1
|
Prashar N, Mohammed SB, Raja NS, Mohideen HS. Rerouting therapeutic peptides and unlocking their potential against SARS-CoV2. 3 Biotech 2025; 15:116. [PMID: 40191455 PMCID: PMC11971104 DOI: 10.1007/s13205-025-04270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
The COVID-19 pandemic highlighted the potential of peptide-based therapies as an alternative to traditional pharmaceutical treatments for SARS-CoV-2 and its variants. Our review explores the role of therapeutic peptides in modulating immune responses, inhibiting viral entry, and disrupting replication. Despite challenges such as stability, bioavailability, and the rapid mutation of the virus, ongoing research and clinical trials show that peptide-based treatments are increasingly becoming integral to future viral outbreak responses. Advancements in computational modelling methods in combination with artificial intelligence will enable mass screening of therapeutic peptides and thereby, comprehending a peptide repurposing strategy similar to the small molecule repurposing. These findings suggest that peptide-based therapies play a critical and promising role in future pandemic preparedness and outbreak management.
Collapse
Affiliation(s)
- Namrata Prashar
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Saharuddin Bin Mohammed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - N. S. Raja
- Deparmtent of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Habeeb Shaik Mohideen
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| |
Collapse
|
2
|
Kaushal N, Baranwal M. Computational insights in design of Crimean-Congo hemorrhagic fever virus conserved immunogenic nucleoprotein peptides containing multiple epitopes. Biotechnol Appl Biochem 2025; 72:498-512. [PMID: 39402918 DOI: 10.1002/bab.2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 04/09/2025]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to Nairoviridae family and has tripartite RNA genome. It is endemic in various countries of Asia, Africa, and Europe and is primarily transmitted by Hyalomma ticks but nosocomial transmission also been reported. Vaccines for CCHF are in early phase of clinical trial; therefore, this work is centered on identification of potential immunogenic peptide as vaccine candidates with application of different immunoinformatics approaches. Eleven conserved (>90%) peptides of CCHFV nucleoprotein were selected for CD8+ T-cell (NetMHCpan 4.1b and NetCTLpan 1.1 server) and CD4+ T-cell (NetMHCIIpan-4.0 server and Tepitool) epitope prediction. Three peptides containing multiple CD8+ and CD4+ T-cell and B-cell epitopes were identified on basis of consensus prediction approach. Peptides displayed good antigenicity score of 0.45-0.68 and predicted to bind with diverse human leukocyte antigen (HLA) alleles. Molecular docking was performed with epitopes to HLA and HLA-epitopes complex to T-cell receptor (TCR). In most of the cases, docked complex of HLA-epitope and HLA-epitopes-TCR have the binding energy close to respective natural bound peptide complex with HLA and TCR. Molecular dynamic simulation also revealed that HLA-peptide complexes have minimum fluctuation and deviation than HLA-peptide-TCR docked over 50 ns simulation run. Considering these findings, identified peptides can serve as potential vaccine candidates for CCHFV disease.
Collapse
Affiliation(s)
- Neha Kaushal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
3
|
Gurvich R, Markel G, Tanoli Z, Meirson T. Peptriever: a Bi-Encoder approach for large-scale protein-peptide binding search. Bioinformatics 2024; 40:btae303. [PMID: 38710496 PMCID: PMC11112044 DOI: 10.1093/bioinformatics/btae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
MOTIVATION Peptide therapeutics hinge on the precise interaction between a tailored peptide and its designated receptor while mitigating interactions with alternate receptors is equally indispensable. Existing methods primarily estimate the binding score between protein and peptide pairs. However, for a specific peptide without a corresponding protein, it is challenging to identify the proteins it could bind due to the sheer number of potential candidates. RESULTS We propose a transformers-based protein embedding scheme in this study that can quickly identify and rank millions of interacting proteins. Furthermore, the proposed approach outperforms existing sequence- and structure-based methods, with a mean AUC-ROC and AUC-PR of 0.73. AVAILABILITY AND IMPLEMENTATION Training data, scripts, and fine-tuned parameters are available at https://github.com/RoniGurvich/Peptriever. The proposed method is linked with a web application available for customized prediction at https://peptriever.app/.
Collapse
Affiliation(s)
- Roni Gurvich
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva 49100, Israel
| | - Gal Markel
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva 49100, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Tomer Meirson
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva 49100, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| |
Collapse
|
4
|
Ramirez-Labrada A, Santiago L, Pesini C, Arrieta M, Arias M, Calvo Pérez A, Ciulla MG, Forouharshad M, Pardo J, Gálvez EM, Gelain F. Multiparametric in vitro and in vivo analysis of the safety profile of self-assembling peptides. Sci Rep 2024; 14:4395. [PMID: 38388659 PMCID: PMC10883997 DOI: 10.1038/s41598-024-54051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Self-assembling peptides (SAPs) have gained significant attention in biomedicine because of their unique properties and ability to undergo molecular self-assembly driven by non-covalent interactions. By manipulating their composition and structure, SAPs can form well-ordered nanostructures with enhanced selectivity, stability and biocompatibility. SAPs offer advantages such as high chemical and biological diversity and the potential for functionalization. However, studies concerning its potentially toxic effects are very scarce, a limitation that compromises its potential translation to humans. This study investigates the potentially toxic effects of six different SAP formulations composed of natural amino acids designed for nervous tissue engineering and amenable to ready cross-linking boosting their biomechanical properties. All methods were performed in accordance with the relevant guidelines and regulations. A wound-healing assay was performed to evaluate how SAPs modify cell migration. The results in vitro demonstrated that SAPs did not induce genotoxicity neither skin sensitization. In vivo, SAPs were well-tolerated without any signs of acute systemic toxicity. Interestingly, SAPs were found to promote the migration of endothelial, macrophage, fibroblast, and neuronal-like cells in vitro, supporting a high potential for tissue regeneration. These findings contribute to the development and translation of SAP-based biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Ariel Ramirez-Labrada
- Immunotherapy, Cytotoxicity, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.
- Nanotoxicology and Immunotoxicology Unit (UNATI), Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain.
| | | | - Cecilia Pesini
- Immunotherapy, Cytotoxicity, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| | - Marta Arrieta
- WorldPathol Global United S.A. (WGUSA), Zaragoza, Spain
| | - Maykel Arias
- Immunotherapy, Cytotoxicity, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| | - Adanays Calvo Pérez
- Immunotherapy, Cytotoxicity, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Maria Gessica Ciulla
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Mahdi Forouharshad
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Julian Pardo
- Immunotherapy, Cytotoxicity, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Eva M Gálvez
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Fabrizio Gelain
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy.
- Tissue Engineering Unit-ISBREMIT-IRCCS Casa Sollievo Della Sofferenza, Via Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
5
|
Florio D, Marasco D. Could Targeting NPM1c+ Misfolding Be a Promising Strategy for Combating Acute Myeloid Leukemia? Int J Mol Sci 2024; 25:811. [PMID: 38255885 PMCID: PMC10815591 DOI: 10.3390/ijms25020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of leukemic cells. Among the different subtypes, the group "AML with gene mutations" includes the variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are the most frequent (~30-35% of AML adult patients and less in pediatric ones) and occur predominantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of 2-12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+. Many investigations demonstrated that interfering with the cellular location and oligomerization status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus, and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these conformational features, novel therapeutic strategies are proposed that rely on the induction of the selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small molecules able to enhance amyloid aggregation and targeting selectively AML-NPM1c+ mutations.
Collapse
Affiliation(s)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
6
|
Koçkaya ES, Can H, Yaman Y, Ün C. In silico discovery of epitopes of gag and env proteins for the development of a multi-epitope vaccine candidate against Maedi Visna Virus using reverse vaccinology approach. Biologicals 2023; 84:101715. [PMID: 37793308 DOI: 10.1016/j.biologicals.2023.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Maedi Visna Virus (MVV) causes a chronic viral disease in sheep. Since there is no specific therapeutic drug that targets MVV, development of a vaccine against the MVV is inevitable. This study aimed to analyze the gag and env proteins as vaccine candidate proteins and to identify epitopes in these proteins. In addition, it was aimed to construct a multi-epitope vaccine candidate. According to the obtained results, the gag protein was detected to be more conserved and had a higher antigenicity value. Also, the number of alpha helix in the secondary structure was higher and transmembrane helices were not detected. Although many B cell and MHC-I/II epitopes were predicted, only 19 of them were detected to have the properties of antigenic, non-allergenic, non-toxic, soluble, and non-hemolytic. Of these epitopes, five were remarkable due to having the highest antigenicity value. However, the final multi-epitope vaccine was constructed with 19 epitopes. A strong affinity was shown between the final multi-epitope vaccine and TLR-2/4. In conclusion, the gag protein was a better antigen. However, both proteins had epitopes with high antigenicity value. Also, the final multi-epitope vaccine construct had a potential to be used as a peptide vaccine due to its immuno-informatics results.
Collapse
Affiliation(s)
- Ecem Su Koçkaya
- Ege University Faculty of Science Department of Biology Molecular Biology Section, İzmir, Türkiye
| | - Hüseyin Can
- Ege University Faculty of Science Department of Biology Molecular Biology Section, İzmir, Türkiye
| | - Yalçın Yaman
- Siirt University Faculty of Veterinary Medicine, Department of Genetics, Siirt, Türkiye
| | - Cemal Ün
- Ege University Faculty of Science Department of Biology Molecular Biology Section, İzmir, Türkiye.
| |
Collapse
|
7
|
Yusuf M, Destiarani W, Widayat W, Yosua Y, Gumilar G, Tanudireja AS, Rohmatulloh FG, Maulana FA, Baroroh U, Hardianto A, Maharani R, Nurainy N, Wijayadikusumah AR, Ristandi RB, Atmosukarto IIC, Subroto T. Coarse-grained molecular dynamics-guided immunoinformatics to explain the binder and non-binder classification of Cytotoxic T-cell epitope for SARS-CoV-2 peptide-based vaccine discovery. PLoS One 2023; 18:e0292156. [PMID: 37796941 PMCID: PMC10553366 DOI: 10.1371/journal.pone.0292156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Epitope-based peptide vaccine can elicit T-cell immunity against SARS-CoV-2 to clear the infection. However, finding the best epitope from the whole antigen is challenging. A peptide screening using immunoinformatics usually starts from MHC-binding peptide, immunogenicity, cross-reactivity with the human proteome, to toxicity analysis. This pipeline classified the peptides into three categories, i.e., strong-, weak-, and non-binder, without incorporating the structural aspect. For this reason, the molecular detail that discriminates the binders from non-binder is interesting to be investigated. In this study, five CTL epitopes against HLA-A*02:01 were identified from the coarse-grained molecular dynamics-guided immunoinformatics screening. The strong binder showed distinctive activities from the non-binder in terms of structural and energetic properties. Furthermore, the second residue from the nonameric peptide was most important in the interaction with HLA-A*02:01. By understanding the nature of MHC-peptide interaction, we hoped to improve the chance of finding the best epitope for a peptide vaccine candidate.
Collapse
Affiliation(s)
- Muhammad Yusuf
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Wanda Destiarani
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Wahyu Widayat
- Faculty of Pharmacy, Pharmaceutical Biology Science, Universitas Mulawarman, Samarinda, East Kalimantan, Indonesia
| | - Yosua Yosua
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Gilang Gumilar
- Research Center for Electronics, National Research and Innovation Agency Republic of Indonesia (BRIN), Bandung, West Java, Indonesia
| | - Angelica Shalfani Tanudireja
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Fauzian Giansyah Rohmatulloh
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Farhan Azhwin Maulana
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Umi Baroroh
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Department of Biotechnology, Indonesian School of Pharmacy, Bandung, West Java, Indonesia
| | - Ari Hardianto
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Rani Maharani
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Neni Nurainy
- Department of Research and Development, PT Bio Farma, Bandung, West Java, Indonesia
| | | | - Ryan B. Ristandi
- West Java Provincial Reference Laboratory, Bandung, West Java, Indonesia
| | | | - Toto Subroto
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| |
Collapse
|
8
|
Saravanakumar S, Chatterjee J. The Use of In Silico Methods to Identify and Assess Antigenic Regions Suitable for the Development of Peptide-based Pan-viral Vaccines. Altern Lab Anim 2023; 51:313-322. [PMID: 37548284 DOI: 10.1177/02611929231193416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The constant evolution of pathogenic viral variants and the emergence of new viruses have reinforced the need for broad-spectrum vaccines to combat such threats. The spread of new viral variants leading to epidemic and pandemic infection can be effectively contained, if broad-spectrum vaccines effective against the newer viral variants are readily available. The development of broad-spectrum, pan-neutralising antibodies against viruses which, in general terms, are very antigenically different - such as HIV, influenza virus and paramyxoviruses - has been reported in the literature. The amino acid sequences used to generate a range of approved recombinant anti-viral vaccines were analysed by using in silico methods, with the aim of identifying highly antigenic peptide regions that may be suitable for the development of broad-spectrum peptide-based anti-viral vaccines. This was achieved through the use of open-source data, an algorithm-driven probability matrix, and published in silico prediction tools (SVMTriP, IEDB-AR, VaxiJen 2.0, AllergenFP v. 1.0, AllerTOP v. 2.0, ToxinPred and ProtParam) to evaluate antigenicity, MHC-I and MHC-II binding potential, immunogenicity, allergenicity, toxicity and physicochemical properties. We report a pan-antigenic peptide region with strong affinity for MHC-I and MHC-II, and good immunogenic potential. According to the output from the relevant in silico tools, the peptide was predicted to be non-toxic, non-allergic and to possess the desired physicochemical properties for potentially successful vaccine production. With further investigation and optimisation, this peptide could be considered for use in the development of a broad-spectrum anti-viral vaccine that may protect against emerging new viruses. Our approach of using in silico methods to identify candidate antigenic peptides with the desired physicochemical properties could potentially circumvent the use of some animal studies for peptide vaccine candidate evaluation.
Collapse
|
9
|
Miles S, Dematteis S, Mourglia-Ettlin G. Experimental cystic echinococcosis as a proof of concept for the development of peptide-based vaccines following a novel rational workflow. Biologicals 2023; 82:101684. [PMID: 37201271 DOI: 10.1016/j.biologicals.2023.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 03/14/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Vaccines are among the most important advances in medicine throughout the human history. However, conventional vaccines exhibit several drawbacks in terms of design and production costs. Peptide-based vaccines are attractive alternatives, since they can be designed mainly in silico, can be produced cheaply and safely, and are able to induce immune responses exclusively towards protective epitopes. Yet, a proper peptide design is needed, not only to generate peptide-specific immune responses, but also for them to recognize the native protein in the occurrence of a natural infection. Herein, we propose a rational workflow for developing peptide-based vaccines including novel steps that assure the cross-recognition of native proteins. In this regard, we increased the probability of generating efficient antibodies through the selection of linear B-cell epitopes free of post-translational modifications followed by analyzing the 3D-structure similarity between the peptide in-solution vs. within its parental native protein. As a proof of concept, this workflow was applied to a set of seven previously suggested potential protective antigens against the infection by Echinococcus granulosus sensu lato. Finally, two peptides were obtained showing the capacity to induce specific antibodies able to exert anti-parasite activities in different in vitro settings, as well as to provide significant protection in the murine model of secondary echinococcosis.
Collapse
Affiliation(s)
- Sebastian Miles
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la Republica, Uruguay
| | - Sylvia Dematteis
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Gustavo Mourglia-Ettlin
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.
| |
Collapse
|
10
|
Development of Next Generation Vaccines against SARS-CoV-2 and Variants of Concern. Viruses 2023; 15:v15030624. [PMID: 36992333 PMCID: PMC10057551 DOI: 10.3390/v15030624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
SARS-CoV-2 has caused the COVID-19 pandemic, with over 673 million infections and 6.85 million deaths globally. Novel mRNA and viral-vectored vaccines were developed and licensed for global immunizations under emergency approval. They have demonstrated good safety and high protective efficacy against the SARS-CoV-2 Wuhan strain. However, the emergence of highly infectious and transmissible variants of concern (VOCs) such as Omicron was associated with considerable reductions in the protective efficacy of the current vaccines. The development of next-generation vaccines that could confer broad protection against both the SARS-CoV-2 Wuhan strain and VOCs is urgently needed. A bivalent mRNA vaccine encoding the Spike proteins of both the SARS-CoV-2 Wuhan strain and the Omicron variant has been constructed and approved by the US FDA. However, mRNA vaccines are associated with instability and require an extremely low temperature (−80 °C) for storage and transportation. They also require complex synthesis and multiple chromatographic purifications. Peptide-based next-generation vaccines could be developed by relying on in silico predictions to identify peptides specifying highly conserved B, CD4+ and CD8+ T cell epitopes to elicit broad and long-lasting immune protection. These epitopes were validated in animal models and in early phase clinical trials to demonstrate immunogenicity and safety. Next-generation peptide vaccine formulations could be developed to incorporate only naked peptides, but they are costly to synthesize and production would generate extensive chemical waste. Continual production of recombinant peptides specifying immunogenic B and T cell epitopes could be achieved in hosts such as E. coli or yeast. However, recombinant protein/peptide vaccines require purification before administration. The DNA vaccine might serve as the most effective next-generation vaccine for low-income countries, since it does not require an extremely low temperature for storage or need extensive chromatographic purification. The construction of recombinant plasmids carrying genes specifying highly conserved B and T cell epitopes meant that vaccine candidates representing highly conserved antigenic regions could be rapidly developed. Poor immunogenicity of DNA vaccines could be overcome by the incorporation of chemical or molecular adjuvants and the development of nanoparticles for effective delivery.
Collapse
|
11
|
Jamaledin R, Sartorius R, Di Natale C, Onesto V, Manco R, Mollo V, Vecchione R, De Berardinis P, Netti PA. PLGA microparticle formulations for tunable delivery of a nano-engineered filamentous bacteriophage-based vaccine: in vitro and in silico-supported approach. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023:1-16. [PMID: 36687278 PMCID: PMC9838389 DOI: 10.1007/s40097-022-00519-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Bacteriophages have attracted great attention in the bioengineering field in diverse research areas from tissue engineering to therapeutic and clinical applications. Recombinant filamentous bacteriophage, carrying multiple copies of foreign peptides on protein capsid has been successfully used in the vaccine delivery setting, even if their plasma instability and degradation have limited their use on the pharmaceutical market. Encapsulation techniques in polymeric materials can be applied to preserve bacteriophage activity, extend its half-life, and finely regulate their release in the target environment. The main goal of this study was to provide tunable formulations of the bacteriophage encapsulated in polymeric microparticles (MPs). We used poly (lactic-co-glycolic-acid) as a biocompatible and biodegradable polymer with ammonium bicarbonate as a porogen to encapsulate bacteriophage expressing OVA (257-264) antigenic peptide. We demonstrate that nano-engineered fdOVA bacteriophages encapsulated in MPs preserve their structure and are immunologically active, inducing a strong immune response towards the delivered peptide. Moreover, MP encapsulation prolongs bacteriophage stability over time also at room temperature. Additionally, in this study, we show the ability of in silico-supported approach to predict and tune the release of bacteriophages. These results lay the framework for a versatile bacteriophage-based vaccine delivery system that could successfully generate robust immune responses in a sustained manner, to be used as a platform against cancer and new emerging diseases. Graphical abstract Synopsis: administration of recombinant bacteriophage-loaded PLGA microparticles for antigen delivery. PLGA microparticles release the bacteriophages, inducing activation of dendritic cells and enhancing antigen presentation and specific T cell response. Bacteriophage-encapsulated microneedles potentially can be administered into human body and generate robust immune responses.
Collapse
Affiliation(s)
- Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King’s Buildings, Edinburgh, EH9 3JL, UK
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 80131 Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre On Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Roberta Manco
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 80131 Naples, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre On Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Susithra Priyadarshni M, Isaac Kirubakaran S, Harish MC. In silico approach to design a multi-epitopic vaccine candidate targeting the non-mutational immunogenic regions in envelope protein and surface glycoprotein of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:12948-12963. [PMID: 34528491 PMCID: PMC8477437 DOI: 10.1080/07391102.2021.1977702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The novel corona virus (COVID-19) is a causative agent for severe acute respiratory syndrome (SARS-CoV-2) and responsible for the current human pandemic situation which has caused global social and economic commotion. The currently available vaccines use whole viruses whereas there is scope for peptide based vaccines. Thus, the global raise in statistics of this infection at an alarming rate evoked us to determine a novel and effective vaccine candidate against SARS-CoV-2. To find the potential vaccine candidate targets, immunoinformatics approaches were used to analyze the mutations in the envelope protein and surface glycoprotein and determine the conserved region; further specific T-cell epitopes VSLVKPSFY, SLVKPSFYV, RVKNLNSSR, SEETGTLIV, LVKPSFYVY, LTDEMIAQY, YLQPRTFLL, RLFRKSNLK, SPRRARSVA, AEIRASANL, TLLALHRSY, YSRVKNLNS and FELLHAPAT and B-cells epitopes TLAILTALRLCAYCCN and AGTITSGWTFGAGAAL were identified. The 3 D structure of epitope was predicted, refined and validated. The molecular docking analysis of multi-epitope vaccine candidates with TLR receptors, predicted effective binding. Overall, using bioinformatics approach this multi-epitopic target facilitates the proof of concept for SARS-CoV-2 conserved epitopic vaccine design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - S. Isaac Kirubakaran
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, KS, USA
| | - M. C. Harish
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India,CONTACT M. C. Harish Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore632115, India
| |
Collapse
|
13
|
Tripathi AK, Vishwanatha JK. Role of Anti-Cancer Peptides as Immunomodulatory Agents: Potential and Design Strategy. Pharmaceutics 2022; 14:pharmaceutics14122686. [PMID: 36559179 PMCID: PMC9781574 DOI: 10.3390/pharmaceutics14122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
The usage of peptide-based drugs to combat cancer is gaining significance in the pharmaceutical industry. The collateral damage caused to normal cells due to the use of chemotherapy, radiotherapy, etc. has given an impetus to the search for alternative methods of cancer treatment. For a long time, antimicrobial peptides (AMPs) have been shown to display anticancer activity. However, the immunomodulatory activity of anti-cancer peptides has not been researched very extensively. The interconnection of cancer and immune responses is well-known. Hence, a search and design of molecules that can show anti-cancer and immunomodulatory activity can be lead molecules in this field. A large number of anti-cancer peptides show good immunomodulatory activity by inhibiting the pro-inflammatory responses that assist cancer progression. Here, we thoroughly review both the naturally occurring and synthetic anti-cancer peptides that are reported to possess both anti-cancer and immunomodulatory activity. We also assess the structural and biophysical parameters that can be utilized to improve the activity. Both activities are mostly reported by different groups, however, we discuss them together to highlight their interconnection, which can be used in the future to design peptide drugs in the field of cancer therapeutics.
Collapse
|
14
|
Wang Y, Ling L, Zhang Z, Marin-Lopez A. Current Advances in Zika Vaccine Development. Vaccines (Basel) 2022; 10:vaccines10111816. [PMID: 36366325 PMCID: PMC9694033 DOI: 10.3390/vaccines10111816] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV), an emerging arthropod-borne flavivirus, was first isolated in Uganda in 1947 from monkeys and first detected in humans in Nigeria in 1952; it has been associated with a dramatic burden worldwide. Since then, interventions to reduce the burden of ZIKV infection have been mainly restricted to mosquito control, which in the end proved to be insufficient by itself. Hence, the situation prompted scientists to increase research on antivirals and vaccines against the virus. These efforts are still ongoing as the pathogenesis and immune evasion mechanisms of ZIKV have not yet been fully elucidated. Understanding the viral disease mechanism will provide a better landscape to develop prophylactic and therapeutic strategies against ZIKV. Currently, no specific vaccines or drugs have been approved for ZIKV. However, some are undergoing clinical trials. Notably, different platforms have been evaluated for the design of vaccines, including DNA, mRNA, viral vectors, virus-like particles (VLPs), inactivated virus, live attenuated virus, peptide and protein-based vaccines, passive immunizations by using monoclonal antibodies (MAbs), and vaccines that target vector-derived antigens. These vaccines have been shown to induce specific humoral and cellular immune responses and reduce viremia and viral RNA titers, both in vitro and in vivo. This review provides a comprehensive summary of current advancements in the development of vaccines against Zika virus.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Inspection and Quarantine Technology Communication, Shanghai Customs College, Shanghai 201204, China
- Correspondence:
| | - Lin Ling
- Department of Inspection and Quarantine Technology Communication, Shanghai Customs College, Shanghai 201204, China
| | - Zilei Zhang
- Department of Inspection and Quarantine Technology Communication, Shanghai Customs College, Shanghai 201204, China
| | - Alejandro Marin-Lopez
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA
| |
Collapse
|
15
|
Krut' VG, Chuvpilo SA, Astrakhantseva IV, Kozlovskaya LI, Efimov GA, Kruglov AA, Drutskaya MS, Nedospasov SA. Will Peptides Help to Stop COVID-19? BIOCHEMISTRY (MOSCOW) 2022; 87:590-604. [PMID: 36154880 PMCID: PMC9282900 DOI: 10.1134/s0006297922070021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Peptides are widely used for the diagnostics, prevention, and therapy of certain human diseases. How useful can they be for the disease caused by the SARS-CoV-2 coronavirus? In this review, we discuss the possibility of using synthetic and recombinant peptides and polypeptides for prevention of COVID-19 via blocking the interaction between the virus and its main receptor ACE2, as well as components of antiviral vaccines, in particular, against new emerging virus variants.
Collapse
Affiliation(s)
- Viktoriya G Krut'
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodar Krai, 354340, Russia
| | - Sergei A Chuvpilo
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodar Krai, 354340, Russia
| | - Irina V Astrakhantseva
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodar Krai, 354340, Russia
| | - Liubov I Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, 108819, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia
| | - Grigory A Efimov
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Andrei A Kruglov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- German Rheumatism Research Center (DRFZ), Leibniz Institute, Berlin, 10117, Germany
| | - Marina S Drutskaya
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodar Krai, 354340, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergei A Nedospasov
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodar Krai, 354340, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
16
|
Sukaina M. Emergence of Omicron BA.1 and BA.2 variants and concern over vaccine breakthrough infection. Ann Med Surg (Lond) 2022; 79:103941. [PMID: 35692969 PMCID: PMC9167681 DOI: 10.1016/j.amsu.2022.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
The COVID-19 pandemic since 2020 created havoc across the globe. This led to the establishment of effective vaccines to mitigate the virus. Several vaccines are developed to create immunity amongst the population. However, due to emerging variants of SARS-CoV-2, despite a double dose of vaccines, people have still infected that termed vaccine breakthrough infection. This paper aims to highlight the recent re-surging massive outbreak of COVID-19 in China despite mass vaccination and, discuss the issue of vaccine breakthrough infection, possible causes, and recommendations to enhance immunity and curb the transmission.
Collapse
|
17
|
Patil PJ, Sutar SS, Usman M, Patil DN, Dhanavade MJ, Shehzad Q, Mehmood A, Shah H, Teng C, Zhang C, Li X. Exploring bioactive peptides as potential therapeutic and biotechnology treasures: A contemporary perspective. Life Sci 2022; 301:120637. [PMID: 35568229 DOI: 10.1016/j.lfs.2022.120637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
Abstract
In preceding years, bioactive peptides (BAPs) have piqued escalating attention owing to their multitudinous biological features. To date, many potential BAPs exhibiting anti-cancer activities have been documented; yet, obstacles such as their safety profiles and consumer acceptance continue to exist. Moreover, BAPs have been discovered to facilitate the suppression of Coronavirus Disease 2019 (CoVID-19) and maybe ideal for treating the CoVID-19 infection, as stated by published experimental findings, but their widespread knowledge is scarce. Likewise, there is a cornucopia of BAPs possessing neuroprotective effects that mend neurodegenerative diseases (NDs) by regulating gut microbiota, but they remain a subject of research interest. Additionally, a plethora of researchers have attempted next-generation approaches based on BAPs, but they need scientific attention. The text format of this critical review is organized around an overview of BAPs' versatility and diverse bio functionalities with emphasis on recent developments and novelties. The review is alienated into independent sections, which are related to either BAPs based disease management strategies or next-generation BAPs based approaches. BAPs based anti-cancer, anti-CoVID-19, and neuroprotective strategies have been explored, which may offer insights that could help the researchers and industries to find an alternate regimen against the three aforementioned fatal diseases. To the best of our knowledge, this is the first review that has systematically discussed the next-generation approaches in BAP research. Furthermore, it can be concluded that the BAPs may be optimal for the management of cancer, CoVID-19, and NDs; nevertheless, experimental and preclinical studies are crucial to validate their therapeutic benefits.
Collapse
Affiliation(s)
- Prasanna J Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China
| | - Shubham S Sutar
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004, India
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China
| | - Devashree N Patil
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004, India
| | - Maruti J Dhanavade
- Department of Microbiology, Bharati Vidyapeeth's Dr. Patangrao Kadam Mahavidyalaya, Sangli, Maharashtra 416416, India
| | - Qayyum Shehzad
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Haroon Shah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
18
|
Bagwe PV, Bagwe PV, Ponugoti SS, Joshi SV. Peptide-Based Vaccines and Therapeutics for COVID-19. Int J Pept Res Ther 2022; 28:94. [PMID: 35463185 PMCID: PMC9017722 DOI: 10.1007/s10989-022-10397-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been prevalent in the humans since 2019 and has given rise to a pandemic situation. With the discovery and ongoing use of drugs and vaccines against SARS-CoV-2, there is still no surety of its complete suppression of this disease or if there is a need for additional booster doses. There is an urgent need for alternative treatment strategies against COVID-19. Peptides and peptidomimetics have several advantages as therapeutic agents because of their target selectivity, better interactions, and lower toxicity. Minor structural alterations to peptides can help prevent their fast metabolism and provide long-action. This comprehensive review provides an overview of different peptide-based vaccines and therapeutics against SARS-CoV-2. It discusses the design and mechanism of action of the peptide-based vaccines, peptide immunomodulators, anti-inflammatory agents, and peptides as entry inhibitors of SARS-CoV-2. Moreover, the mechanism of action, sequences and current clinical trial studies are also summarized. The review also discusses the future aspects of peptide-based vaccines and therapeutics for COVID-19. Graphical Abstract
Collapse
Affiliation(s)
- Pritam V. Bagwe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019 India
| | - Priyal V. Bagwe
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341 USA
| | - Sai Srinivas Ponugoti
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019 India
| | - Shreerang V. Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019 India
| |
Collapse
|
19
|
Biswas S, Dey S, Chatterjee S, Nandy A. Combatting future variants of SARS-CoV-2 using an in-silico peptide vaccine approach by targeting the spike protein. Med Hypotheses 2022; 161:110810. [PMID: 35221449 PMCID: PMC8863349 DOI: 10.1016/j.mehy.2022.110810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 02/07/2023]
|
20
|
Methodological advances in the design of peptide-based vaccines. Drug Discov Today 2022; 27:1367-1380. [DOI: 10.1016/j.drudis.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
|
21
|
Sadremomtaz A, Al-Dahmani ZM, Ruiz-Moreno AJ, Monti A, Wang C, Azad T, Bell JC, Doti N, Velasco-Velázquez MA, de Jong D, de Jonge J, Smit J, Dömling A, van Goor H, Groves MR. Synthetic Peptides That Antagonize the Angiotensin-Converting Enzyme-2 (ACE-2) Interaction with SARS-CoV-2 Receptor Binding Spike Protein. J Med Chem 2022; 65:2836-2847. [PMID: 34328726 PMCID: PMC8353989 DOI: 10.1021/acs.jmedchem.1c00477] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 12/23/2022]
Abstract
The SARS-CoV-2 viral spike protein S receptor-binding domain (S-RBD) binds ACE2 on host cells to initiate molecular events, resulting in intracellular release of the viral genome. Therefore, antagonists of this interaction could allow a modality for therapeutic intervention. Peptides can inhibit the S-RBD:ACE2 interaction by interacting with the protein-protein interface. In this study, protein contact atlas data and molecular dynamics simulations were used to locate interaction hotspots on the secondary structure elements α1, α2, α3, β3, and β4 of ACE2. We designed a library of discontinuous peptides based upon a combination of the hotspot interactions, which were synthesized and screened in a bioluminescence-based assay. The peptides demonstrated high efficacy in antagonizing the SARS-CoV-2 S-RBD:ACE2 interaction and were validated by microscale thermophoresis which demonstrated strong binding affinity (∼10 nM) of these peptides to S-RBD. We anticipate that such discontinuous peptides may hold the potential for an efficient therapeutic treatment for COVID-19.
Collapse
Affiliation(s)
- Afsaneh Sadremomtaz
- XB20
Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Zayana M. Al-Dahmani
- XB20
Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Angel J. Ruiz-Moreno
- XB20
Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands
- Departamento
de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico 04510, Mexico
- Unidad
Periférica de Investigación en Biomedicina Translacional,
Facultad de Medicina, Universidad Nacional
Autónoma de México (UNAM), Félix Cuevas 540, Ciudad de Mexico 03229, Mexico
- Doctorado
en Ciencias Biomédicas, Universidad
Nacional Autónoma de México (UNAM), Ciudad de Mexico 04510, Mexico
| | - Alessandra Monti
- Institute
of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Chao Wang
- XB20
Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Taha Azad
- Center
for
Innovative Cancer Therapeutics, Ottawa Hospital
Research Institute, Ottawa, K1H 8L6 ON, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1H 8M5 ON, Canada
| | - John C. Bell
- Center
for
Innovative Cancer Therapeutics, Ottawa Hospital
Research Institute, Ottawa, K1H 8L6 ON, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1H 8M5 ON, Canada
| | - Nunzianna Doti
- Institute
of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Marco A. Velasco-Velázquez
- Departamento
de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico 04510, Mexico
- Unidad
Periférica de Investigación en Biomedicina Translacional,
Facultad de Medicina, Universidad Nacional
Autónoma de México (UNAM), Félix Cuevas 540, Ciudad de Mexico 03229, Mexico
- Doctorado
en Ciencias Biomédicas, Universidad
Nacional Autónoma de México (UNAM), Ciudad de Mexico 04510, Mexico
| | - Debora de Jong
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Jørgen de Jonge
- Centre
for Infectious Disease Control, National
Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands
| | - Jolanda Smit
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Alexander Dömling
- XB20
Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Harry van Goor
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Matthew R. Groves
- XB20
Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands
| |
Collapse
|
22
|
Novel insights on nucleopeptide binding: A spectroscopic and in silico investigation on the interaction of a thymine-bearing tetrapeptide with a homoadenine DNA. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
La Manna S, De Benedictis I, Marasco D. Proteomimetics of Natural Regulators of JAK-STAT Pathway: Novel Therapeutic Perspectives. Front Mol Biosci 2022; 8:792546. [PMID: 35047557 PMCID: PMC8762217 DOI: 10.3389/fmolb.2021.792546] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
The JAK-STAT pathway is a crucial cellular signaling cascade, including an intricate network of Protein-protein interactions (PPIs) responsible for its regulation. It mediates the activities of several cytokines, interferons, and growth factors and transduces extracellular signals into transcriptional programs to regulate cell growth and differentiation. It is essential for the development and function of both innate and adaptive immunities, and its aberrant deregulation was highlighted in neuroinflammatory diseases and in crucial mechanisms for tumor cell recognition and tumor-induced immune escape. For its involvement in a multitude of biological processes, it can be considered a valuable target for the development of drugs even if a specific focus on possible side effects associated with its inhibition is required. Herein, we review the possibilities to target JAK-STAT by focusing on its natural inhibitors as the suppressor of cytokine signaling (SOCS) proteins. This protein family is a crucial checkpoint inhibitor in immune homeostasis and a valuable target in immunotherapeutic approaches to cancer and immune deficiency disorders.
Collapse
Affiliation(s)
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
24
|
Shukla P, Pandey P, Prasad B, Robinson T, Purohit R, D'Cruz LG, Tambuwala MM, Mutreja A, Harkin J, Rai TS, Murray EK, Gibson DS, Bjourson AJ. Immuno-informatics analysis predicts B and T cell consensus epitopes for designing peptide vaccine against SARS-CoV-2 with 99.82% global population coverage. Brief Bioinform 2021; 23:6484513. [PMID: 34962259 PMCID: PMC8769887 DOI: 10.1093/bib/bbab496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/03/2021] [Accepted: 10/30/2021] [Indexed: 01/03/2023] Open
Abstract
The current global pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has taken a substantial number of lives across the world. Although few vaccines have been rolled-out, a number of vaccine candidates are still under clinical trials at various pharmaceutical companies and laboratories around the world. Considering the intrinsic nature of viruses in mutating and evolving over time, persistent efforts are needed to develop better vaccine candidates. In this study, various immuno-informatics tools and bioinformatics databases were deployed to derive consensus B-cell and T-cell epitope sequences of SARS-CoV-2 spike glycoprotein. This approach has identified four potential epitopes which have the capability to initiate both antibody and cell-mediated immune responses, are non-allergenic and do not trigger autoimmunity. These peptide sequences were also evaluated to show 99.82% of global population coverage based on the genotypic frequencies of HLA binding alleles for both MHC class-I and class-II and are unique for SARS-CoV-2 isolated from human as a host species. Epitope number 2 alone had a global population coverage of 98.2%. Therefore, we further validated binding and interaction of its constituent T-cell epitopes with their corresponding HLA proteins using molecular docking and molecular dynamics simulation experiments, followed by binding free energy calculations with molecular mechanics Poisson–Boltzmann surface area, essential dynamics analysis and free energy landscape analysis. The immuno-informatics pipeline described and the candidate epitopes discovered herein could have significant impact upon efforts to develop globally effective SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Priyank Shukla
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, BT47 6SB, UK
| | - Preeti Pandey
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bodhayan Prasad
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, BT47 6SB, UK
| | - Tony Robinson
- School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Derry/Londonderry, BT48 7JL, UK
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh-176061, India
| | - Leon G D'Cruz
- Respiratory Medicine Department and Clinical Trials Unit, Queen Alexandra Hospital, Portsmouth, PO6 3LY, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine Campus, Coleraine, BT52 1SA, UK
| | - Ankur Mutreja
- Department of Medicine, University of Cambridge, Level 5, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
| | - Jim Harkin
- School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Derry/Londonderry, BT48 7JL, UK
| | - Taranjit Singh Rai
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, BT47 6SB, UK
| | - Elaine K Murray
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, BT47 6SB, UK
| | - David S Gibson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, BT47 6SB, UK
| | - Anthony J Bjourson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, BT47 6SB, UK
| |
Collapse
|
25
|
Ferreira CS, Martins YC, Souza RC, Vasconcelos ATR. EpiCurator: an immunoinformatic workflow to predict and prioritize SARS-CoV-2 epitopes. PeerJ 2021; 9:e12548. [PMID: 34909278 PMCID: PMC8641484 DOI: 10.7717/peerj.12548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
The ongoing coronavirus 2019 (COVID-19) pandemic, triggered by the emerging SARS-CoV-2 virus, represents a global public health challenge. Therefore, the development of effective vaccines is an urgent need to prevent and control virus spread. One of the vaccine production strategies uses the in silico epitope prediction from the virus genome by immunoinformatic approaches, which assist in selecting candidate epitopes for in vitro and clinical trials research. This study introduces the EpiCurator workflow to predict and prioritize epitopes from SARS-CoV-2 genomes by combining a series of computational filtering tools. To validate the workflow effectiveness, SARS-CoV-2 genomes retrieved from the GISAID database were analyzed. We identified 11 epitopes in the receptor-binding domain (RBD) of Spike glycoprotein, an important antigenic determinant, not previously described in the literature or published on the Immune Epitope Database (IEDB). Interestingly, these epitopes have a combination of important properties: recognized in sequences of the current variants of concern, present high antigenicity, conservancy, and broad population coverage. The RBD epitopes were the source for a multi-epitope design to in silico validation of their immunogenic potential. The multi-epitope overall quality was computationally validated, endorsing its efficiency to trigger an effective immune response since it has stability, high antigenicity and strong interactions with Toll-Like Receptors (TLR). Taken together, the findings in the current study demonstrated the efficacy of the workflow for epitopes discovery, providing target candidates for immunogen development.
Collapse
Affiliation(s)
- Cristina S. Ferreira
- Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis, Rio de Janeiro, Brazil
| | - Yasmmin C. Martins
- Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis, Rio de Janeiro, Brazil
| | - Rangel Celso Souza
- Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Tereza R. Vasconcelos
- Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
La Manna S, Di Natale C, Onesto V, Marasco D. Self-Assembling Peptides: From Design to Biomedical Applications. Int J Mol Sci 2021; 22:12662. [PMID: 34884467 PMCID: PMC8657556 DOI: 10.3390/ijms222312662] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Self-assembling peptides could be considered a novel class of agents able to harvest an array of micro/nanostructures that are highly attractive in the biomedical field. By modifying their amino acid composition, it is possible to mime several biological functions; when assembled in micro/nanostructures, they can be used for a variety of purposes such as tissue regeneration and engineering or drug delivery to improve drug release and/or stability and to reduce side effects. Other significant advantages of self-assembled peptides involve their biocompatibility and their ability to efficiently target molecular recognition sites. Due to their intrinsic characteristics, self-assembled peptide micro/nanostructures are capable to load both hydrophobic and hydrophilic drugs, and they are suitable to achieve a triggered drug delivery at disease sites by inserting in their structure's stimuli-responsive moieties. The focus of this review was to summarize the most recent and significant studies on self-assembled peptides with an emphasis on their application in the biomedical field.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Concetta Di Natale
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Valentina Onesto
- Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, CNR NANOTEC, via Monteroni, c/o Campus Ecotekne, 73100 Lecce, Italy;
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
27
|
Palma M. Perspectives on passive antibody therapy and peptide-based vaccines against emerging pathogens like SARS-CoV-2. Germs 2021; 11:287-305. [PMID: 34422699 DOI: 10.18683/germs.2021.1264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The current epidemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is raising awareness of the need to act faster when dealing with new pathogens. Exposure to an emerging pathogen generates an antibody response that can be used for preventing and treating the infection. These antibodies might have a high specificity to a target, few side effects, and are useful in the absence of an effective vaccine for treating immunocompromised individuals. The approved antibodies against the receptor-binding domain (RBD) of the viral spike protein of SARS-CoV-2 (e.g., regdanvimab, bamlanivimab, etesevimab, and casirivimab/imdevimab) have been selected from the antibody repertoire of B cells from convalescent patients using flow cytometry, next-generation sequencing, and phage display. This encourages use of these techniques especially phage display, because it does not require expensive types of equipment and can be performed on the lab bench, thereby making it suitable for labs with limited resources. Also, the antibodies in blood samples from convalescent patients can be used to screen pre-made peptide libraries to identify epitopes for vaccine development. Different types of vaccines against SARS-CoV-2 have been developed, including inactivated virus vaccines, mRNA-based vaccines, non-replicating vector vaccines, and protein subunits. mRNA vaccines have numerous advantages over existing vaccines, such as efficacy, ease of manufacture, safety, and cost-effectiveness. Additionally, epitope vaccination may constitute an attractive strategy to induce high levels of antibodies against a pathogen and phages might be used as immunogenic carriers of such peptides. This is a point worth considering further, as phage-based vaccines have been shown to be safe in clinical trials and phages are easy to produce and tolerate high temperatures. In conclusion, identification of the antibody repertoire of recovering patients, and the epitopes they recognize, should be an attractive alternative option for developing therapeutic and prophylactic antibodies and vaccines against emerging pathogens.
Collapse
Affiliation(s)
- Marco Palma
- PhD, Independent researcher, Calle San Jose, Torrevieja, 03181, Spain
| |
Collapse
|
28
|
Di Natale C, Battista E, Lettera V, Reddy N, Pitingolo G, Vecchione R, Causa F, Netti PA. Easy Surface Functionalization and Bioconjugation of Peptides as Capture Agents of a Microfluidic Biosensing Platform for Multiplex Assay in Serum. Bioconjug Chem 2021; 32:1593-1601. [PMID: 34114801 PMCID: PMC8382222 DOI: 10.1021/acs.bioconjchem.1c00146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The development of assays for protein biomarkers in complex matrices is a demanding task that still needs implementation of new approaches. Antibodies as capture agents have been largely used in bioassays but their low stability, low-efficiency production, and cross-reactivity in multiplex approaches impairs their larger applications. Instead, synthetic peptides, even with higher stability and easily adapted amino acid sequences, still remain largely unexplored in this field. Here, we provide a proof-of-concept of a microfluidic device for direct detection of biomarker overexpression. The multichannel microfluidic polydimethylsiloxane (PDMS) device was first derivatized with PAA (poly(acrylic acid)) solution. CRP-1, VEGF-114, and ΦG6 peptides were preliminarily tested to respectively bind the biomarkers, C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-α). Each PDMS microchannel was then respectively bioconjugated with a specific peptide (CRP-1, VEGF-114, or ΦG6) to specifically capture CRP, VEGF, and TNF-α. With such microdevices, a fluorescence bioassay has been set up with sensitivity in the nanomolar range, both in buffered solution and in human serum. The proposed multiplex assay worked with a low amount of sample (25 μL) and detected biomarker overexpression (above nM concentration), representing a noninvasive and inexpensive screening platform.
Collapse
Affiliation(s)
- Concetta Di Natale
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Edmondo Battista
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Vincenzo Lettera
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Biopox
srl, Viale Maria Bakunin
12, 80125 Naples, Italy
| | - Narayana Reddy
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Gabriele Pitingolo
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Filippo Causa
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
- Dipartimento
di Ingegneria Chimica del Materiali e della Produzione Industriale
(DICMAPI), University “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center
for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- InterdisciplinaryResearch
Centre on Biomaterials (CRIB), Università
degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
- Dipartimento
di Ingegneria Chimica del Materiali e della Produzione Industriale
(DICMAPI), University “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
29
|
Bisgin A, Sanlioglu AD, Eksi YE, Griffith TS, Sanlioglu S. Current Update on Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Development with a Special Emphasis on Gene Therapy Viral Vector Design and Construction for Vaccination. Hum Gene Ther 2021; 32:541-562. [PMID: 33858231 DOI: 10.1089/hum.2021.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease (COVID-19) caused by the novel coronavirus SARS-coronavirus 2 (CoV-2). To combat the devastating spread of SARS-CoV-2, extraordinary efforts from numerous laboratories have focused on the development of effective and safe vaccines. Traditional live-attenuated or inactivated viral vaccines are not recommended for immunocompromised patients as the attenuated virus can still cause disease via phenotypic or genotypic reversion. Subunit vaccines require repeated dosing and adjuvant use to be effective, and DNA vaccines exhibit lower immune responses. mRNA vaccines can be highly unstable under physiological conditions. On the contrary, naturally antigenic viral vectors with well-characterized structure and safety profile serve as among the most effective gene carriers to provoke immune response via heterologous gene transfer. Viral vector-based vaccines induce both an effective cellular immune response and a humoral immune response owing to their natural adjuvant properties via transduction of immune cells. Consequently, viral vectored vaccines carrying the SARS-CoV-2 spike protein have recently been generated and successfully used to activate cytotoxic T cells and develop a neutralizing antibody response. Recent progress in SARS-CoV-2 vaccines, with an emphasis on gene therapy viral vector-based vaccine development, is discussed in this review.
Collapse
Affiliation(s)
- Atil Bisgin
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ahter D Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yunus Emre Eksi
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Thomas S Griffith
- The Department of Urology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Salih Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
30
|
Askari Rizvi SF, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: A review with perspective from molecular imaging modalities. Eur J Med Chem 2021; 221:113538. [PMID: 34022717 DOI: 10.1016/j.ejmech.2021.113538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023]
Abstract
Natural peptides extracted from natural components such are known to have a relatively short in-vivo half-life and can readily metabolize by endo- and exo-peptidases. Fortunately, synthetic peptides can be easily manipulated to increase in-vivo stability, membrane permeability and target specificity with some well-known natural families. Many natural as well as synthetic peptides target to their endogenous receptors for diagnosis and therapeutic applications. In order to detect these peptides externally, they must be modified with radionuclides compatible with single photon emission computed tomography (SPECT) or positron emission tomography (PET). Although, these techniques mainly rely on physiological changes and have profound diagnostic strength over anatomical modalities such as MRI and CT. However, both SPECT and PET observed to possess lack of anatomical reference frame which is a key weakness of these techniques, and unfortunately, cannot be available freely in most clinical centres especially in under-developing countries. Hence, it is need of the time to design and develop economic, patient friendly and versatile strategies to grapple with existing problems without any hazardous side effects. Optical molecular imaging (OMI) has emerged as a novel technique in field of medical science using fluorescent probes as imaging modality and has ability to couple with organic drugs, small molecules, chemotherapeutics, DNA, RNA, anticancer peptide and protein without adding chelators as necessary for radionuclides. Furthermore, this review focuses on difference in imaging modalities and provides ample knowledge about reliable, economic and patient friendly optical imaging technique rather radionuclide-based imaging techniques.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China.
| |
Collapse
|
31
|
Nel AE, Miller JF. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS NANO 2021; 15:5793-5818. [PMID: 33793189 PMCID: PMC8029448 DOI: 10.1021/acsnano.1c01845] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
At the time of preparing this Perspective, large-scale vaccination for COVID-19 is in progress, aiming to bring the pandemic under control through vaccine-induced herd immunity. Not only does this vaccination effort represent an unprecedented scientific and technological breakthrough, moving us from the rapid analysis of viral genomes to design, manufacture, clinical trial testing, and use authorization within the time frame of less than a year, but it also highlights rapid progress in the implementation of nanotechnology to assist vaccine development. These advances enable us to deliver nucleic acid and conformation-stabilized subunit vaccines to regional lymph nodes, with the ability to trigger effective humoral and cellular immunity that prevents viral infection or controls disease severity. In addition to a brief description of the design features of unique cationic lipid and virus-mimicking nanoparticles for accomplishing spike protein delivery and presentation by the cognate immune system, we also discuss the importance of adjuvancy and design features to promote cooperative B- and T-cell interactions in lymph node germinal centers, including the use of epitope-based vaccines. Although current vaccine efforts have demonstrated short-term efficacy and vaccine safety, key issues are now vaccine durability and adaptability against viral variants. We present a forward-looking perspective of how vaccine design can be adapted to improve durability of the immune response and vaccine adaptation to overcome immune escape by viral variants. Finally, we consider the impact of nano-enabled approaches in the development of COVID-19 vaccines for improved vaccine design against other infectious agents, including pathogens that may lead to future pandemics.
Collapse
Affiliation(s)
- André E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jeff F. Miller
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, 90095, United States
| |
Collapse
|
32
|
Vivekanandhan K, Shanmugam P, Barabadi H, Arumugam V, Daniel Raj Daniel Paul Raj D, Sivasubramanian M, Ramasamy S, Anand K, Boomi P, Chandrasekaran B, Arokiyaraj S, Saravanan M. Emerging Therapeutic Approaches to Combat COVID-19: Present Status and Future Perspectives. Front Mol Biosci 2021; 8:604447. [PMID: 33763450 PMCID: PMC7983051 DOI: 10.3389/fmolb.2021.604447] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/22/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19) has emerged as a fast-paced epidemic in late 2019 which is disrupting life-saving immunization services. SARS-CoV-2 is a highly transmissible virus and an infectious disease that has caused fear among people across the world. The worldwide emergence and rapid expansion of SARS-CoV-2 emphasizes the need for exploring innovative therapeutic approaches to combat SARS-CoV-2. The efficacy of some antiviral drugs such as remdesivir, favipiravir, umifenovir, etc., are still tested against SARS-CoV-2. Additionally, there is a large global effort to develop vaccines for the protection against COVID-19. Because vaccines seem the best solution to control the pandemic but time is required for its development, pre-clinical/clinical trials, approval from FDA and scale-up. The nano-based approach is another promising approach to combat COVID-19 owing to unique physicochemical properties of nanomaterials. Peptide based vaccines emerged as promising vaccine candidates for SARS-CoV-2. The study emphasizes the current therapeutic approaches against SARS-CoV-2 and some of the potential candidates for SARS-CoV-2 treatment which are still under clinical studies for their effectiveness against SARS-CoV-2. Overall, it is of high importance to mention that clinical trials are necessary for confirming promising drug candidates and effective vaccines and the safety profile of the new components must be evaluated before translation of in vitro studies for implementation in clinical use.
Collapse
Affiliation(s)
- Karthik Vivekanandhan
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode, Tamilnadu, India
| | - Poornima Shanmugam
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode, Tamilnadu, India
| | - Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vigneshwaran Arumugam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Manikandan Sivasubramanian
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Subbaiya Ramasamy
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Zambia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, India
| | | | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
| | - Muthupandian Saravanan
- Department of Microbiology and Immunology, Division of Biomedical Science, School of Medicine, College of Health Science, Mekelle University, Mekelle, Ethiopia
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|