1
|
Alhowyan AA, Harisa GI. From Molecular Therapies to Lysosomal Transplantation and Targeted Drug Strategies: Present Applications, Limitations, and Future Prospects of Lysosomal Medications. Biomolecules 2025; 15:327. [PMID: 40149863 PMCID: PMC11940627 DOI: 10.3390/biom15030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Lysosomes are essential intracellular organelles involved in plentiful cellular processes such as cell signaling, metabolism, growth, apoptosis, autophagy, protein processing, and maintaining cellular homeostasis. Their dysfunction is linked to various diseases, including lysosomal storage disorders, inflammation, cancer, cardiovascular diseases, neurodegenerative conditions, and aging. This review focuses on current and emerging therapies for lysosomal diseases (LDs), including small medicines, enzyme replacement therapy (ERT), gene therapy, transplantation, and lysosomal drug targeting (LDT). This study was conducted through databases like PubMed, Google Scholar, Science Direct, and other research engines. To treat LDs, medicines target the lysosomal membrane, acidification processes, cathepsins, calcium signaling, mTOR, and autophagy. Moreover, small-molecule therapies using chaperones, macro-therapies like ERT, gene therapy, and gene editing technologies are used as therapy for LDs. Additionally, endosymbiotic therapy, artificial lysosomes, and lysosomal transplantation are promising options for LD management. LDT enhances the therapeutic outcomes in LDs. Extracellular vesicles and mannose-6-phosphate-tagged nanocarriers display promising approaches for improving LDT. This study concluded that lysosomes play a crucial role in the pathophysiology of numerous diseases. Thus, restoring lysosomal function is essential for treating a wide range of conditions. Despite endosymbiotic therapy, artificial lysosomes, lysosomal transplantation, and LDT offering significant potential for LD control, there are ample challenges regarding safety and ethical implications.
Collapse
Affiliation(s)
- Adel A. Alhowyan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Gamaleldin I. Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| |
Collapse
|
2
|
Garbayo E, El Moukhtari SH, Rodríguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prósper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the treatment of hematological cancers. Adv Drug Deliv Rev 2024; 214:115448. [PMID: 39303823 DOI: 10.1016/j.addr.2024.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Hematological cancers encompass a diverse group of malignancies affecting the blood, bone marrow, lymph nodes, and spleen. These disorders present unique challenges due to their complex etiology and varied clinical manifestations. Despite significant advancements in understanding and treating hematological malignancies, innovative therapeutic approaches are continually sought to enhance patient outcomes. This review highlights the application of RNA nanoparticles (RNA-NPs) in the treatment of hematological cancers. We delve into detailed discussions on in vitro and preclinical studies involving RNA-NPs for adult patients, as well as the application of RNA-NPs in pediatric hematological cancer. The review also addresses ongoing clinical trials involving RNA-NPs and explores the emerging field of CAR-T therapy engineered by RNA-NPs. Finally, we discuss the challenges still faced in translating RNA-NP research to clinics.
Collapse
Affiliation(s)
- Elisa Garbayo
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Xabier Agirre
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Paula Rodriguez-Marquez
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain; Departmento de Hematología and CCUN, Clínica Universidad de Navarra, University of Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Université Paris-Saclay, Orsay Cedex, France.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain.
| |
Collapse
|
3
|
Yang L, Meng B, Gong X, Jiang Y, Shentu X, Xue Z. Investigation of the synergistic effect mechanism underlying sequential use of palbociclib and cisplatin through integral proteomic and glycoproteomic analysis. Anticancer Drugs 2024; 35:806-816. [PMID: 39011652 PMCID: PMC11392100 DOI: 10.1097/cad.0000000000001633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Chemoresistance largely hampers the clinical use of chemodrugs for cancer patients, combination or sequential drug treatment regimens have been designed to minimize chemotoxicity and resensitize chemoresistance. In this work, the cytotoxic effect of cisplatin was found to be enhanced by palbociclib pretreatment in HeLa cells. With the integration of liquid chromatography-mass spectrometry-based proteomic and N-glycoproteomic workflow, we found that palbociclib alone mainly enhanced the N-glycosylation alterations in HeLa cells, while cisplatin majorly increased the different expression proteins related to apoptosis pathways. As a result, the sequential use of two drugs induced a higher expression level of apoptosis proteins BAX and BAK. Those altered N-glycoproteins induced by palbociclib were implicated in pathways that were closely associated with cell membrane modification and drug sensitivity. Specifically, the top four frequently glycosylated proteins FOLR1, L1CAM, CD63, and LAMP1 were all associated with drug resistance or drug sensitivity. It is suspected that palbociclib-induced N-glycosylation on the membrane protein allowed the HeLa cell to become more vulnerable to cisplatin treatment. Our study provides new insights into the mechanisms underlying the sequential use of target drugs and chemotherapy drugs, meanwhile suggesting a high-efficiency approach that involves proteomic and N-glycoproteomic to facilitate drug discovery.
Collapse
Affiliation(s)
- Lulu Yang
- Faculty of Life Sciences, China Jiliang University, Hangzhou
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xuping Shentu
- Faculty of Life Sciences, China Jiliang University, Hangzhou
| | - Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
4
|
Miao Y, Fu C, Yu Z, Yu L, Tang Y, Wei M. Current status and trends in small nucleic acid drug development: Leading the future. Acta Pharm Sin B 2024; 14:3802-3817. [PMID: 39309508 PMCID: PMC11413693 DOI: 10.1016/j.apsb.2024.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Small nucleic acid drugs, composed of nucleotides, represent a novel class of pharmaceuticals that differ significantly from conventional small molecule and antibody-based therapeutics. These agents function by selectively targeting specific genes or their corresponding messenger RNAs (mRNAs), further modulating gene expression and regulating translation-related processes. Prominent examples within this category include antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), microRNAs (miRNAs), and aptamers. The emergence of small nucleic acid drugs as a focal point in contemporary biopharmaceutical research is attributed to their remarkable specificity, facile design, abbreviated development cycles, expansive target spectrum, and prolonged activity. Overcoming challenges such as poor stability, immunogenicity, and permeability issues have been addressed through the integration of chemical modifications and the development of drug delivery systems. This review provides an overview of the current status and prospective trends in small nucleic acid drug development. Commencing with a historical context, we introduce the primary classifications and mechanisms of small nucleic acid drugs. Subsequently, we delve into the advantages of the U.S. Food and Drug Administration (FDA) approved drugs and mainly discuss the challenges encountered during their development. Apart from researching chemical modification and delivery system that efficiently deliver and enrich small nucleic acid drugs to target tissues, promoting endosomal escape is a critical scientific question and important research direction in siRNA drug development. Future directions in this field will prioritize addressing these challenges to facilitate the clinical transformation of small nucleic acid drugs.
Collapse
Affiliation(s)
- Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
- Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Tang
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
- Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| |
Collapse
|
5
|
Harisa GI, Faris TM, Sherif AY, Alzhrani RF, Alanazi SA, Kohaf NA, Alanazi FK. Coding Therapeutic Nucleic Acids from Recombinant Proteins to Next-Generation Vaccines: Current Uses, Limitations, and Future Horizons. Mol Biotechnol 2024; 66:1853-1871. [PMID: 37578574 DOI: 10.1007/s12033-023-00821-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
This study aims to highlight the potential use of cTNAs in therapeutic applications. The COVID-19 pandemic has led to significant use of coding therapeutic nucleic acids (cTNAs) in terms of DNA and mRNA in the development of vaccines. The use of cTNAs resulted in a paradigm shift in the therapeutic field. However, the injection of DNA or mRNA into the human body transforms cells into biological factories to produce the necessary proteins. Despite the success of cTNAs in the production of corona vaccines, they have several limitations such as instability, inability to cross biomembranes, immunogenicity, and the possibility of integration into the human genome. The chemical modification and utilization of smart drug delivery cargoes resolve cTNAs therapeutic problems. The success of cTNAs in corona vaccine production provides perspective for the eradication of influenza viruses, Zika virus, HIV, respiratory syncytial virus, Ebola virus, malaria, and future pandemics by quick vaccine design. Moreover, the progress cTNAs technology is promising for the development of therapy for genetic disease, cancer therapy, and currently incurable diseases.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia.
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Tarek M Faris
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
| | - Riyad F Alzhrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alanazi
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Science Collage of Pharmacy, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Neveen A Kohaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Desai N, Rana D, Salave S, Benival D, Khunt D, Prajapati BG. Achieving Endo/Lysosomal Escape Using Smart Nanosystems for Efficient Cellular Delivery. Molecules 2024; 29:3131. [PMID: 38999083 PMCID: PMC11243486 DOI: 10.3390/molecules29133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The delivery of therapeutic agents faces significant hurdles posed by the endo-lysosomal pathway, a bottleneck that hampers clinical effectiveness. This comprehensive review addresses the urgent need to enhance cellular delivery mechanisms to overcome these obstacles. It focuses on the potential of smart nanomaterials, delving into their unique characteristics and mechanisms in detail. Special attention is given to their ability to strategically evade endosomal entrapment, thereby enhancing therapeutic efficacy. The manuscript thoroughly examines assays crucial for understanding endosomal escape and cellular uptake dynamics. By analyzing various assessment methods, we offer nuanced insights into these investigative approaches' multifaceted aspects. We meticulously analyze the use of smart nanocarriers, exploring diverse mechanisms such as pore formation, proton sponge effects, membrane destabilization, photochemical disruption, and the strategic use of endosomal escape agents. Each mechanism's effectiveness and potential application in mitigating endosomal entrapment are scrutinized. This paper provides a critical overview of the current landscape, emphasizing the need for advanced delivery systems to navigate the complexities of cellular uptake. Importantly, it underscores the transformative role of smart nanomaterials in revolutionizing cellular delivery strategies, leading to a paradigm shift towards improved therapeutic outcomes.
Collapse
Affiliation(s)
- Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India;
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Dignesh Khunt
- School of Pharmacy, Gujarat Technological University, Gandhinagar 382027, Gujarat, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
7
|
Puvvula PK, Martinez-Medina L, Cinar M, Feng L, Pisarev A, Johnson A, Bernal-Mizrachi L. A retrotransposon-derived DNA zip code internalizes myeloma cells through Clathrin-Rab5a-mediated endocytosis. Front Oncol 2024; 14:1288724. [PMID: 38463228 PMCID: PMC10920344 DOI: 10.3389/fonc.2024.1288724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction We have demonstrated that transposons derived from ctDNA can be transferred between cancer cells. The present research aimed to investigate the cellular uptake and intracellular trafficking of Multiple Myeloma-zip code (MM-ZC), a cell-specific zip code, in myeloma cell lines. We demonstrated that MM-ZC uptake by myeloma cells was concentration-, time- and cell-type-dependent. Methods Flow cytometry and confocal microscopy methods were used to identify the level of internalization of the zip codes in MM cells. To screen for the mechanism of internalization, we used multiple inhibitors of endocytosis. These experiments were followed by biotin pulldown and confocal microscopy for validation. Single interference RNA (siRNA) targeting some of the proteins involved in endocytosis was used to validate the role of this pathway in ZC cell internalization. Results Endocytosis inhibitors identified that Monensin and Chlorpromazine hydrochloride significantly reduced MM-ZC internalization. These findings suggested that Clathrin-mediated endocytosis and endosomal maturation play a crucial role in the cellular uptake of MM-ZC. Biotin pulldown and confocal microscopic studies revealed the involvement of proteins such as Clathrin, Rab5a, Syntaxin-6, and RCAS1 in facilitating the internalization of MM-ZC. Knockdown of Rab5a and Clathrin proteins reduced cellular uptake of MM-ZC and conclusively demonstrated the involvement of Clathrin-Rab5a pathways in MM-ZC endocytosis. Furthermore, both Rab5a and Clathrin reciprocally affected their association with MM-ZC when we depleted their proteins by siRNAs. Additionally, the loss of Rab5a decreased the Syntaxin-6 association with MMZC but not vice versa. Conversely, MM-ZC treatment enhanced the association between Clathrin and Rab5a. Conclusion Overall, the current study provides valuable insights into the cellular uptake and intracellular trafficking of MM-ZC in myeloma cells. Identifying these mechanisms and molecular players involved in MM-ZC uptake contributes to a better understanding of the delivery and potential applications of cell-specific Zip-Codes in gene delivery and drug targeting in cancer research.
Collapse
Affiliation(s)
| | | | - Munevver Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Lei Feng
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | - Andrey Pisarev
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | | | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Shobhna, Dutta A, Kumari P, Kashyap HK. Stability of Cytoplasmic Membrane of Escherichia coli Bacteria in Aqueous and Ethanolic Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2893-2906. [PMID: 38311936 DOI: 10.1021/acs.langmuir.3c02780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The mechanism of action of any antibacterial agent or disinfectant depends largely on their interaction with the bacterial membrane. Herein, we use the SPICA (surface property fitting coarse graining) force-field and develop a coarse-grained (CG) model for the structure of the cytoplasmic membrane of Escherichia coli (E. coli) and its interaction with water and ethanol. We elucidate the impact of different concentrations of ethanol on the cytoplasmic membrane bilayers and vesicles of E. coli using the CG molecular dynamics (CG MD) simulations. Our modeling approach first focuses on the parametrization of the required force-field for POPG lipid and its interaction with water, ethanol, and POPE lipid. Subsequently, the structural stability of the E. coli bacterial membrane in the presence of high and low concentrations of ethanol is delineated. Both flat bilayers as well as vesicles of E. coli membrane were considered for the CG MD. Our results reveal that, at low ethanol concentrations (<30 mol %), the size of the E. coli vesicles increases with discernible deformations in their shapes. Because of ethanol-induced interdigitation, thinning of the E. coli vesicular membrane is also observed. However, at higher ethanol concentrations (>30 mol %), the integrity of the vesicles is lost because of deteriorating invasion of ethanol molecules into the vesicle bilayer and significant weakening of lipid-lipid interactions. At higher ethanol concentrations (40 and 70 mol %), both the multivesicle and single-vesicle bacterial membranes exhibit a similar rupturing pattern wherein the extraction of lipids from the membrane and formation of aggregates of the component lipids are observed. These aggregates consist of polar head groups of 3-5 POPE/POPG lipids with intertwined nonpolar tails.
Collapse
Affiliation(s)
- Shobhna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ayishwarya Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
Isenberg JS, Montero E. Tolerating CD47. Clin Transl Med 2024; 14:e1584. [PMID: 38362603 PMCID: PMC10870051 DOI: 10.1002/ctm2.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cluster of differentiation 47 (CD47) occupies the outer membrane of human cells, where it binds to soluble and cell surface receptors on the same and other cells, sculpting their topography and resulting in a pleiotropic receptor-multiligand interaction network. It is a focus of drug development to temper and accentuate CD47-driven immune cell liaisons, although consideration of on-target CD47 effects remain neglected. And yet, a late clinical trial of a CD47-blocking antibody was discontinued, existent trials were restrained, and development of CD47-targeting agents halted by some pharmaceutical companies. At this point, if CD47 can be exploited for clinical advantage remains to be determined. Herein an airing is made of the seemingly conflicting actions of CD47 that reflect its position as a junction connecting receptors and signalling pathways that impact numerous human cell types. Prospects of CD47 boosting and blocking are considered along with potential therapeutic implications for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Department of Diabetes Complications & MetabolismArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Enrique Montero
- Department of Molecular & Cellular EndocrinologyArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
10
|
Lin Y, Jung H, Bulman CA, Ng J, Vinck R, O’Beirne C, Zhong S, Moser MS, Tricoche N, Peguero R, Li RW, Urban JF, Le Pape P, Pagniez F, Moretto M, Weil T, Lustigman S, Cariou K, Mitreva M, Sakanari JA, Gasser G. Discovery of New Broad-Spectrum Anti-Infectives for Eukaryotic Pathogens Using Bioorganometallic Chemistry. J Med Chem 2023; 66:15867-15882. [PMID: 38009931 PMCID: PMC11840807 DOI: 10.1021/acs.jmedchem.3c01333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens, including fungal infections. Herein, we show that the simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from that of the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and neglected tropical diseases (NTDs) targeted for elimination by 2030.
Collapse
Affiliation(s)
- Yan Lin
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Hyeim Jung
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina A. Bulman
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - James Ng
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Cillian O’Beirne
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Shuai Zhong
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Matthew S. Moser
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Nancy Tricoche
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Ricardo Peguero
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Robert W. Li
- Animal Parasitic Diseases Laboratory, United States Department of Agricultural Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Joseph F. Urban
- Diet, Genomics and Immunology Laboratory, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Patrice Le Pape
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Fabrice Pagniez
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Marco Moretto
- Fondazione Edmund Mach Via E. Mach 1, Research and Innovation Centre, Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Tobias Weil
- Fondazione Edmund Mach Via E. Mach 1, Research and Innovation Centre, Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Judy A. Sakanari
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
11
|
Fischer M, Luck M, Werle M, Vogel A, Bashawat M, Ludwig K, Scheidt HA, Müller P. The small-molecule kinase inhibitor ceritinib, unlike imatinib, causes a significant disturbance of lipid membrane integrity: A combined experimental and MD study. Chem Phys Lipids 2023; 257:105351. [PMID: 37863350 DOI: 10.1016/j.chemphyslip.2023.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Ceritinib and imatinib are small-molecule protein kinase inhibitors which are applied as therapeutic agents against various diseases. The fundamentals of their clinical use, i.e. their pharmacokinetics as well as the mechanisms of the inhibition of the respective kinases, are relatively well studied. However, the interaction of the drugs with membranes, which can be a possible cause of side effects, has hardly been investigated so far. Therefore, we have characterized the interaction of both drugs with lipid membranes consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the absence and in the presence of cholesterol. For determining the membrane impact of both drugs on a molecular level, different experimental (NMR, ESR, fluorescence) and theoretical (MD simulations) approaches were applied. The data show that ceritinib, in contrast to imatinib, interacts more effectively with membranes significantly affecting various physico-chemical membrane parameters like membrane order and transmembrane permeation of polar solutes. The pronounced membrane impact of ceritinib can be explained by a strong affinity of the drug towards POPC which competes with the POPC-cholesterol interaction by that attenuating the ordering effect of cholesterol. The data are relevant for understanding putative toxic and cytotoxic side effects of these drugs such as the triggering of cell lysis or apoptosis.
Collapse
Affiliation(s)
- Markus Fischer
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Meike Luck
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Max Werle
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Alexander Vogel
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Mohammad Bashawat
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Kai Ludwig
- Freie Universität Berlin, Research Center for Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Fabeckstr. 36a, D-14195 Berlin, Germany
| | - Holger A Scheidt
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Peter Müller
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany.
| |
Collapse
|
12
|
Zhang C, Tian Z, Chen R, Rowan F, Qiu K, Sun Y, Guan JL, Diao J. Advanced imaging techniques for tracking drug dynamics at the subcellular level. Adv Drug Deliv Rev 2023; 199:114978. [PMID: 37385544 PMCID: PMC10527994 DOI: 10.1016/j.addr.2023.114978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application. In particular, the use of SRM to study drug delivery and kinetics at the subcellular level enables researchers to better study drugs' mechanisms of action and to assess the efficacy of their targets in vivo. The purpose of this paper is to review the recent advances in SRM and to highlight some of its applications in assessing subcellular drug dynamics.
Collapse
Affiliation(s)
- Chengying Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Fiona Rowan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
13
|
Sakamoto K, Kittikulsuth W, Miyako E, Steeve A, Ishimura R, Nakagawa S, Ago Y, Nishiyama A. The VIPR2-selective antagonist KS-133 changes macrophage polarization and exerts potent anti-tumor effects as a single agent and in combination with an anti-PD-1 antibody. PLoS One 2023; 18:e0286651. [PMID: 37405999 PMCID: PMC10321640 DOI: 10.1371/journal.pone.0286651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
We have previously demonstrated that KS-133 is a specific and potent antagonist of vasoactive intestinal peptide receptor 2 (VIPR2). We have also shown that vasoactive intestinal peptide-VIPR2 signaling affects the polarity and activation of tumor-associated macrophages, which is another strategy for cancer immunotherapy apart from the activation of effector T cells. In this study, we aimed to examine whether the selective blockade of VIPR2 by KS-133 changes the polarization of macrophages and induces anti-tumor effects. In the presence of KS-133, genetic markers indicative of tumor-aggressive M1-type macrophages were upregulated, and conversely, those of tumor-supportive M2-type macrophages were downregulated. Daily subcutaneous administration of KS-133 tended to suppress the growth of CT26 tumors (murine colorectal cancer-derived cells) implanted subcutaneously in Balb/c mice. To improve the pharmacological efficacy and reduce the number of doses, we examined a nanoformulation of KS-133 using the US Food and Drug Administration-approved pharmaceutical additive surfactant Cremophor® EL. KS-133 nanoparticles (NPs) were approximately 15 nm in size and stable at 4°C after preparation. Meanwhile, KS-133 was gradually released from the NPs as the temperature was increased. Subcutaneous administration of KS-133 NPs once every 3 days had stronger anti-tumor effects than daily subcutaneous administration of KS-133. Furthermore, KS-133 NPs significantly enhanced the pharmacological efficacy of an immune checkpoint-inhibiting anti-PD-1 antibody. A pharmacokinetic study suggested that the enhancement of anti-tumor activity was associated with improvement of the pharmacokinetic profile of KS-133 upon nanoformulation. Our data have revealed that specific blockade of VIPR2 by KS-133 has therapeutic potential for cancer both alone and in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research & Development Depertment, Ichimaru Pharcos Company Limited, Motosu, Gifu, Japan
| | - Wararat Kittikulsuth
- Depertment of Pharmacology, Faculty of Medcine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Akumwami Steeve
- Depertment of Pharmacology, Faculty of Medcine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Rika Ishimura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Shinsaku Nakagawa
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
- Laboratory of Biopharmaceutics, Osaka University, Suita, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| | - Yukio Ago
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Akira Nishiyama
- Depertment of Pharmacology, Faculty of Medcine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| |
Collapse
|
14
|
Lin Y, Jung H, Bulman CA, Ng J, Vinck R, O'Beirne C, Moser MS, Tricoche N, Peguero R, Li RW, Urban JF, Pape PL, Pagniez F, Moretto M, Weil T, Lustigman S, Cariou K, Mitreva M, Sakanari JA, Gasser G. Discovery of New Broad-Spectrum Anti-Infectives for Eukaryotic Pathogens Using Bioorganometallic Chemistry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546819. [PMID: 37425761 PMCID: PMC10327022 DOI: 10.1101/2023.06.28.546819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens including fungal infections. Since these diseases target the most vulnerable communities who are disadvantaged by health and socio-economic factors, new agents should be, if possible, easy-to-prepare to allow for commercialization based on their low cost. In this study, we show that simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and NTDs targeted for elimination by 2030. Overall, the discovery of these new compounds with broad-spectrum activity opens new avenues for the development of treatments for several current human infections, either caused by fungi or by parasites, including other NTDs, as well as newly emerging diseases. ONE-SENTENCE SUMMARY Simple derivatives of the well-known antifungal drug fluconazole were found to be highly effective in vivo against fungal infections, and also potent against the parasitic nematode Brugia, which causes lymphatic filariasis and against Trichuris, one of the soil-transmitted helminths that infects millions of people globally.
Collapse
|
15
|
Li Z, Zou J, Chen X. In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209529. [PMID: 36445169 DOI: 10.1002/adma.202209529] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Emerging as a potent anticancer treatment, subcellular targeted cancer therapy has drawn increasing attention, bringing great opportunities for clinical application. Here, two targeting strategies for four main subcellular organelles (mitochondria, lysosome, endoplasmic reticulum, and nucleus), including molecule- and nanomaterial (inorganic nanoparticles, micelles, organic polymers, and others)-based targeted delivery or therapeutic strategies, are summarized. Phototherapy, chemotherapy, radiotherapy, immunotherapy, and "all-in-one" combination therapy are among the strategies covered in detail. Such materials are constructed based on the specific properties and relevant mechanisms of organelles, enabling the elimination of tumors by inducing dysfunction in the corresponding organelles or destroying specific structures. The challenges faced by organelle-targeting cancer therapies are also summarized. Looking forward, a paradigm for organelle-targeting therapy with enhanced therapeutic efficacy compared to current clinical approaches is envisioned.
Collapse
Affiliation(s)
- Zheng Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
16
|
Rosenkranz AA, Slastnikova TA. Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics 2023; 15:pharmaceutics15030987. [PMID: 36986848 PMCID: PMC10055131 DOI: 10.3390/pharmaceutics15030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
17
|
Mahapatra KK, Patra S, Mishra SR, Behera BP, Patil S, Bhutia SK. Autophagy for secretory protein: Therapeutic targets in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:159-180. [PMID: 36707200 DOI: 10.1016/bs.apcsb.2022.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Autophagy, a classical cellular degradative catabolic process, also involves a functionally discrete non-degradative role in eukaryotic cells. It imparts critical regulatory function on conventional and unconventional protein secretion (degradative and secretory autophagy with distinct lysosomal degradation and extracellular expulsion, respectively) pathways. The N-amino terminal leader sequence containing proteins follows a conventional secretion pathway, while the leader-less proteins opt for secretory autophagy. The secretory autophagic process ensembles core autophagy machinery proteins, specifically ULK1/2, Beclin 1, LC3, and GABARAP, in coordination with Golgi re-assembly and stacking proteins (GRASPs). The secretory omegasomes fuse with the plasma membrane for the expulsion of cytosolic cargos to the extracellular environment. Alternatively, the secretory omegasomes also fuse with multi-vesicular bodies (MVBs) and harmonize ESCRTs (Complex I; TSG101) and Rab GTPase for their release to extracellular space. Autophagy has been associated with the secretion of diverse proteins involved in cellular signaling, inflammation, and carcinogenesis. Secreted proteins play an essential role in cancer by sustaining cell proliferation, inhibiting apoptosis, enhancing angiogenesis and metastasis, immune cell regulation, modulation of cellular energy metabolism, and resistance to anticancer drugs. The complexity of autophagy regulation during tumorigenesis is dependent on protein secretion pathways. Autophagy-regulated TOR-autophagy spatial coupling compartment complex energizes enhanced secretion of pro-inflammatory cytokines and leaderless proteins such as HMGB1. In conclusion, the chapter reviews the role of autophagy in regulating conventional and unconventional protein secretion pathways and its possible role in cancer.
Collapse
Affiliation(s)
- Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States.
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
18
|
Hughes KA, Misra B, Maghareh M, Bobbala S. Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. NANO RESEARCH 2023; 16:6974-6990. [PMID: 36685637 PMCID: PMC9840428 DOI: 10.1007/s12274-022-5267-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
Drug delivery has made tremendous advances in the last decade. Targeted therapies are increasingly common, with intracellular delivery highly impactful and sought after. Intracellular drug delivery systems have limitations due to imprecise and non-targeted release profiles. One way this can be addressed is through using stimuli-responsive soft nanoparticles, which contain materials with an organic backbone such as lipids and polymers. The choice of biomaterial is essential for soft nanoparticles to be responsive to internal or external stimuli. The nanoparticle must retain its integrity and payload in non-targeted physiological conditions while responding to particular intracellular environments where payload release is desired. Multiple internal and external factors could stimulate the intracellular release of drugs from nanoparticles. Internal stimuli include pH, oxidation, and enzymes, while external stimuli include ultrasound, light, electricity, and magnetic fields. Stimulatory responsive soft nanoparticulate systems specifically utilized to modulate intracellular delivery of drugs are explored in this review.
Collapse
Affiliation(s)
- Krystal A. Hughes
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Bishal Misra
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Maryam Maghareh
- Department of Clinical Pharmacy, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| |
Collapse
|
19
|
Nanoformulation of the K-Ras(G12D)-inhibitory peptide KS-58 suppresses colorectal and pancreatic cancer-derived tumors. Sci Rep 2023; 13:518. [PMID: 36627374 PMCID: PMC9832047 DOI: 10.1038/s41598-023-27825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Single amino acid mutations of Ras occur in 30% of human cancers. In particular, K-Ras(G12D) has been detected in the majority of intractable colorectal and pancreatic cancers. Although efforts to target K-Ras(G12D) are currently underway, no effective drugs are available. We previously found that the K-Ras(G12D)-inhibitory bicyclic peptide KS-58 exhibits antitumor activity against syngeneic colon and orthotopic grafted pancreatic tumors; however, pristine KS-58 is difficult to handle because of low water solubility and it requires frequent administration to obtain sufficient antitumor activity. In this study, we used a nanoformulation of KS-58 prepared with the highly biocompatible surfactant Cremophor® EL (CrEL) to improve water solubility and reduce the dosing frequency. Nanoformulations of KS-58 with CrEL dramatically improved its water solubility and increased its stability. Weekly intravenous administration of KS-58 nanoparticles (NPs) suppressed the growth of CT26 and PANC-1 cell-derived tumors in vivo, and fluorescent bioimaging indicated that the NP-encapsulated near-infrared fluorescent probe indocyanine green selectively accumulated in the tumor and was safely excreted through the kidneys following intravenous injection. Histopathological analysis of CT26 tumors and Western blotting of PANC-1 tumors revealed that KS-58 NPs reduced ERK phosphorylation, a downstream signal of K-Ras(G12D). Our results suggest that KS-58 NPs represent a novel therapeutic agent for treating colorectal and pancreatic cancers.
Collapse
|
20
|
Hopkins C, Javius-Jones K, Wang Y, Hong H, Hu Q, Hong S. Combinations of chemo-, immuno-, and gene therapies using nanocarriers as a multifunctional drug platform. Expert Opin Drug Deliv 2022; 19:1337-1349. [PMID: 35949105 DOI: 10.1080/17425247.2022.2112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cancer immunotherapies have created a new generation of therapeutics to employ the immune system to attack cancer cells. However, these therapies are typically based on biologics that are nonspecific and often exhibit poor tumor penetration and dose-limiting toxicities. Nanocarriers allow the opportunity to overcome these barriers as they have the capabilities to direct immunomodulating drugs to tumor sites via passive and active targeting, decreasing potential adverse effects from nonspecific targeting. In addition, nanocarriers can be multifunctionalized to deliver multiple cancer therapeutics in a single drug platform, offering synergistic potential from co-delivery approaches. AREAS COVERED This review focuses on the delivery of cancer therapeutics using emerging nanocarriers to achieve synergistic results via co-delivery of immune-modulating components (i.e. chemotherapeutics, monoclonal antibodies, and genes). EXPERT OPINION Nanocarrier-mediated delivery of combinatorial immunotherapy creates the opportunity to fine-tune drug release while achieving superior tumor targeting and tumor cell death, compared to free drug counterparts. As these nanoplatforms are constantly improved upon, combinatorial immunotherapy will afford the greatest benefit to treat an array of tumor types while inhibiting cancer evasion pathways.
Collapse
Affiliation(s)
- Caroline Hopkins
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Heejoo Hong
- Department of Clinical Pharmacology & Therapeutics, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Dunaway LS, Pollock JS. HDAC1: an environmental sensor regulating endothelial function. Cardiovasc Res 2022; 118:1885-1903. [PMID: 34264338 PMCID: PMC9239577 DOI: 10.1093/cvr/cvab198] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The histone deacetylases (HDACs) are a family of enzymes that catalyse lysine deacetylation of both histone and non-histone proteins. Here, we review, summarize, and provide perspectives on the literature regarding one such HDAC, HDAC1, in endothelial biology. In the endothelium, HDAC1 mediates the effects of external and environmental stimuli by regulating major endothelial functions such as angiogenesis, inflammatory signalling, redox homeostasis, and nitric oxide signalling. Angiogenesis is most often, but not exclusively, repressed by endothelial HDAC1. The regulation of inflammatory signalling is more complex as HDAC1 promotes or suppresses inflammatory signalling depending upon the environmental stimuli. HDAC1 is protective in models of atherosclerosis where loss of HDAC1 results in increased cytokine and cell adhesion molecule (CAM) abundance. In other models, HDAC1 promotes inflammation by increasing CAMs and repressing claudin-5 expression. Consistently, from many investigations, HDAC1 decreases antioxidant enzyme expression and nitric oxide production in the endothelium. HDAC1 decreases antioxidant enzyme expression through the deacetylation of histones and transcription factors, and also regulates nitric oxide production through regulating both the expression and activity of nitric oxide synthase 3. The HDAC1-dependent regulation of endothelial function through the deacetylation of both histone and non-histone proteins ultimately impacts whole animal physiology and health.
Collapse
Affiliation(s)
- Luke S Dunaway
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Kaul Genetics Building Room 802A, 720 20th Street South, Birmingham, AL 35233, USA
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Kaul Genetics Building Room 802A, 720 20th Street South, Birmingham, AL 35233, USA
| |
Collapse
|
22
|
Potential Stereoselective Binding of Trans-(±)-Kusunokinin and Cis-(±)-Kusunokinin Isomers to CSF1R. Molecules 2022; 27:molecules27134194. [PMID: 35807438 PMCID: PMC9268608 DOI: 10.3390/molecules27134194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/20/2023] Open
Abstract
Breast cancer cell proliferation and migration are inhibited by naturally extracted trans-(−)-kusunokinin. However, three additional enantiomers of kusunokinin have yet to be investigated: trans-(+)-kusunokinin, cis-(−)-isomer and cis-(+)-isomer. According to the results of molecular docking studies of kusunokinin isomers on 60 breast cancer-related proteins, trans-(−)-kusunokinin was the most preferable and active component of the trans-racemic mixture. Trans-(−)-kusunokinin targeted proteins involved in cell growth and proliferation, whereas the cis-(+)-isomer targeted proteins involved in metastasis. Trans-(−)-kusunokinin targeted CSF1R specifically, whereas trans-(+)-kusunokinin and both cis-isomers may have bound AKR1B1. Interestingly, the compound’s stereoisomeric effect may influence protein selectivity. CSF1R preferred trans-(−)-kusunokinin over trans-(+)-kusunokinin because the binding pocket required a ligand planar arrangement to form a π-π interaction with a selective Trp550. Because of its large binding pocket, EGFR exhibited no stereoselectivity. MD simulation revealed that trans-(−)-kusunokinin, trans-(+)-kusunokinin and pexidartinib bound CSF1R differently. Pexidartinib had the highest binding affinity, followed by trans-(−)-kusunokinin and trans-(+)-kusunokinin, respectively. The trans-(−)-kusunokinin-CSF1R complex was found to be stable, whereas trans-(+)-kusunokinin was not. Trans-(±)-kusunokinin, a potential racemic compound, could be developed as a selective CSF1R inhibitor when combined.
Collapse
|
23
|
Halder B, Dewangan S, Barik T, Mishra A, Dhiman R, Chatterjee S. Solid supported synthesis of unsymmetrical bi-functionalized ferrocenyl-rhodaminyl molecular system to explore phosgene, heavy metal ion sensing, and cell imaging properties. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021; 16:2605-2631. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring tumor disease worldwide. Breast cancer is currently managed by conventional chemotherapy, which is inadequate in curbing this heterogeneous disease and results in off-site toxic effects, suggesting effective treatment approaches with better therapeutic profiles are needed. This review, therefore, focuses on the recent advancements in delivering therapeutics to the target site using passive and/or active targeted nanodrug-delivery systems to ameliorate endolysosomal escape. In addition, recent strategies in targeting breast cancer stem cells are discussed. The role of naturally cell-secreted nanovesicles (exosomes) in the management of triple-negative breast cancer is also discussed.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore, 117559
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.,Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, 201308, Uttar Pradesh, India
| |
Collapse
|
25
|
VirPorters: Insights into the action of cationic and histidine-rich cell-penetrating peptides. Int J Pharm 2021; 611:121308. [PMID: 34800617 DOI: 10.1016/j.ijpharm.2021.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
The utilization of nanoparticles for the intracellular delivery of theranostic agents faces one substantial limitation. Sequestration in intracellular vesicles prevents them from reaching the desired location in the cytoplasm or nucleus to deliver their cargo. We investigated whether three different cell-penetrating peptides (CPPs), namely, octa-arginine R8, polyhistidine KH27K and histidine-rich LAH4, could promote cytosolic and/or nuclear transfer of unique model nanoparticles-pseudovirions derived from murine polyomavirus. Two types of CPP-modified pseudovirions that carry the luciferase reporter gene were created: VirPorters-IN with CPPs genetically attached to the capsid interior and VirPorters-EX with CPPs noncovalently associated with the capsid exterior. We tested their transduction ability by luciferase assay and monitored their presence in subcellular fractions. Our results confirmed the overall effect of CPPs on the intracellular destination of the particles and suggested that KH27K has the potential to improve the cytosolic release of pseudovirions. None of the VirPorters caused endomembrane damage detectable by the Galectin-3 assay. Remarkably, a noncovalent modification was required to promote high transduction of the reporter gene and cytosolic delivery of pseudovirions mediated by LAH4. Together, CPPs in different arrangements have demonstrated their potential to improve pseudovirion invasion into cells, and these findings could be useful for the development of other nanoparticle-based delivery systems.
Collapse
|
26
|
Nubi T, Adewole TS, Agunbiade TO, Osukoya OA, Kuku A. Purification and erythrocyte-membrane perturbing activity of a ketose-specific lectin from Moringa oleifera seeds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00650. [PMID: 34258240 PMCID: PMC8253949 DOI: 10.1016/j.btre.2021.e00650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022]
Abstract
This study purified a hemagglutinating protein (MoL) from Moringa oleifera seed, and investigated its hemolytic activity. Molecular weight and stability of MoL were also determined. Modification of some amino acid residues was carried out and the effect on MoL hemagglutinating activity determined. Other investigated parameters are the effects of temperature, concentration, incubation period, pH, and sugars on the protein's hemagglutinating and hemolytic activities. The native and subunit molecular weights were estimated as 30 and 27.5 kDa respectively. Hemagglutinating activity of MoL was slightly inhibited by fructose and sucrose, stable at temperature up to 90°C and within pH range of 2-4. Modification of tryptophan and arginine residues resulted in partial loss of hemagglutinating activity. The hemolytic activity of MoL was concentration, temperature, pH, and time-dependent. The study concluded that MoL showed hemolytic (membrane-perturbing) activity in moderate acidic conditions. This suggests its potential exploitation in improved intracellular delivery of bioactive compounds.
Collapse
Affiliation(s)
- Tolulope Nubi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University Ile-Ife, PMB 13, Nigeria
| | | | | | | | - Adenike Kuku
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University Ile-Ife, PMB 13, Nigeria
| |
Collapse
|
27
|
Acier A, Godard M, Gassiot F, Finetti P, Rubis M, Nowak J, Bertucci F, Iovanna JL, Tomasini R, Lécorché P, Jacquot G, Khrestchatisky M, Temsamani J, Malicet C, Vasseur S, Guillaumond F. LDL receptor-peptide conjugate as in vivo tool for specific targeting of pancreatic ductal adenocarcinoma. Commun Biol 2021; 4:987. [PMID: 34413441 PMCID: PMC8377056 DOI: 10.1038/s42003-021-02508-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Despite clinical advances in diagnosis and treatment, pancreatic ductal adenocarcinoma (PDAC) remains the third leading cause of cancer death, and is still associated with poor prognosis and dismal survival rates. Identifying novel PDAC-targeted tools to tackle these unmet clinical needs is thus an urgent requirement. Here we use a peptide conjugate that specifically targets PDAC through low-density lipoprotein receptor (LDLR). We demonstrate by using near-infrared fluorescence imaging the potential of this conjugate to specifically detect and discriminate primary PDAC from healthy organs including pancreas and from benign mass-forming chronic pancreatitis, as well as detect metastatic pancreatic cancer cells in healthy liver. This work paves the way towards clinical applications in which safe LDLR-targeting peptide conjugate promotes tumor-specific delivery of imaging and/or therapeutic agents, thereby leading to substantial improvements of the PDAC patient’s outcome. Acier et al. investigated a peptide cargo system, the Fc(A680)-VH4127, that targets PDAC through the LDLR cell-surface receptor. The Fc(A680)-VH4127 was found to specifically target spontaneous pancreatic tumors in KICmice, as well as metastatic pancreatic tumors in liver.
Collapse
Affiliation(s)
- Angélina Acier
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France.,Vect-Horus, Marseille, France
| | | | | | - Pascal Finetti
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Marion Rubis
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | | | - François Bertucci
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Juan L Iovanna
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Richard Tomasini
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | | | | | | | | | | | - Sophie Vasseur
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Fabienne Guillaumond
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France. .,CRCM U1068 - Pancreatic Cancer Team, 163 avenue de Luminy, Parc Scientifique de Luminy, Marseille, France.
| |
Collapse
|
28
|
Wattanapornprom W, Thammarongtham C, Hongsthong A, Lertampaiporn S. Ensemble of Multiple Classifiers for Multilabel Classification of Plant Protein Subcellular Localization. Life (Basel) 2021; 11:life11040293. [PMID: 33808227 PMCID: PMC8066735 DOI: 10.3390/life11040293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
The accurate prediction of protein localization is a critical step in any functional genome annotation process. This paper proposes an improved strategy for protein subcellular localization prediction in plants based on multiple classifiers, to improve prediction results in terms of both accuracy and reliability. The prediction of plant protein subcellular localization is challenging because the underlying problem is not only a multiclass, but also a multilabel problem. Generally, plant proteins can be found in 10–14 locations/compartments. The number of proteins in some compartments (nucleus, cytoplasm, and mitochondria) is generally much greater than that in other compartments (vacuole, peroxisome, Golgi, and cell wall). Therefore, the problem of imbalanced data usually arises. Therefore, we propose an ensemble machine learning method based on average voting among heterogeneous classifiers. We first extracted various types of features suitable for each type of protein localization to form a total of 479 feature spaces. Then, feature selection methods were used to reduce the dimensions of the features into smaller informative feature subsets. This reduced feature subset was then used to train/build three different individual models. In the process of combining the three distinct classifier models, we used an average voting approach to combine the results of these three different classifiers that we constructed to return the final probability prediction. The method could predict subcellular localizations in both single- and multilabel locations, based on the voting probability. Experimental results indicated that the proposed ensemble method could achieve correct classification with an overall accuracy of 84.58% for 11 compartments, on the basis of the testing dataset.
Collapse
Affiliation(s)
- Warin Wattanapornprom
- Applied Computer Science Program, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
| | - Chinae Thammarongtham
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Tha Kham, Bang Khun Thian, Bangkok 10150, Thailand; (C.T.); (A.H.)
| | - Apiradee Hongsthong
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Tha Kham, Bang Khun Thian, Bangkok 10150, Thailand; (C.T.); (A.H.)
| | - Supatcha Lertampaiporn
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Tha Kham, Bang Khun Thian, Bangkok 10150, Thailand; (C.T.); (A.H.)
- Correspondence:
| |
Collapse
|
29
|
Ma YS, Xin R, Yang XL, Shi Y, Zhang DD, Wang HM, Wang PY, Liu JB, Chu KJ, Fu D. Paving the way for small-molecule drug discovery. Am J Transl Res 2021; 13:853-870. [PMID: 33841626 PMCID: PMC8014367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins, which have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. As commonly used medications, small-molecule drugs can be taken orally, which enter cells to act on intracellular targets. These characteristics make small-molecule drugs promising candidates for drug development, and they are increasingly favored in the pharmaceutical market. Despite the advancements in molecular genetics and effective new processes in drug development, the drugs currently used in clinical practice are inadequate due to their poor efficacy or severe side effects. Therefore, developing new safe and efficient drugs is a top priority for disease control and curing.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Kai-Jian Chu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical UniversityShanghai 200438, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| |
Collapse
|