1
|
Tian M, Feng L, Tian M, Mu X, Bu S, Liu J, Xie J, Xie Y, Hou L, Li G. Huaxian formula alleviates nickel oxide nanoparticle-induced pulmonary fibrosis via PI3K/AKT signaling. Sci Rep 2025; 15:17862. [PMID: 40404681 PMCID: PMC12098777 DOI: 10.1038/s41598-025-01899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 05/09/2025] [Indexed: 05/24/2025] Open
Abstract
As a progressive fibrotic lung disorder with high mortality, pulmonary fibrosis (PF) suffers from inadequate treatment options. While the traditional Chinese medicine (TCM) formulation Huaxian Formula (HXF) demonstrates multi-target therapeutic potential against PF, the identity of its active components and their mechanistic basis of action require systematic investigation. To elucidate the therapeutic effects and pharmacological mechanisms of HXF in treating PF induced by nickel oxide nanoparticles (nano NiO), utilizing network pharmacology (NP), molecular docking, as well as in vivo and in vitro experiments. A comprehensive analysis of authoritative databases identified 121 active compounds, 202 potential therapeutic targets, and 1664 PF-related genes. Among these, 105 overlapping targets were found between HXF and PF. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses identified the PI3K/AKT signaling pathway as both a pivotal mechanism in PF pathogenesis and a primary target of HXF's therapeutic effects. Molecular docking studies revealed that the six core compounds (quercetin, luteolin, kaempferol, β-sitosterol, isorhamnetin, and formononetin) of HXF exhibited strong binding affinity to proteins involved in the PI3K/AKT pathway. In the rat and A549 cell model, HXF treatment reduced collagen deposition and downregulated the expression of type I collagen (Col-I). Mechanistically, HXF inhibited the phosphorylation of PI3K and AKT. Collectively, these findings suggested that HXF alleviated PF by modulating the PI3K/AKT signaling pathway, providing valuable insights and methods for the development of TCM for PF.
Collapse
Affiliation(s)
- Minmin Tian
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Liruohan Feng
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Mi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaodong Mu
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Shi Bu
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jianfeng Liu
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jingyu Xie
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Yujie Xie
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Ling Hou
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Guanghua Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
2
|
Qin D, Zhang H, Du B, Wang H, Liu L, Wang Y. Understanding the ancient classic and famous prescriptions via the property of Chinese materia medica. Front Pharmacol 2025; 16:1551531. [PMID: 40421208 PMCID: PMC12104179 DOI: 10.3389/fphar.2025.1551531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/14/2025] [Indexed: 05/28/2025] Open
Abstract
Background Ancient classic and famous prescriptions (ACFPs), derived from traditional Chinese medicine (TCM) classics, are widely utilized due to their precise therapeutic effects and distinctive clinical advantages. Existing research predominantly focuses on individual prescriptions, and there is lack of systematic exploration of medication patterns within the official ACFPs catalog. The property of Chinese materia medica (PCMM), a multidimensional representation of medicinal properties, offers a novel perspective for systematically analyzing TCM formulas. Objective In this study, we aim to investigate the implicit medication patterns of ACFPs from the PCMM perspective, establish a feature extraction model based on the property combination of Chinese materia medica (PCCMM), and evaluate its effectiveness in representing and reconstructing ACFPs. Methods Based on the Chinese Pharmacopoeia (ChP), we constructed a CMM-PCCMM network as the forward feature extraction process. We formulated the backward process as a constrained combinatorial optimization problem to rebuild ACFPs from their PCCMMs. We evaluated the performance of PCCMM in reconstructing ACFPs using the Jaccard similarity coefficient. Furthermore, we tested the capability of PCCMM to distinguish ACFPs from random pseudo-formulas and classify ACFPs according to deficiency syndromes. Finally, we conducted frequency analysis, association rule analysis, distance analysis, and correlation analysis to explore the implicit medication patterns of ACFPs based on PCCMM. Results Numerical experiments showed that PCCMM effectively represented and reconstructed ACFPs, achieving an average Jaccard similarity coefficient above 0.8. PCCMM outperformed the nomenclature of CMM in distinguishing ACFPs from random pseudo-formulas and classifying deficiency syndromes. Frequency analysis revealed that high-frequency CMMs were mainly tonic medicines, whereas high-frequency PCCMMs predominantly mapped to the even-sweet-spleen meridian. The association rule analysis based on PCCMM yielded significantly more implicit compatibility rules than CMM alone. Distance and correlation analyses identified synergistic CMM pairs and PCCMM pairs, such as Jujubae Fructus (Dazao) and Zingiberis Rhizoma Recens (Shengjiang), which is consistent with clinical experience. Conclusion The PCCMM-based feature extraction model provides a quasi-equivalent representation of TCM formulas, effectively capturing implicit medication patterns within ACFPs. PCCMM outperforms traditional CMM methods in formula reconstruction, classification, and medication pattern mining. This study offers novel insights and methodologies for systematically understanding TCM formulas, guiding clinical application, and facilitating the design and optimization of new TCM formulas.
Collapse
Affiliation(s)
- Dan Qin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing, China
| | - He Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Bin Du
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Hui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ligang Liu
- Institute of Therapeutic Innovations and Outcomes (ITIO), College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Yun Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Feng Y, Zhang W, Bao S, Shen J. Active Components of Wen Fei Fu Yang Qu Tan Fang and its Molecular Targets for Chronic Obstructive Pulmonary Disease Based on Network Pharmacology and Molecular Docking. Cell Biochem Biophys 2025; 83:657-668. [PMID: 39259410 DOI: 10.1007/s12013-024-01498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
To investigate the mechanism of Wen Fei Fu Yang Qu Tan Fang (WFFYQTF) in the treatment of chronic obstructive pulmonary disease (COPD) using network pharmacology and pharmacodynamics. The TCMSP database was utilized to identify the chemical components and molecular targets of WFFYQTF. Cytoscape software was employed to construct a "drug component-target" network. COPD risk genes and intersecting molecular targets of WFFYQTF were identified using GeneCards, OMIM, and DisGeNET databases. The STRING website was the place where protein-protein interaction (PPI) analysis was performed. Cytoscape topological analysis was applied for screening out key targets of WFFYQTF. GO and KEGG enrichment analyses were conducted using the DAVID database to elucidate the treatment targets of COPD with WFFYQTF. A total of 136 active components of WFFYQTF were identified, including key components such as quercetin, kaempferol, and luteolin, which were found to be particularly significant. Additionally, 412 drug targets and 7121 COPD risk genes were screened out, and 323 treatment targets of COPD with WFFYQTF were determined by Wayne analysis. Core targets identified via PPI analysis included SRC, STAT3, AKT1, HSP90AA1, and JUN. Pathways such as the hypoxia responce, inflammatory response, PI3K/AKT pathway, TH17 pathway and MAPK pathway were obtained with GO and KEGG enrichment analyses. Molecular docking results suggested that quercetin could be soundly bound to STAT3 and AKT1, and kaempferol to SRC. WFFYQTF can effectively impede COPD progression through the coordinated action of multiple components, targets, and pathways during treatment.
Collapse
Affiliation(s)
- Yangrong Feng
- Department of Classical Internal Medicine of TCM, Zhejiang Chinese Medicine University, Ningbo, Zhejiang Province, China
| | - Wei Zhang
- Department of Emergency Medicine, Ningbo Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medicine University, Ningbo, Zhejiang Province, China
| | - Sanyu Bao
- Department of Classical Internal Medicine of TCM, Zhejiang Chinese Medicine University, Ningbo, Zhejiang Province, China
| | - Jieru Shen
- Department of Classical Internal Medicine of TCM, Zhejiang Chinese Medicine University, Ningbo, Zhejiang Province, China.
| |
Collapse
|
4
|
Santos FDCV, Martins GR, Luiz SRDS, Oliveira IDA, da Silva LP, da Silva AJR, Pereira MD, Lopes RC, Alviano CS, Moreno DSA. Exploring the Epicarp Potential from Acrocomia aculeata Fruits: Chemical Analysis, Antioxidant and Antimicrobial Activities. Antioxidants (Basel) 2025; 14:181. [PMID: 40002368 PMCID: PMC11852208 DOI: 10.3390/antiox14020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/17/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
The interest in new sources of bioactive compounds has been driven by the search for natural antioxidants capable of attenuating the toxicity of reactive oxygen species, as well as the emergence of pathogens resistant to antimicrobials. In this sense, we explored the potential of the macaúba epicarp. Compounds such as piceatannol, 3,4,5,3',5'-penta-hydroxy-trans-stilbene (PHS), and in lower amounts, resveratrol were identified in extracts through techniques such as medium-pressure liquid chromatography, HPLC-MS, and imaging mass spectrometry (IMS), which confirmed the exclusive localization of PHS and piceatannol in the outer epicarp. Extraction with aqueous acetone (Me2CO:H2O) and its EtOAC fraction showed the highest yields of stilbenes and, moreover, it efficiently increased the tolerance of Saccharomyces cerevisiae to oxidative stress. Additionally, the Me2CO:H2O extract presented antibacterial and anti-cryptococcal activity, with piceatannol and resveratrol increasing survival rates of Galleria mellonella subjected to fungal infection. In silico ADMET (absorption, distribution, metabolism, excretion and toxicity) analysis indicates low toxicity for piceatannol, PHS, and resveratrol, in addition to pharmacokinetic parameters that allow their use. These findings indicate the use of macaúba epicarp as a source of bioactive compounds valuable for the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Fabiane da Conceição Vieira Santos
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Gabriel Rocha Martins
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Sandra Regina da Silva Luiz
- Graduate Program in Science (PPG-Micro), Department of General Microbiology, Institute of Microbiology Paulo de Góes (IMPG), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Isadora de Araújo Oliveira
- Institute of Biophysics Carlos Chagas Filho, Centro de Espectrometria de Massas de Biomoléculas (CEMBIO), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Leandro Pereira da Silva
- Graduate Program in Plant Biotechnology and Bioprocesses (PBV), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Antonio Jorge Ribeiro da Silva
- Natural Products Research Institute (IPPN), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Marcos Dias Pereira
- Department of Biochemistry, Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Rosana Conrado Lopes
- Department of Botany, Institute of Biology (IB), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Celuta Sales Alviano
- Department of General Microbiology, Institute of Microbiology Paulo de Góes (IMPG), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Daniela Sales Alviano Moreno
- Department of General Microbiology, Institute of Microbiology Paulo de Góes (IMPG), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil;
| |
Collapse
|
5
|
Li J, Huang J, Ai G, Zheng X, Chen B, Gong S, Lu X, Su Z, Chen J, Xie Q, Li Y, Yan F. The Protective Effects of Modified Dachaihu Decoction against LPS-induced Acute Lung Injury via Modulating PI3K/Akt Signalling Pathway. Comb Chem High Throughput Screen 2025; 28:755-767. [PMID: 40326256 DOI: 10.2174/0113862073282311240226113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 05/07/2025]
Abstract
BACKGROUND Modified Dachaihu decoction (MDD) is a herbal prescription that has shown promising therapeutic benefits in ameliorating pulmonary diseases in clinical practice. However, the detailed mechanisms remain unclear. OBJECTIVE This study aimed to elucidate the lung-protective effects of MDD against acute lung injury (ALI) and the involvement of underlying mechanisms. METHODS High-performance liquid chromatography (HPLC) was performed to identify the main active ingredients of MDD. Network pharmacological method was adapted to explore the potential mechanisms. Mice were orally administered MDD (11.25, 22.5, and 45 g/kg) once daily for 7 days. H&E staining was performed to evaluate histological changes in the lungs. Levels of inflammatory cytokines and oxidative stress markers were measured to determine the extent of lung injury. Total protein content in bronchoalveolar lavage fluid (BALF) and lung wet/dry weight ratio were measured to assess the severity of pulmonary edema. TUNEL staining and immunohistochemistry analysis were performed to detect apoptosis. RT-qPCR and western blotting were performed to validate the mechanisms involved. RESULTS About 10 main active ingredients of MDD were identified. Notably, treatment with MDD resulted in a remarkable reduction in total protein content in BALF and lung W/D weight ratio, as well as substantial mitigation of the inflammatory response and oxidative stress. Mechanistically, the PI3K/Akt signalling pathway was activated. Moreover, MDD pretreatment downregulated p53 and caspase-9 mRNA expression and decreased the Bax/Bcl-2 ratio to ameliorate lung apoptosis. CONCLUSIONS MDD exhibited pronounced therapeutic effects via attenuating inflammatory response, oxidative stress, and apoptosis. These therapeutic effects could be attributed to the synergistic effect of the main active ingredients and are believed to be associated with the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jincan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiechun Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
| | - Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiaohong Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiaowei Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Qingfeng Xie
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Fang Yan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
| |
Collapse
|
6
|
Qi L, Wang S, Guo T, Qi Z, Wu S, Gao D, Yan Z, Tan B, Yang A. Mechanism of Qingdai in Alleviating Acute Lung Injury by Inhibiting the JAK2/STAT3 Signaling Pathway. J Inflamm Res 2024; 17:11403-11417. [PMID: 39722733 PMCID: PMC11669285 DOI: 10.2147/jir.s498299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Objective Qingdai (QD) is a traditional Chinese medicine (TCM) commonly used in clinical practice to treat acute lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the mechanisms underlying the effects of QD remain not fully understood. This investigation demonstrated QD alleviated LPS-induced ALI in mice and exerted anti-inflammatory effects by inhibiting the JAK2/STAT3 signaling pathway. Methods The active compounds of QD were identified through UPLC-LTQ-Orbitrap-MS/MS. Network pharmacology predicted potential pharmacological targets and the signaling pathways contributed to the effectiveness of QD in treating ALI. Molecular docking assessed the binding of active components to critical targets. ALI mice triggered by Lipopolysaccharides (LPS) were used for transcriptomic analysis to assess alterations in pulmonary gene expression. The pathological changes of lung tissue were analyzed via HE staining. Proinflammatory cytokine levels in serum were measured using ELISA, and the mRNA expression was measured by RT-qPCR. Western blot analysis evaluated protein expression related to the JAK2/STAT3 signaling pathway. Additionally, RAW264.7 cells induced by LPS were treated with QD to measure proinflammatory cytokines and JAK2/STAT3 signaling pathway protein expression. Results Six major components of QD were identified. Network pharmacology predicted JAK2 and STAT3 as targets for QD in ALI treatment, with KEGG analysis highlighting the JAK/STAT signaling pathway. Transcriptomics confirmed the JAK/STAT signaling pathway in the therapeutic effects of QD. Molecular docking demonstrated high binding affinities of bisindigotin, isoindigo, and 6-(3-oxoindolin-2-ylidene)indolo[2,1-b]quinazolin-12-one (IQO) to JAK2 and STAT3. In vivo, QD reduced lung inflammation, downregulated proinflammatory cytokines, and inhibited JAK2/STAT3 signaling pathway. In vitro, QD mitigated LPS-triggered inflammatory responses in RAW264.7 macrophages by inhibiting the same pathway. Conclusion The therapeutic effects of QD in ALI might be mediated by the modulation of the JAK2/STAT3 signaling pathway, which may make it a valuable therapeutic strategy for ALI/ARDS.
Collapse
Affiliation(s)
- Lu Qi
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, 443003, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Shun Wang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Tao Guo
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhuocao Qi
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Suwan Wu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Dan Gao
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhiqiang Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Aidong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
7
|
Ren M, Ma J, Qu M. Network pharmacology integrated with molecular docking and molecular dynamics simulations to explore the mechanism of Shaoyao Gancao Tang in the treatment of asthma and irritable bowel syndrome. Medicine (Baltimore) 2024; 103:e40929. [PMID: 39686413 PMCID: PMC11651441 DOI: 10.1097/md.0000000000040929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Numerous studies have demonstrated a correlation between asthma and irritable bowel syndrome (IBS). The Chinese herbal compound Shaoyao Gancao Tang (SYGCT) has been found to have therapeutic effects on both asthma and IBS, but the underlying mechanisms are not yet fully understood. This study aims to explore the key components, key targets, and potential mechanisms of SYGCT in treating asthma with IBS by using network pharmacology, molecular docking techniques and molecular dynamics simulation. METHODS The major chemical components and potential target genes of SYGCT were screened by bioinformatics. The key targets of Asthma-IBS comorbidity were identified based on network modules. The intersection of the drug targets and disease targets was identified as the potential targets of SYGCT in treating asthma-IBS. Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed to identify the biological processes and signaling pathways involved in these potential targets. A protein-protein interaction network was constructed to identify hub targets, while a drug-compound-target topological network was built to screen key compounds. Molecular docking was used to verify the affinity between the hub targets and key compounds. Molecular dynamics analysis was utilized to assess the binding stability of these interactions. RESULTS Network pharmacology analysis revealed that the therapeutic effect of SYGCT on asthma-IBS involved multiple biological processes and signaling pathways. It may exert therapeutic effects primarily through signaling pathways such as IL-17, TNF, and Th17 cell differentiation. The possible targets of SYGCT in the treatment of asthma-IBS could be IL6, TNF, JUN, PTGS2, STAT3, IL1B, CASP3, NFKBIA, IL10, and PPARG. Molecular docking verification showed that the predicted targets had good binding affinity with the compounds, among which PTGS2, CASP3, and PPARG had higher binding energy. Molecular dynamics simulation revealed that PTGS2, CASP3, and PPARG proteins had good stability and high binding strength with the compounds 2-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano[6,5-f]chromen-3-yl]-5-methoxyphenol and shinpterocarpin. CONCLUSION SYGCT plays a therapeutic role in asthma and IBS through multiple targets and pathways, providing a theoretical basis for explaining the mechanism and clinical application of SYGCT in treating different diseases with the same treatment in asthma and IBS.
Collapse
Affiliation(s)
- Mengjiao Ren
- Department of Warm Disease, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Ma
- Department of Warm Disease, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Minye Qu
- Department of Warm Disease, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Wang Y, Wang Q, Wang M, Wang X, Liu Q, Lv S, Nie H, Liu G. Epigallocatechin-3-Gallate Ameliorates Diabetic Kidney Disease by Inhibiting the TXNIP/NLRP3/IL-1β Signaling Pathway. Food Sci Nutr 2024; 12:10800-10815. [PMID: 39723074 PMCID: PMC11666909 DOI: 10.1002/fsn3.4617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 12/28/2024] Open
Abstract
Recent research indicates that the activation of the NLRP3 inflammasome is crucial in the development of diabetic kidney disease (DKD). Epigallocatechin-3-gallate (EGCG), the predominant catechin in green tea, has been noted for its anti-inflammatory properties in DKD. However, the specific mechanisms are not yet fully understood. In this study, our objective was to explore the effects of EGCG on podocytes and in diabetic kidney disease (DKD) mice and investigate how EGCG modulates the TXNIP/NLRP3/IL-1β signaling pathway in DKD, both in podocytes and animal models. In vitro, we co-cultured podocytes with EGCG and detected the viability, apoptosis, inflammation and the TXNIP/NLRP3/IL-1β signaling pathway. In vivo, DKD mice were given EGCG via oral gavage, followed by evaluations of renal function, inflammation, and the aforementioned signaling pathway. Our findings revealed that oxidative stress, inflammatory cytokines, and the TXNIP/NLRP3/IL-1β pathway were upregulated in podocytes exposed to high glucose (HG) and in the kidneys of DKD mice. However, EGCG treatment reduced the expression of the NLRP3 inflammasome and its associated proteins, including TXNIP, ASC, caspase-1, and IL-1β, as well as the levels of ROS and inflammatory factors such as TNF-α, IL-6, and IL-18. Furthermore, in vivo, EGCG improved kidney function, reduced albuminuria and body weight, and alleviated renal pathological damage. In summary, our study suggests that EGCG mitigates inflammation in podocytes and DKD through the TXNIP/NLRP3/IL-1β signaling pathway, indicating potential benefits of EGCG or green tea in managing DKD.
Collapse
Affiliation(s)
- Yinghui Wang
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Qimeng Wang
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Mingming Wang
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Xueling Wang
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Qingzhen Liu
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Shasha Lv
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
| | - Huibin Nie
- Department of Nephrology, Chengdu First People's HospitalIntegrated TCM and Western Medicine Hospital Affiliated to Chengdu University of TCMChengduSichuanChina
| | - Gang Liu
- Department of Nephrology, Multidisciplinary Innovation Center for NephrologyThe Second Hospital of Shandong UniversityJinanShandongChina
- Nephrology Research Institute of Shandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| |
Collapse
|
9
|
DING L, ZHANG Q, SUN Y, KONG Y, SONG Y, WANG Y. Untargeted serum metabonomic reveals alleviated ovalbumin-induced asthma by Baijin Pingchuan through primary bile acid biosynthesis. J TRADIT CHIN MED 2024; 44:1187-1193. [PMID: 39617704 PMCID: PMC11589559 DOI: 10.19852/j.cnki.jtcm.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To investigate the effect of baijinpingchuan (, BJPC) on the asthma rat model and identify differential metabolites and disturbed metabolic pathways. METHODS The rats were categorized into six groups: control, dexamethasone (DEX), ovalbumin (OVA), and low-, median-, and high-dose BJPC. The rats, except for the control group, were initially treated with OVA to develop the asthma model, which was then activated using DEX, OVA, and low-, median-, and high-dose BJPC. Enzyme-linked immunosorbent assay kit was used to detect the expression of interleukin (IL)-33, IL-25, thymic stromal lymphopoietin (TSLP), and transforming growth factor-beta 1 (TGF-β1). Hematoxylin and eosin staining were performed to observe the pathological condition of the lung. Untargeted serum metabonomic analysis was conducted to identify differential metabolites and disturbed metabolic pathways. RESULTS High-dose BJPC significantly inhibited the expression of IL-33, IL-25, TSLP, and TGF-β1 (P < 0.0001). Further, high-dose BJPC improved inflammatory cell infiltration, which plays a similar role in asthma as DEX. OVA-induced and BJPC-treated rats were identified through 17 differential metabolites, especially cholic acid. Furthermore, primary bile acid biosynthesis was a significantly differential pathway in the mechanism of BJPC for treating asthma. CONCLUSIONS BJPC plays an anti-inflammation role in asthma, which might be a promising therapy through mediating primary bile acid biosynthesis.
Collapse
Affiliation(s)
- Lizhong DING
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| | - Qiang ZHANG
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yingying SUN
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yibu KONG
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yongfu SONG
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yongji WANG
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| |
Collapse
|
10
|
Wang Y, Li B, Zhang Y, Lu R, Wang Q, Gao Y. Qingfei Huoxue Decoction and Its Active Component Narirutin Alleviate LPS-Induced Acute Lung Injury by Regulating TLR4/NF-κB Pathway Mediated Inflammation. J Inflamm Res 2024; 17:7503-7520. [PMID: 39464340 PMCID: PMC11505584 DOI: 10.2147/jir.s480101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Background Acute lung injury (ALI) is a life-threatening clinical syndrome with high mortality. Currently, the safe and effective therapies for ALI patients are still limited. Qingfei Huoxue decoction (QFHXD) is a hospital agreement prescription for treating pulmonary diseases and displays a remarkable efficacy. However, the pharmacological effect of QFHXD on preventing lipopolysaccharide (LPS)-induced ALI has yet to be reported, let alone questions of potential molecular mechanisms and anti-ALI active substances. Methods To answer the above-mentioned questions, histopathological observation and kit detection were performed to estimate the protective effect of QFHXD pretreatment against LPS-induced ALI. Based on comprehensive chemical profiling of QFHXD, a network pharmacology strategy and experimental validation were integrated to elucidate the underlying functional mechanisms. The potential anti-ALI active components were identified by molecular docking. The anti-ALI activity of narirutin and its anti-inflammatory mechanism were further validated using animal and molecular experiments. Results Pretreatment with different doses of QFHXD effectively mitigated histopathological lesions and systemic inflammation caused by LPS stimulation. A detailed analysis of established compound-target-disease network revealed the strong correlation between anti-ALI action of QFHXD and inflammatory mechanisms. Compared with the model group, QFHXD intervention markedly restrained the abnormally increased transcription and protein levels of pro-inflammatory factors (TLR4, NF-κB, IL-6, IL-1β, and TNF-α) in lung tissues of ALI mice. The results of molecular docking highlighted the anti-ALI potential of narirutin targeting to TLR4 and NF-κB p65. In addition to the protective effect of narirutin on suppressing LPS-induced pathological changes, we found that narirutin pretreatment effectively normalized the disordered protein levels of above pro-inflammatory factors of ALI mice. Conclusion These interesting findings indicate the beneficial effects of QFHXD and its active component narirutin against ALI partly via regulating TLR4/NF-κB mediated inflammation. This work contributes to the development of novel medications for ALI patients.
Collapse
Affiliation(s)
- Yule Wang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Bei Li
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Yingjuan Zhang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Ruiling Lu
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Qianzhuo Wang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| |
Collapse
|
11
|
Liu L, Zhang Y, Yang J, Chen W, Lan K, Shi Y, Zhang X, Xing X. Network pharmacology and molecular docking reveal potential mechanisms of ginseng in the treatment of diabetes mellitus-induced erectile dysfunction and asthenospermia. Medicine (Baltimore) 2024; 103:e39384. [PMID: 39183406 PMCID: PMC11346898 DOI: 10.1097/md.0000000000039384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease that predisposes to chronic damage and dysfunction of various organs, including leading to erectile dysfunction (ED) and asthenospermia. Literature suggests that ginseng plays an important role in the treatment and management of DM. Ginseng may have a therapeutic effect on the complications of DM-induced ED and asthenospermia. The study aimed to explore the mechanisms of ginseng in the treatment of DM-induced ED and asthenospermia following the Traditional Chinese Medicine (TCM) theory of "treating different diseases with the same treatment." This study used network pharmacology and molecular docking to examine the potential targets and pharmacological mechanism of Ginseng for the treatment of DM-induced ED and asthenospermia. The chemical ingredients and targets of ginseng were acquired using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform. The targets of DM, ED, and asthenospermia were extracted with the GeneCards and Online Mendelian Inheritance in Man databases. A protein-protein interaction network analysis was constructed. The Metascape platform was applied for analyzing the gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways. AutoDock Vina was used to perform molecular docking. Network pharmacology revealed that the main active components of the target of action were kaempferol, beta-sitosterol, ginsenoside rh2, stigmasterol, and fumarine. Core targets of the protein-protein interaction network included TNF, IL-1β, AKT1, PTGS2, BCL2, and JUN. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that they were mainly involved in AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, Lipid and atherosclerosis. The interactions of core active components and targets were analyzed by molecular docking. Ginseng may play a comprehensive therapeutic role in the treatment of DM-induced ED and asthenospermia through "multicomponent, multi-target, and multi-pathway" biological mechanisms such as inflammation and oxidative stress.
Collapse
Affiliation(s)
- Liming Liu
- Department of Andrology, Xi’an Hospital of Traditional Chinese Medicine,Xi’an, P. R. China
- School of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, P. R. China
| | - Yuanfeng Zhang
- Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou University Second Hospital, Lanzhou, P. R. China
- Department of Urology, Shantou Central Hospital, Shantou, P. R. China
| | - Jiashu Yang
- School of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, P. R. China
| | - Wenfang Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P. R. China
| | - Kaijian Lan
- Department of Urology, Shantou Central Hospital, Shantou, P. R. China
| | - Yibo Shi
- Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou University Second Hospital, Lanzhou, P. R. China
| | - Xiaogang Zhang
- Department of Cardiology, Affiliated Hospital of Gansu Medical College, Pingliang, P. R. China
| | - Xiping Xing
- Department of Urology and Andrology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, P. R. China
| |
Collapse
|
12
|
Li Z, Yang Y, Gao F. Monomeric compounds from natural products for the treatment of pulmonary fibrosis: a review. Inflammopharmacology 2024; 32:2203-2217. [PMID: 38724690 DOI: 10.1007/s10787-024-01485-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Pulmonary fibrosis (PF) is the end stage of lung injury and chronic lung diseases that results in diminished lung function, respiratory failure, and ultimately mortality. Despite extensive research, the pathogenesis of this disease remains elusive, and effective therapeutic options are currently limited, posing a significant clinical challenge. In addition, research on traditional Chinese medicine and naturopathic medicine is hampered by several complications due to complex composition and lack of reference compounds. Natural product monomers, possessing diverse biological activities and excellent safety profiles, have emerged as potential candidates for preventing and treating PF. The effective anti-PF ingredients identified can be generally divided into flavonoids, saponins, polysaccharides, and alkaloids. Specifically, these monomeric compounds can attenuate inflammatory response, oxidative stress, and other physiopathological processes of the lung through many signaling pathways. They also improve pulmonary factors. Additionally, they ameliorate epithelial-mesenchymal transition (EMT) and fibroblast-myofibroblast transdifferentiation (FMT) by regulating multiple signal amplifiers in the lungs, thereby mitigating PF. This review highlights the significant role of monomer compounds derived from natural products in reducing inflammation, oxidative stress, and inhibiting EMT process. The article provides comprehensive information and serves as a solid foundation for further exploration of new strategies to harness the potential of botanicals in the treatment of PF.
Collapse
Affiliation(s)
- Zhuqing Li
- University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China
| | - Yanyong Yang
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| | - Fu Gao
- University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
13
|
Wei B, Li H, Wang C, Hu J. Global research status and trends of interactions between Traditional Chinese medicine and pulmonary fibrosis: A new dawn in treatment. Heliyon 2024; 10:e34592. [PMID: 39149021 PMCID: PMC11325230 DOI: 10.1016/j.heliyon.2024.e34592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Background Pulmonary fibrosis (PF) remains a major sequela of COVID-19, yet its pharmacotherapy remains unsatisfactory. Recently, Traditional Chinese medicine (TCM) has garnered increasing recognition among patients and researchers because of its few side effects and efficacy. The objective of this study is to use bibliometric analysis to explore the current research landscape and emerging trajectories of TCM treating PF(TCM/PF) researches, and comprehensively evaluate publications with substantial citations within the domain of TCM/PF. Materials and methods TCM/PF publications from 1996 to June 15, 2023 were identified by a comprehensive search of the Web of Science Core Collection (WoSCC). The Bibliometrix of Origin, CiteSpace, Gephi, dycharts and VOSviewer were used for bibliometric analysis. Results A total of 358 papers were included. A rapid increase in the number of papers after 2013 was observed. China had the highest publication output and research contributions in this field. Beijing University of Traditional Chinese Medicine and Nanjing University of Traditional Chinese Medicineare leaders in productive research of this field. Nanjing University of Traditional Chinese Medicine had the highest citations (227). LI JIANSHENG from Henan University of Chinese Medicine was the most prolific author (8), with the highest number of citations (61), and TONG XIAO LIN from China Academy of Chinese Medical Sciences had the highest H-index (30). The leading journal publishing the most research (37) is Frontiers in Pharmacology and the Journal of Ethnopharmacology had the highest total citations (486). Burst analysis of keywords revealed three distinct phases of research. 1996 to 2013 marked the nascent stage of TCM/PF research; from 2014 to 2018, studies gradually focused on the underlying mechanisms governing TCM/PF. The most significant phase occurred from 2019 onward, where TCM/PF exhibited an explosive growth trend. This progression signifies a transition from foundational explorations to a comprehensive understanding of the mechanisms involved, ultimately leading to the current surge in research activities focused on TCM/PF. Notable research teams of this stage, led by LI JIAN SHENG and TONG XIAO LIN, have been at the forefront of advancing TCM/PF research. Their studies on Jinshui Huanxian formula and Qimai Feiluoping decoction have been pivotal in advancing the frontier of research in this domain. Furthermore, the monomeric compounds, including emodin, curcumin, salvianolic acid, baicalin, and oxymatrine, have sustained longstanding prominence. Conclusions This study gained insight into the research status, focal areas and evolving trends of global TCM/PF research. It also identified the most cited articles in TCM/PF and analyzed their characteristics, which may hold significant relevance for both clinical researchers and practitioners on future directions in this field.
Collapse
Affiliation(s)
- Bokai Wei
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Shanghai, 201203, PR China
| | - Haozheng Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130# Dongan Road, Shanghai, 200032, PR China
- Department of Rehabilitation Medicine, Huanshan Hospital, Fudan University, 12# Wulumuqi Road, Shanghai, 200040, PR China
| | - Chengyu Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Shanghai, 201203, PR China
| | - Jing Hu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Shanghai, 201203, PR China
| |
Collapse
|
14
|
Wei X, Zhong Y, Yi X, Li T, Ling Z, Ming M, Zhang S, He Z. Evidence Construction of Chuankezhi Injection Against Chronic Obstructive Pulmonary Disease: A Systematic Review and Network Pharmacology. Int J Chron Obstruct Pulmon Dis 2024; 19:1177-1196. [PMID: 38826697 PMCID: PMC11141582 DOI: 10.2147/copd.s442281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024] Open
Abstract
Objective Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with high prevalence, morbidity, and mortality. Chuankezhi (CKZ) injection, a Chinese patent medicine, has been commonly used for treating COPD. This study evaluated the clinical efficacy of CKZ injections in COPD patients and explored potential underlying mechanisms by integrating meta-analysis and network pharmacology. Research Methods Randomized controlled trials (RCTs) were search in database by Web of Science, Cochrane Library and PubMed as of November 2022 for literature collection, and the Review Manager 5.4 was used to analyze the data. Through the network pharmacology method, the chemical components and their targets, as well as the disease targets were further analyzed. Results A total of 15 RCTs including 1212 patients were included. The results of meta-analysis showed that CKZ injection can significantly improve the clinical effective rate (RR = 1.25, 95% CI: 1.14 to 1.36), and the clinical advantage was that it can significantly reduced acute exacerbation rate (RR = 0.29, 95% CI: 0.12 to 0.70) and COPD assessment test (CAT) scores (MD =-4.62, 95% CI:-8.966 to-0.28). A total of 31 chemical compounds and 178 potential targets for CKZ injection were obtained from the online databases. Molecular docking revealed that most key components and targets could form stable structure. Conclusion This systematic review with meta-analysis and network pharmacology demonstrates that CKZ could effectively improve the clinical efficacy and safety in the treatment of COPD. Such efficacy may be related to an anti-inflammatory effect and immunoregulation of CKZ via multiple components, multiple targets and multiple pathways.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, People’s Republic of China
| | - Yu Zhong
- Department of Emergency Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, People’s Republic of China
| | - Xiaofei Yi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Tingting Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Zhougui Ling
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, People’s Republic of China
| | - Moyu Ming
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, People’s Republic of China
| | - Shuang Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Zhiyi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
15
|
Chen C, Chen F, Gu L, Jiang Y, Cai Z, Zhao Y, Chen L, Zhu Z, Liu X. Discovery and validation of COX2 as a target of flavonoids in Apocyni Veneti Folium: Implications for the treatment of liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117919. [PMID: 38364933 DOI: 10.1016/j.jep.2024.117919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Apocyni Veneti Folium (AVF), a popular traditional Chinese medicine (TCM), is known for its effects in soothing the liver and nerves and eliminating heat and water. It is relevant from an ethnopharmacological perspective. Pharmacological research has confirmed its benefits on antihypertension, antihyperlipidemia, antidepression, liver protection, immune system boosting, antiaging, and diabetic vascular lesions. Previous studies have shown that flavonoids, the active ingredients, have a hepatoprotective effect. However, the exact mechanism has not been clarified. AIM OF THE STUDY This study aimed to identify the active flavonoids in AVF and their corresponding targets for liver injury. Multiple methods were introduced to confirm the targets. MATERIAL AND METHODS AVF compounds were analyzed using liquid chromatography-mass spectrometry (LC-MS). Then, network pharmacology was utilized to screen potential hepatoprotection targets of the compounds. An enzyme activity assay was performed to determine the effect of the compounds on the targets. Biolayer interferometry (BLI) was applied to confirm the direct interaction between the compounds and the targets. RESULTS A total of 71 compounds were identified by LC-MS and 19 compounds and 112 shared targets were screened using network pharmacology. These common targets were primarily involved in the TNF signaling pathway, cancer pathways, hepatitis B, drug responses, and negative regulation of the apoptotic process. Flavonoids were the primary pharmacological substance basis of AVF. The cyclooxygenase 2 (COX2) protein was one of the direct targets of flavonoids in AVF. The enzyme activity assay and BLI-based intermolecular interactions demonstrated that the compounds astragalin, isoquercitrin, and hyperoside exhibited stronger inhibition of enzyme activity and a higher affinity with COX2 compared to epigallocatechin, quercetin, and catechin. CONCLUSIONS COX2 was preliminarily identified as a target of flavonoids, and the mechanism of the hepatoprotective effect of AVF might be linked to flavonoids inhibiting the activity of COX2. The findings can establish the foundation for future research on the traditional hepatoprotective effect of AVF on the liver and for clinical studies on liver disorders.
Collapse
Affiliation(s)
- Cuihua Chen
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Feiyan Chen
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ling Gu
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yucui Jiang
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhichen Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yunan Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhu Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Chen T, Ding L, Zhao M, Song S, Hou J, Li X, Li M, Yin K, Li X, Wang Z. Recent advances in the potential effects of natural products from traditional Chinese medicine against respiratory diseases targeting ferroptosis. Chin Med 2024; 19:49. [PMID: 38519984 PMCID: PMC10958864 DOI: 10.1186/s13020-024-00918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Respiratory diseases, marked by structural changes in the airways and lung tissues, can lead to reduced respiratory function and, in severe cases, respiratory failure. The side effects of current treatments, such as hormone therapy, drugs, and radiotherapy, highlight the need for new therapeutic strategies. Traditional Chinese Medicine (TCM) offers a promising alternative, leveraging its ability to target multiple pathways and mechanisms. Active compounds from Chinese herbs and other natural sources exhibit anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects, making them valuable in preventing and treating respiratory conditions. Ferroptosis, a unique form of programmed cell death (PCD) distinct from apoptosis, necrosis, and others, has emerged as a key area of interest. However, comprehensive reviews on how natural products influence ferroptosis in respiratory diseases are lacking. This review will explore the therapeutic potential and mechanisms of natural products from TCM in modulating ferroptosis for respiratory diseases like acute lung injury (ALI), asthma, pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), lung ischemia-reperfusion injury (LIRI), pulmonary hypertension (PH), and lung cancer, aiming to provide new insights for research and clinical application in TCM for respiratory health.
Collapse
Affiliation(s)
- Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Juan Hou
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Kai Yin
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
17
|
Guan Y, Tang G, Li L, Shu J, Zhao Y, Huang L, Tang J. Herbal medicine and gut microbiota: exploring untapped therapeutic potential in neurodegenerative disease management. Arch Pharm Res 2024; 47:146-164. [PMID: 38225532 PMCID: PMC10830735 DOI: 10.1007/s12272-023-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The gut microbiota that exists in the human gastrointestinal tract is incredibly important for the maintenance of general health as it contributes to multiple aspects of host physiology. Recent research has revealed a dynamic connection between the gut microbiota and the central nervous system, that can influence neurodegenerative diseases (NDs). Indeed, imbalances in the gut microbiota, or dysbiosis, play a vital role in the pathogenesis and progression of human diseases, particularly NDs. Herbal medicine has been used for centuries to treat human diseases, including NDs. These compounds help to relieve symptoms and delay the progression of NDs by improving intestinal barrier function, reducing neuroinflammation, and modulating neurotransmitter production. Notably, herbal medicine can mitigate the progression of NDs by regulating the gut microbiota. Therefore, an in-depth understanding of the potential mechanisms by which herbal medicine regulates the gut microbiota in the treatment of NDs can help explain the pathogenesis of NDs from a novel perspective and propose novel therapeutic strategies for NDs. In this review, we investigate the potential neuroprotective effects of herbal medicine, focusing on its ability to regulate the gut microbiota and restore homeostasis. We also highlight the challenges and future research priorities of the integration of herbal medicine and modern medicine. As the global population ages, access to this information is becoming increasingly important for developing effective treatments for these diseases.
Collapse
Affiliation(s)
- Yueyue Guan
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Guohua Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jianzhong Shu
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yuhua Zhao
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Li Huang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Jun Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
18
|
Li D, Cao D, Sun Y, Cui Y, Zhang Y, Jiang J, Cao X. The roles of epigallocatechin gallate in the tumor microenvironment, metabolic reprogramming, and immunotherapy. Front Immunol 2024; 15:1331641. [PMID: 38348027 PMCID: PMC10859531 DOI: 10.3389/fimmu.2024.1331641] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Cancer, a disease that modern medicine has not fully understood and conquered, with its high incidence and mortality, deprives countless patients of health and even life. According to global cancer statistics, there were an estimated 19.3 million new cancer cases and nearly 10 million cancer deaths in 2020, with the age-standardized incidence and mortality rates of 201.0 and 100.7 per 100,000, respectively. Although remarkable advancements have been made in therapeutic strategies recently, the overall prognosis of cancer patients remains not optimistic. Consequently, there are still many severe challenges to be faced and difficult problems to be solved in cancer therapy today. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from tea leaves, has received much attention for its antitumor effects. Accumulating investigations have confirmed that EGCG can inhibit tumorigenesis and progression by triggering apoptosis, suppressing proliferation, invasion, and migration, altering tumor epigenetic modification, and overcoming chemotherapy resistance. Nevertheless, its regulatory roles and biomolecular mechanisms in the immune microenvironment, metabolic microenvironment, and immunotherapy remain obscure. In this article, we summarized the most recent updates about the effects of EGCG on tumor microenvironment (TME), metabolic reprogramming, and anti-cancer immunotherapy. The results demonstrated EGCG can promote the anti-cancer immune response of cytotoxic lymphocytes and dendritic cells (DCs), attenuate the immunosuppression of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), and inhibit the tumor-promoting functions of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), and various stromal cells including cancer-associated fibroblasts (CAFs), endothelial cells (ECs), stellate cells, and mesenchymal stem/stromal cells (MSCs). Additionally, EGCG can suppress multiple metabolic reprogramming pathways, including glucose uptake, aerobic glycolysis, glutamine metabolism, fatty acid anabolism, and nucleotide synthesis. Finally, EGCG, as an immunomodulator and immune checkpoint blockade, can enhance immunotherapeutic efficacy and may be a promising candidate for antitumor immunotherapy. In conclusion, EGCG plays versatile regulatory roles in TME and metabolic reprogramming, which provides novel insights and combined therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Ahmad V, Khan MI, Jamal QMS, Alzahrani FA, Albiheyri R. Computational Molecular Docking and Simulation-Based Assessment of Anti-Inflammatory Properties of Nyctanthes arbor-tristis Linn Phytochemicals. Pharmaceuticals (Basel) 2023; 17:18. [PMID: 38256852 PMCID: PMC10820488 DOI: 10.3390/ph17010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The leaves, flowers, seeds, and bark of the Nyctanthes arbor-tristis Linn plant have been pharmacologically evaluated to signify the medicinal importance traditionally described for various ailments. We evaluated the anti-inflammatory potentials of 26 natural compounds using AutoDock 4.2 and Molecular Dynamics (MDS) performed with the GROMACS tool. SwissADME evaluated ADME (adsorption, distribution, metabolism, and excretion) parameters. Arb_E and Beta-sito, natural compounds of the plant, showed significant levels of binding affinity against COX-1, COX-2, PDE4, PDE7, IL-17A, IL-17D, TNF-α, IL-1β, prostaglandin E2, and prostaglandin F synthase. The control drug celecoxib exhibited a binding energy of -9.29 kcal/mol, and among the tested compounds, Arb_E was the most significant (docking energy: -10.26 kcal/mol). Beta_sito was also observed with high and considerable docking energy of -8.86 kcal/mol with the COX-2 receptor. COX-2 simulation in the presence of Arb_E and control drug celecoxib, RMSD ranged from 0.15 to 0.25 nm, showing stability until the end of the simulation. Also, MM-PBSA analysis showed that Arb_E bound to COX-2 exhibited the lowest binding energy of -277.602 kJ/mol. Arb_E and Beta_sito showed interesting ADME physico-chemical and drug-like characteristics with significant drug-like effects. Therefore, the studied natural compounds could be potential anti-inflammatory molecules and need further in vitro/in vivo experimentation to develop novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, Jeddah 21499, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Faisal A. Alzahrani
- Embryonic Stem Cell Unit, Department of Biochemistry, Faculty of Science, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
He Z, Wang Y, Han L, Hu Y, Cong X. The mechanism and application of traditional Chinese medicine extracts in the treatment of lung cancer and other lung-related diseases. Front Pharmacol 2023; 14:1330518. [PMID: 38125887 PMCID: PMC10731464 DOI: 10.3389/fphar.2023.1330518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lung cancer stands as one of the most prevalent malignancies worldwide, bearing the highest morbidity and mortality rates among all malignant tumors. The treatment of lung cancer primarily encompasses surgical procedures, radiotherapy, and chemotherapy, which are fraught with significant side effects, unfavorable prognoses, and a heightened risk of metastasis and relapse. Although targeted therapy and immunotherapy have gradually gained prominence in lung cancer treatment, diversifying the array of available methods, the overall recovery and survival rates for lung cancer patients remain suboptimal. Presently, with a holistic approach and a focus on syndrome differentiation and treatment, Traditional Chinese Medicine (TCM) has emerged as a pivotal player in the prognosis of cancer patients. TCM possesses characteristics such as targeting multiple aspects, addressing a wide range of concerns, and minimizing toxic side effects. Research demonstrates that Traditional Chinese Medicine can significantly contribute to the treatment or serve as an adjunct to chemotherapy for lung cancer and other lung-related diseases. This is achieved through mechanisms like inhibiting tumor cell proliferation, inducing tumor cell apoptosis, suppressing tumor angiogenesis, influencing the cellular microenvironment, regulating immune system function, impacting signal transduction pathways, and reversing multidrug resistance in tumor cells. In this article, we offer an overview of the advancements in research concerning Traditional Chinese Medicine extracts for the treatment or adjunctive chemotherapy of lung cancer and other lung-related conditions. Furthermore, we delve into the challenges that Traditional Chinese Medicine extracts face in lung cancer treatment, laying the foundation for the development of diagnostic, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
- Zhenglin He
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Zou Q, Chen Y, Qin H, Tang R, Han T, Guo Z, Zhao J, Xu D. The role and mechanism of TCM in the prevention and treatment of infectious diseases. Front Microbiol 2023; 14:1286364. [PMID: 38033575 PMCID: PMC10682724 DOI: 10.3389/fmicb.2023.1286364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The constant presence of infectious diseases poses an everlasting threat to the entire world. In recent years, there has been an increased attention toward the application of traditional Chinese medicine (TCM) in the treatment of emerging infectious diseases, as it has played a significant role. The aim of this article is to provide a concise overview of the roles and mechanisms of TCM in treating infectious diseases. TCM possesses the ability to modulate relevant factors, impede signaling pathways, and inhibit microbial growth, thereby exhibiting potent antiviral, antibacterial, and anti-inflammatory effects that demonstrate remarkable efficacy against viral and bacterial infections. This article concludes that the comprehensive regulatory features of Chinese herbal medicines, with their various components, targets, and pathways, result in synergistic effects. The significance of Chinese herbal medicines in the context of infectious diseases should not be underestimated; however, it is crucial to also acknowledge their underutilization. This paper presents constructive suggestions regarding the challenges and opportunities faced by Chinese medicines. Particularly, it emphasizes the effectiveness and characteristics of Chinese medicines in the treatment of infectious diseases, specifying how these medicines' active substances can be utilized to target infectious diseases. This perspective is advantageous in facilitating researchers' pharmacological studies on Chinese medicines, focusing on the specific points of action. The mechanism of action of Chinese herbal medicines in the treatment of infectious diseases is comprehensively elucidated in this paper, providing compelling evidence for the superior treatment of infectious diseases through Chinese medicine. This information is favorable for advancing the development of TCM and its potential applications in the field of infectious diseases.
Collapse
Affiliation(s)
- Qifei Zou
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yitong Chen
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huanxin Qin
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui Tang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Taojian Han
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ziyi Guo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
22
|
Peng W, Qi H, Zhu W, Tong L, Rouzi A, Wu Y, Han L, He L, Yan Y, Pan T, Liu J, Wang Q, Jia Z, Song Y, Zhu Q, Zhou J. Lianhua Qingke ameliorates lipopolysaccharide-induced lung injury by inhibiting neutrophil extracellular traps formation and pyroptosis. Pulm Circ 2023; 13:e12295. [PMID: 37808899 PMCID: PMC10557103 DOI: 10.1002/pul2.12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023] Open
Abstract
LHQK is a patented Traditional Chinese Medicine (TCM) which is clinically used for acute tracheobronchitis, cough, and other respiratory diseases. Recent studies have proved that LHQK exhibits excellent clinical efficacy in the treatment of acute lung injury (ALI). However, the corresponding mechanisms remain largely unexplored. In this study, we investigated the effects and the underlying mechanisms of LHQK on lipopolysaccharide (LPS)-induced ALI in mice. The pathological examination, inflammatory cytokines assessments, and mucus secretion evaluation indicated that administration of LHQK ameliorated LPS-induced lung injury, and suppressed the secretion of Muc5AC and pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β) in plasma and BALF. Furthermore, the results of cell-free DNA level showed that LHQK significantly inhibited LPS-induced NETs formation. Western blot revealed that LHQK effectively inhibited LPS-triggered pyroptosis in the lung. In addition, RNA-Seq data analysis, relatively bioinformatic analysis, and network pharmacology analysis revealed that LHQK and relative components may play multiple protective functions in LPS-induced ALI/acute respiratory distress syndrome (ARDS) by regulating multiple targets directly or indirectly related to NETs and pyroptosis. In conclusion, LHQK can effectively attenuate lung injury and reduce lung inflammation by inhibiting LPS-induced NETs formation and pyroptosis, which may be regulated directly or indirectly by active compounds of LHQK.
Collapse
Affiliation(s)
- Wenjun Peng
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western MedicineHebeiShijiazhuangChina
| | - Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Ainiwaer Rouzi
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Yuanyuan Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Linxiao Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Ludan He
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Yu Yan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Ting Pan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Jie Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Zhenhua Jia
- Hebei Academy of Integrated Traditional Chinese and Western MedicineHebeiShijiazhuangChina
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan UniversityFudan UniversityShanghaiChina
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan UniversityFudan UniversityShanghaiChina
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health CommissionFudan UniversityShanghaiChina
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan UniversityFudan UniversityShanghaiChina
| |
Collapse
|
23
|
Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int J Mol Sci 2022; 24:ijms24010340. [PMID: 36613784 PMCID: PMC9820274 DOI: 10.3390/ijms24010340] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(‒)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective properties which may be useful in the treatment of various diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic disorders. This article reviews current information on the biological effects of EGCG in the above-mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress, and cell apoptosis.
Collapse
|
24
|
Dey R, Samadder A, Nandi S. Selected Phytochemicals to Combat Lungs Injury: Natural Care. Comb Chem High Throughput Screen 2022; 25:2398-2412. [PMID: 35293289 DOI: 10.2174/1386207325666220315113121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/27/2023]
Abstract
The human has two lungs responsible for respiration and drug metabolism. Severe lung infection caused by bacteria, mycobacteria, viruses, fungi, and parasites may lead to lungs injury. Smoking and tobacco consumption may also produce lungs injury. Inflammatory and pain mediators are secreted by alveolar macrophages. The inflammatory mediators, such as cytokines, interleukin (IL)-1, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF)-α, neutrophils, and fibroblasts are accumulated in the alveoli sac, which becomes infected. It may lead to hypoxia followed by severe pulmonary congestion and the death of the patient. There is an urgent need for the treatment of artificial respiration and ventilation. However, the situation may be the worst for patients suffering from lung cancer, pulmonary tuberculosis, and acute pneumonia caused by acute respiratory distress syndrome (ARDS). Re-urgency has been happening in the case of coronavirus disease of 2019 (COVID-19) patients. Therefore, it is needed to protect the lungs with the intake of natural phytomedicines. In the present review, several selected phyto components having the potential role in lung injury therapy have been discussed. Regular intake of natural vegetables and fruits bearing these constituents may save the lungs even in the dangerous attack of SARS-CoV-2 in lung cancer, pulmonary TB, and pneumatic patients.
Collapse
Affiliation(s)
- Rishita Dey
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India.,Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| |
Collapse
|
25
|
Liu Y, Hou M, Pan Z, Tian X, Zhao Z, Liu T, Yang H, Shi Q, Chen X, Zhang Y, He F, Zhu X. Arctiin-reinforced antioxidant microcarrier antagonizes osteoarthritis progression. J Nanobiotechnology 2022; 20:303. [PMID: 35761235 PMCID: PMC9235181 DOI: 10.1186/s12951-022-01505-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
Loss of extracellular matrix (ECM) of cartilage due to oxidative stress injury is one of the main characteristics of osteoarthritis (OA). As a bioactive molecule derived from the traditional Chinese Burdock, arctiin exerts robust antioxidant properties to modulate redox balance. However, the potential therapeutic effects of arctiin on OA and the underlying mechanisms involved are still unknown. Based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) tool, Burdock-extracted small molecule arctiin was identified as a potential anti-arthritic component. In vitro, treatment using arctiin rescued the interleukin (IL)-1β-induced activation of proteinases and promoted the cartilage ECM synthesis in human chondrocytes. In vivo, intraperitoneal injection of arctiin ameliorated cartilage erosion and encountered subchondral bone sclerosis in the post-traumatic OA mice. Transcriptome sequencing uncovered that arctiin-enhanced cartilage matrix deposition was associated with restricted oxidative stress. Mechanistically, inhibition of nuclear factor erythroid 2-related factor 2 (NRF2) abolished arctiin-mediated anti-oxidative and anti-arthritic functions. To further broaden the application prospects, a gellan gum (GG)-based bioactive gel (GG-CD@ARC) encapsulated with arctiin was made to achieve long-term and sustained drug release. Intra-articular injection of GG-CD@ARC counteracted cartilage degeneration in the severe (12 weeks) OA mice model. These findings indicate that arctiin may be a promising anti-arthritic agent. Furthermore, GG-modified bioactive glue loaded with arctiin provides a unique strategy for treating moderate to severe OA.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Zejun Pan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
26
|
Jia Y, He T, Wu D, Tong J, Zhu J, Li Z, Dong J. The treatment of Qibai Pingfei Capsule on chronic obstructive pulmonary disease may be mediated by Th17/Treg balance and gut-lung axis microbiota. Lab Invest 2022; 20:281. [PMID: 35729584 PMCID: PMC9210581 DOI: 10.1186/s12967-022-03481-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), a prevalent, progressive respiratory disease, has become the third leading cause of death globally. Increasing evidence suggests that intestinal and pulmonary microbiota dysbiosis is associated with COPD. Researchers have shown that T helper (Th) 17/regulatory T (Treg) imbalance is involved in COPD. Qibai Pingfei Capsule (QBPF) is a traditional Chinese medicine used to treat COPD clinically in China. However, the effects of QBPF intervention on the Th17/Treg balance and microbiota in the gut and lung are still poorly understood. METHODS This study divided the rats into three groups (n = 8): control, model, and QBPF group. After establishing the model of COPD for four weeks and administering of QBPF for two weeks, Th17 cells, Treg cells, their associated cytokines, transcription factors, and intestinal and pulmonary microbiota of rats were analyzed. Furthermore, the correlations between intestinal and pulmonary microbiota and between bacterial genera and pulmonary function and immune function were measured. RESULTS The results revealed that QBPF could improve pulmonary function and contribute to the new balance of Th17/Treg in COPD rats. Meanwhile, QBPF treatment could regulate the composition of intestinal and pulmonary microbiota and improve community structure in COPD rats, suppressing the relative abundance of Coprococcus_2, Prevotella_9, and Blautia in the gut and Mycoplasma in the lung, but accumulating the relative abundance of Prevotellaceae_UCG_003 in the gut and Rikenellaceae_RC9_gut_group in the lung. Additionally, gut-lung axis was confirmed by the significant correlations between the intestinal and pulmonary microbiota. Functional analysis of microbiota showed amino acid metabolism was altered in COPD rats in the gut and lung. Spearman correlation analysis further enriched the relationship between the microbiota in the gut and lung and pulmonary function and immune function in COPD model rats. CONCLUSIONS Our study indicated that the therapeutic effects of QBPF may be achieved by maintaining the immune cell balance and regulating the gut-lung axis microbiota, providing references to explore the potential biomarkers of COPD and the possible mechanism of QBPF to treat COPD.
Collapse
Affiliation(s)
- Yu Jia
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No.1, Qianjiang Road, Hefei, Anhui, China
| | - Tiantian He
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No.1, Qianjiang Road, Hefei, Anhui, China
| | - Di Wu
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei, Anhui, China
| | - Jiabing Tong
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei, Anhui, China.,Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Meishan Road, Hefei, Anhui, China
| | - Jie Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No.1, Qianjiang Road, Hefei, Anhui, China. .,Institutes of Integrative Medicine, Fudan University, Shanghai, China. .,Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei, Anhui, China.
| | - Zegeng Li
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei, Anhui, China. .,Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Meishan Road, Hefei, Anhui, China.
| | - Jingcheng Dong
- Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Yang H, Guo Q, Wu J, Zhong L, Sun L, Liu W, Wang J, Lin L. Deciphering the Effects and Mechanisms of Yi-Fei-San-Jie-pill on Non-Small Cell Lung Cancer With Integrating Network Target Analysis and Experimental Validation. Front Pharmacol 2022; 13:851554. [PMID: 35645820 PMCID: PMC9130494 DOI: 10.3389/fphar.2022.851554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), which accounts for 85% of lung cancer cases, calls for better therapy. Yi-Fei-San-Jie-pill (YFSJ), a well-applicated traditional Chinese medicine formula, was reported to be effective in the treatment of NSCLC. However, its anti-tumor mechanism still needs to be fully elucidated. Herein, a reliable preclinical orthotopic but not subcutaneous model of NSCLC in mice was established to evaluate the anti-cancer properties and further validate the mechanisms of YFSJ. A bioinformatic analysis was executed to identify the potential targets and key pathways of YFSJ on NSCLC. In detail, the anti-tumor effect of YFSJ and the autophagy inhibitor 3-MA was evaluated according to the tumor fluorescence value and comparison of different groups' survival times. As a result, YFSJ markedly decreased tumor size and prolonged survival time in contrast with those in the orthotopic model group (p < 0.05), and it also significantly regulated the protein expression levels of apoptosis- and autophagy-related proteins. In conclusion, this study provides convincing evidence that YFSJ could inhibit the growth of tumors and prolong the survival time of tumor-bearing mice based on the NSCLC orthotopic model, and its anti-tumor effect was closely associated with the promotion of apoptosis and interference of autophagy coupled with regulation of immune infiltration.
Collapse
Affiliation(s)
- Hongxing Yang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianbin Wu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixia Zhong
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jigang Wang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|