1
|
Wang L, Wang S, Lin J, Li J, Wang M, Yu J, Sun J, Tang N, Jiao C, Ma J, Zhao X, Zhang H. Treg and intestinal myofibroblasts-derived Amphiregulin induced by TGF-β mediates intestinal fibrosis in Crohn's disease. J Transl Med 2025; 23:452. [PMID: 40247299 PMCID: PMC12004752 DOI: 10.1186/s12967-025-06413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Intestinal fibrosis is a serious complication of Crohn's disease (CD), often resulting from chronic inflammation. However, the precise mechanisms through which inflammation induces intestinal fibrosis remain inadequately elucidated. METHODS A comprehensive single-cell atlas of full-thickness CD, provided by Dr. Florian Rieder, was subjected to reanalysis. Our study used a DSS-induced chronic colitis model in both wild-type (WT) and Areg-/- mice. Additionally, a CD45RBhi CD4+ T cell adoptive transfer model involving WT and Areg-/- Treg cells (Tregs) was used. The expressions of AREG in CD with or without intestinal fibrosis, Tregs and human intestinal myofibroblasts (MFs) were determined. The effect of AREG on proliferation/migration/activation in human intestinal MFs was determined. RESULTS Several types of cells were differentially expressed between stricture and non-stricture CD. Among T cells, Tregs accounted for a larger proportion and were significantly increased in stenotic tissues of stricture CD. Although DSS-induced colitis was more severe in Areg-/- mice, which developed less severe intestinal fibrosis compared with WT mice. The transfer of Areg-/- Tregs resulted in less severe fibrosis in Rag-/- mice than WT Tregs. Moreover, TGF-β stimulated AREG expression in Tregs and human intestinal MFs via activation of Smad3. CONCLUSION These findings demonstrated that AREG derived from Tregs and human intestinal MFs, induced by TGF-β, amplifies intestinal fibrotic reactions in experimental colitis as well as in human CD patients. Thus, the TGF-β-Smad3-AREG pathway could be a potential therapeutic target for treating fibrosis in CD.
Collapse
Affiliation(s)
- Lu Wang
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Shu Wang
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Junjie Lin
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Jiajia Li
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Mingyuan Wang
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Jiang Yu
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Junjian Sun
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Nana Tang
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Chunhua Jiao
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Jingjing Ma
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaojing Zhao
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Hongjie Zhang
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Chen Y, Liu J, Zhong S, Zhang T, Yuan J, Zhang J, Chen Y, Liang J, Chen Y, Hou S, Huang H, Gao J. Monotropein inhibits epithelial-mesenchymal transition in chronic colitis via the mTOR/P70S6K pathway. Front Pharmacol 2025; 16:1536091. [PMID: 40041493 PMCID: PMC11876156 DOI: 10.3389/fphar.2025.1536091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Patients with chronic colitis are at risk of developing intestinal fibrosis through epithelial-mesenchymal transition (EMT). Monotropein (MON) is the main active ingredient in the traditional Chinese medicine Morinda officinalis How. It has been reported that monotropein can improve ulcerative colitis, but the mechanism remains unclear. However, whether monotropein can improve chronic colitis-associated intestinal fibrosis remains unknown. The study aimed to investigate the effect of monotropein on EMT in chronic colitis and its underlying mechanism. Methods The mice chronic colitis model was induced by dextran sodium sulfate (DSS). Cytokines were detected by ELISA. Concentrations of fluorescein isothiocyanate dextran (FITC-Dextran) in serum were detected using a fluorescein microplate analyzer. Intestinal tight junction proteins were detected by immunofluorescence. EMT marker proteins were detected by immunohistochemistry. Transforming growth factor-β1 (TGF-β1) was used to induce EMT in IEC-6 cells. Western blot, real-time quantitative PCR, and immunofluorescence were used to test the inhibitory effect of monotropein on the development of EMT and explore its mechanism. Results Results showed that monotropein significantly improved colonic injury and inhibited the expression of colonic tissue EMT marker protein. In addition, molecular docking and molecular dynamics (MD) simulation, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay validated monotropein targeting of mTOR. Monotropein inhibited TGF-β1-induced EMT in IEC-6 cells, inhibited the phosphorylation of mTOR and its downstream proteins, and increased the autophagy activity in chronic colitis mice and IEC-6 cells. Discussion The study indicates that monotropein inhibits the development of EMT in DSS-induced chronic colitis mice and TGF-β1-induced IEC-6 cells. Its inhibitory effect on EMT is associated with the mTOR/P70S6K pathway.
Collapse
Affiliation(s)
- Yuanfan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- College of Education, Guangzhou Huali Science and Technology Vocational College, Guangzhou, Guangdong, China
- College of Education, University of Visayas, Cebu, Philippines
| | - Jiaying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shaowen Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tianwu Zhang
- Pu’er Hospital of Traditional Chinese Medicine, Puer, Kunming, Yunnan, China
| | - Jin Yuan
- Pu’er Hospital of Traditional Chinese Medicine, Puer, Kunming, Yunnan, China
| | - Jing Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haiyang Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Development Planning Department, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jie Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Kalafateli M, Tourkochristou E, Tsounis EP, Aggeletopoulou I, Triantos C. New Insights into the Pathogenesis of Intestinal Fibrosis in Inflammatory Bowel Diseases: Focusing on Intestinal Smooth Muscle Cells. Inflamm Bowel Dis 2025; 31:579-592. [PMID: 39680685 DOI: 10.1093/ibd/izae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 12/18/2024]
Abstract
Strictures in inflammatory bowel disease, especially Crohn's disease (CD), are characterized by increased intestinal wall thickness, which, according to recent accumulating data, is mainly attributed to the expansion of the intestinal smooth muscle layers and to a lesser extent to collagen deposition. In this review, we will discuss the role of intestinal smooth muscle cells (SMCs) as crucial orchestrators of stricture formation. Activated SMCs can synthesize extracellular matrix (ECM), thus contributing to intestinal fibrosis, as well as growth factors and cytokines that can further enhance ECM production, stimulate other surrounding mesenchymal and immune cells, and increase SMC proliferation via paracrine or autocrine signaling. There is also evidence that, in stricturing CD, a phenotypic modulation of SMC toward a myofibroblast-like synthetic phenotype takes place. Moreover, the molecular mechanisms and signaling pathways that regulate SMC hyperplasia/hypertrophy will be extensively reviewed. The understanding of the cellular network and the molecular background behind stricture formation is essential for the design of effective anti-fibrotic strategies, and SMCs might be a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
4
|
Guo Y, Pabitra D, Pan L, Gong L, Li A, Liu S, Xiong J. Quantitative proteomic studies of the intestinal mucosa provide new insights into the molecular mechanism of ulcerative colitis. BMC Gastroenterol 2025; 25:48. [PMID: 39891110 PMCID: PMC11786489 DOI: 10.1186/s12876-025-03647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Differentiation between ulcerative colitis (UC) and other intestinal inflammatory diseases is difficult, and the precise etiology of UC is poorly understood. Thus, there is a need for novel diagnostic and prognostic biomarkers for UC. METHODS Intestinal mucosal biopsy tissue specimens of inflamed (ulcerative colitis-inflamed, UC-I) and non-inflamed (ulcerative colitis-noninflamed, UC-N) tissue were obtained simultaneously during colonoscopy from newly diagnosed UC patients prior to any treatments. Label-free liquid chromatography tandem mass spectrometry (LC-MS/MS) quantitative proteomics was used to detect proteomic differences between UC-I, UC-N, and normal control subjects (n = 5). Proteins with a fold-change > 1.5 and P < 0.05 between groups were considered to be differentially expressed (DEPs). Candidate biomarkers were further verified in 8 patients of each group by parallel reaction monitoring (PRM) (a prospective cohort, n = 8). Expression of TXNDC5 was quantified using immunohistochemistry (IHC). RESULTS A total of 4,788 proteins were identified. Multiple upregulated pathways, including leukocyte trans-endothelial migration and natural killer (NK) cell-mediated cytotoxicity, were identified. Network analysis showed that proteins were involved in 4 pathways in UC-I and 3 pathways in UC-N tissues, and participated in protein-protein interactions. Increased expression of 9 DEPs, including TXNDC5, EPX, and ITGAM were detected in UC patients compared to normal control subjects. Subsequent verification of the 9 DEPs by PRM confirmed the reliability of the mass spectrometry data. TXNDC5 expression was significantly increased in UC. CONCLUSIONS The pathways, networks, and proteins identified in this study may provide new insights into the molecular pathogenesis of UC. Further studies are required to determine if the proteins identified may help in the diagnosis and treatment of UC.
Collapse
Affiliation(s)
- Yandong Guo
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dahal Pabitra
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Pan
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanbo Gong
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aimin Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Xiong
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
5
|
Ahn JH, da Silva Pedrosa M, Lopez LR, Tibbs TN, Jeyachandran JN, Vignieri EE, Rothemich A, Cumming I, Irmscher AD, Haswell CJ, Zamboni WC, Yu YRA, Ellermann M, Denson LA, Arthur JC. Intestinal E. coli-produced yersiniabactin promotes profibrotic macrophages in Crohn's disease. Cell Host Microbe 2025; 33:71-88.e9. [PMID: 39701098 DOI: 10.1016/j.chom.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Inflammatory bowel disease (IBD)-associated fibrosis causes significant morbidity. Mechanisms are poorly understood but implicate the microbiota, especially adherent-invasive Escherichia coli (AIEC). We previously demonstrated that AIEC producing the metallophore yersiniabactin (Ybt) promotes intestinal fibrosis in an IBD mouse model. Since macrophages interpret microbial signals and influence inflammation/tissue remodeling, we hypothesized that Ybt metal sequestration disrupts this process. Here, we show that macrophages are abundant in human IBD-fibrosis tissue and mouse fibrotic lesions, where they co-localize with AIEC. Ybt induces profibrotic gene expression in macrophages via stabilization and nuclear translocation of hypoxia-inducible factor 1-alpha (HIF-1α), a metal-dependent immune regulator. Importantly, Ybt-producing AIEC deplete macrophage intracellular zinc and stabilize HIF-1α through inhibition of zinc-dependent HIF-1α hydroxylation. HIF-1α+ macrophages localize to sites of disease activity in human IBD-fibrosis strictures and mouse fibrotic lesions, highlighting their physiological relevance. Our findings reveal microbiota-mediated metal sequestration as a profibrotic trigger targeting macrophages in the inflamed intestine.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marlus da Silva Pedrosa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lacey R Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Taylor N Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joanna N Jeyachandran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily E Vignieri
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Aaron Rothemich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian Cumming
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA
| | - Alexander D Irmscher
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Corey J Haswell
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Zamboni
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yen-Rei A Yu
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lee A Denson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Xiao H, Xing T, Qiu M, Zhang G, Yang G, Chen W, Hu D, Xue D, Peng J, Du B. Adiponectin deficiency prevents chronic colitis-associated colonic fibrosis via inhibiting CXCL13 production. J Adv Res 2024:S2090-1232(24)00610-6. [PMID: 39725008 DOI: 10.1016/j.jare.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Colonic fibrosis is a long-term complication of inflammatory bowel disease (IBD), often leading to functional impairment, intestinal obstruction, and surgery. Adiponectin (APN) is an adipokine derived from adipocytes that plays a pleiotropic role in fibrosis regulation, depending on tissue and cell type specific or disease context, but its role in colonic fibrosis remains unclear. OBJECTIVE To explore the role and involved mechanism of APN in chronic colitis-associated colonic fibrosis. METHODS Studies were performed in GEO database, colonic tissues of UC patients, dextran sulfate sodium (DSS)-induced colonic fibrosis in male wild-type (WT) and APN-/- mice, mouse L929 and human CCD-18Co fibroblasts treated with recombinant CXCL13 protein, and colonic fibrosis in WT mice infected with shRNA of CXCL13. RESULTS APN was highly expressed in the colonic tissues of UC patients and positively correlated with the colonoscopy score and colonic fibrosis markers COL1A1 and COL3A1. APN deficiency significantly improved chronic colitis-induced colonic fibrosis in mice with down-regulating collagenase accumulation and expressions of TGF-β, α-SMA, COL1A1, COL3A1, and MMP-9 in colonic tissues. Transcriptomics showed that APN deficiency mainly affected cytokine-cytokine receptor interactions, especially CXCL13 signaling. Follow-up studies showed that APN deficiency significantly decreased the number of colonic F4/80+CD206+CXCL13+ macrophages by weakening Akt phosphorylation. Additional experiments confirmed that CXCL13 notably increased the expressions of α-SMA and COL1A1 in mouse and human fibroblasts by activating p-Akt, p-p38, p-ERK, and p-JNK. Moreover, inhibiting CXCL13 with shRNA significantly ameliorated colonic fibrosis in mice with DSS-induced chronic colitis. Immunohistochemistry analysis revealed high expression of CXCL13 in the colon tissues of patients with UC, showing a positive correlation with APN, COL1A1, and COL3A1. CONCLUSION APN contributes to the progression of colonic fibrosis and can exacerbate this condition by regulating the secretion of CXCL13 in the colon, offering potential new perspectives on the pathophysiology of colonic fibrosis.
Collapse
Affiliation(s)
- Haitao Xiao
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Tianhang Xing
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China; Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China; Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Miao Qiu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Guangtao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Gongli Yang
- Department of Gastroenterology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Wenke Chen
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Die Hu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Deao Xue
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| |
Collapse
|
7
|
Zhou M, Chen Y, Jin W, Li P, Hu J, Guo X. Traditional Chinese Medicine: A Promising Treatment Option for Intestinal Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2107-2129. [PMID: 39581857 DOI: 10.1142/s0192415x24500812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Intestinal fibrosis, a common complication of inflammatory bowel disease, in particular in Crohn's disease, arises from chronic inflammation, leading to intestinal narrowing, structural damage, and functional impairment that significantly impact patients' quality of life. Current treatment options for intestinal fibrosis are limited, with surgery being the primary intervention. Traditional Chinese Medicine (TCM) has emerged as a promising approach in preventing and treating intestinal fibrosis. However, there is a scarcity of literature summarizing the mechanisms underlying TCM's efficacy in this context. To address this gap, we conducted a comprehensive review, uncovering multiple mechanisms through which TCM mitigates intestinal fibrosis. These mechanisms include immune cell balance regulation, suppression of inflammatory responses, reduction of inflammatory mediators, alleviation of colon tissue damage, restoration of intestinal function, modulation of growth factors to inhibit fibroblast activation, dynamic regulation of TIMPs and MMPs to reduce extracellular matrix deposition, inhibition of epithelial-mesenchymal transition and endothelial-mesenchymal transition, autophagy modulation, maintenance of the intestinal mucosal barrier, prevention of tissue damage by harmful factors, and regulation of cell proliferation and apoptosis. This study aims to bridge existing knowledge gaps by presenting recent evidence supporting the utilization of TCM in both clinical and experimental research settings.
Collapse
Affiliation(s)
- Meng'en Zhou
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yan Chen
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wenqi Jin
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Peng Li
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jie Hu
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiutian Guo
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
8
|
Tavares de Sousa H, Ferreira M, Gullo I, Rocha AM, Pedro A, Leitão D, Oliveira C, Carneiro F, Magro F. Fibrosis-related Transcriptome Unveils a Distinctive Remodelling Matrix Pattern in Penetrating Ileal Crohn's Disease. J Crohns Colitis 2024; 18:1741-1752. [PMID: 38700484 DOI: 10.1093/ecco-jcc/jjae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND AIMS Stricturing [B2] and penetrating [B3] ileal Crohn's disease have been reported to present similar levels of histopathological transmural fibrosis. This study aimed to compare the fibrosis-related transcriptomic profiles of penetrating and stricturing ileal Crohn's disease. METHODS Using Nanostring technology and comparative bioinformatics, we analysed the expression of 787 fibrosis-related genes in 36 ileal surgical specimens, 12 B2 and 24 B3, the latter including 12 cases with associated stricture[s] [B3s] and 12 without [B3o]. Quality control of extracted RNA was performed according to Nanostring parameters and principal component analysis for the distribution analysis. For the selection of the differentially expressed genes, a p-adjusted <0.05 and fold change ≤-1.5 or ≥1.5 were adopted. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry analyses were used to validate selected differentially expressed genes. RESULTS We included 34 patients with B2 and B3 phenotypes, balanced for age at diagnosis, age at surgery, gender, Crohn's disease localisation, perianal disease, and therapy. Inflammation and fibrosis histopathological scoring were similar in all cases. B2 and B3 groups showed a very good clustering regarding 30 significantly differentially expressed genes, all being remarkably upregulated in B3. More than half of these genes were involved in Crohn's disease fibrogenesis, and eight differentially expressed genes were so in other organs. The most significantly active biological processes and pathways in penetrating disease were response to TGFβ and matrix organisation and degradation, as validated by immunohistochemistry. CONCLUSIONS Despite the histopathological similarities in fibrosis between stricturing and penetrating ileal Crohn's disease, their fibrosis-related transcriptomic profiles are distinct. Penetrating disease exhibits a distinctive transcriptomic landscape related to enhanced matrix remodelling.
Collapse
Affiliation(s)
- Helena Tavares de Sousa
- Gastroenterology Department, Algarve University Hospital Center [CHUA], Portimão, Portugal
- ABC-Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Marta Ferreira
- Computer Science Department, Faculty of Sciences, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Irene Gullo
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Ana Mafalda Rocha
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Ana Pedro
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Dina Leitão
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
| | - Fátima Carneiro
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine of the University of Porto [FMUP], Portugal
- Department of Gastroenterology, São João University Hospital Center, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Chauhan G, Massey WJ, Veisman I, Rieder F. Anti-fibrotics in inflammatory bowel diseases: Challenges and successes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:85-106. [PMID: 39521606 DOI: 10.1016/bs.apha.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Stricture formation leading to obstruction in Crohn's disease (CD) remains one of the largest unmet needs in the field of inflammatory bowel diseases (IBD). Despite this need no selective anti-stricture drug has been approved for use in CD patients. This contrasts with other fibrotic diseases, such as in the lung, liver or kidney, where multiple drug development programs crossed the starting line and two anti-fibrotics are now being approved for pulmonary fibrosis. Strictures are composed of a mix of inflammation, excessive deposition of extracellular matrix (ECM) and smooth muscle hyperplasia, likely all ultimately being responsible for the luminal narrowing driving patient symptoms. Our understanding of the pathogenesis of stricturing CD has evolved and indicates a multifactorial process involving immune and non-immune cells and their soluble mediators. This understanding has rendered target pathways for anti-stricture drug development. Significant progress was made in creating consensus definitions and tools to enable clinical trials with two clinical development programs having been conceived to date. In this chapter, we discuss stricture pathogenesis with a focus on the pathways being tested in clinical trials, and clinical trial endpoints developed for this indication.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Ido Veisman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, United States.
| |
Collapse
|
10
|
Laudadio I, Carissimi C, Scafa N, Bastianelli A, Fulci V, Renzini A, Russo G, Oliva S, Vitali R, Palone F, Cucchiara S, Stronati L. Characterization of patient-derived intestinal organoids for modelling fibrosis in Inflammatory Bowel Disease. Inflamm Res 2024; 73:1359-1370. [PMID: 38842554 PMCID: PMC11282153 DOI: 10.1007/s00011-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND AND AIMS Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD), namely Crohn's disease (CD) and ulcerative colitis (UC), but the precise mechanism by which it occurs is incompletely understood hampering the development of effective therapeutic strategies. Here, we aimed at inducing and characterizing an inflammation-mediated fibrosis in patient-derived organoids (PDOs) issued from crypts isolated from colonic mucosal biopsies of IBD pediatric patients and age matched-control subjects (CTRLs). METHODS Inflammatory-driven fibrosis was induced by exposing CTRL-, CD- and UC-PDOs to the pro-inflammatory cytokine TNF-α for one day, followed by a co-treatment with TNF-α and TGF-β1 for three days. Fibrotic response was proven by analyzing inflammatory and fibrotic markers by RT-qPCR and immunofluorescence. Transcriptomic changes were assessed by RNA-sequencing. RESULTS Co-treatment with TNF-α and TGF-β1 caused in CTRL- and IBD-PDOs morphological changes towards a mesenchymal-like phenotype and up-regulation of inflammatory, mesenchymal, and fibrotic markers. Transcriptomic profiling highlighted that in all intestinal PDOs, regardless of the disease, the co-exposure to TNF-α and TGF-β1 regulated EMT genes and specifically increased genes involved in positive regulation of cell migration. Finally, we demonstrated that CD-PDOs display a specific response to fibrosis compared to both CTRL- and UC-PDOs, mainly characterized by upregulation of nuclear factors controlling transcription. CONCLUSIONS This study demonstrates that intestinal PDOs may develop an inflammatory-derived fibrosis thus representing a promising tool to study fibrogenesis in IBD. Fibrotic PDOs show increased expression of EMT genes. In particular, fibrotic CD-PDOs display a specific gene expression signature compared to UC and CTRL-PDOs.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| | - Claudia Carissimi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Noemi Scafa
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alex Bastianelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Valerio Fulci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alessandra Renzini
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via. A. Scarpa, 16, 00161, Rome, Italy
| | - Giusy Russo
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Salvatore Oliva
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Roberta Vitali
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Francesca Palone
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Salvatore Cucchiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
11
|
Li Y, Hu J, Au R, Cheng C, Xu F, Li W, Wu Y, Cui Y, Zhu L, Shen H. Therapeutic Effects of Qingchang Tongluo Decoction on Intestinal Fibrosis in Crohn's Disease: Network Pharmacology, Molecular Docking and Experiment Validation. Drug Des Devel Ther 2024; 18:3269-3293. [PMID: 39081706 PMCID: PMC11287763 DOI: 10.2147/dddt.s458811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Qingchang Tongluo Decoction (QTF) is clinically used for the treatment of intestinal fibrosis in Crohn's Disease (CD). However, the role of QTF in CD-associated fibrosis and its potential pharmacological mechanism remains unclear. Purpose The objective of this study was to elucidate the potential mechanism of QTF in treating CD-associated fibrosis, employing a combination of bioinformatics approaches - encompassing network pharmacology and molecular docking - complemented by experimental validation. Methods To investigate the material basis and potential protective mechanism of QTF, a network pharmacology analysis was conducted. The core components and targets of QTF underwent molecular docking analysis to corroborate the findings obtained from network pharmacology. In vitro, a colon fibrotic model was established by stimulating IEC-6 cells with 10 ng/mL of transforming growth factor(TGF-β1). In vivo, an intestinal fibrosis model was induced in BALB/c mice by TNBS. The role of QTF in inhibiting the TGF-β1/Smad signaling pathway was investigated through RT-qPCR, Western blotting, immunohistochemistry staining, and immunofluorescence staining. Results Network pharmacology analysis revealed that QTF could exert its protective effect. Bioinformatics analysis suggested that Flavone and Isoflavone might be the key components of the study. Additionally, AKT1, IL-6, TNF, and VEGFA were identified as potential therapeutic targets. Furthermore, experimental validation and molecular docking were employed to corroborate the results obtained from network pharmacology. RT-qPCR, Immunofluorescence, and Western blotting results demonstrated that QTF significantly improved colon function and inhibited pathological intestinal fibrosis in vivo and in vitro. Conclusion Through the application of network pharmacology, molecular docking, and experimental validation, QTF could be confirmed to inhibit the proliferation of intestinal fibroblasts associated with CD and reduce the expression of Collagen I and VEGFA. This effect is achieved through the attenuation of ECM accumulation, primarily via the inhibition of the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Yanan Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Jingyi Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Ryan Au
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Academy of Chinese Culture and Health Sciences, Oakland, CA, 94612, USA
| | - Cheng Cheng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Feng Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Weiyang Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Yuguang Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Yuan Cui
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
12
|
Dzhalilova D, Silina M, Tsvetkov I, Kosyreva A, Zolotova N, Gantsova E, Kirillov V, Fokichev N, Makarova O. Changes in the Expression of Genes Regulating the Response to Hypoxia, Inflammation, Cell Cycle, Apoptosis, and Epithelial Barrier Functioning during Colitis-Associated Colorectal Cancer Depend on Individual Hypoxia Tolerance. Int J Mol Sci 2024; 25:7801. [PMID: 39063041 PMCID: PMC11276979 DOI: 10.3390/ijms25147801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
One of the factors contributing to colorectal cancer (CRC) development is inflammation, which is mostly hypoxia-associated. This study aimed to characterize the morphological and molecular biological features of colon tumors in mice that were tolerant and susceptible to hypoxia based on colitis-associated CRC (CAC). Hypoxia tolerance was assessed through a gasping time evaluation in a decompression chamber. One month later, the animals were experimentally modeled for colitis-associated CRC by intraperitoneal azoxymethane administration and three dextran sulfate sodium consumption cycles. The incidence of tumor development in the distal colon in the susceptible to hypoxia mice was two times higher and all tumors (100%) were represented by adenocarcinomas, while in the tolerant mice, only 14% were adenocarcinomas and 86% were glandular intraepithelial neoplasia. The tumor area assessed on serially stepped sections was statistically significantly higher in the susceptible animals. The number of macrophages, CD3-CD19+, CD3+CD4+, and NK cells in tumors did not differ between animals; however, the number of CD3+CD8+ and vimentin+ cells was higher in the susceptible mice. Changes in the expression of genes regulating the response to hypoxia, inflammation, cell cycle, apoptosis, and epithelial barrier functioning in tumors and the peritumoral area depended on the initial mouse's hypoxia tolerance, which should be taken into account for new CAC diagnostics and treatment approaches development.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Maria Silina
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Natalia Zolotova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Elena Gantsova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vladimir Kirillov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Health of Russian Federation, 117513 Moscow, Russia;
| | - Nikolay Fokichev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| |
Collapse
|
13
|
Wang J, Yang B, Chandra J, Ivanov A, Brown JM, Florian R. Preventing fibrosis in IBD: update on immune pathways and clinical strategies. Expert Rev Clin Immunol 2024; 20:727-734. [PMID: 38475672 PMCID: PMC11180587 DOI: 10.1080/1744666x.2024.2330604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Intestinal fibrosis is a common and serious complication of inflammatory bowel diseases (IBD) driving stricture formation in Crohn's disease patients and leading to submucosal damage in ulcerative colitis. Recent studies provided novel insights into the role of immune and nonimmune components in the pathogenesis of intestinal fibrosis. Those new findings may accelerate the development of anti-fibrotic treatment in IBD patients. AREAS COVERED This review is designed to cover the recent progress in mechanistic research and therapeutic developments on intestinal fibrosis in IBD patients, including new cell clusters, cytokines, proteins, microbiota, creeping fat, and anti-fibrotic therapies. EXPERT OPINION Due to the previously existing major obstacle of missing consensus on stricture definitions and the absence of clinical trial endpoints, testing of drugs with an anti-fibrotic mechanism is just starting in stricturing Crohn's disease (CD). A biomarker to stratify CD patients at diagnosis without any complications into at-risk populations for future strictures would be highly desirable. Further investigations are needed to identify novel mechanisms of fibrogenesis in the intestine that are targetable and ideally gut specific.
Collapse
Affiliation(s)
- Jie Wang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Bo Yang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Andrei Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - J. Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Rieder Florian
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Program for Global Translational Inflammatory Bowel Diseases, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
14
|
Liu Y, Zhang T, Pan K, Wei H. Mechanisms and therapeutic research progress in intestinal fibrosis. Front Med (Lausanne) 2024; 11:1368977. [PMID: 38947241 PMCID: PMC11211380 DOI: 10.3389/fmed.2024.1368977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Intestinal fibrosis is a common complication of chronic intestinal diseases with the characteristics of fibroblast proliferation and extracellular matrix deposition after chronic inflammation, leading to lumen narrowing, structural and functional damage to the intestines, and life inconvenience for the patients. However, anti-inflammatory drugs are currently generally not effective in overcoming intestinal fibrosis making surgery the main treatment method. The development of intestinal fibrosis is a slow process and its onset may be the result of the combined action of inflammatory cells, local cytokines, and intestinal stromal cells. The aim of this study is to elucidate the pathogenesis [e.g., extracellular matrix (ECM), cytokines and chemokines, epithelial-mesenchymal transition (EMT), differentiation of fibroblast to myofibroblast and intestinal microbiota] underlying the development of intestinal fibrosis and to explore therapeutic advances (such as regulating ECM, cytokines, chemokines, EMT, differentiation of fibroblast to myofibroblast and targeting TGF-β) based on the pathogenesis in order to gain new insights into the prevention and treatment of intestinal fibrosis.
Collapse
Affiliation(s)
- Yanjiang Liu
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Tao Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Kejian Pan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - He Wei
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
15
|
Cosín-Roger J. Inflammatory Bowel Disease: Immune Function, Tissue Fibrosis and Current Therapies. Int J Mol Sci 2024; 25:6416. [PMID: 38928122 PMCID: PMC11203598 DOI: 10.3390/ijms25126416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Inflammatory Bowel Disease (IBD) is a complex and challenging health problem that exerts a significant impact on the quality of life of millions of individuals worldwide [...].
Collapse
Affiliation(s)
- Jesús Cosín-Roger
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain;
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, Monforte de Lemos, 3-5, 28029 Madrid, Spain
| |
Collapse
|
16
|
Song J, Sun DL, Li CY, Luo YX, Liu Q, Yao Y, Zhang H, Yang TT, Song M, Bai XL, Zhang XL. TL1A Promotes Fibrogenesis in Colonic Fibroblasts via the TGF-β1/Smad3 Signaling Pathway. Curr Med Sci 2024; 44:519-528. [PMID: 38842774 DOI: 10.1007/s11596-024-2875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE Intestinal fibrosis is a refractory complication of inflammatory bowel disease (IBD). Tumor necrosis factor ligand-related molecule-1A (TL1A) is important for IBD-related intestinal fibrosis in a dextran sodium sulfate (DSS)-induced experimental colitis model. This study aimed to explore the effects of TL1A on human colonic fibroblasts. METHODS A trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis model of LCK-CD2-TL1A-GFP transgenic (Tg) or wild-type (WT) mice was established to determine the effect and mechanism of TL1A on intestinal fibrosis. The human colonic fibroblast CCD-18Co cell line was treated concurrently with TL1A and human peripheral blood mononuclear cell (PBMC) supernatant. The proliferation and activation of CCD-18Co cells were detected by BrdU assays, flow cytometry, immunocytochemistry and Western blotting. Collagen metabolism was tested by Western blotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS The level of collagen metabolism in the TNBS+ethyl alcohol (EtOH)/Tg group was greater than that in the TNBS+EtOH/WT group. Transforming growth factor-β1 (TGF-β1) and p-Smad3 in the TNBS+EtOH/Tg group were upregulated as compared with those in the TNBS+EtOH/WT group. The proliferation of CCD-18Co cells was promoted by the addition of human PBMC supernatant supplemented with 20 ng/mL TL1A, and the addition of human PBMC supernatant and TL1A increased CCD-18Co proliferation by 24.4% at 24 h. TL1A promoted cell activation and increased the levels of COL1A2, COL3A1, and TIMP-1 in CCD-18Co cells. Treatment of CCD-18Co cells with TL1A increased the expression of TGF-β1 and p-Smad3. CONCLUSION TL1A promotes TGF-β1-mediated intestinal fibroblast activation, proliferation, and collagen deposition and is likely related to an increase in the TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Jia Song
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, 050000, China
| | - Dong-Lei Sun
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, 050000, China
| | - Chen-Yang Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, 050000, China
| | - Yu-Xin Luo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, 050000, China
| | - Qian Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, 050000, China
| | - Yue Yao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, 050000, China
| | - Hong Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, 050000, China
| | - Ting-Ting Yang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Mei Song
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, 050000, China
| | - Xin-Li Bai
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Xiao-Lan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, 050000, China.
| |
Collapse
|
17
|
Han LW, Jamalian S, Hsu JC, Sheng XR, Yang X, Yang X, Monemi S, Hassan S, Yadav R, Tuckwell K, Kunder R, Pan L, Glickstein S. A Phase 1a Study to Evaluate Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of RO7303509, an Anti-TGFβ3 Antibody, in Healthy Volunteers. Rheumatol Ther 2024; 11:755-771. [PMID: 38662148 PMCID: PMC11111615 DOI: 10.1007/s40744-024-00670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
INTRODUCTION Transforming growth factor beta (TGFβ) cytokines (TGFβ1, TGFβ2, and TGFβ3) play critical roles in tissue fibrosis. However, treatment with systemic pan-TGFβ inhibitors have demonstrated unacceptable toxicities. In this study, we evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of RO7303509, a high-affinity, TGFβ3-specific, humanized immunoglobulin G1 monoclonal antibody, in healthy adult volunteers (HVs). METHODS This phase 1a, randomized, double-blind trial included six cohorts for evaluation, with each cohort receiving single doses of placebo or RO7303509, administered intravenously (IV; 50 mg, 150 mg, 240 mg) or subcutaneously (SC; 240 mg, 675 mg, 1200 mg). The frequency and severity of adverse events (AEs) and RO7303509 serum concentrations were monitored throughout the study. We also measured serum periostin and cartilage oligomeric matrix protein (COMP) by immunoassay and developed a population pharmacokinetics model to characterize RO7303509 serum concentrations. RESULTS The study enrolled 49 HVs, with a median age of 39 (range 18-73) years. Ten (27.8%) RO7303509-treated subjects reported 24 AEs, and six (30.8%) placebo-treated subjects reported six AEs. The most frequent AEs related to the study drug were injection site reactions and infusion-related reactions. Maximum serum concentrations (Cmax) and area under the concentration-time curve from time 0 to infinity (AUC0-inf) values for RO7303509 appeared to increase dose-proportionally across all doses tested. Serum concentrations across cohorts were best characterized by a two-compartment model plus a depot compartment with first-order SC absorption kinetics. No subjects tested positive for anti-drug antibodies (ADAs) at baseline; one subject (2.8%; 50 mg IV) tested positive for ADAs at a single time point (day 15). No clear pharmacodynamic effects were observed for periostin or COMP upon TGFβ3 inhibition. CONCLUSION RO7303509 was well tolerated at single SC doses up to 1200 mg in HVs with favorable pharmacokinetic data that appeared to increase dose-proportionally. TGFβ3-specific inhibition may be suitable for development as a chronic antifibrotic therapy. TRIAL REGISTRATION ISRCTN13175485.
Collapse
Affiliation(s)
- Lyrialle W Han
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Samira Jamalian
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joy C Hsu
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - X Rebecca Sheng
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xiaoyun Yang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xiaoying Yang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sharareh Monemi
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sharmeen Hassan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Rajbharan Yadav
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Katie Tuckwell
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Rebecca Kunder
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Lin Pan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Sara Glickstein
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
18
|
Yao F, Xu M, Dong L, Shen X, Shen Y, Jiang Y, Zhu T, Zhang C, Yu G. Sinomenine attenuates pulmonary fibrosis by downregulating TGF-β1/Smad3, PI3K/Akt and NF-κB signaling pathways. BMC Pulm Med 2024; 24:229. [PMID: 38730387 PMCID: PMC11088103 DOI: 10.1186/s12890-024-03050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-β1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION SIN attenuated PF by down-regulating TGF-β/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.
Collapse
Affiliation(s)
- Fuqiang Yao
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Minghao Xu
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Lingjun Dong
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Xiao Shen
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Yujie Shen
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Yisheng Jiang
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| |
Collapse
|
19
|
Wei JY, Ma LX, Liu WT, Dong LH, Hou X, Bao XY, Hou W. Mechanisms and protective measures for radiation-induced brachial plexus nerve injury. Brain Res Bull 2024; 210:110924. [PMID: 38460911 DOI: 10.1016/j.brainresbull.2024.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Radiation therapy is a common treatment modality for patients with malignant tumors of the head and neck, chest and axilla. However, radiotherapy inevitably causes damage to normal tissues at the irradiated site, among which damage to the brachial plexus nerve(BP) is a serious adverse effect in patients receiving radiation therapy in the scapular or axillary regions, with clinical manifestations including abnormal sensation, neuropathic pain, and dyskinesia, etc. These adverse effects seriously reduce the living quality of patients and pose obstacles to their prognosis. Therefore, it is important to elucidate the mechanism of radiation induced brachial plexus injury (RIBP) which remains unclear. Current studies have shown that the pathways of radiation-induced BP injury can be divided into two categories: direct injury and indirect injury, and the indirect injury is closely related to the inflammatory response, microvascular damage, cytokine production and other factors causing radiation-induced fibrosis. In this review, we summarize the underlying mechanisms of RIBP occurrence and possible effective methods to prevent and treat RIBP.
Collapse
Affiliation(s)
- Jia Ying Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Li Xin Ma
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Wen Tong Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Li Hua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Xue Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Xue Ying Bao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Wei Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
20
|
Dvornikova KA, Platonova ON, Bystrova EY. The Role of TRP Channels in Sepsis and Colitis. Int J Mol Sci 2024; 25:4784. [PMID: 38731999 PMCID: PMC11084600 DOI: 10.3390/ijms25094784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
To date, several members of the transient receptor potential (TRP) channels which provide a wide array of roles have been found in the gastrointestinal tract (GI). The goal of earlier research was to comprehend the intricate signaling cascades that contribute to TRP channel activation as well as how these receptors' activity affects other systems. Moreover, there is a large volume of published studies describing the role of TRP channels in a number of pathological disorders, including inflammatory bowel disease (IBD) and sepsis. Nevertheless, the generalizability of these results is subject to certain limitations. For instance, the study of IBD relies on various animal models and experimental methods, which are unable to precisely imitate the multifactorial chronic disease. The diverse pathophysiological mechanisms and unique susceptibility of animals may account for the inconsistency of the experimental data collected. The main purpose of this study was to conduct a comprehensive review and analysis of existing studies on transient receptor potential (TRP) channels implicating specific models of colitis and sepsis, with particular emphasis on their involvement in pathological disorders such as IBD and sepsis. Furthermore, the text endeavors to evaluate the generalizability of experimental findings, taking into consideration the limitations posed by animal models and experimental methodologies. Finally, we also provide an updated schematic of the most important and possible molecular signaling pathways associated with TRP channels in IBD and sepsis.
Collapse
Affiliation(s)
| | | | - Elena Y. Bystrova
- I.P. Pavlov Institute of Physiology RAS, 199034 St. Petersburg, Russia; (K.A.D.); (O.N.P.)
| |
Collapse
|
21
|
Ariaee A, Koentgen S, Wardill HR, Hold GL, Prestidge CA, Armstrong HK, Joyce P. Prebiotic selection influencing inflammatory bowel disease treatment outcomes: a review of the preclinical and clinical evidence. EGASTROENTEROLOGY 2024; 2:e100055. [PMID: 39944472 PMCID: PMC11731074 DOI: 10.1136/egastro-2023-100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2025]
Abstract
Inflammatory bowel disease (IBD) is characterised by chronic inflammation in the gastrointestinal tract, with unclear aetiology but with known factors contributing to the disease, including genetics, immune responses, environmental factors and dysbiosis of the gut microbiota. Existing pharmacotherapies mainly target the inflammatory symptoms of disease, but recent research has highlighted the capacity for microbial-accessible carbohydrates that confer health benefits (ie, prebiotics) to selectively stimulate the growth of beneficial gut bacteria for improved IBD management. However, since prebiotics vary in source, chemical composition and microbiota effects, there is a clear need to understand the impact of prebiotic selection on IBD treatment outcomes. This review subsequently explores and contrasts the efficacy of prebiotics from various sources (β-fructans, galacto-oligosaccharides, xylo-oligosaccharides, resistant starch, pectin, β-glucans, glucomannans and arabinoxylans) in mitigating IBD symptomatology, when used as either standalone or adjuvant therapies. In preclinical animal colitis models, prebiotics have revealed type-dependent effects in positively modulating gut microbiota composition and subsequent attenuation of disease indicators and proinflammatory responses. While prebiotics have demonstrated therapeutic potential in animal models, clinical evidence for their precise efficacy remains limited, stressing the need for further investigation in human patients with IBD to facilitate their widespread clinical translation as microbiota-targeting IBD therapies.
Collapse
Affiliation(s)
- Amin Ariaee
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sabrina Koentgen
- University of New South Wales, Sydney, New South Wales, Australia
| | - Hannah R Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Georgina L Hold
- Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Heather K Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba IBD Clinical and Research Centre, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Manitoba Multiple Sclerosis Research Centre, Winnipeg, Manitoba, Canada
- Children’s Health Research Institute Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
23
|
Xiao W, Hu C, Ni Y, Wang J, Jiao K, Zhou M, Li Z. 27-Hydroxycholesterol activates the GSK-3β/β-catenin signaling pathway resulting in intestinal fibrosis by inducing oxidative stress: effect of dietary interventions. Inflamm Res 2024; 73:289-304. [PMID: 38184500 DOI: 10.1007/s00011-023-01835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Intestinal fibrosis, a common and serious complication of inflammatory bowel disease (IBD), results from chronic inflammation. A high-cholesterol diet may be a risk factor for IBD and 27-hydroxylcholesterol (27HC) is the main human cholesterol metabolite. This study investigated whether 27HC can induce intestinal fibrosis. METHODS The effects of cholesterol and 27HC on intestinal fibrosis were assessed in zebrafish and human intestinal epithelial Caco-2 cells. RESULTS Cholesterol and 27HC induced intestinal inflammation and collagen deposition, inhibited E-cadherin (E-ca) expression in the intestinal epithelium, and promoted nuclear translocation of β-catenin in zebrafish. Cholesterol and 27HC up-regulated expression of COL-1, α-SMA, CTGF, TIMP1, N-cadherin, vimentin, glycogen synthesis kinase-3β (GSK-3β) and β-catenin, but inhibited E-ca, in Caco-2 cells. The expression of these proteins was inhibited by CYP27A1 knockdown and β-catenin knockdown. 27HC-induced nuclear translocation of β-catenin occurs in Caco-2 cells. p38, ERK, and AKT activate β-catenin and thereby participate in 27HC-induced epithelia-mesenchymal transition (EMT) and fibrosis. 27HC-increased oxidative stress and the fibrosis and EMT markers, the nuclear translocation of β-catenin, and the up-regulation of p-cell kinase proteins promoted by 27HC were inhibited by N-acetyl-L-cysteine (NAC). Folic acid (FA), resveratrol (RES), and NAC all ameliorated the 27HC-induced effects in Caco-2 cells and zebrafish. CONCLUSION A high-cholesterol diet caused intestinal fibrosis in zebrafish, mediated by a major cholesterol metabolite, 27HC. 27HC increased oxidative stress and activated p38, ERK, AKT, and β-catenin, leading to EMT of epithelial cells and intestinal fibrosis. FA and RES both ameliorated intestinal fibrosis by restraining 27HC-induced β-catenin activation.
Collapse
Affiliation(s)
- Wei Xiao
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunyan Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifan Ni
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Kailin Jiao
- Department of Nutrition, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China.
| | - Ming Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhong Li
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
24
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
25
|
Yang W, Yu T, Cong Y. Stromal Cell Regulation of Intestinal Inflammatory Fibrosis. Cell Mol Gastroenterol Hepatol 2024; 17:703-711. [PMID: 38246590 PMCID: PMC10958116 DOI: 10.1016/j.jcmgh.2024.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Intestinal inflammatory fibrosis is a severe consequence of inflammatory bowel diseases (IBDs). There is currently no cure for the treatment of intestinal fibrosis in IBD. Although inflammation is necessary for triggering fibrosis, the anti-inflammatory agents used to treat IBD are ineffective in preventing the progression of intestinal fibrosis and stricture formation once initiated, suggesting that inflammatory signals are not the sole drivers of fibrosis progression once it is established. Among multiple mechanisms involved in the initiation and progression of intestinal fibrosis in IBD, stromal cells play critical roles in mediating the process. In this review, we summarize recent progress on how stromal cells regulate intestinal fibrosis in IBD and how they are regulated by focusing on immune regulation and gut microbiota. We also outline the challenges moving forward in the field.
Collapse
Affiliation(s)
- Wenjing Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Tianming Yu
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
26
|
Ding M, Li R, Qin J, Ning J. A double-robust test for high-dimensional gene coexpression networks conditioning on clinical information. Biometrics 2023; 79:3227-3238. [PMID: 37312587 PMCID: PMC10838184 DOI: 10.1111/biom.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
It has been increasingly appealing to evaluate whether expression levels of two genes in a gene coexpression network are still dependent given samples' clinical information, in which the conditional independence test plays an essential role. For enhanced robustness regarding model assumptions, we propose a class of double-robust tests for evaluating the dependence of bivariate outcomes after controlling for known clinical information. Although the proposed test relies on the marginal density functions of bivariate outcomes given clinical information, the test remains valid as long as one of the density functions is correctly specified. Because of the closed-form variance formula, the proposed test procedure enjoys computational efficiency without requiring a resampling procedure or tuning parameters. We acknowledge the need to infer the conditional independence network with high-dimensional gene expressions, and further develop a procedure for multiple testing by controlling the false discovery rate. Numerical results show that our method accurately controls both the type-I error and false discovery rate, and it provides certain levels of robustness regarding model misspecification. We apply the method to a gastric cancer study with gene expression data to understand the associations between genes belonging to the transforming growth factor β signaling pathway given cancer-stage information.
Collapse
Affiliation(s)
- Maomao Ding
- Meta Platforms, Inc., Menlo Park, California, USA
| | - Ruosha Li
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jin Qin
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
27
|
Ephraim R, Fraser S, Devereaux J, Stavely R, Feehan J, Eri R, Nurgali K, Apostolopoulos V. Differential Gene Expression of Checkpoint Markers and Cancer Markers in Mouse Models of Spontaneous Chronic Colitis. Cancers (Basel) 2023; 15:4793. [PMID: 37835487 PMCID: PMC10571700 DOI: 10.3390/cancers15194793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The presence of checkpoint markers in cancer cells aids in immune escape. The identification of checkpoint markers and early cancer markers is of utmost importance to gain clarity regarding the relationship between colitis and progressive inflammation leading to cancer. Herein, the gene expression levels of checkpoint makers, cancer-related pathways, and cancer genes in colon tissues of mouse models of chronic colitis (Winnie and Winnie-Prolapse mice) using next-generation sequencing are determined. Winnie mice are a result of a Muc2 missense mutation. The identification of such genes and their subsequent expression and role at the protein level would enable novel markers for the early diagnosis of cancer in IBD patients. The differentially expressed genes in the colonic transcriptome were analysed based on the Kyoto Encyclopedia of Genes and Genomes pathway. The expression of several oncogenes is associated with the severity of IBD, with Winnie-Prolapse mice expressing a large number of key genes associated with development of cancer. This research presents a number of new targets to evaluate for the development of biomarkers and therapeutics.
Collapse
Affiliation(s)
- Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
| | - Jeannie Devereaux
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
| | - Rhian Stavely
- Pediatric Surgery Research Laboratories, Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Rajaraman Eri
- STEM/School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
28
|
Macias-Ceja DC, Mendoza-Ballesteros MT, Ortega-Albiach M, Barrachina MD, Ortiz-Masià D. Role of the epithelial barrier in intestinal fibrosis associated with inflammatory bowel disease: relevance of the epithelial-to mesenchymal transition. Front Cell Dev Biol 2023; 11:1258843. [PMID: 37822869 PMCID: PMC10562728 DOI: 10.3389/fcell.2023.1258843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
In inflammatory bowel disease (IBD), chronic inflammation in the gastrointestinal tract can lead to tissue damage and remodelling, which can ultimately result in fibrosis. Prolonged injury and inflammation can trigger the activation of fibroblasts and extracellular matrix (ECM) components. As fibrosis progresses, the tissue becomes increasingly stiff and less functional, which can lead to complications such as intestinal strictures, obstructive symptoms, and eventually, organ dysfunction. Epithelial cells play a key role in fibrosis, as they secrete cytokines and growth factors that promote fibroblast activation and ECM deposition. Additionally, epithelial cells can undergo a process called epithelial-mesenchymal transition, in which they acquire a more mesenchymal-like phenotype and contribute directly to fibroblast activation and ECM deposition. Overall, the interactions between epithelial cells, immune cells, and fibroblasts play a critical role in the development and progression of fibrosis in IBD. Understanding these complex interactions may provide new targets for therapeutic interventions to prevent or treat fibrosis in IBD. In this review, we have collected and discussed the recent literature highlighting the contribution of epithelial cells to the pathogenesis of the fibrotic complications of IBD, including evidence of EMT, the epigenetic control of the EMT, the potential influence of the intestinal microbiome in EMT, and the possible therapeutic strategies to target EMT. Finally we discuss the pro-fibrotic interactions epithelial-immune cells and epithelial-fibroblasts cells.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | - M. Dolores Barrachina
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
29
|
Jang JH, Park JW, Park KA, Kim YD, Woo KI. Early response to intravenous methylprednisolone therapy for restrictive myopathy in patients with thyroid eye disease. Graefes Arch Clin Exp Ophthalmol 2023; 261:2375-2382. [PMID: 36808229 DOI: 10.1007/s00417-023-06013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
PURPOSE To report the therapeutic efficacy of intravenous methylprednisolone (IVMP) in patients with restrictive myopathy caused by thyroid eye disease (TED). METHODS The present prospective uncontrolled study comprised 28 patients with TED and restrictive myopathy who presented with diplopia that had developed within 6 months before their visit. All patients were treated with IVMP for 12 weeks. Deviation angle, limitation of extraocular muscle (EOM) movement, binocular single vision score, Hess score, clinical activity score (CAS), modified NOSPECS score, exophthalmometric value, and the size of EOMs on computed tomography were evaluated. The patients were divided into two groups: those whose deviation angle had decreased or remained unchanged 6 months after treatment (group 1; n = 17) and those whose deviation angle had increased in that time (group 2; n = 11). RESULTS The mean CAS of the whole cohort significantly decreased from baseline to 1 month and 3 months after treatment (P = 0.03 and P = 0.02, respectively). The mean deviation angle significantly increased from baseline to 1, 3, and 6 months (P = 0.01, P < 0.01, and P < 0.01, respectively). The deviation angle decreased in 10 (36%), remained constant in seven (25%), and increased in 11 (39%) of the 28 patients. When groups 1 and 2 were compared, no single variable was identified as a cause of deviation angle deterioration (P > 0.05). CONCLUSIONS When treating patients with TED who have restrictive myopathy, physicians should be aware that some patients show worsening of the strabismus angle despite inflammation control with IVMP therapy. Uncontrolled fibrosis can result in motility deterioration.
Collapse
Affiliation(s)
- Jae Ho Jang
- Department of Ophthalmology, Dongguk University Gyeongju Hospital, Gyeongju, Gyeongsangbuk-Do, Republic of Korea
| | - Ji Woong Park
- Seoul Eye Clinic, Anyang, Gyeonggi-Do, Republic of Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | | | - Kyung In Woo
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
30
|
Scalia F, Carini F, David S, Giammanco M, Mazzola M, Rappa F, Bressan NI, Maida G, Tomasello G. Inflammatory Bowel Diseases: An Updated Overview on the Heat Shock Protein Involvement. Int J Mol Sci 2023; 24:12129. [PMID: 37569505 PMCID: PMC10419025 DOI: 10.3390/ijms241512129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) represent chronic idiopathic disorders, including Crohn's disease (CD) and ulcerative colitis (UC), in which one of the trigger factors is represented by aberrant immune interactions between the intestinal epithelium and the intestinal microbiota. The involvement of heat shock proteins (HSPs) as etiological and pathogenetic factors is becoming of increasing interest. HSPs were found to be differentially expressed in the intestinal tissues and sera of patients with CD and UC. It has been shown that HSPs can play a dual role in the disease, depending on the stage of progression. They can support the inflammatory and fibrosis process, but they can also act as protective factors during disease progression or before the onset of one of the worst complications of IBD, colorectal cancer. Furthermore, HSPs are able to mediate the interaction between the intestinal microbiota and intestinal epithelial cells. In this work, we discuss the involvement of HSPs in IBD considering their genetic, epigenetic, immune and molecular roles, referring to the most recent works present in the literature. With our review, we want to shed light on the importance of further exploring the role of HSPs, or even better, the role of the molecular chaperone system (CS), in IBD: various molecules of the CS including HSPs may have diagnostic, prognostic and therapeutic potential, promoting the creation of new drugs that could overcome the side-effects of the therapies currently used.
Collapse
Affiliation(s)
- Federica Scalia
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesco Carini
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
- Hospital University School of Medicine, P. Giaccone, 90127 Palermo, Italy
| | - Sabrina David
- Department Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, 90133 Palermo, Italy; (S.D.); (M.G.)
| | - Marco Giammanco
- Department Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, 90133 Palermo, Italy; (S.D.); (M.G.)
| | - Margherita Mazzola
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
| | - Francesca Rappa
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
- Institute of Translational Pharmacology (IFT), Section of Palermo, Italy National Research Council of Italy (CNR), 90146 Palermo, Italy
| | | | - Giorgio Maida
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
| | - Giovanni Tomasello
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
| |
Collapse
|
31
|
Rhee KH, Yang SA, Pyo MC, Lim JM, Lee KW. MiR-155-5p Elevated by Ochratoxin A Induces Intestinal Fibrosis and Epithelial-to-Mesenchymal Transition through TGF-β Regulated Signaling Pathway In Vitro and In Vivo. Toxins (Basel) 2023; 15:473. [PMID: 37505742 PMCID: PMC10467050 DOI: 10.3390/toxins15070473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that induces fibrosis and epithelial-to-mesenchymal transitions (EMT) in kidneys and livers. It enters our bodies through food consumption, where it is absorbed in the intestines. However, the impact of OTA on the intestines is yet to be studied. MicroRNA (miRNAs) are small non-coding single-stranded RNAs that block the transcription of specific mRNAs and are, therefore, involved in many biochemical processes. Our findings indicate that OTA can induce EMT and intestinal fibrosis both in vivo and in vitro. This study examines the impact of OTA on intestinal toxicity and the role of miRNAs in this process. Following OTA treatment, miR-155-5p was the most elevated miRNA by next-generation sequencing. Our research showed that OTA increased miR-155-5p levels through transforming growth factor β (TGF-β), leading to the development of intestinal fibrosis and EMT. Additionally, the study identified that the modulation of TGF-β and miR-155-5p by OTA is linked to the inhibition of CCAAT/enhancer-binding protein β (C/EBPβ) and Smad2/3 accumulation in the progression of intestinal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.H.R.); (S.A.Y.); (M.C.P.); (J.-M.L.)
| |
Collapse
|
32
|
Li M, Jiang W, Wang Z, Lu Y, Zhang J. New insights on IL‑36 in intestinal inflammation and colorectal cancer (Review). Exp Ther Med 2023; 25:275. [PMID: 37206554 PMCID: PMC10189745 DOI: 10.3892/etm.2023.11974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/21/2023] [Indexed: 05/21/2023] Open
Abstract
Interleukin (IL)-36 is a member of the IL-1 superfamily, which includes three receptor agonists and one antagonist and exhibits a familial feature of inflammatory regulation. Distributed among various tissues, such as the skin, lung, gut and joints, the mechanism of IL-36 has been most completely investigated in the skin and has been used in clinical treatment of generalized pustular psoriasis. Meanwhile, the role of IL-36 in the intestine has also been under scrutiny and has been shown to be involved in the regulation of various intestinal diseases. Inflammatory bowel disease and colorectal cancer are the most predominant inflammatory and neoplastic diseases of the intestine, and multiple studies have identified a complex role for IL-36 in both of them. Indeed, inhibiting IL-36 signaling is currently regarded as a promising therapeutic approach. Therefore, the present review briefly describes the composition and expression of IL-36 and focuses on the role of IL-36 in intestinal inflammation and colorectal cancer. The targeted therapies that are currently being developed for the IL-36 receptor are also discussed.
Collapse
Affiliation(s)
- Minghui Li
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wei Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zehui Wang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yihan Lu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jun Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
- Correspondence to: Dr Jun Zhang, Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 8th Floor, 8th Building, 68 Changle Road, Qinhuai, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
33
|
Jarmakiewicz-Czaja S, Sokal A, Ferenc K, Motyka E, Helma K, Filip R. The Role of Genetic and Epigenetic Regulation in Intestinal Fibrosis in Inflammatory Bowel Disease: A Descending Process or a Programmed Consequence? Genes (Basel) 2023; 14:1167. [PMID: 37372347 DOI: 10.3390/genes14061167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic diseases characterized by recurring periods of exacerbation and remission. Fibrosis of the intestine is one of the most common complications of IBD. Based on current analyses, it is evident that genetic factors and mechanisms, as well as epigenetic factors, play a role in the induction and progression of intestinal fibrosis in IBD. Key genetic factors and mechanisms that appear to be significant include NOD2, TGF-β, TLRs, Il23R, and ATG16L1. Deoxyribonucleic acid (DNA) methylation, histone modification, and ribonucleic acid (RNA) interference are the primary epigenetic mechanisms. Genetic and epigenetic mechanisms, which seem to be important in the pathophysiology and progression of IBD, may potentially be used in targeted therapy in the future. Therefore, the aim of this study was to gather and discuss selected mechanisms and genetic factors, as well as epigenetic factors.
Collapse
Affiliation(s)
| | - Aneta Sokal
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD, Clinical Hospital No. 2 im. Św. Jadwigi Królowej, 35-301 Rzeszow, Poland
| |
Collapse
|
34
|
Lee Y, Kim SH, Jeong H, Kim KH, Jeon D, Cho Y, Lee D, Nam KT. Role of Nox4 in Mitigating Inflammation and Fibrosis in Dextran Sulfate Sodium-Induced Colitis. Cell Mol Gastroenterol Hepatol 2023; 16:411-429. [PMID: 37207801 PMCID: PMC10372905 DOI: 10.1016/j.jcmgh.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND & AIMS Fibrosis development in ulcerative colitis is associated directly with the severity of mucosal inflammation, which increases the risk of colorectal cancer. The transforming growth factor-β (TGF-β) signaling pathway is an important source of tissue fibrogenesis, which is stimulated directly by reactive oxygen species produced from nicotinamide adenine dinucleotide phosphate oxidases (NOX). Among members of the NOX family, NOX4 expression is up-regulated in patients with fibrostenotic Crohn's disease (CD) and in dextran sulfate sodium (DSS)-induced murine colitis. The aim of this study was to determine whether NOX4 plays a role in fibrogenesis during inflammation in the colon using a mouse model. METHODS Acute and recovery models of colonic inflammation were performed by DSS administration to newly generated Nox4-/- mice. Pathologic analysis of colon tissues was performed, including detection of immune cells, proliferation, and fibrotic and inflammatory markers. RNA sequencing was performed to detect differentially expressed genes between Nox4-/- and wild-type mice in both the untreated and DSS-treated conditions, followed by functional enrichment analysis to explore the molecular mechanisms contributing to pathologic differences during DSS-induced colitis and after recovery. RESULTS Nox4-/- mice showed increased endogenous TGF-β signaling in the colon, increased reactive oxygen species levels, intensive inflammation, and an increased fibrotic region after DSS treatment compared with wild-type mice. Bulk RNA sequencing confirmed involvement of canonical TGF-β signaling in fibrogenesis of the DSS-induced colitis model. Up-regulation of TGF-β signaling affects collagen activation and T-cell lineage commitment, increasing the susceptibility for inflammation. CONCLUSIONS Nox4 protects against injury and plays a crucial role in fibrogenesis in DSS-induced colitis through canonical TGF-β signaling regulation, highlighting a new treatment target.
Collapse
Affiliation(s)
- Yura Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hee Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Donghun Jeon
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
Cao Y, Cheng K, Yang M, Deng Z, Ma Y, Yan X, Zhang Y, Jia Z, Wang J, Tu K, Liang J, Zhang M. Orally administration of cerium oxide nanozyme for computed tomography imaging and anti-inflammatory/anti-fibrotic therapy of inflammatory bowel disease. J Nanobiotechnology 2023; 21:21. [PMID: 36658555 PMCID: PMC9854161 DOI: 10.1186/s12951-023-01770-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic nonspecific disease with unknown etiology. Currently, the anti-inflammatory therapeutic approaches have achieved a certain extent of effects in terms of inflammation alleviation. Still, the final pathological outcome of intestinal fibrosis has not been effectively improved yet. RESULTS In this study, dextran-coated cerium oxide (D-CeO2) nanozyme with superoxide dismutase (SOD) and catalase (CAT) activities was synthesized by chemical precipitation. Our results showed that D-CeO2 could efficiently scavenge reactive oxide species (ROS) as well as downregulate the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and iNOS) to protect cells from H2O2-induced oxidative damage. Moreover, D-CeO2 could suppress the expression of fibrosis-related gene levels, such as α-SMA, and Collagen 1/3, demonstrating the anti-fibrotic effect. In both TBNS- and DSS-induced colitis models, oral administration of D-CeO2 in chitosan/alginate hydrogel alleviated intestinal inflammation, reduced colonic damage by scavenging ROS, and decreased inflammatory factor levels. Notably, our findings also suggested that D-CeO2 reduced fibrosis-related cytokine levels, predicting a contribution to alleviating colonic fibrosis. Meanwhile, D-CeO2 could also be employed as a CT contrast agent for noninvasive gastrointestinal tract (GIT) imaging. CONCLUSION We introduced cerium oxide nanozyme as a novel therapeutic approach with computed tomography (CT)-guided anti-inflammatory and anti-fibrotic therapy for the management of IBD. Collectively, without appreciable systemic toxicity, D-CeO2 held the promise of integrated applications for diagnosis and therapy, pioneering the exploration of nanozymes with ROS scavenging capacity in the anti-fibrotic treatment of IBD.
Collapse
Affiliation(s)
- Yameng Cao
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Kai Cheng
- grid.33199.310000 0004 0368 7223Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Mei Yang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Zhichao Deng
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Yana Ma
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Xiangji Yan
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Yuanyuan Zhang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Zhenzhen Jia
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Jun Wang
- grid.452438.c0000 0004 1760 8119Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Kangsheng Tu
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Jie Liang
- grid.417295.c0000 0004 1799 374XXijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, 710068 Shaanxi China
| | - Mingzhen Zhang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| |
Collapse
|
36
|
Villanueva JW, Kwong L, Han T, Martinez SA, Shanahan MT, Kanke M, Dow LE, Danko CG, Sethupathy P. Comprehensive microRNA analysis across genome-edited colorectal cancer organoid models reveals miR-24 as a candidate regulator of cell survival. BMC Genomics 2022; 23:792. [DOI: 10.1186/s12864-022-09018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
AbstractSomatic mutations drive colorectal cancer (CRC) by disrupting gene regulatory mechanisms. Distinct combinations of mutations can result in unique changes to regulatory mechanisms leading to variability in the efficacy of therapeutics. MicroRNAs are important regulators of gene expression, and their activity can be altered by oncogenic mutations. However, it is unknown how distinct combinations of CRC-risk mutations differentially affect microRNAs. Here, using genetically-modified mouse intestinal organoid (enteroid) models, we identify 12 different modules of microRNA expression patterns across different combinations of mutations common in CRC. We also show that miR-24-3p is aberrantly upregulated in genetically-modified mouse enteroids irrespective of mutational context. Furthermore, we identify an enrichment of miR-24-3p predicted targets in downregulated gene lists from various mutational contexts compared to WT. In follow-up experiments, we demonstrate that miR-24-3p promotes CRC cell survival in multiple cell contexts. Our novel characterization of genotype-specific patterns of miRNA expression offer insight into the mechanisms that drive inter-tumor heterogeneity and highlight candidate microRNA therapeutic targets for the advancement of precision medicine for CRC.
Collapse
|
37
|
Lin SN, Musso A, Wang J, Mukherjee PK, West GA, Mao R, Lyu R, Li J, Zhao S, Elias M, Haberman Y, Denson LA, Kugathasan S, Chen MH, Czarnecki D, Dejanovic D, Le HT, Chandra J, Lipman J, Steele SR, Nguyen QT, Fiocchi C, Rieder F. Human intestinal myofibroblasts deposited collagen VI enhances adhesiveness for T cells - A novel mechanism for maintenance of intestinal inflammation. Matrix Biol 2022; 113:1-21. [PMID: 36108990 PMCID: PMC10043923 DOI: 10.1016/j.matbio.2022.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Inflammatory bowel diseases (IBD) cause chronic intestinal damage and extracellular matrix (ECM) remodeling. The ECM may play an active role in inflammation by modulating immune cell functions, including cell adhesion, but this hypothesis has not been tested in IBD. DESIGN Primary human intestinal myofibroblast (HIMF)-derived ECM from IBD and controls, 3D decellularized colon or ECM molecule-coated scaffolds were tested for their adhesiveness for T cells. Matrisome was analysed via proteomics. Functional integrin blockade was used to investigate the underlying mechanism. Analysis of the pediatric Crohn's disease (CD) RISK inception cohort was used to explore an altered ECM gene expression as a potential predictor for a future complicated disease course. RESULTS HIMF-derived ECM and 3D decellularized colonic ECM from IBD bound more T cells compared to control. Control HIMFs exposed to the pro-inflammatory cytokines Iinterleukin-1β (IL-1β) and tumor necrosis factor (TNF) increased, and to transforming growth factor-β1 (TGF-β1) decreased ECM adhesiveness to T cells. Matrisome analysis of the HIMF-derived ECM revealed collagen VI as a major culprit for differences in T cell adhesion. Collagen VI knockdown in HIMF reduced adhesion T cell as did the blockage of integrin αvβ1. Elevated gene expression of collagen VI in biopsies of pediatric CD patients was linked to risk for future stricturing disease. CONCLUSION HIMF-derived ECM in IBD binds a remarkably enhanced number of T cells, which is dependent on Collagen VI and integrin αvβ1. Collagen VI expression is a risk factor for a future complicated CD course. Blocking immune cells retention may represent a novel approach to treatment in IBD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alessandro Musso
- Division of Gastroenterology, Città della Salute e della Scienza di Torino, Molinette Hospital, Turin, Italy
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A West
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ruishen Lyu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yael Haberman
- Sheba Medical Center, Tel Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Min-Hu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Doug Czarnecki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dina Dejanovic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy Lipman
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Scott R Steele
- Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA.
| |
Collapse
|
38
|
Bouwman W, Verhaegh W, van de Stolpe A. Improved diagnosis of inflammatory bowel disease and prediction and monitoring of response to anti-TNF alpha treatment based on measurement of signal transduction pathway activity. Front Pharmacol 2022; 13:1008976. [PMID: 37090899 PMCID: PMC10115426 DOI: 10.3389/fphar.2022.1008976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Ulcerative colitis (UC) and Crohn’s disease (CD) are two subtypes of chronic inflammatory bowel disease (IBD). Differential diagnosis remains a challenge. Anti-TNFα treatment is an important treatment for IBD, yet resistance frequently occurs and cannot be predicted. Consequently, many patients receive ineffective therapy with potentially adverse effects. Novel assays are needed to improve diagnosis, and predict and monitor response to anti-TNF-α compounds.Design: Signal transduction pathway (STP) technology was used to quantify activity of STPs (androgen and estrogen receptor, PI3K, MAPK, TGFβ, Notch, Hedgehog, Wnt, NFκB, JAK-STAT1/2, and JAK-STAT3 pathways) in colon mucosa samples of CD and UC patients, based on transcriptome analysis. Previously described STP assay technology is based on computational inference of STP activity from mRNA levels of target genes of the STP transcription factor.Results: Results show that NFκB, JAK-STAT3, Wnt, MAPK, and androgen receptor pathways were abnormally active in CD and UC. Colon and ileum-localized CD differed with respect to STP activity, the JAK-STAT1/2 pathway being abnormally active in ileal CD. High activity of NFκB, JAK-STAT3, and TGFβ pathways was associated with resistance to anti-TNFα treatment in UC and colon-located CD, but not in ileal CD. Abnormal STP activity decreased with successful treatment.Conclusion: We believe that measuring mucosal STP activity provides clinically relevant information to improve differential diagnosis of IBD and prediction of resistance to anti-TNFα treatment in patients with colon-localized IBD, and provides new targets for treatment and overcoming anti-TNFα resistance.
Collapse
|
39
|
Liu Z, Peng Y, Zhao L, Li X. MFE40-the active fraction of Mume Fructus alcohol extract-alleviates Crohn's disease and its complications. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115465. [PMID: 35718051 DOI: 10.1016/j.jep.2022.115465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mume Fructus (MF) is a well-known traditional Chinese medicine used to treat chronic cough, prolonged diarrhea, and other inflammation-related diseases. We previously confirmed the anti-colitis effect of its ethanol extract on a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced Crohn's disease (CD) rat model. However, the active ingredients and underlying mechanisms of MF remain unknown. AIM OF THE STUDY To clarify the material basis and potential mechanism of the ethanol extract of MF (MFE) in alleviating CD and its complications, such as lung injury and intestinal obstruction. MATERIALS AND METHODS MF was extracted with 80% ethanol aqueous solution and separated with 0, 40, and 100% ethanol aqueous solutions. MFE and its fractions were screened in a TNBS-induced CD rat model. For the bioactive fraction, the chemical composition was identified and quantified using ultrahigh-performance liquid chromatography coupled with diode-array detection and quadrupole time-of-flight tandem mass spectrometry. Interleukin (IL)-1β, IL-6, IL-17, transforming growth factor (TGF)-β, and lipopolysaccharide (LPS) levels in the colon, lungs, and/or plasma were detected using enzyme-linked immunosorbent assays. The expression levels of zonula occludens-1 (ZO-1) and occludin in the colon were measured using immunohistochemical staining, and the intestinal microbiota and short-chain fatty acid (SCFA) levels were analyzed using 16S rRNA gene sequencing and gas chromatography/mass spectrometry. RESULTS The 40% ethanol fraction of MF (MFE40), which mainly contained methyl citrate, ethyl citrate, and caffeoylquinic acid ethyl esters, was identified as the active fraction that could alleviate CD in rats. MFE40 could ameliorate inflammation and fibrosis in the colon and lung tissues by inhibiting the secretion of cytokines, such as IL-1β, IL-6, IL-17, and TGF-β, along with intestinal obstruction and lung injury in CD rats. The possible mechanisms of MFE40 were related to increased expression of ZO-1 and occludin in the colon, reduction in plasma LPS levels, and restoration of SCFAs via reduction in the relative abundance of Adlercreutzia, Clostridium_sensu_stricto_1, Erysipelatoclostridium, Faecalibaculum, norank_f_Erysipelotrichaceae, Phascolarctobacterium Coriobacteriaceae_UGG_002, and Allobaculum and increase in the relative abundance of Escherichia shigella, Christensenella, Acetivibrio_ethanolgignens, and Butyricicoccus. MFE40 had no significant influence on the inflammatory factors in healthy rats. CONCLUSIONS Citrate esters and hydroxycinnamate esters are the main active constituents of MFE40. MFE40 exhibited a remission effect on CD rats and inhibited intestinal obstruction and lung injury via anti-inflammatory effects and regulation of the intestinal microbiota-gut-lung homeostasis.
Collapse
Affiliation(s)
- Zhihua Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Lijuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
40
|
Laudadio I, Bastianelli A, Fulci V, Carissimi C, Colantoni E, Palone F, Vitali R, Lorefice E, Cucchiara S, Negroni A, Stronati L. ZNF281 Promotes Colon Fibroblast Activation in TGFβ1-Induced Gut Fibrosis. Int J Mol Sci 2022; 23:ijms231810261. [PMID: 36142169 PMCID: PMC9499662 DOI: 10.3390/ijms231810261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are chronic inflammatory disorders of the gastrointestinal tract. Chronic inflammation is the main factor leading to intestinal fibrosis, resulting in recurrent stenosis, especially in CD patients. Currently, the underlying molecular mechanisms of fibrosis are still unclear. ZNF281 is a zinc-finger transcriptional regulator that has been characterized as an epithelial-to-mesenchymal transition (EMT)-inducing transcription factor, suggesting its involvement in the regulation of pluripotency, stemness, and cancer. The aim of this study is to investigate in vivo and in vitro the role of ZNF281 in intestinal fibrogenesis. Intestinal fibrosis was studied in vivo in C57BL/6J mice with chronic colitis induced by two or three cycles of administration of dextran sulfate sodium (DSS). The contribution of ZNF281 to gut fibrosis was studied in vitro in the human colon fibroblast cell line CCD-18Co, activated by the pro-fibrotic cytokine TGFβ1. ZNF281 was downregulated by siRNA transfection, and RNA-sequencing was performed to identify genes regulated by TGFβ1 in activated colon fibroblasts via ZNF281. Results showed a marked increase of ZNF281 in in vivo murine fibrotic colon as well as in in vitro human colon fibroblasts activated by TGFβ1. Moreover, abrogation of ZNF281 in TGFβ1-treated fibroblasts affected the expression of genes belonging to specific pathways linked to fibroblast activation and differentiation into myofibroblasts. We demonstrated that ZNF281 is a key regulator of colon fibroblast activation and myofibroblast differentiation upon fibrotic stimuli by transcriptionally controlling extracellular matrix (ECM) composition, remodeling, and cell contraction, highlighting a new role in the onset and progression of gut fibrosis.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
- Correspondence:
| | - Alex Bastianelli
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| | - Valerio Fulci
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| | - Claudia Carissimi
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| | | | - Francesca Palone
- Division of Health Protection Technologies, ENEA, 00123 Rome, Italy
| | - Roberta Vitali
- Division of Health Protection Technologies, ENEA, 00123 Rome, Italy
| | - Elisa Lorefice
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| | - Salvatore Cucchiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University, 00161 Rome, Italy
| | - Anna Negroni
- Division of Health Protection Technologies, ENEA, 00123 Rome, Italy
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
41
|
Mattinzoli D, Cacioppo M, Ikehata M, Armelloni S, Alfieri CM, Castellano G, Barilani M, Arcudi F, Messa P, Prato M. Carbon dots conjugated to SN38 for improved colorectal anticancer therapy. Mater Today Bio 2022; 16:100286. [PMID: 36186846 PMCID: PMC9523396 DOI: 10.1016/j.mtbio.2022.100286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Irinotecan (CTP-11) is one of the standard therapies for colorectal cancer (CRC). CTP-11 is enzymatically converted to the hydrophobic 7-ethyl-10-hydroxycamptothecin (SN38), a one hundred-fold more active metabolite. Conjugation of hydrophobic anticancer drugs to nanomaterials is a strategy to improve their solubility, efficacy, and selectivity. Carbon dots (CDs) have garnered interest for their small sizes (<10 nm), low toxicity, high water solubility, and bright fluorescence. This paper describes the use of CDs to improve drug vehiculation, stability, and chemotherapeutic efficiency of SN38 through a direct intracellular uptake in CRC. The covalent conjugation of SN38 to CDs via a carbamate bond provides a CD-SN38 hybrid material for slow, sustained, and pH-responsive drug release. CD-SN38 successfully penetrates the CRC cells with a release in the nucleus affecting first the cell cycle and then the cytoskeleton. Moreover, CD-SN38 leads to a deregulation of the extracellular matrix (ECM), one of the major components of the cancer niche considered a possible target therapy for reducing the cancer progression. This work shows the combined therapeutic and imaging potential of CD-based hybrid materials for the treatment of CRC. Future efforts for targeted therapy of chronic diseases characterized by altered ECM deposition, such as chronic kidney disease and chronic allograft nephropathy in kidney transplant patients are envisaged.
Collapse
Affiliation(s)
- Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, Milan, 20122, Italy
- Corresponding author.
| | - Michele Cacioppo
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián, 20014, Spain
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, Milan, 20122, Italy
| | - Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, Milan, 20122, Italy
| | - Carlo Maria Alfieri
- Unit of Nephrology, Dialysis and Renal Transplant Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 15, Milan, 20122, Italy
- University of Study of Milan, Via Festa Del Perdono 7, 20122, Milan, Italy
- Corresponding author. University of Study of Milan, via Festa Del Perdono 7, 20122, Milan, Italy.
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Renal Transplant Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 15, Milan, 20122, Italy
- University of Study of Milan, Via Festa Del Perdono 7, 20122, Milan, Italy
| | - Mario Barilani
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Milan, 20122, Italy
- Department of Transfusion Medicine and Hematology, Cell Factory, Regenerative Medicine Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- Corresponding author.
| | - Piergiorgio Messa
- Unit of Nephrology, Dialysis and Renal Transplant Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 15, Milan, 20122, Italy
- University of Study of Milan, Via Festa Del Perdono 7, 20122, Milan, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- Corresponding author. Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, Trieste, 34127, Italy.
| |
Collapse
|
42
|
Steiner CA, Cartwright IM, Taylor CT, Colgan SP. Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am J Physiol Cell Physiol 2022; 323:C866-C878. [PMID: 35912990 PMCID: PMC9467472 DOI: 10.1152/ajpcell.00227.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
The healthy mammalian intestine is lined by a single layer of epithelial cells. These cells provide a selectively permeable barrier to luminal contents and normally do so in an efficient and effective manner. Barrier function in the healthy mucosa is provided via several mechanisms including epithelial junctional complexes, mucus production, as well as mucosal-derived antimicrobial proteins. As tissue metabolism is central to the maintenance of homeostasis in the mucosa, intestinal [Formula: see text] levels are uniquely low due to counter-current blood flow and the presence of the microbiota, resulting in the stabilization of the transcription factor hypoxia-inducible factor (HIF). Ongoing studies have revealed that HIF molds normal intestinal metabolism and is central to the coordination of barrier regulation during both homeostasis and active disease. During acute inflammation, HIF is central to controlling the rapid restitution of the epithelium consistent with normal wound healing responses. In contrast, HIF may also contribute to the fibrostenotic response associated with chronic, nonresolving inflammation. As such, HIF may function as a double-edged sword in the overall course of the inflammatory response. Here, we review recent literature on the contribution of HIF to mucosal barrier function, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Calen A Steiner
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Ian M Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Cormac T Taylor
- School of Medicine, Conway Institute and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Sean P Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| |
Collapse
|
43
|
Lee HJ. Therapeutic Potential of the Combination of Pentoxifylline and Vitamin-E in Inflammatory Bowel Disease: Inhibition of Intestinal Fibrosis. J Clin Med 2022; 11:jcm11164713. [PMID: 36012952 PMCID: PMC9410449 DOI: 10.3390/jcm11164713] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Although intestinal fibrosis is a consequence of recurrent inflammation in Inflammatory bowel disease (IBD), alleviating inflammation alone does not prevent the progression of fibrosis, suggesting that the development of direct anti-fibrotic agents is necessary. This study aimed to evaluate the anti-fibrotic properties of combination treatment with pentoxifylline (PTX) and vitamin E (Vit-E) on human primary intestinal myofibroblasts (HIMFs) and the therapeutic potential of the combination therapy in murine models of IBD. Methods: HIMFs were pretreated with PTX, Vit-E, or both, and incubated with TGF-β1. We performed Western blot, qPCR, collagen staining, and immunofluorescence to estimate the anti-fibrotic effects of PTX and Vit-E. The cytotoxicity of these was investigated through MTT assay. To induce murine models of IBD for in vivo study, C57BL/6 mice were treated with repeated cycles of dextran sulfate sodium (DSS), developing chronic colitis. We examined whether the combined PTX and Vit-E treatment would effectively ameliorate colonic fibrosis in vivo. Results: We found that the co-treatment with PTX and Vit-E suppressed TGF-β1-induced expression of fibrogenic markers, with decreased expression of pERK, pSmad2, and pJNK, more than either treatment alone in HIMFs. Neither PTX nor Vit-E showed any significant cytotoxicity in given concentrations. Consistently with the in vitro results, the co-administration with PTX and Vit-E effectively attenuated colonic fibrosis with recovery from thickening and shortening of colon in murine models of IBD. Conclusions: These findings demonstrated that the combination of PTX and Vit-E exhibits significant anti-fibrotic effects in both HIMFs and in vivo IBD models, providing a promising therapy for IBD.
Collapse
Affiliation(s)
- Hyun Joo Lee
- Division of Gastroenterology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam 13496, Korea; ; Tel.: +82-31-881-7075
- Division of Gastroenterology, Department of Internal Medicine, Graduate School, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Korea
| |
Collapse
|
44
|
Hao W, Li M, Cai Q, Wu S, Li X, He Q, Hu Y. Roles of NRF2 in Fibrotic Diseases: From Mechanisms to Therapeutic Approaches. Front Physiol 2022; 13:889792. [PMID: 35721561 PMCID: PMC9203969 DOI: 10.3389/fphys.2022.889792] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosis is a persistent inflammatory response that causes scarring and tissue sclerosis by stimulating myofibroblasts to create significant quantities of extracellular matrix protein deposits in the tissue. Oxidative stress has also been linked to the development of fibrosis in several studies. The nuclear erythroid 2-related factor 2 (NRF2) transcription factor controls the expression of several detoxification and antioxidant genes. By binding to antioxidant response elements, NRF2 is activated by oxidative or electrophilic stress and promotes its target genes, resulting in a protective effect on cells. NRF2 is essential for cell survival under oxidative stress conditions. This review describes Kelch-like epichlorohydrin-associated protein 1 (KEAP1)/NRF2 signaling mechanisms and presents recent research advances regarding NRF2 and its involvement in primary fibrotic lesions such as pulmonary fibrosis, hepatic fibrosis, myocardial fibrosis, and renal fibrosis. The related antioxidant substances and drugs are described, along with the mechanisms by which KEAP1/NRF2 regulation positively affects the therapeutic response. Finally, the therapeutic prospects and potential value of NRF2 in fibrosis are summarized. Further studies on NRF2 may provide novel therapeutic approaches for fibrosis.
Collapse
Affiliation(s)
- Wenlong Hao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Minghao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingmin Cai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiying Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangyao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quanyu He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, Basic Medical School, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongbin Hu,
| |
Collapse
|
45
|
Barban do Patrocinio A. Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The parasite blood flukes belonging to the genus Schistosoma cause schistosomiasis. Among the Schistosoma species that infect humans, three stand out: Schistosoma japonicum (S. japonicum), which occurs in Asia, mainly in China and the Philippines; Schistosoma haematobium (S. haematobium), which occurs in Africa; and Schistosoma mansoni (S. mansoni), which occurs in Africa and South America and the center of Venezuela (Brazil). Research has shown that these species comprise strains that are resistant to Praziquantel (PZQ), the only drug of choice to fight the disease. Moreover, patients can be reinfected even after being treated with PZQ , and this drug does not act against young forms of the parasite. Therefore, several research groups have focused their studies on new molecules for disease treatment and vaccine development. This chapter will focus on (i) parasite resistance to PZQ , (ii) molecules that are currently being developed and tested as possible drugs against schistosomiasis, and (iii) candidates for vaccine development with a primary focus on clinical trials.
Collapse
|
46
|
Estrada HQ, Patel S, Rabizadeh S, Casero D, Targan SR, Barrett RJ. Development of a Personalized Intestinal Fibrosis Model Using Human Intestinal Organoids Derived From Induced Pluripotent Stem Cells. Inflamm Bowel Dis 2022; 28:667-679. [PMID: 34918082 PMCID: PMC9074870 DOI: 10.1093/ibd/izab292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal fibrosis is a serious complication of Crohn's disease. Numerous cell types including intestinal epithelial and mesenchymal cells are implicated in this process, yet studies are hampered by the lack of personalized in vitro models. Human intestinal organoids (HIOs) derived from induced pluripotent stem cells (iPSCs) contain these cell types, and our goal was to determine the feasibility of utilizing these to develop a personalized intestinal fibrosis model. METHODS iPSCs from 2 control individuals and 2 very early onset inflammatory bowel disease patients with stricturing complications were obtained and directed to form HIOs. Purified populations of epithelial and mesenchymal cells were derived from HIOs, and both types were treated with the profibrogenic cytokine transforming growth factor β (TGFβ). Quantitative polymerase chain reaction and RNA sequencing analysis were used to assay their responses. RESULTS In iPSC-derived mesenchymal cells, there was a significant increase in the expression of profibrotic genes (Col1a1, Col5a1, and TIMP1) in response to TGFβ. RNA sequencing analysis identified further profibrotic genes and demonstrated differential responses to this cytokine in each of the 4 lines. Increases in profibrotic gene expression (Col1a1, FN, TIMP1) along with genes associated with epithelial-mesenchymal transition (vimentin and N-cadherin) were observed in TGFβ -treated epithelial cells. CONCLUSIONS We demonstrate the feasibility of utilizing iPSC-HIO technology to model intestinal fibrotic responses in vitro. This now permits the generation of near unlimited quantities of patient-specific cells that could be used to reveal cell- and environmental-specific mechanisms underpinning intestinal fibrosis.
Collapse
Affiliation(s)
- Hannah Q Estrada
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shachi Patel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shervin Rabizadeh
- Division of Pediatric Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USAand
| | - David Casero
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephan R Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert J Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
47
|
Guo S, Zhou J, Zhang L, Bao CH, Zhao JM, Gao YL, Wu P, Weng ZJ, Shi Y. Acupuncture and Moxibustion Inhibited Intestinal Epithelial-Mesenchymal Transition in Patients with Crohn's Disease Induced by TGF- β 1/Smad3/Snail Pathway: A Clinical Trial Study. Chin J Integr Med 2022; 28:823-832. [PMID: 35419729 DOI: 10.1007/s11655-022-2888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To explore whether acupuncture combined with moxibustion could inhibit epithelialmesenchymal transition in Crohn's disease by affecting the transforming growth factor β 1 (TGF- β 1)/Smad3/Snail pathway. METHODS Sixty-three patients with Crohn's disease were randomly divided into an observation group (31 cases) receiving moxibustion at 43 °C combined with acupuncture, and a control group (32 cases) receiving moxibustion at 37 °C combined with sham acupuncture using a random number table. Patients were treated for 12 weeks. Crohn's Disease Activity Index (CDAI) was used to evaluate disease activity. Hematoxylin-eosin staining and transmission electron microscopy were utilized to observe the morphological and ultrastructural changes. Immunohistochemistry was used to detect the expression of transforming growth factor β 1 (TGF-β 1), T β R1, T β R2, Smad3, Snail, E-cadherin and fibronectin in intestinal mucosal tissues. RESULTS The decrease of the CDAI score, morphological and ultrastructural changes were more significant in observation group. The expression levels of TGF- β 1, Tβ R2, Smad3, and Snail in the observation group were significantly lower than those before the treatment (P<0.05 or P<0.01). After treatment, the expression levels of TGF-β 1, TβR2, and Snail in the observation group were significantly lower than those in the control group (all P<0.05); compared with the control group, the expression of fibronectin in the observation group was significantly decreased, and the expression of E-cadherin was significantly increased (all P<0.05). CONCLUSIONS Moxibustion at 43 °C combined with acupuncture may suppress TGF-β 1/Smad3/Snail pathway-mediated epithelial-mesenchymal transition of intestinal epithelial cells in Crohn's disease patients by inhibiting the expression levels of TGF-β 1, Tβ R2, Smad3, and Snail. (Registration No. ChiCTR-IIR-16007751).
Collapse
Affiliation(s)
- Sen Guo
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhou
- Department of Acupuncture and Moxibustion, Shanghai Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Liang Zhang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun-Hui Bao
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Ji-Meng Zhao
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Yan-Ling Gao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Pin Wu
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Jun Weng
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China. .,Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China.
| |
Collapse
|
48
|
Wang Y, Huang B, Jin T, Ocansey DKW, Jiang J, Mao F. Intestinal Fibrosis in Inflammatory Bowel Disease and the Prospects of Mesenchymal Stem Cell Therapy. Front Immunol 2022; 13:835005. [PMID: 35370998 PMCID: PMC8971815 DOI: 10.3389/fimmu.2022.835005] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal fibrosis is an important complication of inflammatory bowel disease (IBD). In the course of the development of fibrosis, certain parts of the intestine become narrowed, significantly destroying the structure and function of the intestine and affecting the quality of life of patients. Chronic inflammation is an important initiating factor of fibrosis. Unfortunately, the existing anti-inflammatory drugs cannot effectively prevent and alleviate fibrosis, and there is no effective anti-fibrotic drug, which makes surgical treatment the mainstream treatment for intestinal fibrosis and stenosis. Mesenchymal stem cells (MSCs) are capable of tissue regeneration and repair through their self-differentiation, secretion of cytokines, and secretion of extracellular vesicles. MSCs have been shown to play an important therapeutic role in the fibrosis of many organs. However, the role of MSC in intestinal fibrosis largely remained unexplored. This review summarizes the mechanism of intestinal fibrosis, including the role of immune cells, TGF-β, and the gut microbiome and metabolites. Available treatment options for fibrosis, particularly, MSCs are also discussed.
Collapse
Affiliation(s)
- Yifei Wang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Bin Huang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- General Surgery Department, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| | - Fei Mao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| |
Collapse
|
49
|
Lu Q, Yang MF, Liang YJ, Xu J, Xu HM, Nie YQ, Wang LS, Yao J, Li DF. Immunology of Inflammatory Bowel Disease: Molecular Mechanisms and Therapeutics. J Inflamm Res 2022; 15:1825-1844. [PMID: 35310454 PMCID: PMC8928114 DOI: 10.2147/jir.s353038] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
As a main digestive organ and an important immune organ, the intestine plays a vital role in resisting the invasion of potential pathogens into the body. Intestinal immune dysfunction remains important pathogenesis of inflammatory bowel disease (IBD). In this review, we explained the interactions among symbiotic flora, intestinal epithelial cells, and the immune system, clarified the operating mechanism of the intestinal immune system, and highlighted the immunological pathogenesis of IBD, with a focus on the development of immunotherapy for IBD. In addition, intestinal fibrosis is a significant complication in patients with long-term IBD, and we reviewed the immunological pathogenesis involved in the development of intestinal fibrogenesis and provided novel antifibrotic immunotherapies for IBD.
Collapse
Affiliation(s)
- Quan Lu
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
- Department of Gastroenterology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Mei-feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital (School of Medicine of South China University of Technology), Guangzhou, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital (School of Medicine of South China University of Technology), Guangzhou, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital (School of Medicine of South China University of Technology), Guangzhou, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
- Department of Gastroenterology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
- Department of Gastroenterology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
- Department of Gastroenterology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
50
|
D'Alessio S, Ungaro F, Noviello D, Lovisa S, Peyrin-Biroulet L, Danese S. Revisiting fibrosis in inflammatory bowel disease: the gut thickens. Nat Rev Gastroenterol Hepatol 2022; 19:169-184. [PMID: 34876680 DOI: 10.1038/s41575-021-00543-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis, which is usually the consequence of chronic inflammation, is a common complication of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In the past few years, substantial advances have been made in the areas of pathogenesis, diagnosis and management of intestinal fibrosis. Of particular interest have been inflammation-independent mechanisms behind the gut fibrotic process, genetic and environmental risk factors (such as the role of the microbiota), and the generation of new in vitro and in vivo systems to study fibrogenesis in the gut. A huge amount of work has also been done in the area of biomarkers to predict or detect intestinal fibrosis, including novel cross-sectional imaging techniques. In parallel, researchers are embarking on developing and validating clinical trial end points and protocols to test novel antifibrotic agents, although no antifibrotic therapies are currently available. This Review presents the state of the art on the most recently identified pathogenic mechanisms of this serious IBD-related complication, focusing on possible targets of antifibrotic therapies, management strategies, and factors that might predict fibrosis progression or response to treatment.
Collapse
Affiliation(s)
| | - Federica Ungaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniele Noviello
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Centre, Laboratory of Gastrointestinal Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Laurent Peyrin-Biroulet
- INSERM NGERE, University of Lorraine, Vandoeuvre-les-Nancy, Nancy, France.,Nancy University Hospital, Vandoeuvre-les-Nancy, Nancy, France
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy. .,University Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|