneumocystis carinii β-glucans. Antimicrob Agents Chemother 2024; 68:e0081123. [PMID: 38206037 PMCID: PMC10848750 DOI: 10.1128/aac.00811-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
Pneumocystis jirovecii, the fungus that causes Pneumocystis jirovecii pneumonia (PJP), is a leading cause of morbidity and mortality in immunocompromised individuals. We have previously shown that lung epithelial cells can bind Pneumocystis spp. β-glucans via the EphA2 receptor, resulting in activation and release of proinflammatory cytokines. Herein, we show that in vivo Pneumocystis spp. β-glucans activation of the inflammatory signaling cascade in macrophages can be pharmacodynamically inhibited with the EphA2 receptor small-molecule inhibitor ALW-II-41-27. In vitro, when ALW-II-41-27 is administrated via intraperitoneal to mice prior to the administration of highly proinflammatory Saccharomyces cerevisiae β-glucans in the lung, a significant reduction in TNF-alpha release was noted in the ALW-II-41-27 pre-treated group. Taken together, our data suggest that targeting host lung macrophage activation via EphA2 receptor-fungal β-glucans interactions with ALW-II-41-27 or other EphA2 receptor kinase targeting inhibitors might be an attractive and viable strategy to reduce detrimental lung inflammation associated with PJP.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eva M. Carmona
- Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H. Limper
- Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Wen Y, Wang X, Si K, Xu L, Huang S, Zhan Y. Exploring the Mechanisms of Self-made Kuiyu Pingchang Recipe for the Treatment of Ulcerative Colitis and Irritable Bowel Syndrome using a Network Pharmacology-based Approach and Molecular Docking. Curr Comput Aided Drug Des 2024; 20:534-550. [PMID: 37190808 DOI: 10.2174/1573409919666230515103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) and irritable bowel syndrome (IBS) are common intestinal diseases. According to the clinical experience and curative effect, the authors formulated Kuiyu Pingchang Decoction (KYPCD) comprised of Paeoniae radix alba, Aurantii Fructus, Herba euphorbiae humifusae, Lasiosphaera seu Calvatia, Angelicae sinensis radix, Panax ginseng C.A. Mey., Platycodon grandiforus and Allium azureum Ledeb. OBJECTIVE The aim of the present study was to explore the mechanisms of KYPCD in the treatment of UC and IBS following the Traditional Chinese Medicine (TCM) theory of "Treating different diseases with the same treatment". METHODS The chemical ingredients and targets of KYPCD were obtained using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform (TCMSP). The targets of UC and IBS were extracted using the DisGeNET, GeneCards, DrugBANK, OMIM and TTD databases. The "TCM-component-target" network and the "TCM-shared target-disease" network were imaged using Cytoscape software. The protein-protein interaction (PPI) network was built using the STRING database. The DAVID platform was used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Using Autodock Tools software, the main active components of KYPCD were molecularly docked with their targets and visualized using PyMOL. RESULTS A total of 46 active ingredients of KYPCD corresponding to 243 potential targets, 1,565 targets of UC and 1,062 targets of IBS, and 70 targets among active ingredients and two diseases were screened. Core targets in the PPI network included IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA. GO and KEGG enrichment analysis demonstrated 563 biological processes, 48 cellular components, 82 molecular functions and 144 signaling pathways. KEGG enrichment results revealed that the regulated pathways were mainly related to the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways. The results of molecular docking analysis indicated that the core active ingredients of KYPCD had optimal binding activity to their corresponding targets. CONCLUSION KYPCD may use IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA as the key targets to achieve the treatment of UC and IBS through the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways.
Collapse
Affiliation(s)
- Yong Wen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Anorectal Integration of Traditional Chinese and Western Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoxiang Wang
- Gastroenterology Department, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Ke Si
- Gastroenterology Department, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Ling Xu
- Anorectal Department, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, 646000, China
| | - Shuoyang Huang
- Gastrointestinal Surgery Department, Chengdu Second People's Hospital, Chengdu, 610017, China
| | - Yu Zhan
- Gastroenterology Department, Chengdu First People's Hospital, Chengdu, 610000, China
- Anorectal Department, Chengdu First People's Hospital, Chengdu, 610000, China
- Anorectal Department, Affiliated Hospital of Integrative Chinese Medicine and Western Medicine of Chengdu University of TCM, Chengdu 610041, China
| |
Collapse
|
9
|
Qiu P, Li D, Xiao C, Xu F, Chen X, Chang Y, Liu L, Zhang L, Zhao Q, Chen Y. The Eph/ephrin system symphony of gut inflammation. Pharmacol Res 2023; 197:106976. [PMID: 38032293 DOI: 10.1016/j.phrs.2023.106976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
The extent of gut inflammation depends largely on the gut barrier's integrity and enteric neuroimmune interactions. However, the factors and molecular mechanisms that regulate inflammation-related changes in the enteric nervous system (ENS) remain largely unexplored. Eph/ephrin signaling is critical for inflammatory response, neuronal activation, and synaptic plasticity in the brain, but its presence and function in the ENS have been largely unknown to date. This review discusses the critical role of Eph/ephrin in regulating gut homeostasis, inflammation, neuroimmune interactions, and pain pathways. Targeting the Eph/ephrin system offers innovative treatments for gut inflammation disorders, offering hope for enhanced patient prognosis, pain management, and overall quality of life.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Daojiang Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| |
Collapse
|
10
|
Lu Y, Chai Y, Qiu J, Zhang J, Wu M, Fu Z, Wang Y, Qin C. Integrated omics analysis reveals the epigenetic mechanism of visceral hypersensitivity in IBS-D. Front Pharmacol 2023; 14:1062630. [PMID: 37007011 PMCID: PMC10064328 DOI: 10.3389/fphar.2023.1062630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Background and objective: IBS-D is a common functional bowel disease with complex etiology and without biomarker. The pathological and physiological basis of IBS-D focuses on visceral hypersensitivity. However, its epigenetic mechanism remains elusive. Our study aimed to integrate the relationship between differentially expressed miRNAs, mRNAs and proteins in IBS-D patients in order to reveal epigenetic mechanism of visceral hypersensitivity from transcription and protein levels and provide the molecular basis for discovering biomarkers of IBS-D.Methods: The intestinal biopsies from IBS-D patients and healthy volunteers were obtained for high-throughput sequencing of miRNAs and mRNAs. The differential miRNAs were selected and verified by q-PCR experiment followed by target mRNA prediction. Biological functions were respectively analyzed for target mRNAs, differential mRNAs and the previously identified differential proteins in order to explore the characteristic involved visceral hypersensitivity. At last, interaction analysis of miRNAs, mRNAs and proteins was performed for the epigenetic regulation mechanism from transcription and protein levels.Results: Thirty-three miRNAs were found to be differentially expressed in IBS-D and five of them were further confirmed, including upregulated hsa-miR-641, hsa-miR-1843, hsa-let-7d-3p and downregulated hsa-miR-219a-5p, hsa-miR-19b-1-5p. In addition, 3,812 differential mRNAs were identified. Thirty intersecting molecules were found from the analysis on the target mRNAs of miRNAs and mRNAs. Fourteen intersecting molecules were obtained from the analysis on the target mRNAs and proteins, and thirty-six intersecting molecules were identified from analysis on the proteins and different mRNAs. According to the integrated analysis of miRNA-mRNA-protein, we noticed two new molecules COPS2 regulated by hsa-miR-19b-1-5p and MARCKS regulated by hsa-miR-641. Meanwhile some critical signaling pathways in IBS-D were found such as MAPK, GABAergic synapse, Glutamatergic synapse, and Adherens junction.Conclusion: The expressions of hsa-miR-641, hsa-miR-1843, hsa-let-7d-3p, hsa-miR-219a-5p, and hsa-miR-19b-1-5p in the intestinal tissues of IBS-D patients were significantly different. Moreover, they could regulate a variety of molecules and signaling pathways, which were involved in the multifaceted and multilevel mechanism of visceral hypersensitivity of IBS-D.
Collapse
Affiliation(s)
- Yaoyao Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuna Chai
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| | - Jianli Qiu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingmin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Menglin Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Fu
- Department of General Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongfu Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| | - Chongzhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| |
Collapse
|
11
|
Dong LW, Chen YY, Chen CC, Ma ZC, Fu J, Huang BL, Liu FJ, Liang DC, Sun DM, Lan C. Adenosine 2A receptor contributes to the facilitation of post-infectious irritable bowel syndrome by γδ T cells via the PKA/CREB/NF-κB signaling pathway. World J Gastroenterol 2023; 29:1475-1491. [PMID: 36998428 PMCID: PMC10044852 DOI: 10.3748/wjg.v29.i9.1475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Immunological dysfunction-induced low-grade inflammation is regarded as one of the predominant pathogenetic mechanisms in post-infectious irritable bowel syndrome (PI-IBS). γδ T cells play a crucial role in innate and adaptive immunity. Adenosine receptors expressed on the surface of γδ T cells participate in intestinal inflammation and immunity regulation. AIM To investigate the role of γδ T cell regulated by adenosine 2A receptor (A2AR) in PI-IBS. METHODS The PI-IBS mouse model has been established with Trichinella spiralis (T. spiralis) infection. The intestinal A2AR and A2AR in γδ T cells were detected by immunohistochemistry, and the inflammatory cytokines were measured by western blot. The role of A2AR on the isolated γδ T cells, including proliferation, apoptosis, and cytokine production, were evaluated in vitro. Their A2AR expression was measured by western blot and reverse transcription polymerase chain reaction (RT-PCR). The animals were administered with A2AR agonist, or A2AR antagonist. Besides, γδ T cells were also injected back into the animals, and the parameters described above were examined, as well as the clinical features. Furthermore, the A2AR-associated signaling pathway molecules were assessed by western blot and RT-PCR. RESULTS PI-IBS mice exhibited elevated ATP content and A2AR expression (P < 0.05), and suppression of A2AR enhanced PI-IBS clinical characteristics, indicated by the abdominal withdrawal reflex and colon transportation test. PI-IBS was associated with an increase in intestinal T cells, and cytokine levels of interleukin-1 (IL-1), IL-6, IL-17A, and interferon-α (IFN-α). Also, γδ T cells expressed A2AR in vitro and generated IL-1, IL-6, IL-17A, and IFN-α, which can be controlled by A2AR agonist and antagonist. Mechanistic studies demonstrated that the A2AR antagonist improved the function of γδ T cells through the PKA/CREB/NF-κB signaling pathway. CONCLUSION Our results revealed that A2AR contributes to the facilitation of PI-IBS by regulating the function of γδ T cells via the PKA/CREB/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li-Wei Dong
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Yi-Yao Chen
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Chao-Chao Chen
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Zhi-Chao Ma
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Jiao Fu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Bai-Li Huang
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Fu-Jin Liu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Dong-Chun Liang
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90033, United States
| | - De-Ming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90033, United States
| | - Cheng Lan
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| |
Collapse
|
12
|
Xiong Y, Wei H, Chen C, Jiao L, Zhang J, Tan Y, Zeng L. Coptisine attenuates post‑infectious IBS via Nrf2‑dependent inhibition of the NLPR3 inflammasome. Mol Med Rep 2022; 26:362. [PMID: 36281933 DOI: 10.3892/mmr.2022.12879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the activation of the NLR family pyrin domain‑containing 3 (NLRP3) inflammasome has previously been reported to confer protection against post‑infectious irritable bowel syndrome (PI‑IBS). Coptisine, the second most abundant isoquinoline alkaloid in Coptis chinensis, can inhibit NLRP3 inflammasome activation; however, whether coptisine exhibits protective effects against PI‑IBS remains unclear. In the present study, coptisine significantly reduced gastrointestinal motility and abdominal withdrawal reflex scores in a PI‑IBS rat model that was induced using intragastric administration of Trichinella spiralis larvae. Coptisine treatment significantly decreased the protein levels of oxidative stress markers, 4‑hydroxynonenal, protein carbonyl and 8‑hydroxy‑2'deoxyguanosine, and proinflammatory cytokines, TNF‑α, IL‑1β and IL‑18 in the colon of PI‑IBS rats. Moreover, coptisine treatment significantly increased nuclear factor erythroid 2‑related factor 2 (Nrf2) nuclear translocation and heme oxygenase‑1 protein expression levels, while significantly downregulating the protein expression levels of NLRP3, apoptosis‑associated speck‑like protein containing a CARD and caspase‑1 in the colons of PI‑IBS rats. It is important to note that the anti‑inflammatory effects of coptisine were blocked by the Nrf2 inhibitor ML385. In summary, the present study indicated that coptisine potentially attenuated PI‑IBS in rats via Nrf2‑dependent inhibition of the NLPR3 inflammasome.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Hong Wei
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Chong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Lu Jiao
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Juan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Yonggang Tan
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Li Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
13
|
Cheng X, Du J, Zhou Q, Wu B, Wang H, Xu Z, Zhen S, Jiang J, Wang X, He Z. Huangkui lianchang decoction attenuates experimental colitis by inhibiting the NF-κB pathway and autophagy. Front Pharmacol 2022; 13:951558. [PMID: 36081930 PMCID: PMC9446438 DOI: 10.3389/fphar.2022.951558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory colorectal disease characterized by excessive mucosal immune response activation and dysfunction of autophagy in intestinal epithelial cells. Traditional herbal preparations, including the Huangkui lianchang decoction (HLD), are effective in UC clinical treatment in East Asia, but the underlying mechanism is unclear. This study evaluated the therapeutic effects and associated molecular mechanisms of HLD in UC in vivo and in vitro. A C57BL/6 UC mouse model was established using 2.5% dextran sulfate sodium. The effects of HLD on the colonic structure and inflammation in mice were evaluated using mesalazine as the control. The anti-inflammatory effects of HLD were assessed using disease activity index (DAI) scores, histological scores, enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, and western blotting. HLD displayed a protective effect in UC mice by reducing the DAI and colonic histological scores, as well as levels of inflammatory cytokines and NF-κB p65 in colonic tissues. NCM460 lipopolysaccharide-induced cells were administered drug serum-containing HLD (HLD-DS) to evaluate the protective effect against UC and the effect on autophagy. HLD-DS exhibited anti-inflammatory effects in NCM460 cells by reducing the levels of inflammatory cytokines and increasing interleukin 10 levels. HLD-DS reduced p-NF-κB p65, LC3II/I, and Beclin 1 expression, which suggested that HLD alleviated colitis by inhibiting the NF-κB pathway and autophagy. However, there was no crosstalk between the NF-κB pathway and autophagy. These findings confirmed that HLD was an effective herbal preparation for the treatment of UC.
Collapse
Affiliation(s)
- Xudong Cheng
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jun Du
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Qing Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bensheng Wu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | | | - Zhizhong Xu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shuguang Zhen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jieyu Jiang
- Suzhou Foreign Language School, Suzhou, China
| | - Xiaopeng Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- *Correspondence: Xiaopeng Wang, ; Zongqi He,
| | - Zongqi He
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- *Correspondence: Xiaopeng Wang, ; Zongqi He,
| |
Collapse
|
14
|
Xu Z, Ye Y, Huang G, Li Y, Guo X, Li L, Wu Y, Xu W, Nian S, Yuan Q. EphA2 recognizes Dermatophagoidespteronyssinus to mediate airway inflammation in asthma. Int Immunopharmacol 2022; 111:109106. [PMID: 35969898 DOI: 10.1016/j.intimp.2022.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Most of the asthma with low Th2 is severe steroid-resistant asthma, the exact pathogenesis of which has not yet been fully elucidated. We found that IL-6 and IL-8 were highly expressed in the sputum supernatant of severe asthma and ephrin type-A receptor 2 (EphA2) was highly expressed on bronchial epithelial cells. So, is there a connection between these two phenomena? To clarify this issue, we stimulated bronchial epithelial cells 16HBE with Dermatophagoides pteronyssinus and its compontents LPS, respectively, and detected the activation of EphA2, activation of downstream pathways and secretion of inflammatory cytokines. A mouse asthma model was established, and the therapeutic effects of inhibiting or blocking EphA2 on mouse asthma were investigated. The results showed that D. pteronyssinus and its component LPS phosphorylated EphA2 on 16HBE, activated downstream signaling pathways STAT3 and p38 MAPK, and promoted the secretion of IL-6 and IL-8. After knockout of EphA2 on 16HBE, the activation of inflammatory pathways was attenuated and the secretion of IL-6 and IL-8 was significantly reduced. Inhibition or blockade of EphA2 on mouse airways resulted in a significant reduction in airway hyperresponsiveness and airway inflammation, and a significant decrease in the expression levels of IL-6, IL-17F, IL-1α, IL-1β and TNF in bronchoalveolar lavage fluid and lung tissue. Our study uncovers a novel role for EphA2 expressed on airway epithelial cells in the pathogenesis of asthma; EphA2 recognizes D. pteronyssinus or its component LPS and promotes the secretion of IL-6 and IL-8 by airway epithelial cell, thereby mediating airway inflammation. Thus, it is possible to provide a new molecular therapy for severe asthma.
Collapse
Affiliation(s)
- Zixi Xu
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Medical Laboratory, Sichuan Science City Hospital, Mianyang, Sichuan, China.
| | - Yingchun Ye
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China.
| | - Yi Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiyuan Guo
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Lin Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Yuchuan Wu
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Wenfeng Xu
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Siji Nian
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Qing Yuan
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
15
|
Dong LW, Ma ZC, Fu J, Huang BL, Liu FJ, Sun D, Lan C. Upregulated adenosine 2A receptor accelerates post-infectious irritable bowel syndrome by promoting CD4+ T cells' T helper 17 polarization. World J Gastroenterol 2022; 28:2955-2967. [PMID: 35978875 PMCID: PMC9280732 DOI: 10.3748/wjg.v28.i25.2955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Post-infectious irritable bowel syndrome (PI-IBS) is generally regarded as a functional disease. Several recent studies have reported the involvement of low-grade inflammation and immunological dysfunction in PI-IBS. T helper 17 (Th17) polarization occurs in IBS. Adenosine and its receptors participate in intestinal inflammation and immune regulation. AIM To investigate the role of Th17 polarization of CD4+ T cells regulated by adenosine 2A receptor (A2AR) in PI-IBS. METHODS A PI-IBS model was established by infecting mice with Trichinella spiralis. The intestinal A2AR and CD4+ T lymphocytes were detected by immunohistochemistry, and the inflammatory cytokines were detected by enzyme-linked immunoassay. CD4+ T lymphocytes present in the animal's spleen were separated and cultured with or without A2AR agonist and antagonist. Western blotting and real-time quantitative polymerase chain reaction were performed to determine the effect of A2AR on the cells and intestinal tissue. Cytokine production was determined. The protein and mRNA levels of A2AR associated signaling pathway molecules were also evaluated. Furthermore, A2AR agonist and antagonist were injected into the mouse model and the clinical features were observed. RESULTS The PI-IBS mouse model showed increased expression of ATP and A2AR (P < 0.05), and inhibition of A2AR improved the clinical features in PI-IBS, including the abdominal withdrawal reflex and colon transportation test (P < 0.05). The number of intestinal CD4+ T cells and interleukin-17 (IL-17) protein levels increased during PI-IBS, which was reversed by administration of the A2AR antagonist (P < 0.05). CD4+ T cells expressed A2AR and produced IL-17 in vitro, which was regulated by the A2AR agonist and antagonist. The A2AR antagonist increased the production of IL-17 by CD4+ T cells via the Janus kinase-signal transducer and activator of transcription-receptor-related orphan receptor γ signaling pathway. CONCLUSION The results of the present study suggested that the upregulation of A2AR increases PI-IBS by promoting the Th17 polarization of CD4+ T cells.
Collapse
Affiliation(s)
- Li-Wei Dong
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Zhi-Chao Ma
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Jiao Fu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Bai-Li Huang
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Fu-Jin Liu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90033, United States
| | - Cheng Lan
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| |
Collapse
|
16
|
Docsa T, Sipos A, Cox CS, Uray K. The Role of Inflammatory Mediators in the Development of Gastrointestinal Motility Disorders. Int J Mol Sci 2022; 23:6917. [PMID: 35805922 PMCID: PMC9266627 DOI: 10.3390/ijms23136917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Feeding intolerance and the development of ileus is a common complication affecting critically ill, surgical, and trauma patients, resulting in prolonged intensive care unit and hospital stays, increased infectious complications, a higher rate of hospital readmission, and higher medical care costs. Medical treatment for ileus is ineffective and many of the available prokinetic drugs have serious side effects that limit their use. Despite the large number of patients affected and the consequences of ileus, little progress has been made in identifying new drug targets for the treatment of ileus. Inflammatory mediators play a critical role in the development of ileus, but surprisingly little is known about the direct effects of inflammatory mediators on cells of the gastrointestinal tract, and many of the studies are conflicting. Understanding the effects of inflammatory cytokines/chemokines on the development of ileus will facilitate the early identification of patients who will develop ileus and the identification of new drug targets to treat ileus. Thus, herein, we review the published literature concerning the effects of inflammatory mediators on gastrointestinal motility.
Collapse
Affiliation(s)
- Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.D.); (A.S.)
| | - Adám Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.D.); (A.S.)
| | - Charles S. Cox
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77204, USA;
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.D.); (A.S.)
| |
Collapse
|
17
|
Li X, Li D, Ma R. ALW‑II‑41‑27, an EphA2 inhibitor, inhibits proliferation, migration and invasion of cervical cancer cells via inhibition of the RhoA/ROCK pathway. Oncol Lett 2022; 23:129. [PMID: 35251349 PMCID: PMC8895465 DOI: 10.3892/ol.2022.13249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiang Li
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Dan Li
- Department of Gynecology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| | - Rong Ma
- Department of Gynecology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| |
Collapse
|
18
|
The Associations of Single Nucleotide Polymorphisms with Risk and Symptoms of Irritable Bowel Syndrome. J Pers Med 2022; 12:jpm12020142. [PMID: 35207633 PMCID: PMC8878682 DOI: 10.3390/jpm12020142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Although several risk single nucleotide polymorphisms (SNPs) have been found to play an important role in etiology of irritable bowel syndrome (IBS), the findings are inconsistent. A descriptive correlational design was used to analyze the baseline data of a randomized controlled trial including participants with IBS and healthy controls (HC). Pain severity and interference, anxiety, sleep, and fatigue were measured using the Brief Pain Inventory (BPI) and patient-reported outcomes measurement information system (PROMIS). Fisher’s exact test and multivariate linear regression were used to investigate the associations between IBS risk alleles and IBS symptoms. Participants were predominantly female, white, and had an average age of 21.13 ± 2.42 years. Polymorphisms within TNFSF15 (rs4263839), SLC6A4 5-HTTLPR, HTR3A (rs1062613), and OXTR (rs2254298) were associated with IBS risk, and TNFSF15 (rs4263839), COMT (rs6269), SLC6A4 5-HTTLPR polymorphisms were associated with pain severity. TNFSF15 (rs4263839) and COMT (rs4680; rs4633) genotypes were associated with sleep disturbance, and the ADRA1D SNP rs1556832 was associated with fatigue in both IBS and HC groups. Genotypic differences were associated with IBS risk and symptoms including abdominal pain, sleep disturbance, and fatigue. Further investigation is warranted to reveal the mechanisms by which these genetic variations influence the dynamic nature of IBS symptoms over time.
Collapse
|
19
|
Satake E, Saulnier PJ, Kobayashi H, Gupta MK, Looker HC, Wilson JM, Md Dom ZI, Ihara K, O’Neil K, Krolewski B, Pipino C, Pavkov ME, Nair V, Bitzer M, Niewczas MA, Kretzler M, Mauer M, Doria A, Najafian B, Kulkarni RN, Duffin KL, Pezzolesi MG, Kahn CR, Nelson RG, Krolewski AS. Comprehensive Search for Novel Circulating miRNAs and Axon Guidance Pathway Proteins Associated with Risk of ESKD in Diabetes. J Am Soc Nephrol 2021; 32:2331-2351. [PMID: 34140396 PMCID: PMC8729832 DOI: 10.1681/asn.2021010105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Mechanisms underlying the pro gression of diabetic kidney disease to ESKD are not fully understood. METHODS We performed global microRNA (miRNA) analysis on plasma from two cohorts consisting of 375 individuals with type 1 and type 2 diabetes with late diabetic kidney disease, and targeted proteomics analysis on plasma from four cohorts consisting of 746 individuals with late and early diabetic kidney disease. We examined structural lesions in kidney biopsy specimens from the 105 individuals with early diabetic kidney disease. Human umbilical vein endothelial cells were used to assess the effects of miRNA mimics or inhibitors on regulation of candidate proteins. RESULTS In the late diabetic kidney disease cohorts, we identified 17 circulating miRNAs, represented by four exemplars (miR-1287-5p, miR-197-5p, miR-339-5p, and miR-328-3p), that were strongly associated with 10-year risk of ESKD. These miRNAs targeted proteins in the axon guidance pathway. Circulating levels of six of these proteins-most notably, EFNA4 and EPHA2-were strongly associated with 10-year risk of ESKD in all cohorts. Furthermore, circulating levels of these proteins correlated with severity of structural lesions in kidney biopsy specimens. In contrast, expression levels of genes encoding these proteins had no apparent effects on the lesions. In in vitro experiments, mimics of miR-1287-5p and miR-197-5p and inhibitors of miR-339-5p and miR-328-3p upregulated concentrations of EPHA2 in either cell lysate, supernatant, or both. CONCLUSIONS This study reveals novel mechanisms involved in progression to ESKD and points to the importance of systemic factors in the development of diabetic kidney disease. Some circulating miRNAs and axon guidance pathway proteins represent potential targets for new therapies to prevent and treat this condition.
Collapse
Affiliation(s)
- Eiichiro Satake
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Pierre-Jean Saulnier
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
- Poitiers University Hospital, University of Poitiers, Institut National de la Santé et de la Recherche Médicale (INSERM), Clinical Investigation Center CIC1402, Poitiers, France
| | - Hiroki Kobayashi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Manoj K. Gupta
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Jonathan M. Wilson
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Zaipul I. Md Dom
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Katsuhito Ihara
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kristina O’Neil
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Bozena Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Caterina Pipino
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), University G. d’Annunzio, Chieti, Italy
| | - Meda E. Pavkov
- Division of Diabetes Translation, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Viji Nair
- Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Markus Bitzer
- Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Monika A. Niewczas
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Matthias Kretzler
- Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Michael Mauer
- Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Behzad Najafian
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Rohit N. Kulkarni
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kevin L. Duffin
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Marcus G. Pezzolesi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - C. Ronald Kahn
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Andrzej S. Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Wang X, Gu H, Zhang H, Xian J, Li J, Fu C, Zhang C, Zhang J. Oral Core-Shell Nanoparticles Embedded in Hydrogel Microspheres for the Efficient Site-Specific Delivery of Magnolol and Enhanced Antiulcerative Colitis Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33948-33961. [PMID: 34261306 DOI: 10.1021/acsami.1c09804] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although magnolol (Mag), an anti-inflammatory natural compound, has been demonstrated to play protective effects on ulcerative colitis (UC), its application as an alternative therapeutic reagent for UC treatment is still greatly impeded due to its poor stability in the gastrointestinal tract and insufficient accumulation in the inflamed colon lesion. Nano-/microsized drug delivery systems can potentially overcome some challenges regarding the oral administration of phytochemicals, which still confront premature early drug release, degradation of NPs, or the sustained drug release of MPs. In this study, we primarily loaded Mag into the core-shell zein-based nanoparticles with chondroitin sulfate coating (Mag@CS-Zein NPs) with an average size of 142.27 ± 5.11 nm, showing significant macrophage-targeting and enhanced colon epithelial cellular uptake capacity. Then, we embedded Mag@CS-Zein NPs into hydrogel microspheres via an electrospraying technology. The Mag@CS-Zein NPsinMPs presented a uniform-sized sphere with an average size of 164.36 ± 6.29 μm and sustained drug-release profiles. Compared to CS-Zein NPs, the developed CS-Zein NPsinMPs exhibited prolonged colon retention on the inflammatory surface, as seen from ex vivo and in vivo imaging fluorescence adhesion experiments. Based on the advantage of the combination of hybrid nanoparticles-in-microparticles, oral administration of Mag@CS-Zein NPsinMPs significantly alleviated colitis symptoms in DSS-treated mice by regulating the expression levels of proinflammatory cytokines (TNF-α, IL-6, and IL-1β) and anti-inflammatory cytokines (IL-10) and factor accelerated colonic mucosal barrier repair via upregulating the expression of ZO-1 and occludin. This study provides great insights into the oral drug delivery of natural compounds for UC therapy.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Huan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Jingjing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong 999077, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| |
Collapse
|
21
|
Dong LW, Sun XN, Ma ZC, Fu J, Liu FJ, Huang BL, Liang DC, Sun DM, Lan C. Increased Vδ1γδT cells predominantly contributed to IL-17 production in the development of adult human post-infectious irritable bowel syndrome. BMC Gastroenterol 2021; 21:271. [PMID: 34193069 PMCID: PMC8243880 DOI: 10.1186/s12876-021-01722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND γδT cells play an important role in the mucosa inflammation and immunity-associated disorders. Our previous study reported that γδ T cells producing IL-17 were involved in the pathogenesis of post-infectious irritable bowel syndrome (PI-IBS). However, their subset characteristic profile in this kind of disease remains unclear. Thus the current study's aim is to investigate the functionally predominant subset and its role in PI-IBS. METHODS The total T cells were collected from the peripheral blood of patients with PI-IBS. The peripheral proportion of Vδ1 and Vδ2 subset was detected by FACS after stained with anti δ1-PE and anti δ2-APC. The local colonic proportion of this two subsets were measured under laser confocal fluorescence microscope. Vδ1 γδ T cells were enriched from the total peripheral T cells by minoantibody-immuno-microbeads (MACS) method and cultured, functionally evaluated by CCK-8 assay (proliferation), CD69/CD62L molecules expression assay (activation) and ELISA (IL-17 production) respectively. RESULTS 1. Vδ1 γδ T cells significantly increased while Vδ2 γδ T cells remained unchanged in both the peripheral blood and local colonic tissue from PI-IBS patients (p < 0.05). 2. When cultured in vitro, the Vδ1 γδ T cells remarkably proliferated, activated and produced IL-17 (p < 0.05). CONCLUSIONS Our results suggest that Vδ1 γδ T cells was the predominant γδ T cells subset in both peripheral and intestinal tissue, and was the major IL-17 producing γδ T cells in PI-IBS.
Collapse
Affiliation(s)
- L W Dong
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - X N Sun
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Z C Ma
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - J Fu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - F J Liu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - B L Huang
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - D C Liang
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - D M Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA, 90033, USA
| | - Cheng Lan
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
22
|
Vaught DB, Merkel AR, Lynch CC, Edwards J, Tantawy MN, Hilliard T, Wang S, Peterson T, Johnson RW, Sterling JA, Brantley‐Sieders D. EphA2 Is a Clinically Relevant Target for Breast Cancer Bone Metastatic Disease. JBMR Plus 2021; 5:e10465. [PMID: 33869989 PMCID: PMC8046157 DOI: 10.1002/jbm4.10465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
EphA2 receptor tyrosine kinase (RTK) is highly expressed in breast tumor cells across multiple molecular subtypes and correlates with poor patient prognosis. In this study, the potential role of EphA2 in this clinically relevant phenomenon is investigated as metastasis of breast cancer to bone is a major cause of morbidity and mortality in patients. It was found that the EphA2 function in breast cancer cells promotes osteoclast activation and the development of osteolytic bone disease. Blocking EphA2 function molecularly and pharmacologically in breast tumors reduced the number and size of bone lesions and the degree of osteolytic disease in intratibial and intracardiac mouse models, which correlated with a significant decrease in the number of osteoclasts at the tumor-bone interface. EphA2 loss of function in tumor cells impaired osteoclast progenitor differentiation in coculture, which is mediated, at least in part, by reduced expression of IL-6. EPHA2 transcript levels are enriched in human breast cancer bone metastatic lesions relative to visceral metastatic sites; EphA2 protein expression was detected in breast tumor cells in bone metastases in patient samples, supporting the clinical relevance of the study's findings. These data provide a strong rationale for the development and application of molecularly targeted therapies against EphA2 for the treatment of breast cancer bone metastatic disease. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- David B Vaught
- Department of Cancer BiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Alyssa R Merkel
- Vanderbilt Center for Bone BiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Conor C Lynch
- Department of Tumor BiologyH. Lee Moffitt Cancer CenterTampaFLUSA
| | | | - Mohammed Noor Tantawy
- Radiology and Vanderbilt Institute of Imaging SciencesVanderbilt University School of MedicineNashvilleTNUSA
| | - Timothy Hilliard
- Radiology and Vanderbilt Institute of Imaging SciencesVanderbilt University School of MedicineNashvilleTNUSA
| | - Shan Wang
- Department of Medicine, Division of Rheumatology and ImmunologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Todd Peterson
- Radiology and Vanderbilt Institute of Imaging SciencesVanderbilt University School of MedicineNashvilleTNUSA
| | - Rachelle W Johnson
- Vanderbilt Center for Bone BiologyVanderbilt University School of MedicineNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University School of MedicineNashvilleTNUSA
- Department of Tumor BiologyH. Lee Moffitt Cancer CenterTampaFLUSA
- Division of Clinical PharmacologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Julie A Sterling
- Vanderbilt Center for Bone BiologyVanderbilt University School of MedicineNashvilleTNUSA
- Department of Veterans Affairs, Tennessee Valley Healthcare System (VISN 9)Vanderbilt UniversityNashvilleTNUSA
| | - Dana Brantley‐Sieders
- Vanderbilt‐Ingram Cancer CenterVanderbilt University School of MedicineNashvilleTNUSA
- Department of Tumor BiologyH. Lee Moffitt Cancer CenterTampaFLUSA
- Radiology and Vanderbilt Institute of Imaging SciencesVanderbilt University School of MedicineNashvilleTNUSA
- Department of Medicine, Division of Rheumatology and ImmunologyVanderbilt University School of MedicineNashvilleTNUSA
| |
Collapse
|
23
|
Hafez EN, El Kholy WA, Amin MM. The potential protective role of gamma-irradiated vaccine versus Punica granatum treatment against murine trichinellosis. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1777659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Hou Q, Huang Y, Zhu Z, Liao L, Chen X, Han Q, Liu F. Tong-Xie-Yao-Fang improves intestinal permeability in diarrhoea-predominant irritable bowel syndrome rats by inhibiting the NF-κB and notch signalling pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:337. [PMID: 31775739 PMCID: PMC6882330 DOI: 10.1186/s12906-019-2749-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Tong-Xie-Yao-Fang (TXYF) has been shown to be effective in diarrhoea-predominant irritable bowel syndrome (IBS-D) patients. However, the underlying mechanism remains to be clarified. The aim of this study was to investigate the efficacy and related mechanisms of TXYF in an IBS-D rat model. METHODS The IBS-D rat model was established with 4% acetic acid and evaluated by haematoxylin-eosin (HE) staining. Then, IBS-D rats were divided into control, TXYF and rifaximin groups and treated intragastrically with normal saline, TXYF and rifaximin, respectively, for 14 days. The following indicators were measured before and after treatment: defecation frequency, faecal water content (FWC) and colorectal distension (CRD). Histopathological changes in the distal colon were observed after treatment. The expression of OCLN and ZO1 in the distal colon of IBS-D rats reflected the intestinal mucosal permeability, as measured by qRT-PCR, western blot, and enzyme-linked immunosorbent assays (ELISAs). The NF-κB and Notch signalling pathways and inflammation-related factors were investigated. RESULTS After treatment with TXYF, the defecation frequency, FWC and CRD were significantly lower than those in the model group (P < 0.05). HE staining showed that colonic epithelial cells (CECs) in the IBS-D rats displayed significant oedema, impaired intestinal mucosal integrity and an increased influx of inflammatory cells. A significant reduction in granulocyte and CEC oedema was observed after the administration of TXYF and rifaximin compared to that of the model group and blank group (P < 0.05). TXYF significantly upregulated the expression of OCLN and ZO-1 and downregulated inflammation-related factors (IL-6, IL-1β, and TNF-α and the chemokine KC) in IBS-D rats compared to those in the model group rats (P < 0.05). In terms of the NF-κB and Notch signalling pathways, the expression of NICD, p-ERK, Hes-1 and p-P65 decreased significantly in the TXYF and rifaximin groups, while the expression of ATOH1 increased significantly compared to that in the model group (P < 0.05). CONCLUSION TXYF can effectively improve intestinal permeability and enhance intestinal mucosal barrier function, which may be related to inhibition of the inflammatory cascade and the NF-κB and Notch signalling pathways.
Collapse
Affiliation(s)
- Qiuke Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yongquan Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoyang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Liu Liao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xinlin Chen
- Department of Preventive Medicine and Health Statistics, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Quanbin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
25
|
Li B, Rui J, Ding X, Chen Y, Yang X. Deciphering the multicomponent synergy mechanisms of SiNiSan prescription on irritable bowel syndrome using a bioinformatics/network topology based strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152982. [PMID: 31299593 DOI: 10.1016/j.phymed.2019.152982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND SiNiSan (SNS) is a traditional Chinese medicine (TCM) prescription that has been widely used in the clinical treatment of irritable bowel syndrome (IBS). However, the underlying active substances and molecular mechanisms remain obscure. PURPOSE A bioinformatics/topology based strategy was proposed for identification of the drug targets, therapeutic agents and molecular mechanisms of SiNiSan against irritable bowel syndrome. MATERIALS AND METHODS In this work, a bioinformatics/network topology based strategy was employed by integrating ADME filtering, text mining, bioinformatics, network topology, Venn analysis and molecular docking to uncover systematically the multicomponent synergy mechanisms. In vivo experimental validation was executed in a Visceral Hypersensitivity (VHS) rat model. RESULTS 76 protein targets and 109 active components of SNS were identified. Bioinformatics analysis revealed that 116 disease pathways associated with IBS therapy could be classified into the 19 statistically enriched functional sub-groups. The multi-functional co-synergism of SNS against IBS were predicted, including inflammatory reaction regulation, oxidative-stress depression regulation and hormone and immune regulation. The multi-component synergetic effects were also revealed on the herbal combination of SNS. The hub-bottleneck genes of the protein networks including PTGS2, CALM2, NOS2, SLC6A3 and MAOB, MAOA, CREB1 could become potential drug targets and Paeoniflorin, Naringin, Glycyrrhizic acid may be candidate agents. Experimental results showed that the potential mechanisms of SiNiSan treatment involved in the suppression of activation of Dopaminergic synapse and Amphetamine addiction signaling pathways, which are congruent with the prediction by the systematic approach. CONCLUSION The integrative investigation based on bioinformatics/network topology strategy may elaborate the multicomponent synergy mechanisms of SNS against IBS and provide the way out to develop new combination medicines for IBS.
Collapse
Affiliation(s)
- Bangjie Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Junqian Rui
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xuejian Ding
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Chen
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xinghao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
26
|
Lee WS, Lee WH, Bae YC, Suk K. Axon Guidance Molecules Guiding Neuroinflammation. Exp Neurobiol 2019; 28:311-319. [PMID: 31308791 PMCID: PMC6614065 DOI: 10.5607/en.2019.28.3.311] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Axon guidance molecules (AGMs), such as Netrins, Semaphorins, and Ephrins, have long been known to regulate axonal growth in the developing nervous system. Interestingly, the chemotactic properties of AGMs are also important in the postnatal period, such as in the regulation of immune and inflammatory responses. In particular, AGMs play pivotal roles in inflammation of the nervous system, by either stimulating or inhibiting inflammatory responses, depending on specific ligand-receptor combinations. Understanding such regulatory functions of AGMs in neuroinflammation may allow finding new molecular targets to treat neurodegenerative diseases, in which neuroinflammation underlies aetiology and progression.
Collapse
Affiliation(s)
- Won Suk Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| | - Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
27
|
Furniss RCD, Low WW, Mavridou DAI, Dagley LF, Webb AI, Tate EW, Clements A. Plasma membrane profiling during enterohemorrhagic E. coli infection reveals that the metalloprotease StcE cleaves CD55 from host epithelial surfaces. J Biol Chem 2018; 293:17188-17199. [PMID: 30190327 PMCID: PMC6222108 DOI: 10.1074/jbc.ra118.005114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/29/2018] [Indexed: 01/01/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of several E. coli pathotypes that infect the intestinal tract and cause disease. Formation of the characteristic attaching and effacing lesion on the surface of infected cells causes significant remodeling of the host cell surface; however, limited information is available about changes at the protein level. Here we employed plasma membrane profiling, a quantitative cell-surface proteomics technique, to identify host proteins whose cell-surface levels are altered during infection. Using this method, we quantified more than 1100 proteins, 280 of which showed altered cell-surface levels after exposure to EHEC. 22 host proteins were significantly reduced on the surface of infected epithelial cells. These included both known and unknown targets of EHEC infection. The complement decay–accelerating factor cluster of differentiation 55 (CD55) exhibited the greatest reduction in cell-surface levels during infection. We showed by flow cytometry and Western blot analysis that CD55 is cleaved from the cell surface by the EHEC-specific protease StcE and found that StcE-mediated CD55 cleavage results in increased neutrophil adhesion to the apical surface of intestinal epithelial cells. This suggests that StcE alters host epithelial surfaces to depress neutrophil transepithelial migration during infection. This work is the first report of the global manipulation of the epithelial cell surface by a bacterial pathogen and illustrates the power of quantitative cell-surface proteomics in uncovering critical aspects of bacterial infection biology.
Collapse
Affiliation(s)
- R Christopher D Furniss
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ United Kingdom
| | - Wen Wen Low
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ United Kingdom
| | - Despoina A I Mavridou
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ United Kingdom
| | - Laura F Dagley
- Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne 3050, Australia, and
| | - Andrew I Webb
- Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne 3050, Australia, and
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Abigail Clements
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ United Kingdom,
| |
Collapse
|