1
|
Sumorek-Wiadro J, Kapral-Piotrowska J, Zając A, Maciejczyk A, Hułas-Stasiak M, Skalicka-Woźniak K, Rzeski W, Pawlikowska-Pawlęga B, Jakubowicz-Gil J. Proapoptotic and antimigration properties of osthole in combination with LY294002 against human glioma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3147-3161. [PMID: 39352533 PMCID: PMC11919984 DOI: 10.1007/s00210-024-03424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 03/19/2025]
Abstract
Anaplastic astrocytoma and glioblastoma multiforme are infiltrating and vascularized gliomas with a high degree of chemoresistance and metastasis. Our previous studies have shown that osthole may be of great importance in the treatment of gliomas. Therefore, in this work, for the first time, coumarin was used in combination with LY294002-an inhibitor of the PI3K-Akt/PKB-mTOR pathway, which is overly active in gliomas. MOGGCCM and T98G cells were incubated with osthole and LY294002, alone and in combination. Staining with specific fluorochromes was used to visualize cell death and the scratch test to assess the migration. The level of proteins was estimated by immunoblotting. Forming protrusions were visualized by SEM, and immunocytochemistry was used to determine the localization of proteins. Additionally, the expression of Bcl-2, beclin 1 and Raf kinase was silenced using specific siRNA. The obtained results showed that osthole in combination with LY294092 effectively inhibited the migration of glioma cells by reducing the level of metaloproteinases and Rho family proteins, as well as decreasing the level of N-cadherin. In addition, the combination of compounds induced apoptosis. New combination of compounds shows a high pro-apoptotic potential and also inhibits the migration of gliomas cells.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Justyna Kapral-Piotrowska
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
- Department of Medical Biology, Institute of Rural Health, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950, Lublin, Poland
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
2
|
Cabrera-Serrano AJ, Sánchez-Maldonado JM, González-Olmedo C, Carretero-Fernández M, Díaz-Beltrán L, Gutiérrez-Bautista JF, García-Verdejo FJ, Gálvez-Montosa F, López-López JA, García-Martín P, Pérez EM, Sánchez-Rovira P, Reyes-Zurita FJ, Sainz J. Crosstalk Between Autophagy and Oxidative Stress in Hematological Malignancies: Mechanisms, Implications, and Therapeutic Potential. Antioxidants (Basel) 2025; 14:264. [PMID: 40227235 PMCID: PMC11939785 DOI: 10.3390/antiox14030264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Autophagy is a fundamental cellular process that maintains homeostasis by degrading damaged components and regulating stress responses. It plays a crucial role in cancer biology, including tumor progression, metastasis, and therapeutic resistance. Oxidative stress, similarly, is key to maintaining cellular balance by regulating oxidants and antioxidants, with its disruption leading to molecular damage. The interplay between autophagy and oxidative stress is particularly significant, as reactive oxygen species (ROS) act as both inducers and by-products of autophagy. While autophagy can function as a tumor suppressor in early cancer stages, it often shifts to a pro-tumorigenic role in advanced disease, aiding cancer cell survival under adverse conditions such as hypoxia and nutrient deprivation. This dual role is mediated by several signaling pathways, including PI3K/AKT/mTOR, AMPK, and HIF-1α, which coordinate the balance between autophagic activity and ROS production. In this review, we explore the mechanisms by which autophagy and oxidative stress interact across different hematological malignancies. We discuss how oxidative stress triggers autophagy, creating a feedback loop that promotes tumor survival, and how autophagic dysregulation leads to increased ROS accumulation, exacerbating tumorigenesis. We also examine the therapeutic implications of targeting the autophagy-oxidative stress axis in cancer. Current strategies involve modulating autophagy through specific inhibitors, enhancing ROS levels with pro-oxidant compounds, and combining these approaches with conventional therapies to overcome drug resistance. Understanding the complex relationship between autophagy and oxidative stress provides critical insights into novel therapeutic strategies aimed at improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Carmen González-Olmedo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - María Carretero-Fernández
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - Leticia Díaz-Beltrán
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Juan Francisco Gutiérrez-Bautista
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology and Immunology III, University of Granada, 18016 Granada, Spain
| | - Francisco José García-Verdejo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Gálvez-Montosa
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - José Antonio López-López
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Paloma García-Martín
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Eva María Pérez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Pedro Sánchez-Rovira
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Jesús Reyes-Zurita
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
3
|
Zapatería B, Arias E. Aging, cancer, and autophagy: connections and therapeutic perspectives. Front Mol Biosci 2025; 11:1516789. [PMID: 39935707 PMCID: PMC11811537 DOI: 10.3389/fmolb.2024.1516789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/24/2024] [Indexed: 02/13/2025] Open
Abstract
Aging and cancer are intricately linked through shared molecular processes that influence both the onset of malignancy and the progression of age-related decline. As organisms age, cellular stress, genomic instability, and an accumulation of senescent cells create a pro-inflammatory environment conducive to cancer development. Autophagy, a cellular process responsible for degrading and recycling damaged components, plays a pivotal role in this relationship. While autophagy acts as a tumor-suppressive mechanism by preventing the accumulation of damaged organelles and proteins, cancer cells often exploit it to survive under conditions of metabolic stress and treatment resistance. The interplay between aging, cancer, and autophagy reveals key insights into tumorigenesis, cellular senescence, and proteostasis dysfunction. This review explores the molecular connections between these processes, emphasizing the potential for autophagy-targeted therapies as strategies that could be further explored in both aging and cancer treatment. Understanding the dual roles of autophagy in suppressing and promoting cancer offers promising avenues for therapeutic interventions aimed at improving outcomes for elderly cancer patients while addressing age-related deterioration.
Collapse
Affiliation(s)
- Begoña Zapatería
- Department of Medicine (Marion Bessin Liver Research Center), Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Esperanza Arias
- Department of Medicine (Marion Bessin Liver Research Center), Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Aging Research Center, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
4
|
Ortiz N, Díaz C. Preclinical evaluation of fenretinide against primary and metastatic intestinal type‑gastric cancer. Oncol Lett 2024; 28:561. [PMID: 39372665 PMCID: PMC11450695 DOI: 10.3892/ol.2024.14694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 10/08/2024] Open
Abstract
In recent years there has been a decline in the incidence of gastric cancer, however the high mortality rate has remained constant. The present study evaluated the potential effects of the retinoid fenretinide on the viability and migration of two cell lines, AGS and NCI-N87, that represented primary and metastatic intestinal gastric cancer subtypes, respectively. It was determined that a similar2 dose of fenretinide reduced the viability of both the primary and metastatic cell lines. In addition, it was demonstrated that combined treatment with fenretinide and cisplatin may affect the viability of both primary and metastatic gastric cancer cells. Furthermore, a wound healing assay demonstrated an inhibitory effect for fenretinide on cell migration. As part of the characterization of the mechanism of action, the effect of fenretinide on reactive oxygen species production and lipid droplet content was evaluated, with the latter as an indirect means of assessing autophagy. These results support the hypothesis of combining using fenretinide with conventional therapies to improve survival rates in advanced or metastatic gastric cancer.
Collapse
Affiliation(s)
- Natalia Ortiz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| | - Cecilia Díaz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
- Institute Clodomiro Picado, Faculty of Microbiology, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| |
Collapse
|
5
|
Chen XQ, Yang Q, Chen WM, Chen ZW, Guo GH, Zhang X, Sun XM, Shen T, Xiao FH, Li YF. Dual Role of Lysosome in Cancer Development and Progression. FRONT BIOSCI-LANDMRK 2024; 29:393. [PMID: 39614447 DOI: 10.31083/j.fbl2911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 12/01/2024]
Abstract
Lysosomes are essential intracellular catabolic organelles that contain digestive enzymes involved in the degradation and recycle of damaged proteins, organelles, etc. Thus, they play an important role in various biological processes, including autophagy regulation, ion homeostasis, cell death, cell senescence. A myriad of studies has shown that the dysfunction of lysosome is implicated in human aging and various age-related diseases, including cancer. However, what is noteworthy is that the modulation of lysosome-based signaling and degradation has both the cancer-suppressive and cancer-promotive functions in diverse cancers depending on stage, biology, or tumor microenvironment. This dual role limits their application as targets in cancer therapy. In this review, we provide an overview of lysosome and autophagy-lysosomal pathway and outline their critical roles in many cellular processes, including cell death. We highlight the different functions of autophagy-lysosomal pathway in cancer development and progression, underscoring its potential as a target for effective cancer therapies.
Collapse
Affiliation(s)
- Xiao-Qiong Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Quan Yang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Wei-Min Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Zi-Wei Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Guang-Hui Guo
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xuan Zhang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xiao-Ming Sun
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Tao Shen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650000 Kunming, Yunnan, China
| | - Yun-Feng Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| |
Collapse
|
6
|
Liao D, He Y, He B, Zeng S, Cui Y, Li C, Huang H. Inhibiting SNX10 induces autophagy to suppress invasion and EMT and inhibits the PI3K/AKT pathway in cervical cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03715-x. [PMID: 39367898 DOI: 10.1007/s12094-024-03715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/02/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE Cervical cancer (CC) is a prevalent malignancy among women with high morbidity and poor prognosis. Sorting nexin 10 (SNX10) is a newly recognized cancer regulatory factor, while its action on CC progression remains elusive. Hence, this study studied the effect of SNX10 on CC development and investigated the mechanism. METHODS The SNX10 level in CC and the overall survival of CC cases with different SNX10 expressions were determined by bioinformatics analysis in GEPIA. The SNX10 expression in tumor tissues and clinical significance were studied in 64 CC cases. The overall survival was assessed using Kaplan-Meier analysis. The formation of LC3 was evaluated using immunofluorescence. Cell invasion was measured using the Transwell assay. Epithelial-to-mesenchymal transition (EMT) was determined by observing cell morphology and assessing EMT marker levels. A xenograft tumor was constructed to evaluate tumor growth. RESULTS SNX10 was elevated in CC tissues and cells, and the CC cases with high SNX10 levels exhibited poor overall survival. Besides, SNX10 correlated with the FIGO stage, lymph node invasion, and stromal invasion of CC. SNX10 silencing induced CC cell autophagy and suppressed CC cell invasion and EMT. Meanwhile, silenced SNX10 could suppress invasion and EMT via inducing autophagy. Furthermore, SNX10 inhibition suppressed the PI3K/AKT pathway. Moreover, silenced SNX10 restrained the tumor growth, autophagy, and EMT of CC in vivo. CONCLUSION SNX10 was enhanced in CC and correlated with poor prognosis. Silenced SNX10 induced autophagy to suppress invasion and EMT and inhibited the PI3K/AKT pathway in CC, making SNX10 a valuable molecule for CC therapy.
Collapse
Affiliation(s)
- Dan Liao
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China.
| | - Yanxian He
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Bin He
- Clinical Translational Medical Center, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Saitian Zeng
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Yejia Cui
- Department of Clinical Laboratory, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Cuifen Li
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Haohai Huang
- Clinical Translational Medical Center, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China.
- Department of Clinical Pharmacy, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China.
| |
Collapse
|
7
|
Auddy S, Gupta S, Mandi S, Sharma H, Sinha S, Goswami RK. Total Synthesis of Lipopeptide Bacilotetrin C: Discovery of Potent Anticancer Congeners Promoting Autophagy. ACS Med Chem Lett 2024; 15:1340-1350. [PMID: 39140062 PMCID: PMC11318098 DOI: 10.1021/acsmedchemlett.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
A convergent strategy for the first total synthesis of the lipopeptide bacilotetrin C has been developed. The key features of this synthesis include Crimmins acetate aldol, Steglich esterification, and macrolactamization. Twenty-nine variants of the natural product were prepared following a systematic structure-activity relationship study, where some of the designed analogues showed promising cytotoxic effects against multiple human carcinoma cell lines. The most potent analogue exhibited a ∼37-fold enhancement in cytotoxicity compared to bacilotetrin C in a triple-negative breast cancer (MDA-MB-231) cell line at submicromolar doses. The study further revealed that some of the analogues induced autophagy in cancer cells to the point of their demise at doses much lower than those of known autophagy-inducing peptides. The results demonstrated that the chemical synthesis of bacilotetrin C with suitable improvisation plays an important role in the development of novel anticancer chemotherapeutics, which would allow future rational design of novel autophagy inducers on this template.
Collapse
Affiliation(s)
- Sourya
Shankar Auddy
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Shalini Gupta
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Subrata Mandi
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Himangshu Sharma
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Surajit Sinha
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Rajib Kumar Goswami
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
8
|
Shamsudin NF, Leong SW, Koeberle A, Suriya U, Rungrotmongkol T, Chia SL, Taher M, Haris MS, Alshwyeh HA, Alosaimi AA, Mediani A, Ilowefah MA, Islami D, Mohd Faudzi SM, Fasihi Mohd Aluwi MF, Wai LK, Rullah K. A novel chromone-based as a potential inhibitor of ULK1 that modulates autophagy and induces apoptosis in colon cancer. Future Med Chem 2024; 16:1499-1517. [PMID: 38949858 PMCID: PMC11370956 DOI: 10.1080/17568919.2024.2363668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: Chromones are promising for anticancer drug development.Methods & results: 12 chromone-based compounds were synthesized and tested against cancer cell lines. Compound 8 showed the highest cytotoxicity (LC50 3.2 μM) against colorectal cancer cells, surpassing 5-fluorouracil (LC50 4.2 μM). It suppressed colony formation, induced cell cycle arrest and triggered apoptotic cell death, confirmed by staining and apoptosis markers. Cell death was accompanied by enhanced reactive oxygen species formation and modulation of the autophagic machinery (autophagy marker light chain 3B (LC3B); adenosine monophosphate-activated protein kinase (AMPK); protein kinase B (PKB); UNC-51-like kinase (ULK)-1; and ULK2). Molecular docking and dynamic simulations revealed that compound 8 directly binds to ULK1.Conclusion: Compound 8 is a promising lead for autophagy-modulating anti-colon cancer drugs.
Collapse
Affiliation(s)
- Nur Farisya Shamsudin
- Drug Discovery & Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan25200, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck6020, Austria
| | - Utid Suriya
- Structural & Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural & Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Suet Lin Chia
- UPM – MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang43400, Selangor, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan25200, Pahang, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan25200, Pahang, Malaysia
| | - Hussah Abdullah Alshwyeh
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
| | - Areej A Alosaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi43600, Malaysia
| | | | - Deri Islami
- Faculty of Pharmacy & Health Sciences, Universitas Abdurrab, Jalan Riau Ujung, Pekanbaru28292, Riau, Indonesia
| | - Siti Munirah Mohd Faudzi
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang43400, Selangor, Malaysia
| | | | - Lam Kok Wai
- Drugs & Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur50300, Malaysia
| | - Kamal Rullah
- Drug Discovery & Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan25200, Pahang, Malaysia
| |
Collapse
|
9
|
Rahman MA, Apu EH, Rakib-Uz-Zaman SM, Chakraborti S, Bhajan SK, Taleb SA, Shaikh MH, Jalouli M, Harrath AH, Kim B. Exploring Importance and Regulation of Autophagy in Cancer Stem Cells and Stem Cell-Based Therapies. Cells 2024; 13:958. [PMID: 38891090 PMCID: PMC11171866 DOI: 10.3390/cells13110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Autophagy is a globally conserved cellular activity that plays a critical role in maintaining cellular homeostasis through the breakdown and recycling of cellular constituents. In recent years, there has been much emphasis given to its complex role in cancer stem cells (CSCs) and stem cell treatment. This study examines the molecular processes that support autophagy and how it is regulated in the context of CSCs and stem cell treatment. Although autophagy plays a dual role in the management of CSCs, affecting their removal as well as their maintenance, the intricate interaction between the several signaling channels that control cellular survival and death as part of the molecular mechanism of autophagy has not been well elucidated. Given that CSCs have a role in the development, progression, and resistance to treatment of tumors, it is imperative to comprehend their biological activities. CSCs are important for cancer biology because they also show a tissue regeneration model that helps with organoid regeneration. In other words, the manipulation of autophagy is a viable therapeutic approach in the treatment of cancer and stem cell therapy. Both synthetic and natural substances that target autophagy pathways have demonstrated promise in improving stem cell-based therapies and eliminating CSCs. Nevertheless, there are difficulties associated with the limitations of autophagy in CSC regulation, including resistance mechanisms and off-target effects. Thus, the regulation of autophagy offers a versatile strategy for focusing on CSCs and enhancing the results of stem cell therapy. Therefore, understanding the complex interactions between autophagy and CSC biology would be essential for creating therapeutic treatments that work in both regenerative medicine and cancer treatment.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Global Biotechnology and Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - S. M Rakib-Uz-Zaman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Somdeepa Chakraborti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
| | - Shakila Afroz Taleb
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Mushfiq H. Shaikh
- Department of Otolaryngology—Head and Neck Surgery, Western University, London, ON N6A 4V2, Canada;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Aglan SA, Awad AM, Elwany YN, Shawky S, Salam RMA, Omar RS, Ghazala RAM, Soliman NA, Khedr MI, Kandil LS, Sultan M, Hamed Y, Kandil NS. BECN1 mRNA expression in breast cancer tissue; significant correlation to tumor grade. Mol Genet Genomics 2024; 299:56. [PMID: 38787424 PMCID: PMC11126480 DOI: 10.1007/s00438-024-02145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Breast cancer (BC) is a heterogenous disease with multiple pathways implicated in its development, progression, and drug resistance. Autophagy, a cellular process responsible for self-digestion of damaged organelles, had been recognized as eminent player in cancer progression and chemotherapeutic resistance. The haploinsufficiency of Beclin 1 (BECN1), autophagy protein, is believed to contribute to cancer pathogenesis and progression. In our study, we investigated the expression of BECN1 in a BC female Egyptian patient cohort, as well as its prognostic role through evaluating its association with disease free survival (DFS) after 2 years follow up and association of tumor clinicopathological features. Twenty frozen female BC tissue samples and 17 adjacent normal tissue were included and examined for the expression levels of BECN1. Although the tumor tissues showed lower expression 0.73 (0-8.95) than their corresponding normal tissues 1.02 (0.04-19.59), it was not statistically significant, p: 0.463. BECN1 expression was not associated with stage, nodal metastasis or tumor size, p:0.435, 0.541, 0.296, respectively. However, statistically significant negative correlation was found between grade and BECN1 mRNA expression in the studied cases, p:0.028. BECN1 expression had no statistically significant association with DFS, P = 0.944. However, we observed that triple negative (TNBC) cases had significantly lower DFS rate than luminal BC patients, p: 0.022, with mean DFS 19.0 months, while luminal BC patients had mean DFS of 23.41 months. Our study highlights the potential role of BECN1 in BC pathogenesis, showing that BECN1 expression correlates with poorer differentiation of BC, indicating its probable link with disease aggressiveness. DFS two years follow up showed that TNBC subtype remains associated with less favorable prognosis.
Collapse
Affiliation(s)
- Sarah Ahmed Aglan
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed Mostafa Awad
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Yasmine Nagy Elwany
- Department of Cancer Management and Research, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sanaa Shawky
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Rasha Said Omar
- Department of Biochemistry, faculty of medicine, Alexandria University, Alexandria, Egypt
| | | | - Nada Ahmed Soliman
- Department of Biochemistry, faculty of medicine, Alexandria University, Alexandria, Egypt
| | - Marwa Ibrahim Khedr
- Department of Biochemistry, faculty of medicine, Alexandria University, Alexandria, Egypt
| | - Lamia Said Kandil
- School of Pharmacy and Biomedical sciences, University of central Lancashire, Preston, UK
| | - Mohamed Sultan
- Department of Experimental and clinical surgery department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Yasser Hamed
- Department of Experimental and clinical surgery department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Noha Said Kandil
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
11
|
Yang X, Liu Z, Xu X, He M, Xiong H, Liu L. Casticin induces apoptosis and cytoprotective autophagy while inhibiting stemness involving Akt/mTOR and JAK2/STAT3 pathways in glioblastoma. Phytother Res 2024; 38:305-320. [PMID: 37869765 DOI: 10.1002/ptr.8048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
Glioblastoma (GBM) is the most common malignant glioma. However, the current systemic drugs cannot completely cure GBM. Casticin is a methoxylated flavonol compound isolated from a traditional Chinese medicine Vitex rotundifolia L.f. and exhibits a strong antitumor activity in multiple human malignancies. This study was aimed to explore the effects and underlying mechanisms of casticin in GBM. The MTT assay and colony formation was used to evaluate the casticin-induced cell viability in GBM cells. Apoptosis was assessed by ANNEXIV/PI staining assay. Autophagy was analyzed by transmission electron microscopy and immunofluorescence assays. GBM stem cell (GSC) was analyzed by tumor-sphere formation assay and ALDEFLUOR assay. The anti-GBM effect of casticin was also determined by the U87MG xenograft model. Casticin inhibited tumor cell growth in vitro and in vivo, as well as significantly induced apoptosis and autophagy. Autophagy inhibition augmented casticin-induced apoptosis. Casticin also reduced the GSC population by suppressing Oct4, Nanog, and Sox2. Mechanistically, casticin inhibited Akt/mTOR and JAK2/STAT3 signal pathways. The antitumor effect of casticin in GBM was demonstrated by inducing apoptosis, autophagy, and reducing population of GSCs; thus, it may be a potential GBM therapeutic agent for future clinical usage.
Collapse
Affiliation(s)
- Xun Yang
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
- Department of Spine Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zeyuan Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Xu Xu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Meng He
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Hongtao Xiong
- Department of Hand & Microvascular Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lijun Liu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| |
Collapse
|
12
|
Khilwani R, Singh S. Systems Biology and Cytokines Potential Role in Lung Cancer Immunotherapy Targeting Autophagic Axis. Biomedicines 2023; 11:2706. [PMID: 37893079 PMCID: PMC10604646 DOI: 10.3390/biomedicines11102706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer accounts for the highest number of deaths among men and women worldwide. Although extensive therapies, either alone or in conjunction with some specific drugs, continue to be the principal regimen for evolving lung cancer, significant improvements are still needed to understand the inherent biology behind progressive inflammation and its detection. Unfortunately, despite every advancement in its treatment, lung cancer patients display different growth mechanisms and continue to die at significant rates. Autophagy, which is a physiological defense mechanism, serves to meet the energy demands of nutrient-deprived cancer cells and sustain the tumor cells under stressed conditions. In contrast, autophagy is believed to play a dual role during different stages of tumorigenesis. During early stages, it acts as a tumor suppressor, degrading oncogenic proteins; however, during later stages, autophagy supports tumor cell survival by minimizing stress in the tumor microenvironment. The pivotal role of the IL6-IL17-IL23 signaling axis has been observed to trigger autophagic events in lung cancer patients. Since the obvious roles of autophagy are a result of different immune signaling cascades, systems biology can be an effective tool to understand these interconnections and enhance cancer treatment and immunotherapy. In this review, we focus on how systems biology can be exploited to target autophagic processes that resolve inflammatory responses and contribute to better treatment in carcinogenesis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, SPPU Campus, Ganeshkhind Road, Pune 411007, India;
| |
Collapse
|
13
|
Taraborrelli L, Şenbabaoğlu Y, Wang L, Lim J, Blake K, Kljavin N, Gierke S, Scherl A, Ziai J, McNamara E, Owyong M, Rao S, Calviello AK, Oreper D, Jhunjhunwala S, Argiles G, Bendell J, Kim TW, Ciardiello F, Wongchenko MJ, de Sauvage FJ, de Sousa E Melo F, Yan Y, West NR, Murthy A. Tumor-intrinsic expression of the autophagy gene Atg16l1 suppresses anti-tumor immunity in colorectal cancer. Nat Commun 2023; 14:5945. [PMID: 37741832 PMCID: PMC10517947 DOI: 10.1038/s41467-023-41618-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Microsatellite-stable colorectal cancer (MSS-CRC) is highly refractory to immunotherapy. Understanding tumor-intrinsic determinants of immunotherapy resistance is critical to improve MSS-CRC patient outcomes. Here, we demonstrate that high tumor expression of the core autophagy gene ATG16L1 is associated with poor clinical response to anti-PD-L1 therapy in KRAS-mutant tumors from IMblaze370 (NCT02788279), a large phase III clinical trial of atezolizumab (anti-PD-L1) in advanced metastatic MSS-CRC. Deletion of Atg16l1 in engineered murine colon cancer organoids inhibits tumor growth in primary (colon) and metastatic (liver and lung) niches in syngeneic female hosts, primarily due to increased sensitivity to IFN-γ-mediated immune pressure. ATG16L1 deficiency enhances programmed cell death of colon cancer organoids induced by IFN-γ and TNF, thus increasing their sensitivity to host immunity. In parallel, ATG16L1 deficiency reduces tumor stem-like populations in vivo independently of adaptive immune pressure. This work reveals autophagy as a clinically relevant mechanism of immune evasion and tumor fitness in MSS-CRC and provides a rationale for autophagy inhibition to boost immunotherapy responses in the clinic.
Collapse
Affiliation(s)
- Lucia Taraborrelli
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Yasin Şenbabaoğlu
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | - Lifen Wang
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Junghyun Lim
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Kerrigan Blake
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Noelyn Kljavin
- Department of Molecular Oncology, Genentech Inc., South San Francisco, USA
| | - Sarah Gierke
- Center for Advanced Light Microscopy, Genentech Inc., South San Francisco, USA
- Department of Pathology, Genentech Inc., South San Francisco, USA
| | - Alexis Scherl
- Department of Pathology, Genentech Inc., South San Francisco, USA
| | - James Ziai
- Department of Pathology, Genentech Inc., South San Francisco, USA
| | - Erin McNamara
- Department of In Vivo Pharmacology, Genentech Inc., South San Francisco, USA
| | - Mark Owyong
- Department of In Vivo Pharmacology, Genentech Inc., South San Francisco, USA
| | - Shilpa Rao
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | | | - Daniel Oreper
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | - Suchit Jhunjhunwala
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | - Guillem Argiles
- Vall d'Hebrón Institute of Oncology, Vall d'Hebrón University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | - Tae Won Kim
- Department of Oncology, Medical Center, University of Ulsan, Seoul, Korea
| | - Fortunato Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | | | | | | | - Yibing Yan
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Nathaniel R West
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA.
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA.
- Gilead Sciences, Foster City, USA.
| |
Collapse
|
14
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
15
|
Roy A, Chakraborty AR, Nomanbhoy T, DePamphilis ML. PIP5K1C phosphoinositide kinase deficiency distinguishes PIKFYVE-dependent cancer cells from non-malignant cells. Autophagy 2023:1-21. [PMID: 36803256 PMCID: PMC10392749 DOI: 10.1080/15548627.2023.2182594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Although PIKFYVE phosphoinositide kinase inhibitors can selectively eliminate PIKFYVE-dependent human cancer cells in vitro and in vivo, the basis for this selectivity has remained elusive. Here we show that the sensitivity of cells to the PIKFYVE inhibitor WX8 is not linked to PIKFYVE expression, macroautophagic/autophagic flux, the BRAFV600E mutation, or ambiguous inhibitor specificity. PIKFYVE dependence results from a deficiency in the PIP5K1C phosphoinositide kinase, an enzyme required for conversion of phosphatidylinositol-4-phosphate (PtdIns4P) into phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2/PIP2), a phosphoinositide associated with lysosome homeostasis, endosome trafficking, and autophagy. PtdIns(4,5)P2 is produced via two independent pathways. One requires PIP5K1C; the other requires PIKFYVE and PIP4K2C to convert PtdIns3P into PtdIns(4,5)P2. In PIKFYVE-dependent cells, low concentrations of WX8 specifically inhibit PIKFYVE in situ, thereby increasing the level of its substrate PtdIns3P while suppressing PtdIns(4,5)P2 synthesis and inhibiting lysosome function and cell proliferation. At higher concentrations, WX8 inhibits both PIKFYVE and PIP4K2C in situ, which amplifies these effects to further disrupt autophagy and induce cell death. WX8 did not alter PtdIns4P levels. Consequently, inhibition of PIP5K1C in WX8-resistant cells transformed them into sensitive cells, and overexpression of PIP5K1C in WX8-sensitive cells increased their resistance to WX8. This discovery suggests that PIKFYVE-dependent cancers could be identified clinically by low levels of PIP5K1C and treated with PIKFYVE inhibitors.
Collapse
Affiliation(s)
- Ajit Roy
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Arup R Chakraborty
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Melvin L DePamphilis
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Yan Z, Guo D, Tao R, Yu X, Zhang J, He Y, Zhang J, Li J, Zhang S, Guo W. Fluid shear stress induces cell migration via RhoA-YAP1-autophagy pathway in liver cancer stem cells. Cell Adh Migr 2022; 16:94-106. [PMID: 35880618 PMCID: PMC9331214 DOI: 10.1080/19336918.2022.2103925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC), but the role of the RhoA-YAP1-autophagy pathway in HCC remains unclear. Due to the core role of liver cancer stem cells (LCSCs) in HCC metastasis and recurrence, we explored the RhoA-YAP1-autophagy pathway in LCSCs under FSS. Our results indicate that LCSCs have stronger proliferation and cell spheroidization abilities. FSS (1 dyn/cm2) upregulated the migration of LCSCs and autophagy protein markers, inducing LC3B aggregation and autophagosome formation in LCSCs. Mechanistically, FSS promoted YAP1 dephosphorylation and transport to the nucleus, which is mediated by RhoA, inducing autophagy. Finally, inhibition of autophagy suppressed cell migration in LCSCs under FSS. In conclusion, FSS promoted the migration of LCSCs via the RhoA-YAP1-autophagy pathway.
Collapse
Affiliation(s)
- Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Ruolin Tao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Jiacheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China,CONTACT Wenzhi Guo Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Troumpoukis D, Papadimitropoulou A, Charalampous C, Kogionou P, Palamaris K, Sarantis P, Serafimidis I. Targeting autophagy in pancreatic cancer: The cancer stem cell perspective. Front Oncol 2022; 12:1049436. [PMID: 36505808 PMCID: PMC9730023 DOI: 10.3389/fonc.2022.1049436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is currently the seventh leading cause of cancer-related deaths worldwide, with the estimated death toll approaching half a million annually. Pancreatic ductal adenocarcinoma (PDAC) is the most common (>90% of cases) and most aggressive form of pancreatic cancer, with extremely poor prognosis and very low survival rates. PDAC is initiated by genetic alterations, usually in the oncogene KRAS and tumor suppressors CDKN2A, TP53 and SMAD4, which in turn affect a number of downstream signaling pathways that regulate important cellular processes. One of the processes critically altered is autophagy, the mechanism by which cells clear away and recycle impaired or dysfunctional organelles, protein aggregates and other unwanted components, in order to achieve homeostasis. Autophagy plays conflicting roles in PDAC and has been shown to act both as a positive effector, promoting the survival of pancreatic tumor-initiating cells, and as a negative effector, increasing cytotoxicity in uncontrollably expanding cells. Recent findings have highlighted the importance of cancer stem cells in PDAC initiation, progression and metastasis. Pancreatic cancer stem cells (PaCSCs) comprise a small subpopulation of the pancreatic tumor, characterized by cellular plasticity and the ability to self-renew, and autophagy has been recognised as a key process in PaCSC maintenance and function, simultaneously suggesting new strategies to achieve their selective elimination. In this review we evaluate recent literature that links autophagy with PaCSCs and PDAC, focusing our discussion on the therapeutic implications of pharmacologically targeting autophagy in PaCSCs, as a means to treat PDAC.
Collapse
Affiliation(s)
- Dimitrios Troumpoukis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Chrysanthi Charalampous
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Paraskevi Kogionou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kostas Palamaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Serafimidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,*Correspondence: Ioannis Serafimidis,
| |
Collapse
|
18
|
Barresi C, Rossiter H, Buchberger M, Pammer J, Sukseree S, Sibilia M, Tschachler E, Eckhart L. Inactivation of Autophagy in Keratinocytes Reduces Tumor Growth in Mouse Models of Epithelial Skin Cancer. Cells 2022; 11:cells11223691. [PMID: 36429119 PMCID: PMC9688105 DOI: 10.3390/cells11223691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Autophagy is a ubiquitous degradation mechanism, which plays a critical role in cellular homeostasis. To test whether autophagy suppresses or supports the growth of tumors in the epidermis of the skin, we inactivated the essential autophagy gene Atg7 specifically in the epidermal keratinocytes of mice (Atg7∆ep) and subjected such mutant mice and fully autophagy-competent mice to tumorigenesis. The lack of epithelial Atg7 did not prevent tumor formation in response to 7, 12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O tetradecanoylphorbol-13-acetate (TPA) as the promoter of tumor growth. However, the number of tumors per mouse was reduced in mice with epithelial Atg7 deficiency. In the K5-SOS EGFRwa2/wa2 mouse model, epithelial tumors were initiated by Son of sevenless (SOS) in response to wounding. Within 12 weeks after tumor initiation, 60% of the autophagy-competent K5-SOS EGFRwa2/wa2 mice had tumors of 1 cm diameter and had to be sacrificed, whereas none of the Atg7∆ep K5-SOS EGFRwa2/wa2 mice formed tumors of this size. In summary, the deletion of Atg7 reduced the growth of epithelial tumors in these two mouse models of skin cancer. Thus, our data show that the inhibition of autophagy limits the growth of epithelial skin tumors.
Collapse
Affiliation(s)
- Caterina Barresi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Heidemarie Rossiter
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Pammer
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Sibilia
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (E.T.); (L.E.)
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (E.T.); (L.E.)
| |
Collapse
|
19
|
Su F, Gao Z, Liu Y, Zhou G, Gao W, Deng C, Liu Y, Zhang Y, Ma X, Wang Y, Guan L, Zhang Y, Liu B. Prioritizing key synergistic circulating microRNAs for the early diagnosis of biliary tract cancer. Front Oncol 2022; 12:968412. [PMID: 36276146 PMCID: PMC9582275 DOI: 10.3389/fonc.2022.968412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Biliary tract cancer (BTC) is a highly aggressive malignant tumor. Serum microRNAs (ser-miRNAs) serve as noninvasive biomarkers to identify high risk individuals, thereby facilitating the design of precision therapies. The study is to prioritize key synergistic ser-miRNAs for the diagnosis of early BTC. Sampling technology, significant analysis of microarrays, Pearson Correlation Coefficients, t-test, decision tree, and entropy weight were integrated to develop a global optimization algorithm of decision forest. The source code is available at https://github.com/SuFei-lab/GOADF.git. Four key synergistic ser-miRNAs were prioritized and the synergistic classification performance was better than the single miRNA’ s. In the internal feature evaluation dataset, the area under the receiver operating characteristic curve (AUC) for each single miRNA was 0.8413 (hsa-let-7c-5p), 0.7143 (hsa-miR-16-5p), 0.8571 (hsa-miR-17-5p), and 0.9365 (hsa-miR-26a-5p), respectively, whereas the synergistic AUC value increased to 1.0000. In the internal test dataset, the single AUC was 0.6500, 0.5125, 0.6750, and 0.7500, whereas the synergistic AUC increased to 0.8375. In the independent test dataset, the single AUC was 0.7280, 0.8313, 0.8957, and 0.8303, and the synergistic AUC was 0.9110 for discriminating between BTC patients and healthy controls. The AUC for discriminating BTC from pancreatic cancer was 0.9000. Hsa-miR-26a-5p was a predictor of prognosis, patients with high expression had shorter survival than those with low expression. In conclusion, hsa-let-7c-5p, hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-26a-5p may act as key synergistic biomarkers and provide important molecular mechanisms that contribute to pathogenesis of BTC.
Collapse
Affiliation(s)
- Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ziyu Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yueyang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guiqin Zhou
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Wei Gao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chao Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yuyu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yihao Zhang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xiaoyan Ma
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yongxia Wang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Lili Guan
- Department of Information Management, Shanghai Lixin University of Accounting and Finance, Shanghai, China
- *Correspondence: Baoquan Liu, ; Yafang Zhang, ; Lili Guan,
| | - Yafang Zhang
- Department of Anatomy, Harbin Medical University, Harbin, China
- *Correspondence: Baoquan Liu, ; Yafang Zhang, ; Lili Guan,
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, Harbin, China
- Department of Modern Medicine and Pharmacy, University of Tibetan Medicine, Lhasa, China
- *Correspondence: Baoquan Liu, ; Yafang Zhang, ; Lili Guan,
| |
Collapse
|
20
|
Di Donato M, Giovannelli P, Migliaccio A, Bilancio A. Inhibition of Vps34 and p110δ PI3K Impairs Migration, Invasion and Three-Dimensional Spheroid Growth in Breast Cancer Cells. Int J Mol Sci 2022; 23:9008. [PMID: 36012280 PMCID: PMC9409264 DOI: 10.3390/ijms23169008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a heterogeneous disease that represents the most common cancer around the world; it comprises 12% of new cases according to the World Health Organization. Despite new approaches in early diagnosis and current treatment, breast cancer is still the leading cause of death for cancer mortality. New targeted therapies against key signalling transduction molecules are required. Phosphoinositide 3-kinase (PI3K) regulates multiple biological functions such as proliferation, survival, migration, and growth. It is well established that PI3K isoform-selective inhibitors show fewer toxic side effects compared to broad spectrum inhibition of PI3K (pan-PI3K inhibitors). Therefore, we tested the PI3K p110δ-selective inhibitor, IC87114, and Vps34-selective inhibitor, Vps34-IN1, on the breast cancer cell lines MCF-7 and MDA-MB-231, representing hormone-responsive and triple-negative breast cancer cells, respectively. Our data show that both inhibitors decreased migration of MCF-7 and MDA-MB-231 cells, and Vps34 also significantly impacted MCF-7 cell proliferation. Three-dimensional (3D) in vitro culture models show that IC87114 and Vps34-IN1 treatment reduced the growth of MCF-7 and MDA-MB-231 cells in 3D tumour spheroid cultures. This study identifies IC87114 and Vps34-IN1 as potential therapeutic approaches in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Antonio Bilancio
- Department of Medicine Precision, “Luigi Vanvitelli”, Affiliation University of Campania, Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
21
|
Hung SW, Li Y, Chen X, Chu KO, Zhao Y, Liu Y, Guo X, Man GCW, Wang CC. Green Tea Epigallocatechin-3-Gallate Regulates Autophagy in Male and Female Reproductive Cancer. Front Pharmacol 2022; 13:906746. [PMID: 35860020 PMCID: PMC9289441 DOI: 10.3389/fphar.2022.906746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
With a rich abundance of natural polyphenols, green tea has become one of the most popular and healthiest nonalcoholic beverages being consumed worldwide. Epigallocatechin-3-gallate (EGCG) is the predominant catechin found in green tea, which has been shown to promote numerous health benefits, including metabolic regulation, antioxidant, anti-inflammatory, and anticancer. Clinical studies have also shown the inhibitory effects of EGCG on cancers of the male and female reproductive system, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Autophagy is a natural, self-degradation process that serves important functions in both tumor suppression and tumor cell survival. Naturally derived products have the potential to be an effective and safe alternative in balancing autophagy and maintaining homeostasis during tumor development. Although EGCG has been shown to play a critical role in the suppression of multiple cancers, its role as autophagy modulator in cancers of the male and female reproductive system remains to be fully discussed. Herein, we aim to provide an overview of the current knowledge of EGCG in targeting autophagy and its related signaling mechanism in reproductive cancers. Effects of EGCG on regulating autophagy toward reproductive cancers as a single therapy or cotreatment with other chemotherapies will be reviewed and compared. Additionally, the underlying mechanisms and crosstalk of EGCG between autophagy and other cellular processes, such as reactive oxidative stress, ER stress, angiogenesis, and apoptosis, will be summarized. The present review will help to shed light on the significance of green tea as a potential therapeutic treatment for reproductive cancers through regulating autophagy.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiran Li
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiwei Zhao
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingyu Liu
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Xi Guo
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gene Chi-Wai Man
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| |
Collapse
|
22
|
Novel Effects of Statins on Cancer via Autophagy. Pharmaceuticals (Basel) 2022; 15:ph15060648. [PMID: 35745567 PMCID: PMC9228383 DOI: 10.3390/ph15060648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is one of the main causes of death globally. Most of the molecular mechanisms underlying cancer are marked by complex aberrations that activate the critical cell-signaling pathways that play a pivotal role in cell metabolism, tumor development, cytoskeletal reorganization, and metastasis. The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of the rapamycin (PI3K/AKT/mTOR) pathway is one of the main signaling pathways involved in carcinogenesis and metastasis. Autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation, plays a dual role in cancer, as either a tumor promoter or a tumor suppressor, depending on the stage of the carcinogenesis. Statins are the group of drugs of choice to lower the level of low-density lipoprotein (LDL) cholesterol in the blood. Experimental and clinical data suggest the potential of statins in the treatment of cancer. In vitro and in vivo studies have demonstrated the molecular mechanisms through which statins inhibit the proliferation and metastasis of cancer cells in different types of cancer. The anticancer properties of statins have been shown to result in the suppression of tumor growth, the induction of apoptosis, and autophagy. This literature review shows the dual role of the autophagic process in cancer and the latest scientific evidence related to the inducing effect exerted by statins on autophagy, which could explain their anticancer potential.
Collapse
|
23
|
Kocot AM, Wróblewska B. Nutritional strategies for autophagy activation and health consequences of autophagy impairment. Nutrition 2022; 103-104:111686. [PMID: 35843038 DOI: 10.1016/j.nut.2022.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
|
24
|
Song SY, Lee SY, Ko YB, Kim J, Choi TY, Lee KH, Yoo HJ, Yuk JM. Fenofibrate Exerts Anticancer Effects on Human Cervical Cancer HeLa Cells via Caspase-Dependent Apoptosis and Cell Cycle Arrest. Gynecol Obstet Invest 2022; 87:79-88. [DOI: 10.1159/000518509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
<b><i>Objective:</i></b> In the present study, we attempted to identify the effects of fenofibrate on human cervical cancer cells. <b><i>Methods:</i></b> The cytotoxicity of fenofibrate in cervical cancer cells was determined by Cell Counting Kit-8. Immunoblotting assay was used to determine the protein expression of caspase-3, poly ADP-ribose polymerase cleavage, B-cell lymphoma 2 family protein expression, microtubule-associated protein 1A/1B-light chain 3 (LC3), as well as cyclins and cyclin-dependent kinases. Immunofluorescence imaging was used to determine the expression of cleaved caspase-3 and LC3. Flow cytometry was used to determine cell cycle and apoptosis. <b><i>Results:</i></b> We first showed that fenofibrate treatment reduced cell viability in HeLa cervical cancer cells in a dose-dependent manner at 24 h and 48 h. Importantly, fenofibrate-induced cell death was mediated through cell cycle arrest in the G0–G1 phase and caspase-dependent apoptosis. Moreover, fenofibrate also induced autophagy activation in a dose-dependent manner and pharmacological inhibition of autophagy led to increase of sub-G1 phase and caspase-dependent cell death in HeLa cells. <b><i>Conclusion:</i></b> In conclusion, these data demonstrated that fenofibrate initially induced cell cycle arrest, followed by caspase-3-dependent cell death in cervical cancer HeLa cells. However, fenofibrate also induced autophagy activation, which is closely related to the survival of diverse cancer cells, thus reducing the anticancer effects of fenofibrate. Therefore, the combination of an autophagy inhibitor and fenofibrate might have the potential to become a new therapeutic strategy for cervical cancer.
Collapse
|
25
|
Pu Y, Wang J, Wang S. Role of autophagy in drug resistance and regulation of osteosarcoma (Review). Mol Clin Oncol 2022; 16:72. [PMID: 35251623 DOI: 10.3892/mco.2022.2505] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/17/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yanchuan Pu
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Jin Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Shizhong Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| |
Collapse
|
26
|
Sun H, Wei X, Zeng C. Autophagy in Xp11 translocation renal cell carcinoma: from bench to bedside. Mol Cell Biochem 2021; 476:4231-4244. [PMID: 34345999 DOI: 10.1007/s11010-021-04235-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) characterized by the rearrangement of the TFE3 is recently identified as a unique subtype of RCC that urgently requires effective prevention and treatment strategies. Therefore, determining suitable therapeutic targets and fully understanding the biological significance of tRCC is essential. The importance of autophagy is increasingly acknowledged because it shows carcinogenic activity or suppressor effect. Autophagy is a physiological cellular process critical to maintaining cell homeostasis, which is involved in the lysosomal degradation of cytoplasmic organelles and macromolecules via the lysosomal pathway, suggesting that targeting autophagy is a potential therapeutic approach for cancer therapies. However, the underlying mechanism of autophagy in tRCC is still ambiguous. In this review, we summarize the autophagy-related signaling pathways associated with tRCC. Moreover, we examine the roles of autophagy and the immune response in tumorigenesis and investigate how these factors interact to facilitate or prevent tumorigenesis. Besides, we review the findings regarding the treatment of tRCC via induction or inhibition of autophagy. Hopefully, this study will shed some light on the functions and implications of autophagy and emphasize its role as a potential molecular target for therapeutic intervention in tRCC.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Xing Wei
- Department of Nephrology and Rheumatology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China.
| |
Collapse
|
27
|
Zheng Y, Liu Z, Yang X, Liu L, Ahn KS. An updated review on the potential antineoplastic actions of oleuropein. Phytother Res 2021; 36:365-379. [PMID: 34808696 DOI: 10.1002/ptr.7325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Oleuropein is an ester of elenolic acid and hydroxytyrosol (3, 4-dihydroxyphenylethanol). It is a phenolic compound and the most luxuriant in olives. The detailed information related to the anticancer effects of oleuropein was collected from the internet database PubMed/Medline, ResearchGate, Web of Science, Wiley Online Library, and Cnki using appropriate keywords until the end of October 2021. Oleuropein has been shown to have antioxidant, anticancer, antiinflammatory, cardioprotective, neuroprotective, and hepatoprotective effects. Previous studies also revealed that oleuropein could effectively inhibit the malignant progression of esophageal cancer, gastric cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, ovarian cancer, prostate cancer, and cervical cancer. Recently, the role of oleuropein in inhibiting tumor cell proliferation, invasion, and migration and inducing tumor cell apoptosis has gained extensive attention. In this review, we have summarized the latest research progress related to the antioncogenic mechanisms and the potential role of oleuropein in targeting different human malignancies. Based on these findings, it can be concluded that oleuropein can function as a promising chemopreventive and chemotherapeutic agent against cancer, but its more detailed anticancer effects and underlying mechanisms need to be further validated in future preclinical as well as clinical studies.
Collapse
Affiliation(s)
- Yudong Zheng
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Zhenzhen Liu
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Xiulan Yang
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Lian Liu
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Kwang Seok Ahn
- Kyung Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Nkwe DO, Lotshwao B, Rantong G, Matshwele J, Kwape TE, Masisi K, Gaobotse G, Hefferon K, Makhzoum A. Anticancer Mechanisms of Bioactive Compounds from Solanaceae: An Update. Cancers (Basel) 2021; 13:4989. [PMID: 34638473 PMCID: PMC8507657 DOI: 10.3390/cancers13194989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022] Open
Abstract
Plants continue to provide unlimited pharmacologically active compounds that can treat various illnesses, including cancer. The Solanaceae family, besides providing economically important food plants, such as potatoes and tomatoes, has been exploited extensively in folk medicine, as it provides an array of bioactive compounds. Many studies have demonstrated the anticancer potency of some of the compounds, but the corresponding molecular targets are not well defined. However, advances in molecular cell biology and in silico modelling have made it possible to dissect some of the underlying mechanisms. By reviewing the literature over the last five years, we provide an update on anticancer mechanisms associated with phytochemicals isolated from species in the Solanaceae plant family. These mechanisms are conveniently grouped into cell cycle arrest, transcription regulation, modulation of autophagy, inhibition of signalling pathways, suppression of metabolic enzymes, and membrane disruption. The majority of the bioactive compounds exert their antiproliferative effects by inhibiting diverse signalling pathways, as well as arresting the cell cycle. Furthermore, some of the phytochemicals are effective against more than one cancer type. Therefore, understanding these mechanisms provides paths for future formulation of novel anticancer drugs, as well as highlighting potential areas of research.
Collapse
Affiliation(s)
- David O. Nkwe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Bonolo Lotshwao
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Gaolathe Rantong
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - James Matshwele
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana;
- Department of Applied Sciences, Botho University, Gaborone, Botswana
| | - Tebogo E. Kwape
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| |
Collapse
|
29
|
Uvangoletin, extracted from Sarcandra glabra, exerts anticancer activity by inducing autophagy and apoptosis and inhibiting invasion and migration on hepatocellular carcinoma cells. PHYTOMEDICINE 2021; 94:153793. [PMID: 34736000 DOI: 10.1016/j.phymed.2021.153793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/13/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uvangoletin is a dihydrochalcone extracted from the traditional Chinese medicinal plant Sarcandra glabra. Previous research has showed that uvangoletin could induce leukemia cell death. However, the anticancer effect of uvangoletin on hepatocellular carcinoma (HCC) has not been clarified. AIM OF THE STUDY This study aimed to investigate the anti-cancer effects of uvangoletin on HCC and to explore its underlying mechanisms. MATERIALS AND METHODS We measured the anticancer activities of uvangoletin both in vitro and in vivo by MTT assay and HepG2 xenograft model. The effects of uvangoletin on apoptosis, autophagy, migration and invasion were also determined. Apoptosis was evaluated by flow cytometry method. Autophagy was assessed by immunofluorescence assay. Cell migration and invasion ability were validated by wound healing assay and cultrex® 96 well cell migration/invasion assay. The expression level of relevant proteins and pathways were examined by western blot. RESULTS The results of MTT assay and HepG2 xenograft model showed that uvangoletin could inhibit HCC cells proliferation in vitro and in vivo. Uvangoletin could induce HepG2 cell apoptosis as evidence by the increased expression of cleaved caspase 3, caspase 8 and Bax while decreased Bcl-2 expression. Wound healing assay and transwell assay showed that uvangoletin inhibited HepG2 cells migration and invasion and reduced vimentin, MMP9, MMP2 expression. Uvangoletin also promoted autophagy in HepG2 cells as confirmed by the accumulation of GFP-LC3 puncta. Autophagy inhibitors like 3-MA or CQ could suppress uvangoletin-induced apoptosis. Importantly, uvangoletin-induced anti-EMT effect was also attenuated after autophagy inhibitors added in. Mechanistically, the expressions of p-JNK, p-ERK, p-p38, p-AKT, p-p70S6k and p-mTOR were significantly decreased after uvangoletin treatment. CONCLUSION Our results showed that uvangoletin could induce apoptotic and autophagic cell death, inhibit cell proliferation and metastasis on HepG2 cells through Akt/mTOR, MAPK and TGFβ/Smad2 signal pathways.
Collapse
|
30
|
Xu S, Li W, Wu J, Lu Y, Xie M, Li Y, Zou J, Zeng T, Ling H. The role of miR-129-5p in cancer: a novel therapeutic target. Curr Mol Pharmacol 2021; 15:647-657. [PMID: 34521336 DOI: 10.2174/1874467214666210914122010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
MiRNA-129-5p belongs to the microRNA-129 (miRNA-129) family. MiRNA-129-5p is expressed in many tissues and organs of the human body, and it regulates a wide range of biological functions. The abnormal expression of miRNA-129-5p is related to the occurrence and development of a variety of malignant tumors. MiRNA-129-5p plays an important role in the tumorigenesis process and functions by promoting or inhibiting tumors. However, the role of miRNA-129-5p in cancer remains controversial. This article reviews the different biological functions of miRNA-129-5p in cancer and provides ideas for research in this field to guide the development of targeted therapies and drugs for malignant tumors.
Collapse
Affiliation(s)
- Shan Xu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Wei Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Jing Wu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Yuru Lu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Ming Xie
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Yanlan Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Juan Zou
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Tiebing Zeng
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405], Hengyang, Hunan 421001. China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| |
Collapse
|
31
|
Dankó T, Petővári G, Sztankovics D, Moldvai D, Raffay R, Lőrincz P, Visnovitz T, Zsiros V, Barna G, Márk Á, Krencz I, Sebestyén A. Rapamycin Plus Doxycycline Combination Affects Growth Arrest and Selective Autophagy-Dependent Cell Death in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22158019. [PMID: 34360785 PMCID: PMC8347279 DOI: 10.3390/ijms22158019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
Metabolic alteration is characteristic during tumour growth and therapy; however, targeting metabolic rewiring could overcome therapy resistance. mTOR hyperactivity, autophagy and other metabolic processes, including mitochondrial functions, could be targeted in breast cancer progression. We investigated the growth inhibitory mechanism of rapamycin + doxycycline treatment in human breast cancer model systems. Cell cycle and cell viability, including apoptotic and necrotic cell death, were analysed using flow cytometry, caspase activity measurements and caspase-3 immunostainings. mTOR-, autophagy-, necroptosis-related proteins and treatment-induced morphological alterations were analysed by WesTM, Western blot, immunostainings and transmission electron microscopy. The rapamycin + doxycycline combination decreased tumour proliferation in about 2/3rd of the investigated cell lines. The continuous treatment reduced tumour growth significantly both in vivo and in vitro. The effect after short-term treatment was reversible; however, autophagic vacuoles and degrading mitochondria were detected simultaneously, and the presence of mitophagy was also observed after the long-term rapamycin + doxycycline combination treatment. The rapamycin + doxycycline combination did not cause apoptosis or necrosis/necroptosis, but the alterations in autophagy- and mitochondria-related protein levels (LC3-B-II/I, p62, MitoTracker, TOM20 and certain co-stainings) were correlated to autophagy induction and mitophagy, without mitochondria repopulation. Based on these results, we suggest considering inducing metabolic stress and targeting mTOR hyperactivity and mitochondrial functions in combined anti-cancer treatments.
Collapse
Affiliation(s)
- Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Dániel Sztankovics
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Dorottya Moldvai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Regina Raffay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary;
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Viktória Zsiros
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, H-1094 Budapest, Hungary;
| | - Gábor Barna
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Ágnes Márk
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
- Correspondence:
| |
Collapse
|
32
|
Brun S, Pascussi JM, Gifu EP, Bestion E, Macek-Jilkova Z, Wang G, Bassissi F, Mezouar S, Courcambeck J, Merle P, Decaens T, Pannequin J, Halfon P, Caron de Fromentel C. GNS561, a New Autophagy Inhibitor Active against Cancer Stem Cells in Hepatocellular Carcinoma and Hepatic Metastasis from Colorectal Cancer. J Cancer 2021; 12:5432-5438. [PMID: 34405006 PMCID: PMC8364651 DOI: 10.7150/jca.58533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with advanced hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC) have a very poor prognosis due to the lack of efficient treatments. As observed in several other tumors, the effectiveness of treatments is mainly hampered by the presence of a highly tumorigenic sub-population of cancer cells called cancer stem cells (CSCs). Indeed, CSCs are resistant to chemotherapy and radiotherapy and can regenerate the tumor bulk. Hence, innovative drugs that are efficient against both bulk tumor cells and CSCs would likely improve cancer treatment. In this study, we demonstrated that GNS561, a new autophagy inhibitor that induces lysosomal cell death, showed significant activity against not only the whole tumor population but also a sub-population displaying CSC features (high ALDH activity and tumorsphere formation ability) in HCC and in liver mCRC cell lines. These results were confirmed in vivo in HCC from a DEN-induced cirrhotic rat model in which GNS561 decreased tumor growth and reduced the frequency of CSCs (CD90+CD45-). Thus, GNS561 offers great promise for cancer therapy by exterminating both the tumor bulk and the CSC sub-population. Accordingly, a global phase 1b clinical trial in liver cancers was recently completed.
Collapse
Affiliation(s)
| | | | - Elena Patricia Gifu
- CRCL, INSERM U1052, CNRS 5286, Université Lyon 1 ‐ Centre Léon Bérard, Lyon, France
| | - Eloïne Bestion
- Genoscience Pharma, Marseille, France
- Aix-Marseille Univ, MEPHI, APHM, IRD, IHU Méditerranée Infection, Marseille, France
| | - Zuzana Macek-Jilkova
- Institute for Advanced Biosciences, Research Center UGA, Inserm U 1209, CNRS 5309, La Tronche, France
- University of Grenoble Alpes, Faculté de Médecine, France
- Clinique Universitaire d'Hépato‐gastroentérologie, Pôle Digidune, CHU Grenoble, France
| | - Guanxiong Wang
- CRCL, INSERM U1052, CNRS 5286, Université Lyon 1 ‐ Centre Léon Bérard, Lyon, France
| | | | | | | | - Philippe Merle
- CRCL, INSERM U1052, CNRS 5286, Université Lyon 1 ‐ Centre Léon Bérard, Lyon, France
- Hepatology and Gastroenterology Unit, Croix-Rousse Hospital, Hospices Civils de Lyon, France
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center UGA, Inserm U 1209, CNRS 5309, La Tronche, France
- University of Grenoble Alpes, Faculté de Médecine, France
- Clinique Universitaire d'Hépato‐gastroentérologie, Pôle Digidune, CHU Grenoble, France
| | - Julie Pannequin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
33
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|
34
|
Maculins T, Verschueren E, Hinkle T, Choi M, Chang P, Chalouni C, Rao S, Kwon Y, Lim J, Katakam AK, Kunz RC, Erickson BK, Huang T, Tsai TH, Vitek O, Reichelt M, Senbabaoglu Y, Mckenzie B, Rohde JR, Dikic I, Kirkpatrick DS, Murthy A. Multiplexed proteomics of autophagy-deficient murine macrophages reveals enhanced antimicrobial immunity via the oxidative stress response. eLife 2021; 10:e62320. [PMID: 34085925 PMCID: PMC8177894 DOI: 10.7554/elife.62320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Defective autophagy is strongly associated with chronic inflammation. Loss-of-function of the core autophagy gene Atg16l1 increases risk for Crohn's disease in part by enhancing innate immunity through myeloid cells such as macrophages. However, autophagy is also recognized as a mechanism for clearance of certain intracellular pathogens. These divergent observations prompted a re-evaluation of ATG16L1 in innate antimicrobial immunity. In this study, we found that loss of Atg16l1 in myeloid cells enhanced the killing of virulent Shigella flexneri (S.flexneri), a clinically relevant enteric bacterium that resides within the cytosol by escaping from membrane-bound compartments. Quantitative multiplexed proteomics of murine bone marrow-derived macrophages revealed that ATG16L1 deficiency significantly upregulated proteins involved in the glutathione-mediated antioxidant response to compensate for elevated oxidative stress, which simultaneously promoted S.flexneri killing. Consistent with this, myeloid-specific deletion of Atg16l1 in mice accelerated bacterial clearance in vitro and in vivo. Pharmacological induction of oxidative stress through suppression of cysteine import enhanced microbial clearance by macrophages. Conversely, antioxidant treatment of macrophages permitted S.flexneri proliferation. These findings demonstrate that control of oxidative stress by ATG16L1 and autophagy regulates antimicrobial immunity against intracellular pathogens.
Collapse
Affiliation(s)
- Timurs Maculins
- Department of Cancer Immunology, GenentechSouth San FranciscoUnited States
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
| | - Erik Verschueren
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
| | - Trent Hinkle
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
| | - Meena Choi
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Patrick Chang
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Cecile Chalouni
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Shilpa Rao
- Department of Oncology Bioinformatics, GenentechSouth San FranciscoUnited States
| | - Youngsu Kwon
- Department of Translational Immunology, GenentechSouth San FranciscoUnited States
| | - Junghyun Lim
- Department of Cancer Immunology, GenentechSouth San FranciscoUnited States
| | | | | | | | - Ting Huang
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Tsung-Heng Tsai
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
- Department of Mathematical Sciences, Kent State UniversityKentUnited States
| | - Olga Vitek
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Mike Reichelt
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Yasin Senbabaoglu
- Department of Oncology Bioinformatics, GenentechSouth San FranciscoUnited States
| | - Brent Mckenzie
- Department of Translational Immunology, GenentechSouth San FranciscoUnited States
| | - John R Rohde
- Department of Microbiology and Immunology, Dalhousie UniversityHalifaxCanada
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
- Department of Infectious Diseases, GenentechSouth San FranciscoUnited States
| | | | - Aditya Murthy
- Interline TherapeuticsSouth San FranciscoUnited States
| |
Collapse
|
35
|
Xu F, Wu Q, Li L, Gong J, Huo R, Cui W. Icariside II: Anticancer Potential and Molecular Targets in Solid Cancers. Front Pharmacol 2021; 12:663776. [PMID: 33981241 PMCID: PMC8107468 DOI: 10.3389/fphar.2021.663776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Icariside II, an active flavonoid, is extracted from the traditional Chinese medicinal herb Epimedii. It possesses multiple biological and pharmacological properties, including anti-inflammatory, anticancer, and anti-osteoporotic properties. In recent years, apoptosis has become the hot spot in anticancer therapies. Icariside II exerts positive effects on inducing apoptosis and inhibiting proliferation in various cancers. The antitumorigenic activity of Icariside II was also proven through cell cycle arrest, triggering autophagy, reducing cellular metabolism, and inhibiting cancer metastasis and tumor-associated angiogenesis. Additionally, Icariside II, as a natural product, contributed to a synergistic effect alongside chemotherapeutic drugs. Due to its poor aqueous solubility and permeability, more strategies were developed to improve its therapeutic effects. This review aimed to summarize the chemopreventive properties of Icariside II in solid tumors and reveal its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiaolan Wu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Gong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Huo
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
36
|
Musial C, Siedlecka-Kroplewska K, Kmiec Z, Gorska-Ponikowska M. Modulation of Autophagy in Cancer Cells by Dietary Polyphenols. Antioxidants (Basel) 2021; 10:123. [PMID: 33467015 PMCID: PMC7830598 DOI: 10.3390/antiox10010123] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
The role of autophagy is to degrade damaged or unnecessary cellular structures. Both in vivo and in vitro studies suggest a dual role of autophagy in cancer-it may promote the development of neoplasms, but it may also play a tumor protective function. The mechanism of autophagy depends on the genetic context, tumor stage and type, tumor microenvironment, or clinical therapy used. Autophagy also plays an important role in cell death as well as in the induction of chemoresistance of cancer cells. The following review describes the extensive autophagic cell death in relation to dietary polyphenols and cancer disease. The review documents increasing use of polyphenolic compounds in cancer prevention, or as agents supporting oncological treatment. Polyphenols are organic chemicals that exhibit antioxidant, anti-inflammatory, anti-angiogenic, and immunomodulating properties, and can also initiate the process of apoptosis. In addition, polyphenols reduce oxidative stress and protect against reactive oxygen species. This review presents in vitro and in vivo studies in animal models with the use of polyphenolic compounds such as epigallocatechin-3-gallate (EGCG), oleuropein, punicalgin, apigenin, resveratrol, pterostilbene, or curcumin and their importance in the modulation of autophagy-induced death of cancer cells.
Collapse
Affiliation(s)
- Claudia Musial
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | | | - Zbigniew Kmiec
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland; (K.S.-K.); (Z.K.)
| | | |
Collapse
|