1
|
Lu X, Friedrich LJ, Efferth T. Natural products targeting tumour angiogenesis. Br J Pharmacol 2025; 182:2094-2136. [PMID: 37680009 DOI: 10.1111/bph.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Tumour angiogenesis is the formation of new blood vessels to support the growth of a tumour. This process is critical for tumour progression and metastasis, making it an attractive approach to cancer therapy. Natural products derived from plants, animals or microorganisms exert anti-angiogenic properties and can be used to inhibit tumour growth and progression. In this review, we comprehensively report on the current status of natural products against tumour angiogenesis from four perspectives until March 2023: (1) the role of pro-angiogenic factors and antiangiogenic factors in tumour angiogenesis; (2) the development of anti-tumour angiogenesis therapy (monoclonal antibodies, VEGFR-targeted small molecules and fusion proteins); (3) the summary of anti-angiogenic natural agents, including polyphenols, polysaccharides, alkaloids, terpenoids, saponins and their mechanisms of action, and (4) the future perspectives of anti-angiogenic natural products (bioavailability improvement, testing of dosage and side effects, combination use and discovery of unique natural-based compounds). Our review aims to better understand the potential of natural products for drug development in inhibiting tumour angiogenesis and further aid the effective transition of these outcomes into clinical trials. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lara Johanna Friedrich
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Zhang X, Wei X, Shi L, Jiang H, Ma F, Li Y, Li C, Ma Y, Ma Y. The latest research progress: Active components of Traditional Chinese medicine as promising candidates for ovarian cancer therapy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118811. [PMID: 39251149 DOI: 10.1016/j.jep.2024.118811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ovarian cancer ranks the first in the mortality of gynecological tumors. Because there are no obvious symptoms in the early stage of ovarian cancer, most patients are in the advanced stage of the disease at the time of diagnosis. The incidence of ovarian cancer is increasing year by year, and the incidence of ovarian cancer has a trend of younger age. In recent years. Traditional Chinese medicine (TCM) has a significant impact on improving the quality of life of cancer patients, reducing drug toxicity, preventing metastasis and recurrence, enhancing the efficacy of radiotherapy and chemotherapy, and prolonging survival time, so patients have benefited a lot. AIM OF THE STUDY This review summarizes the mechanisms and molecular pathways through which active ingredients of TCM act in ovarian cancer. It explores the advantages of TCM in treating ovarian cancer. This review provides theoretical support for the use of TCM in the treatment of ovarian cancer, offering new perspectives for its clinical prevention and treatment. MATERIALS AND METHODS This review conducted a literature search on PubMed, Web of Science, Wanfang Database, and China National Knowledge Infrastructure (CNKI) for relevant studies on TCM active ingredients in preventing ovarian cancer. The search terms included "ovarian cancer" combined with "Chinese herbal medicine," "Herbal medicine," "Traditional Chinese medicine," and "Active ingredients of Chinese medicine". Based on existing experimental and clinical research, the paper systematically summarized and analyzed the mechanisms of TCM in treating ovarian cancer. RESULTS Active ingredients of TCM inhibit the occurrence and development of ovarian cancer through inducing tumor cell apoptosis, inhibiting tumor cell proliferation, suppressing tumor cell migration and invasion, inducing tumor cell autophagy, promoting epithelial-mesenchymal transition, and enhancing the efficacy of radiotherapy and chemotherapy drugs. Chinese medicine provides a comprehensive treatment option for ovarian cancer patients, synergizing with radiotherapy and chemotherapy drugs to enhance treatment effectiveness and introduce new hope and possibilities in clinical therapy. CONCLUSIONS Active ingredients of TCM can inhibit the occurrence and development of ovarian cancer, but further clinical research is needed to support their application.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hehe Jiang
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengjun Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjing Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Jiang X, Wang M, Cui G, Wu Y, Wei Z, Yu S, Wang A, Zou W, Pan Y, Li X, Lu Y. Tetramethylpyrazine attenuates the cancer stem cell like-properties and doxorubicin resistance by targeting HMGCR in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156344. [PMID: 39729781 DOI: 10.1016/j.phymed.2024.156344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood. PURPOSE Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR. This investigation seeks to elucidate the role and mechanisms through which TMP counteracts MDR by attenuating CSC-like characteristics. METHODS Various assays, including flow cytometry, sphere formation, and Western blotting, were employed to evaluate TMP's effects on breast cancer stem cell (BCSC)-like phenotypes in vitro. In vivo, extreme limiting dilution assays and immunohistochemistry (IHC) were executed to assess the impacts of TMP on BCSC frequency and the levels of stemness markers. Mechanistically, RNA sequencing was performed to uncover the key biological processes involved in TMP's effects on BCSCs. Further experiments, encompassing micro scale thermophoresis (MST), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA) and amino acid mutation analyses, were utilized to identify the essential targets and corresponding binding sites of TMP. Finally, the effects of TMP on BCSC-like phenotypes were confirmed using cells with mutated amino acid residues, which allowed us to investigate the specificity of TMP's binding sites. To further evaluate the impact of TMP on drug resistance, doxorubicin-resistant MCF7 (MCF-7ADR) cells, along with corresponding cell lines harboring mutated amino acid residues, were employed. RESULTS TMP was found to inhibit BCSC-like properties both in vitro and in vivo, evidenced by a reduction in the CD44+/CD24- population, sphere formation capability, and expression of stemness markers. Mechanistic studies revealed that TMP targets 3‑hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol biosynthesis. TMP binds to Asp-767 of HMGCR, thereby inhibiting its activity and reducing cholesterol synthesis. The influence of TMP on BCSC-like phenotypes was nullified by overexpression of wild-type HMGCR, while mutations in the binding site of HMGCR had no effect on TMP's inhibition of BCSC-like properties. Additionally, TMP mitigated MDR by targeting HMGCR. CONCLUSION These findings suggest that TMP alleviates MDR by reducing BCSC-like traits through targeting HMGCR and disruption of cholesterol biosynthesis in BC. This provides new insights into the mechanisms through which TMP alleviates MDR and offers new lead compound for exploring HMCGR antagonists.
Collapse
Affiliation(s)
- Xuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Manli Wang
- The first Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Guoliang Cui
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Suyun Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yanhong Pan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Liu X, Shen Q, Cheng L, Dai K, Wu Q, Liu X, Yao P, Zeng L. Synergistic inhibitory effects of tetramethylpyrazine and evodiamine on endometriosis development. J Steroid Biochem Mol Biol 2025; 245:106630. [PMID: 39486648 DOI: 10.1016/j.jsbmb.2024.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Endometriosis (EMS) belongs to a gynecological disorder with inflammation and the existence of endometrial-like tissues beyond the uterus, often leading to infertility and pelvic pain. Estrogen receptor β (ERβ) is significantly expressed in endometriosis (EMS) and recognized as a promising therapeutic target for EMS treatment by inhibiting ERβ activity. In this study, we investigated the potential mechanisms for tetramethylpyrazine (TMP)-mediated ERβ suppression, and the synergistic inhibitory effect of TMP and evodiamine (EVO) on ERβ expression and EMS development. We found that TMP suppresses ERβ expression by reducing the association of Oct3/4 with the ERβ promoter and decreasing Oct3/4 protein levels without affecting Oct3/4 transcript levels. A minimum dosage of 10 µM TMP is required to inhibit ERβ expression. Neither TMP (5 µM) nor EVO (2 µM) alone had any effect, but their combination synergistically inhibited ERβ expression and modulated related cellular processes, including redox balance, mitochondrial function, inflammation, and proliferation. Additionally, the combination of TMP (10 mg/kg body weight) and EVO (5 mg/kg) synergistically inhibited ERβ expression and EMS development in the mouse model. In conclusion, TMP suppresses ERβ expression by reducing the association of Oct3/4 with the ERβ promoter. Neither TMP nor EVO alone effectively suppresses ERβ in both laboratory and live organism models. However, their combination synergistically inhibits ERβ expression and EMS development, suggesting a potential therapeutic strategy for EMS using TMP and EVO.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Qingjun Shen
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Liqin Cheng
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Kailing Dai
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Qiaozhu Wu
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Xiaole Liu
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Paul Yao
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China.
| | - Liqin Zeng
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China.
| |
Collapse
|
5
|
Azevedo T, Ferreira T, Peña‐Corona SI, Cortes H, Silva‐Reis R, da Costa RMG, Faustino‐Rocha AI, Oliveira PA, Calina D, Cardoso SM, Büsselberg D, Leyva‐Gómez G, Sharifi‐Rad J, Cho WC. Natural products‐based antiangiogenic agents: New frontiers in cancer therapy. FOOD FRONTIERS 2024; 5:2423-2466. [DOI: 10.1002/fft2.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
AbstractAngiogenesis, vital for tumor growth and metastasis, is a promising target in cancer therapy. Natural compounds offer potential as antiangiogenic agents with reduced toxicity. This review provides a comprehensive overview of natural product‐based antiangiogenic therapies, focusing on molecular mechanisms and therapeutic potential. A systematic search identified relevant articles from 2019 to 2023. Various natural compounds, including polyphenols, terpenes, alkaloids, cannabinoids, omega‐3 fatty acids, polysaccharides, proteins, and carotenoids, were investigated for their antiangiogenic properties. Challenges such as dose standardization, routes of administration, and potential side effects remain. Further studies, including in‐depth animal models and human epidemiological studies, must elucidate clinical efficacy and safety. Synergistic effects with current antiangiogenic therapies, such as bevacizumab and tyrosine kinase inhibitors, should be explored. Additionally, the potential hormone‐dependent effects of compounds like genistein highlight the need for safety evaluation. In conclusion, natural products hold promise as adjunctive therapies to conventional antineoplastic drugs in modulating angiogenesis in cancer. However, robust clinical trials are needed to validate preclinical findings and ensure safety and efficacy.
Collapse
Affiliation(s)
- Tiago Azevedo
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Tiago Ferreira
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Sheila I. Peña‐Corona
- Departamento de Farmacia, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genómica Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Ciudad de México Mexico
| | - Rita Silva‐Reis
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- LAQV‐REQUIMTE, Department of Chemistry University of Aveiro Aveiro Portugal
| | - Rui M. Gil da Costa
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC) Porto Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering University of Porto Porto Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering University of Porto Porto Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology Federal University of Maranhão (UFMA), UFMA University Hospital (HUUFMA) São Luís Brazil
| | - Ana I. Faustino‐Rocha
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Comprehensive Health Research Center, Department of Zootechnics, School of Sciences and Technology University of Évora Evora Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania
| | - Susana M. Cardoso
- LAQV‐REQUIMTE, Department of Chemistry University of Aveiro Aveiro Portugal
| | | | - Gerardo Leyva‐Gómez
- Departamento de Farmacia, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Javad Sharifi‐Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo Veracruz Mexico
- Department of Medicine, College of Medicine Korea University Seoul Republic of Korea
- Facultad de Medicina Universidad del Azuay Cuenca Ecuador
| | - William C. Cho
- Department of Clinical Oncology Queen Elizabeth Hospital Kowloon Hong Kong
| |
Collapse
|
6
|
Liu X, Quan W. Progress on the Synthesis Pathways and Pharmacological Effects of Naturally Occurring Pyrazines. Molecules 2024; 29:3597. [PMID: 39125002 PMCID: PMC11314619 DOI: 10.3390/molecules29153597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
As one of the most essential types of heterocyclic compounds, pyrazines have a characteristic smell and taste and have a wide range of commercial applications, especially in the food industry. With the development of the food industry, the demand for pyrazines has increased. Therefore, understanding the properties, functions, and synthetic pathways of pyrazines is one of the fundamental methods to produce, control, and apply pyrazines in food or medical systems. In this review, we provide an overview of the synthesis pathways and physiological or pharmacological functions of naturally occurring pyrazines. In particular, we focus on the biosynthesis and pharmacological effects of 2,3,5,6-Tetramethylpyrazine (TTMP), 2,5-Dimethylpyrazine (2,5-DMP), and 2,3,5-trimethylpyrazine (TMP). Furthermore, areas where further research on pyrazines is needed are discussed in this work.
Collapse
Affiliation(s)
| | - Wenli Quan
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China;
| |
Collapse
|
7
|
Jia S, Li L, Yu C, Peng F. Natural products' antiangiogenic roles in gynecological cancer. Front Pharmacol 2024; 15:1353056. [PMID: 38751791 PMCID: PMC11094279 DOI: 10.3389/fphar.2024.1353056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Gynecological cancers pose a significant threat to women's health. Although the pathogenesis of gynecological cancer remains incompletely understood, angiogenesis is widely acknowledged as a fundamental pathological mechanism driving tumor cell growth, invasion, and metastasis. Targeting angiogenesis through natural products has emerged as a crucial strategy for treating gynecological cancer. In this review, we conducted comprehensive searches in PubMed, Embase, Web of Science, Science Direct, and CNKI databases from the first publication until May 2023 to identify natural products that target angiogenesis in gynecologic tumors. Our findings revealed 63 natural products with anti-angiogenic activity against gynecological cancer. These results underscore the significance of these natural products in augmenting their anticancer effects by modulating other factors within the tumor microenvironment via their impact on angiogenesis. This article focuses on exploring the potential of natural products in targeting blood vessels within gynecological cancer to provide novel research perspectives for targeted vascular therapy while laying a solid theoretical foundation for new drug development.
Collapse
Affiliation(s)
- Shangmei Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Chenghao Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Li W, Lin J, Zhou J, He S, Wang A, Hu Y, Li H, Zou L, Liu Y. Hyaluronic acid-functionalized DDAB/PLGA nanoparticles for improved oral delivery of magnolol in the treatment of ulcerative colitis. Int J Pharm 2024; 653:123878. [PMID: 38325622 DOI: 10.1016/j.ijpharm.2024.123878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Dysfunction of the mucosal barrier as well as local inflammation are major challenges in the treatment of ulcerative colitis (UC). Mag, a natural compound derived from traditional Chinese medicine, has been shown to have anti-inflammatory and mucosal protection properties. However, its poor gastrointestinal stability as well as its insufficient accumulation in inflamed colonic lesions limit its potential use as an alternative therapeutic drug in UC. The present research involved the design and preparation of a hybrid nanoparticle system (LPNs) specifically targeting macrophages at the colonic site. This was achieved by electrostatically adsorbing HA onto positively charged lipid-polymer hybrid nanoparticles (HA-LPNs). The prepared HA-LPNs exhibited a rounded morphology and a narrow size distribution. In vitro, the anti-inflammatory efficacy of Mag-HA-LPNs (which control levels of the pro-inflammatory cytokines NO, IL-6 and TNF-α) was assessed in RAW 264.7 cells. Analysis by flow cytometry and fluorescence microscopy demonstrated increased cellular uptake through HA/CD44 interaction. As expected, Mag-HA-LPNs was found to effectively increased colon length and reduced DAI scores in DSS-treated mice. This effect was achieved by regulating the inflammatory cytokines level and promoting the restoration of the colonic mucosal barrier through increased expression of Claudin-1, ZO-1 and Occludin. In this study, we developed an efficient and user-friendly delivery method for the preparation of HA-functionalized PLGA nanoparticles, which are intended for oral delivery of Mag. The findings suggest that these HA-LPNs possess the potential to serve as a promising approach for direct drug delivery to the colon for effective treatment of UC.
Collapse
Affiliation(s)
- Wei Li
- School of Basic Medicine, Chengdu University, Chengdu 610106, People's Republic of China
| | - Jie Lin
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu 610081, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jie Zhou
- School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Siqi He
- School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Anqi Wang
- School of Basic Medicine, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yingfan Hu
- School of Basic Medicine, Chengdu University, Chengdu 610106, People's Republic of China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China.
| | - Ya Liu
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu 610081, People's Republic of China.
| |
Collapse
|
9
|
Zhao C, Qiu L, Wu D, Zhang M, Xia W, Lv H, Cheng L. Targeted reversal of multidrug resistance in ovarian cancer cells using exosome‑encapsulated tetramethylpyrazine. Mol Med Rep 2024; 29:25. [PMID: 38099342 PMCID: PMC10784732 DOI: 10.3892/mmr.2023.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of the present study was to develop exosomes (EXOs) encapsulating tetramethylpyrazine (TMP) for the reversal of drug resistance in ovarian cancer therapy. Human A2780 cells were incubated with TMP for 48 h. Purified TMP‑primed EXOs (EXOs‑TMP) were isolated through ultracentrifugation. The developed EXOs‑TMP were characterized using techniques such as transmission electron microscopy, nanoparticle tracking analysis, Fluorescence microscopy and western blotting. Subsequently, MTT, western blotting and flow cytometry assays were performed to evaluate the biological effects in drug‑resistant A2780T cells. The results demonstrated that the incorporation of TMP into EXOs exhibited an anti‑ovarian cancer effect and markedly enhanced the antitumor efficacy of paclitaxel (PTX). Furthermore, it was identified that the ability of EXO‑TMP to reverse cell resistance was associated with the downregulation of multidrug resistance protein 1, multidrug resistant‑associated protein 1 and glutathione S‑transferase Pi protein expression. Flow cytometry analysis revealed that EXO‑TMP induced apoptosis in drug‑resistant cells and enhanced the apoptotic effect when combined with PTX. EXOs are naturally sourced, exhibit excellent biocompatibility and enable precise drug delivery to target sites, thereby reducing toxic side effects. Overall, EXO‑TMP exhibited direct targeting capabilities towards A2780T cells and effectively reduced their drug resistance. EXOs‑TMP provide a novel and effective drug delivery pathway for reversing drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Chenge Zhao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
- Department of Pharmacy, The Fifth Affiliated Hospital of Jinan University, Heyuan, Guangdong 517000, P.R. China
| | - Lulu Qiu
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Di Wu
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Ming Zhang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Wanying Xia
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Huiyi Lv
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
- Dalian Kexiang Technology Development Co. Ltd, Dalian, Liaoning 116044, P.R. China
| | - Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
10
|
Mao QQ, Ji XC, Zhang JN, Teng WF, Zhou SC. A novel approach for transforming breast cancer stem cells into endothelial cells. Exp Ther Med 2024; 27:74. [PMID: 38264426 PMCID: PMC10804376 DOI: 10.3892/etm.2023.12362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
Tumor vascular endothelial cells play a pivotal in the tumor microenvironment, influencing the proliferation, invasion, and metastasis of tumor progression. The present study investigated a novel method for inducing the transformation of breast cancer stem cells into endothelial cells, providing a cellular model investigating anti-angiogenic mechanisms in vitro. The breast cancer cell line MCF-7 was used, and the expression of CD133 was initially detected using flow cytometry. CD133+ breast cancer cells were purified using immunomagnetic bead sorting technology, yielding an MCF-7CD133+ subpopulation. The proliferation ability of these cells was assessed using an MTT assay, while their microsphere formation ability was evaluated using a microsphere formation assay. Post-transformation in an optimized endothelial cell culture medium, expression of endothelial cell markers CD31 and CD105 were detected using flow cytometry. Endothelial cell tube formation assays and DiI-labeled acetylated low-density lipoprotein (DiI-Ac-LDL) assays were employed to analyze the endothelial cell function of the MCF-7CD133+ cells. MDM2/CEN12 gene amplification was detected through fluorescence in situ hybridization (FISH). The MCF-7 breast cancer cell line exhibited 1.7±0.3% trace cells expressing the stem cell surface marker CD133. After anti-CD133 immunomagnetic bead sorting, MCF-7CD133+ and MCF-7CD133- subpopulation cells were obtained, with CD133 expression rates of 85.6±2.8 and 0.18±0.08%, respectively. MTT assay results demonstrated that, after 7 days, the proliferation rate of MCF-7CD133+ cells was significantly higher compared with MCF-7CD133- cells. MCF-7CD133+ subpopulation cells displayed strong stem cell characteristics, growing in suspension in serum-free media and forming tumor cell spheres. In contrast, MCF-7CD133- cells failed to form microspheres. After culturing cells in endothelial cell differentiation and maintenance media, the percentage of MCF-7CD133+ cells before and after endothelial cell culture was 0.3±0.16 and 81.4±8.37% for CD31+ cells and 0.2±0.08 and 83.8±7.24% for CD105+ cells, respectively. Vascular-like structure formation and Ac-LDL phagocytosis with red fluorescence in the tube formation assays confirmed endothelial cell function in the MCF-7CD133+ cells. FISH was used to verify MDM2/CEN12 gene amplification in the induced MCF-7CD133+ cells, indicating tumor cell characteristics. The modified endothelial cell transformation medium effectively induced differentiated tumor stem cells to express vascular endothelial cell markers and exhibit endothelial functions, ideal for in vitro anti-angiogenesis research.
Collapse
Affiliation(s)
- Qi-Qi Mao
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Lihuili Hospital, Ningbo, Zheijiang 315040, P.R. China
| | - Xiao-Chun Ji
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Lihuili Hospital, Ningbo, Zheijiang 315040, P.R. China
| | - Jia-Nan Zhang
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Lihuili Hospital, Ningbo, Zheijiang 315040, P.R. China
| | - Wei-Feng Teng
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Lihuili Hospital, Ningbo, Zheijiang 315040, P.R. China
| | - Shao-Cheng Zhou
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Lihuili Hospital, Ningbo, Zheijiang 315040, P.R. China
| |
Collapse
|
11
|
Hou J, Li Y, Xing H, Cao R, Jin X, Xu J, Guo Y. Effusanin B Inhibits Lung Cancer by Prompting Apoptosis and Inhibiting Angiogenesis. Molecules 2023; 28:7682. [PMID: 38067413 PMCID: PMC10707445 DOI: 10.3390/molecules28237682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer is one of the deadliest human diseases, causing high rates of illness and death. Lung cancer has the highest mortality rate among all malignancies worldwide. Effusanin B, a diterpenoid derived from Isodon serra, showed therapeutic potential in treating non-small-cell lung cancer (NSCLC). Further research on the mechanism indicated that effusanin B inhibited the proliferation and migration of A549 cells both in vivo and in vitro. The in vitro activity assay demonstrated that effusanin B exhibited significant anticancer activity. Effusanin B induced apoptosis, promoted cell cycle arrest, increased the production of reactive oxygen species (ROS), and altered the mitochondrial membrane potential (MMP). Based on mechanistic studies, effusanin B was found to inhibit the proliferation and migration of A549 cells by affecting the signal transducer and activator of transcription 3 (STAT3) and focal adhesion kinase (FAK) pathways. Moreover, effusanin B inhibited tumor growth and spread in a zebrafish xenograft model and demonstrated anti-angiogenic effects in a transgenic zebrafish model.
Collapse
Affiliation(s)
- Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Honghong Xing
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Xiaomeng Jin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
12
|
Pei Q, Jiang B, Hao D, Xie Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharm Sin B 2023; 13:3252-3276. [PMID: 37655323 PMCID: PMC10465968 DOI: 10.1016/j.apsb.2023.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023] Open
Abstract
Chemotherapy has occupied the critical position in cancer therapy, especially towards the post-operative, advanced, recurrent, and metastatic tumors. Paclitaxel (PTX)-based formulations have been widely used in clinical practice, while the therapeutic effect is far from satisfied due to off-target toxicity and drug resistance. The caseless multi-components make the preparation technology complicated and aggravate the concerns with the excipients-associated toxicity. The self-assembled PTX nanoparticles possess a high drug content and could incorporate various functional molecules for enhancing the therapeutic index. In this work, we summarize the self-assembly strategy for diverse nanodrugs of PTX. Then, the advancement of nanodrugs for tumor therapy, especially emphasis on mono-chemotherapy, combinational therapy, and theranostics, have been outlined. Finally, the challenges and potential improvements have been briefly spotlighted.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Hou W, Dai W, Huang H, Liu SL, Liu J, Huang LJ, Huang XH, Zeng JL, Gan ZW, Zhang ZY, Lan JX. Pharmacological activity and mechanism of pyrazines. Eur J Med Chem 2023; 258:115544. [PMID: 37300915 DOI: 10.1016/j.ejmech.2023.115544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Heterocycles are common in the structure of drugs used clinically to deal with diseases. Such drugs usually contain nitrogen, oxygen and sulfur, which possess electron-accepting capacity and can form hydrogen bonds. These properties often bring enhanced target binding ability to these compounds when compared to alkanes. Pyrazine is a nitrogen-containing six-membered heterocyclic ring and many of its derivatives are identified as bioactive molecules. We review here the most active pyrazine compounds in terms of their structure, activity in vitro and in vivo (mainly antitumor activity) and the reported mechanisms of action. References have been downloaded through Web of Science, PubMed, Science Direct, Google Scholar and SciFinder Scholar. Publications reporting only the chemistry of pyrazine derivatives are beyond the scope of this review and have not been included. We found that compounds in which a pyrazine ring was fused into other heterocycles especially pyrrole or imidazole were the highly studied pyrazine derivatives, whose antineoplastic activity had been widely investigated. To the best of our knowledge, this is the first review of pyrazine derivatives and their bioactivity, especially their antitumor activity. This review should be useful for those engaged in development of medications based on heterocyclic compounds especially those based on pyrazine.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Sheng-Lan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Jun Liu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, 341000, PR China
| | - Xian-Hua Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Jun-Lin Zeng
- HuanKui Academy, Nanchang University, Nanchang, 330006, PR China
| | - Zhi-Wei Gan
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Zhen-Yu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
14
|
Gasiński A, Kawa-Rygielska J, Błażewicz J, Leszczyńska D. Malting procedure and its impact on the composition of volatiles and antioxidative potential of naked and covered oat varieties. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|
16
|
Liu Z, Wu X, Dai K, Li R, Zhang J, Sheng D, Lee SMY, Leung GPH, Zhou GC, Li J. The new andrographolide derivative AGS-30 induces apoptosis in human colon cancer cells by activating a ROS-dependent JNK signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153824. [PMID: 34763314 DOI: 10.1016/j.phymed.2021.153824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The anti-cancer activity of andrographolide (Andro) has been extensively demonstrated in recent years. It is supposed that modifying the chemical structure of Andro can improve its efficacy and reduce its toxicity. PURPOSE In this study, the anti-cancer effect of a 14β-(2'-chlorophenoxy) derivative of andrographolide known as AGS-30 was investigated, and its underlying mechanisms were also explored. STUDY DESIGN/METHODS Different cancer cells were used to evaluate and compare the in vitro anti-cancer effects of Andro and AGS-30. Human colon cancer cells HT-29 and HCT-116 were used to study the underlying anti-cancer mechanisms of AGS-30. HT-29 cells xenografted in nude mouse model was used to compare the in vivo anti-tumour efficacies of Andro and AGS-30. RESULT In vitro studies showed that AGS-30 possessed an anti-cancer effect by inhibiting the viability, colony formation and migration of cancer cells. It significantly induced the generation of reactive oxygen species (ROS), caused the loss of mitochondrial membrane potential and triggered the apoptosis in colon cancer cells. These effects of AGS-30 were more potent than those of Andro. In addition, the expression levels of proteins associated with apoptosis, including phospho-JNK1/2 as well as cleaved caspase 9, caspase 3, and poly(ADP ribose) polymerase, were elevated in AGS-30-treated colon cancer cells. Moreover, these elevated levels of the proteins were inhibited by the antioxidant N-acetylcysteine and the JNK inhibitor SP600125, suggesting the involvement of ROS/JNK-dependent mechanisms in AGS-30-induced apoptosis. The in vitro anti-cancer effect could be reproduced in an HT-29 colon cancer cell xenografted nude mouse model. CONCLUSION The anti-cancer effect of AGS-30 is stronger than that of Andro. AGS-30 induces apoptosis of colon cancer cells through ROS/JNK-dependent pathway. Our findings may provide insights for the future development of derivatives of Andro as novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Zhuyun Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China; School of Pharmacy, Taizhou Polytechnic College, Taizhou, Jiangsu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Kun Dai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dekuan Sheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
| | - Jingjing Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
17
|
Yang S, Wu S, Dai W, Pang L, Xie Y, Ren T, Zhang X, Bi S, Zheng Y, Wang J, Sun Y, Zheng Z, Kong J. Tetramethylpyrazine: A Review of Its Antitumor Potential and Mechanisms. Front Pharmacol 2021; 12:764331. [PMID: 34975475 PMCID: PMC8716857 DOI: 10.3389/fphar.2021.764331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer remains a major public health threat. The mitigation of the associated morbidity and mortality remains a major research focus. From a molecular biological perspective, cancer is defined as uncontrolled cell division and abnormal cell growth caused by various gene mutations. Therefore, there remains an urgent need to develop safe and effective antitumor drugs. The antitumor effect of plant extracts, which are characterized by relatively low toxicity and adverse effect, has attracted significant attention. For example, increasing attention has been paid to the antitumor effects of tetramethylpyrazine (TMP), the active component of the Chinese medicine Chuanqiong, which can affect tumor cell proliferation, apoptosis, invasion, metastasis, and angiogenesis, as well as reverse chemotherapeutic resistance in neoplasms, thereby triggering antitumor effects. Moreover, TMP can be used in combination with chemotherapeutic agents to enhance their effects and reduce the side effect associated with chemotherapy. Herein, we review the antitumor effects of TMP to provide a theoretical basis and foundation for the further exploration of its underlying antitumor mechanisms and promoting its clinical application.
Collapse
Affiliation(s)
- Shaojie Yang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuodong Wu
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, China
| | - Liwei Pang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaofeng Xie
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tengqi Ren
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Zhang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyuan Bi
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Zheng
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingnan Wang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Sun
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuyuan Zheng
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Kong
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jing Kong,
| |
Collapse
|
18
|
Li R, Song X, Guo Y, Song P, Duan D, Chen ZS. Natural Products: A Promising Therapeutics for Targeting Tumor Angiogenesis. Front Oncol 2021; 11:772915. [PMID: 34746014 PMCID: PMC8570131 DOI: 10.3389/fonc.2021.772915] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor-associated angiogenesis is a key target for anti-cancer therapy. The imbalance between pro-angiogenic and anti-angiogenic signals elicited by tumor cells or tumor microenvironment always results in activating "angiogenic switch". Tumor angiogenesis functions in multi-aspects of tumor biology, including endothelial cell apoptosis, tumor metastasis, and cancer stem cell proliferation. Numerous studies have indicated the important roles of inexpensive and less toxic natural products in targeting tumor angiogenesis-associated cytokines and apoptotic signaling pathways. Our current knowledge of tumor angiogenesis is based mainly on experiments performed on cells and animals, so we summarized the well-established models for angiogenesis both in vitro and in vivo. In this review, we classified and summarized the anti-angiogenic natural agents (Polyphenols, Polysaccharides, Alkaloids, Terpenoids, Saponins) in targeting various tumor types according to their chemical structures at present, and discussed the mechanistic principles of these natural products on regulating angiogenesis-associated cytokines and apoptotic signaling pathways. This review is to help understanding the recent progress of natural product research for drug development on anti-tumor angiogenesis.
Collapse
Affiliation(s)
- Ruyi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Song
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yanan Guo
- Research Center of Traditional Chinese Medicine in Gansu Province, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine in Gansu Province, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Song
- Research Center of Traditional Chinese Medicine in Gansu Province, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine in Gansu Province, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry & Chemical Engineering, Baoji University of Arts and Sciences, Baoji, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
19
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.
Collapse
|
20
|
Wu J, Zhou T, Wang Y, Jiang Y, Wang Y. Mechanisms and Advances in Anti-Ovarian Cancer with Natural Plants Component. Molecules 2021; 26:molecules26195949. [PMID: 34641493 PMCID: PMC8512305 DOI: 10.3390/molecules26195949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer ranks seventh in the most common malignant tumors among female disease, which seriously threatens female reproductive health. It is characterized by hidden pathogenesis, missed diagnosis, high reoccurrence rate, and poor prognosis. In clinic, the first-line treatment prioritized debulking surgery with paclitaxel-based chemotherapy. The harsh truth is that female patients are prone to relapse due to the dissemination of tumor cells and drug resistance. In these circumstances, the development of new therapy strategies combined with traditional approaches is conductive to improving the quality of treatment. Among numerous drug resources, botanical compounds have unique advantages due to their potentials in multitarget functions, long application history, and wide availability. Previous studies have revealed the therapeutic effects of bioactive plant components in ovarian cancer. These natural ingredients act as part of the initial treatment or an auxiliary option for maintenance therapy, further reducing the tumor and metastatic burden. In this review, we summarized the functions and mechanisms of natural botanical components applied in human ovarian cancer. We focused on the molecular mechanisms of cell apoptosis, autophagy, RNA and DNA lesion, ROS damage, and the multiple-drug resistance. We aim to provide a theoretical reference for in-depth drug research so as to manage ovarian cancer better in clinic.
Collapse
Affiliation(s)
- Jingyuan Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yinxue Wang
- The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Lanzhou 730000, China;
| | - Yanbiao Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
| | - Yiqing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
- Gansu Key Laboratory of Reproductive Medicine and Embryology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Correspondence:
| |
Collapse
|
21
|
Das S, Shukla N, Singh SS, Kushwaha S, Shrivastava R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis 2021; 26:512-533. [PMID: 34510317 DOI: 10.1007/s10495-021-01687-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The mechanisms of two programmed cell death pathways, autophagy, and apoptosis, are extensively focused areas of research in the context of cancer. Both the catabolic pathways play a significant role in maintaining cellular as well as organismal homeostasis. Autophagy facilitates this by degradation and elimination of misfolded proteins and damaged organelles, while apoptosis induces canonical cell death in response to various stimuli. Ideally, both autophagy and apoptosis have a role in tumor suppression, as autophagy helps in eliminating the tumor cells, and apoptosis prevents their survival. However, as cancer proceeds, autophagy exhibits a dual role by enhancing cancer cell survival in response to stress conditions like hypoxia, thereby promoting chemoresistance to the tumor cells. Thus, any inadequacy in either of their levels can lead to tumor progression. A complex array of biomarkers is involved in maintaining coordination between the two by acting as either positive or negative regulators of one or both of these pathways of cell death. The resulting crosstalk between the two and its role in influencing the survival or death of malignant cells makes it quintessential, among other challenges facing chemotherapeutic treatment of cancer. In view of this, the present review aims to highlight some of the factors involved in maintaining their diaphony and stresses the importance of inhibition of cytoprotective autophagy and deletion of the intermediate pathways involved to facilitate tumor cell death. This will pave the way for future prospects in designing drug combinations facilitating the synergistic effect of autophagy and apoptosis in achieving cancer cell death.
Collapse
Affiliation(s)
- Shreya Das
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Nidhi Shukla
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Sapana Kushwaha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
22
|
Yun W, Dan W, Liu J, Guo X, Li M, He Q. Investigation of the Mechanism of Traditional Chinese Medicines in Angiogenesis through Network Pharmacology and Data Mining. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5539970. [PMID: 34007289 PMCID: PMC8102115 DOI: 10.1155/2021/5539970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Although traditional Chinese medicine is effective and safe for the treatment of angiogenesis, the in vivo intervention mechanism is diverse, complex, and largely unknown. Therefore, we aimed to explore the active ingredients of traditional Chinese medicine and their mechanisms of action against angiogenesis. Data on angiogenesis-related targets were collected from GeneCards, Therapeutic Target Database, Online Mendelian Inheritance in Man, DrugBank, and DisGeNET. These were matched to related molecular compounds and ingredients in the traditional Chinese medicine system pharmacology platform. The data were integrated and based on the condition of degree > 1, and relevant literature, target-compound, compound-medicine, and target-compound-medicine networks were constructed using Cytoscape. Molecular docking was used to predict the predominant binding combination of core targets and components. We obtained 79 targets for angiogenesis; 41 targets were matched to 3839 compounds, of which 110 compounds were selected owing to their high correlation with angiogenesis. Fifty-five combinations in the network were obtained by molecular docking, among which PTGS2-astragalin (-9.18 kcal/mol), KDR-astragalin (-7.94 kcal/mol), PTGS2-quercetin (-7.41 kcal/mol), and PTGS2-myricetin (-7.21 kcal/mol) were top. These results indicated that the selected potential core compounds have good binding activity with the core targets. Eighty new combinations were obtained from the network, and the top combinations based on affinity were KDR-beta-carotene (-10.13 kcal/mol), MMP9-beta-sitosterol (-8.04 kcal/mol), MMP9-astragalin (-7.82 kcal/mol), and MMP9-diosgenin (-7.51 kcal/mol). The core targets included PTGS2, KDR, VEGFA, and MMP9. The essential components identified were astragalin, kaempferol, myricetin, quercetin, and β-sitosterol. The crucial Chinese medicines identified included Polygoni Cuspidati Rhizoma et Radix, Morus alba Root Bark, and Forsythiae Fructus. By systematically analysing the ingredients of traditional Chinese medicine and their targets, it is possible to determine their potential mechanisms of action against pathological angiogenesis. Our study provides a basis for further research and the development of new therapeutics for angiogenesis.
Collapse
Affiliation(s)
- Wingyan Yun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenchao Dan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinlei Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyuan Guo
- Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Min Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qingyong He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
23
|
Zhu X, Shan Y, Yu M, Shi J, Tang L, Cao H, Sheng M. Tetramethylpyrazine Ameliorates Peritoneal Angiogenesis by Regulating VEGF/Hippo/YAP Signaling. Front Pharmacol 2021; 12:649581. [PMID: 33927624 PMCID: PMC8076865 DOI: 10.3389/fphar.2021.649581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis of human peritoneal vascular endothelial cells (HPVECs), linked to vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) signaling, is a complication of peritoneal fibrosis (PF). Hippo/YAP signaling interacts with VEGF/VEGFR2 signaling, but the effect on peritoneal angiogenesis and PF has not been studied. We tested VEGF/Hippo/YAP inhibition by tetramethylpyrazine (TMP) in PF mice and HPVECs. This treatment ameliorated peritoneal dialysis (PD)–induced angiogenesis and PF. In mice, PF was associated with upregulation of VEGF, and TMP ameliorated submesothelial fibrosis, perivascular bleeding, and Collagen I abundance. In HPVECs, angiogenesis occurred due to human peritoneal mesothelial cells (HPMCs)–conditioned medium, and TMP alleviated HPVECs migration, tube formation, and YAP nuclear translocation. YAP knockdown PF mouse and HPVEC models were established to further confirm our finding. YAP deletion attenuated the PD-induced or VEGF-induced increase in angiogenesis and PF. The amount of CYR61 and CTGF was significantly less in the YAP knockdown group. To study the possibility that TMP could benefit angiogenesis, we measured the HPVECs migration and tube formation and found that both were sharply increased in YAP overexpression; TMP treatment partly abolished these increases. As well, the amount of VEGFR localized in the trans-Golgi network was lower by double immunofluorescence; VEGFR and its downstream signaling pathways including p-ERK, p-P38, and p-Akt were more in HPVECs with YAP overexpression. Overall, TMP treatment ameliorated angiogenesis, PF, and peritoneum injury. These changes were accompanied by inhibition of VEGF/Hippo/YAP.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Nephrology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Shi
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Tang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Cao
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Huang H, Kong L, Luan S, Qi C, Wu F. Ligustrazine Suppresses Platelet-Derived Growth Factor-BB-Induced Pulmonary Artery Smooth Muscle Cell Proliferation and Inflammation by Regulating the PI3K/AKT Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:437-459. [PMID: 33622214 DOI: 10.1142/s0192415x21500208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious pulmonary vascular disease. Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role in the course of this disease. Ligustrazine is an alkaloid monomer extracted from the rhizome of the herb Ligusticum chuanxiong. It is often used to treat cardiovascular diseases, but its effect on PAH has rarely been reported. This study aims to explore the protective effect and mechanism of ligustrazine on PAH. In the in vivo experiment, monocrotaline (MCT) was used to induce PAH in rats, and then ligustrazine (40, 80, 160 mg/kg/day) or sildenafil (25 mg/kg/day) was administered. Four weeks later, hemodynamic changes, right ventricular hypertrophy index, lung morphological characteristics, inflammatory factors, phosphoinositide 3-kinase (PI3K), and AKT expression were evaluated. In addition, primary rat PASMCs were extracted by the tissue adhesion method, a proliferation model was established with platelet-derived growth factor-BB (PDGF-BB), and the cells were treated with ligustrazine to investigate its effects on cell proliferation, inflammation, and cell cycle distribution. The results indicate that ligustrazine can markedly alleviate right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling, and inflammation caused by MCT, and that it decreased PI3K and AKT phosphorylation expression. Moreover, ligustrazine can inhibit the proliferation and inflammation of PASMCs and arrest the progression of G0/G1 to S phase through the PI3K/AKT signaling pathway. Therefore, we conclude that ligustrazine may inhibit the proliferation and inflammation of PASMCs by regulating the activation of the PI3K/AKT signaling pathway, thereby attenuating MCT-induced PAH in rats. Collectively, these findings suggest that ligustrazine may be a promising therapeutic for PAH.
Collapse
Affiliation(s)
- Huiping Huang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Lingjin Kong
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Shaohua Luan
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Fanrong Wu
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
25
|
Zou L, Liu X, Li J, Li W, Zhang L, Fu C, Zhang J, Gu Z. Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Theranostics 2021; 11:4171-4186. [PMID: 33754055 PMCID: PMC7977472 DOI: 10.7150/thno.42260] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rationale: Combinations of two or more therapeutic agents targeting different signaling pathways involved in tumor progression can have synergistic anticancer effects. However, combination chemotherapies are greatly limited by the different pharmacokinetics, tumor targeting, and cellular uptake capacities of the combined drugs. We have previously demonstrated the potential synergistic efficacy of paclitaxel (PTX) and the natural anti-angiogenic agent tetramethylpyrazine (TMP) for suppressing ovarian carcinoma growth. An efficient, facile, and smart nanosystem to deliver PTX and TMP simultaneously in vivo is greatly desired. Methods: We constructed a redox-sensitive nanosystem based on the amphiphilic PTX-ss-TMP conjugate, in which PTX and TMP are linked by a disulfide bond. We characterized the structure of the drug conjugate by 1H NMR and LC-MS, and then prepared PTX-ss-TMP NPs by a one-step nanoprecipitation method. We investigated the redox sensitivity, tumor-targeting ability, anticancer efficacy, and anti-angiogenesis activity of PTX-ss-TMP NPs in vitro and in vivo. Results: The amphiphilic PTX-ss-TMP conjugate readily self-assembled into stable nanoparticles in aqueous solution with a low critical association concentration of 1.35 µg/mL, well-defined spherical structure, small particle size (152 nm), high drug loading, redox-responsive drug release, high biocompatibility, and high storage stability. In cancer cells pretreated with GSH-OEt, PTX-ss-TMP NPs exhibited higher cytotoxicity, apoptosis rate, and cell-cycle arrest than monotherapy or combination therapy with free drugs, which was attributed to their improved cellular uptake and rapid intracellular drug release. Additionally, PTX-ss-TMP NPs also had a stronger anti-angiogenesis effect in HUVECs than free drug, which was mediated by VEGFR2-involved downstream signals. Finally, PTX-ss-TMP NPs showed tumor-specific accumulation and excellent antitumor activity in A2780 xenograft mice compared with free drug. Conclusions: These in vitro and in vivo results provide clear evidence that this redox-responsive carrier-free nanosystem with intrinsic amphiphilicity has great potential for combination cancer chemotherapy.
Collapse
|
26
|
Li QW, Zhang GL, Hao CX, Ma YF, Sun X, Zhang Y, Cao KX, Li BX, Yang GW, Wang XM. SANT, a novel Chinese herbal monomer combination, decreasing tumor growth and angiogenesis via modulating autophagy in heparanase overexpressed triple-negative breast cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113430. [PMID: 33011366 DOI: 10.1016/j.jep.2020.113430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus mongholicus, Solanum nigrum Linn, Lotus plumule, Ligusticum are widely used traditional herbal medicines for cancer treatment in China. They were typical drugs selected from Gubenyiliu II and series of formula (GYII), which were developed on the foundation of YIQIHUOXUEJIEDU theory. In the present study, four active ingredients (Astragaloside IV, α-solanine, neferine, and 2,3,5,6-tetramethylpyrazine) derived from medicines above were applied in combination as SANT. AIM OF THE STUDY Triple-negative breast cancer (TNBC) is a serious threat to women's health worldwide. Heparanase (HPSE) is often up-regulated in breast cancer with the properties of facilitating tumorigenesis and influencing the autophagy process in cancer cells. This study aimed at evaluating the anti-tumor potential of SANT in treating HPSE related TNBC both in-vitro and in-vivo. MATERIALS AND METHODS In this study, we explored the correlation between HPSE expression and survival of breast cancer patients in databases. We performed MTS, trans-well and wound scratch assays to assess the impact of SANT on cell proliferation and migration. Confocal microscopy observation and western blots were applied to verify the autophagy flux induced by SANT. Mice models were employed to evaluate the efficacy and safety of SANT in-vivo by tumor weights and volumes or serum index, respectively. To analyze the underlying mechanisms of SANT, we conducted human autophagy PCR array and angiogenesis proteome profiler on tumor tissues. RESULTS Patients with elevated HPSE expression were associated with a poor outcome in both RFS (P = 1.7e-12) and OS (P = 0.00016). SANT administration significantly inhibited cancer cells' proliferation and migration, enhanced autophagy flux, and slightly reduced the active form of HPSE in-vitro. SANT also suppressed tumor growth and angiogenesis in-vivo. Human autophagy PCR array results indicated that SANT increased the ATG16L1, ATG9B, ATG4D gene expressions while decreased TMEM74 and TNF gene expressions.Angiogenesis proteome profiler results showed SANT reduced protein level of HB-EGF, thrombospondin-2, amphiregulin, leptin, IGFBP-9, EGF, coagulation factor III, and MMP-9 (pro and active form) in tumor, raised the protein expression of serpin E1 and platelet factor 4. CONCLUSIONS These findings indicated that herbal compounds SANT may be a promising candidate in anti-cancer drug discovery. It also provides novel strategies for using natural compounds to achieve optimized effect.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/pharmacology
- Autophagy/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Glucuronidase/genetics
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Qi-Wei Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Gan-Lin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| | - Cai-Xia Hao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Yun-Fei Ma
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xu Sun
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou Henan 450008, China
| | - Yi Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Ke-Xin Cao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Bing-Xue Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Guo-Wang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xiao-Min Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
27
|
Shi J, Li J, Li J, Li R, Wu X, Gao F, Zou L, Mak WWS, Fu C, Zhang J, Leung GPH. Synergistic breast cancer suppression efficacy of doxorubicin by combination with glycyrrhetinic acid as an angiogenesis inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153408. [PMID: 33234363 DOI: 10.1016/j.phymed.2020.153408] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Therapeutic regimens of breast cancer treatment are increasingly inclined to adopt combination strategy based on the broad spectrum antitumor effect of doxorubicin (Dox). Currently, combination therapy comprises of conventional anti-cancer drugs and angiogenesis inhibitors have been corroborated as an effective approach in cancer treatment. PURPOSE We explored the ability of a natural anti-angiogenic compound glycyrrhetinic acid (GA), derived from an edible-medicinal herb licorice, to enhance the breast cancer suppression effect of Dox. STUDY DESIGN The drug ratio of GA and Dox with synergistic anticancer effect against MCF-7 cells was optimized by combination index (CI) value in vitro, followed by evaluation of the improved anticancer effects and reduced side-effects of this combination in vitro and in vivo. METHODS Cell viability was measured by MTT assay. Analyses of mitochondrial membrane potential and cell apoptosis on MCF-7 cells were performed by JC-1 dye and Annexin V-FITC/PI assays. The cellular accumulation of Dox when combined with GA was evaluated. Levels of apoptosis-related proteins in MCF-7 cells were measured by Western blot analysis. Synergistic anti-angiogenic effects on HUVECs were evaluated. A breast cancer mouse model was established to investigate the anti-tumor effects in vivo. RESULTS Based on the optimization by CI value, Dox and GA at 1:20 molar ratio was chosen as the optimal combination drug ratio that exhibited synergistic effect against MCF-7 breast cancer cells. In addition, the combination of GA and Dox exhibited significantly enhanced cytotoxicity, apoptosis, and loss of mitochondrial membrane potential via the upregulation of a mitochondrial-dependent apoptosis pathway against MCF-7 cells. Interestingly, the addition of GA increased the intracellular accumulation of Dox in MCF-7 cells. Moreover, VEGF-induced HUVECs proliferation, migration, and tube formation were strongly inhibited by Dox when used with GA via the significant down-regulation of VEGFR2-mediated pathway, indicating that the combination of Dox and GA could exhibit ideal synergistic anti-angiogenesis effect. Expectedly, the enhanced anti-tumor efficacy of Dox and reduced Dox-induced cardiotoxicity when used in combination with GA were evident in a mouse breast tumor model. CONCLUSIONS These findings support that the combination of Dox with GA is a novel and promising therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jinfeng Shi
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jingjing Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region 999077, China.
| | - Jiaxin Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Fei Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu, Sichuan 610106, China
| | - Winston Wing Shum Mak
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region 999077, China.
| |
Collapse
|
28
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
29
|
Jiang L, Hou R. Tetrandrine Reverses Paclitaxel Resistance in Human Ovarian Cancer via Inducing Apoptosis, Cell Cycle Arrest Through β-Catenin Pathway. Onco Targets Ther 2020; 13:3631-3639. [PMID: 32431514 PMCID: PMC7200223 DOI: 10.2147/ott.s235533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background Paclitaxel (PTX) resistance is a great obstacle for the treatment of ovarian cancer. A previous study indicated that tetrandrine (TET) could induce the apoptosis of ovarian cancer cells. This study aimed to explore the effect of TET in combination with PTX on PTX resistance in ovarian cancer cells. Materials and Methods CCK-8 assay, flow cytometry and wound healing assays were used to detect the proliferation, apoptosis and migration of PTX-resistant SKOV3 cells (SKOV3/PTX). The expressions of Bax, Bcl-2, cleaved caspase 3, β-catenin, c-Myc, cyclin D1 and p21 in SKOV3/PTX cells were detected with Western blot. In vivo animal study was performed finally. Results In this study, the inhibitory effects of PTX on the proliferation and migration of SKOV3/PTX cells were markedly enhanced by TET. In addition, PTX-induced apoptosis in SKOV3/PTX cells was significantly enhanced by the treatment of TET via upregulating the levels of Bax and cleaved caspase 3, and downregulating the expression of Bcl-2. Moreover, combination of TET and PTX obviously induced cell cycle arrest in SKOV3/PTX cells via increasing the level of p21 and decreasing the levels of c-Myc and Cyclin D1. Meanwhile, combination of TET with PTX significantly decreased the expression of β-catenin in SKOV3/PTX cells. In vivo experiments further confirmed that TET enhanced the anti-tumor effect of PTX in SKOV3/PTX xenograft model. Conclusion We found that TET could enhance the sensitivity of SKOV3/PTX cells to PTX via inhibiting the β-catenin/c-Myc/Cyclin D1 signaling pathway. Therefore, PTX combined with TET might be considered as a potential approach for the treatment of PTX-resistant ovarian cancer.
Collapse
Affiliation(s)
- Luo Jiang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Rui Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| |
Collapse
|