1
|
Bai X, Wang M, Xu T, Zhou S, Chu W. Antioxidant and anti-aging activities of Acanthopanax senticosus polysaccharide CQ-1 in nematode Caenorhabditis elegans. Int J Biol Macromol 2025; 297:139925. [PMID: 39824422 DOI: 10.1016/j.ijbiomac.2025.139925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Acanthopanax senticosus is a typical food medicine homology in China. The antioxidant and anti-aging activities of A. senticosus polysaccharides, especially the purified polysaccharide, have not been thoroughly investigated. In the previous work, we purified a polysaccharide CQ-1 with hepatoprotective activity from A. senticosus with an average molecular weight (Mw) of 14,263 Da. In this study, Caenorhabditis elegans was used to investigate the antioxidant and anti-aging effects of CQ-1. We found that 0.4 and 0.8 mg/mL of the polysaccharide CQ-1 could prolong the average life span of the nematodes. Administration of 0.8 mg/mL CQ-1 was observed to significantly reduce the accumulation of lipofuscin in the worms, thereby delaying the onset of senescence. When oxidative stress was stimulated, CQ-1 was able to prolong survival by approximately 20 %. CQ-1 increased the activity of the antioxidant enzymes SOD and CAT and reduced the level of MDA. RT-qPCR analysis showed that the expression of the antioxidant gene sod-3 and the longevity-regulated gene daf-16 was significantly increased in polysaccharide-treated worms. Our result suggests that feeding CQ-1 is effective in extending lifespan in C. elegans by improving resistance to oxidative stress, which has great potential for development as an anti-aging food and drug.
Collapse
Affiliation(s)
- Xinfeng Bai
- Shandong Provincial Third Hospital, Shandong University, Jinan 250031, China
| | - Minyu Wang
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Tiangang Xu
- Zibo Wellcell Biotechnology Co. Ltd., Gaoqing 256302, China
| | - Shuxin Zhou
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Chu
- Shandong Provincial Third Hospital, Shandong University, Jinan 250031, China; Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Yuan W, Yang D, Xu Z, Liu Y, Li X, Ding C, Wang Z. Diversity of Soil Microbial Communities in the Bulk and Rhizosphere Soils of Acanthopanax senticosus in Different Habitats. Curr Microbiol 2025; 82:73. [PMID: 39762585 DOI: 10.1007/s00284-024-04054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025]
Abstract
Comprehending the interplay between the microbial communities of bulk soil (BS) and rhizosphere soil (RS) holds crucial significance in maintaining soil health and fertility, as well as enhancing crop quality. Our research focused on examining these microbial communities in BS and RS of Acanthopanax senticosus, along with their correlation with soil nutrients, across three distinct habitats in Yichun, Heilongjiang Province. To achieve this, we employed high-throughput sequencing technology, specifically targeting the 16S and amplicon regions. The results showed that there were significant differences in soil nutrients, microbial diversity and composition between BS and RS in different habitats. Available phosphorus (AP), total nitrogen (TN), ammonium-nitrogen (NH4+-N) and available potassium (AK) content in RS were higher than that in BS, but TP content was opposite. The Mantel experiment's findings revealed that the soil physicochemical attributes exerted a more significant impact on the microbial community present in RS compared to its influence in BS. Redundancy analysis (RDA) indicated that the bacterial community of BS was affected by SMC and TP. The fungal structure of BS was affected by soil moisture content (SMC), AP, AK (P < 0.01) and TN (P < 0.05). The fungal structure of RS was affected by soil organic carbon (SOC), AP and AK. A noteworthy inverse relationship was observed between Actinomycetes and SMC as well as AP. In conclusion, these results extend the understanding of soil microbial community of A. senticosus and provide a preliminary understanding of the effects of habitat changes caused by human activities on A. senticosus.
Collapse
Affiliation(s)
- Wenhui Yuan
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Deqiang Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Zhipeng Xu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yunwei Liu
- Yichun Branch of Heilongjiang Academy of Forestry Sciences, Yichun, 153000, China
| | - Xiangquan Li
- Yichun Branch of Heilongjiang Academy of Forestry Sciences, Yichun, 153000, China
| | - Changhong Ding
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
3
|
Long Y, Zhang N, Bi Y, Ma T, Paengkoum P, Xin J, Xiao W, Zhao Y, Yuan C, Wang D, Yang Y, Su C, Han Y. Partially substituting roughage with traditional Chinese herbal medicine residues in the diet of goats improved feed quality, growth performance, hematology, and rumen microbial profiles. BMC Vet Res 2024; 20:576. [PMID: 39716267 DOI: 10.1186/s12917-024-04412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
This study aimed to reveal the effect of traditional Chinese herbal medicine residues (TCHMR) on growth performance, hematology, ruminal microbiota, and economic benefits of Guizhou black male goats through the fermented total mixed ration (FTMR) diet technique. A total of 22 Guizhou black male goats with an initial weight of 21.77 ± 0.85 kg were randomly divided into 2 groups (n = 11), with 11 goats in each group. The control group (CON) was fed a traditional total mixed ration (TMR) diet without the TCHMR. The TCHMR group was fed an FTMR diet containing 40%TCHMR. Compared with the CON group, the results showed that the incorporation of TCHMR into goat diets reduced feeding costs and Feed conversion ratio (FCR). On the contrary, it improved (P < 0.01) feed quality, apparent digestibility of Dry matter (DM), Crude Protein (CP), Neutral detergent fiber (NDF), average daily gain (ADG), and dry matter intake. Interestingly, TCHMR also reduced (P < 0.01) acetate levels in the rumen of goats. Supplementally, TCHMR significantly increased (P < 0.01) the levels of GH, IgM, IgA (p < 0.05), and IFN-γ (P < 0.05), while significantly reducing (P < 0.01) the levels of IL-6, ALT, and AST in serum. Notably, at the phylum level, TCHMR significantly reduced (P < 0.01) the abundance of Bacteroidota and increased (P < 0.01) the abundance of Firmicutes. Moreover. at the genus level, TCHMR significantly reduced (P < 0.01) the abundance of Prevotella, F082, and Bacteroidales_RF16_group, while Muribaculaceae, Proteus, Lachnospiraceae_ND3007_group, and Ruminococcus were increased (P < 0.01). In conclusion, our current findings indicated that 40% TCHMR improved feed quality and the apparent digestibility of nutrients. Additionally, 40% TCHMR improved the growth performance and immunity of Guizhou black male goats, while also reorganizing the composition of ruminal microbiota. So far, under the conditions of this experiment, we have not found any negative effects of 40% TCHMR on goats. This study will be a new idea for developing feed resources, which will reduce environmental pollution and the cost of animal husbandry.
Collapse
Affiliation(s)
- Yong Long
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Naifeng Zhang
- Institute of Feed Research of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yanliang Bi
- Institute of Feed Research of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Tao Ma
- Institute of Feed Research of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Jiamin Xin
- The First Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Wen Xiao
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Yanpin Zhao
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Chao Yuan
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Defeng Wang
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Yang Yang
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Chaozhi Su
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Yong Han
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China.
| |
Collapse
|
4
|
Hsu CY, Allela OQB, Hussein AM, Mustafa MA, Kaur M, Alaraj M, Al-Hussainy AF, Radi UK, Ubaid M, Idan AH, Alsaikhan F, Narmani A, Farhood B. Recent advances in polysaccharide-based drug delivery systems for cancer therapy: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:564-586. [PMID: 39639430 DOI: 10.1080/21691401.2024.2436350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Cancer has a high rate of incidence and mortality throughout the world. Although several conventional approaches have been developed for the treatment of cancer, such as surgery, chemotherapy, radiotherapy and thermal therapy, they have remarkable disadvantages which result in inefficient treatment of cancer. For example, immunogenicity, prolonged treatment, non-specificity, metastasis and high cost of treatment, are considered as the major drawbacks of chemotherapy. Therefore, there is a fundamental requirement for the development of breakthrough technologies for cancer suppression. Polysaccharide-based drug delivery systems (DDSs) are the most reliable drug carriers for cancer therapy. Polysaccharides, as a kind of practical biomaterials, are divided into several types, including chitosan, alginates, dextran, hyaluronic acid, cyclodextrin, pectin, etc. Polysaccharides are extracted from different natural resources (like herbal, marine, microorganisms, etc.). The potential features of polysaccharides have made them reliable candidates for therapeutics delivery to cancer sites; the simple purification, ease of modification and functionalization, hydrophilicity, serum stability, appropriate drug loading capacity, biocompatibility, bioavailability, biodegradability and stimuli-responsive and sustained drug release manner are considerable aspects of these biopolymers. This review highlights the practical applications of polysaccharides-based DDSs in pharmaceutical science and cancer therapy.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | | | - Ali M Hussein
- Department of Biomedical Sciences, College of Applied Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | | | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Sun Y, Zhang Y, Sun M, Gao W, He Y, Wang Y, Yang B, Kuang H. Advances in Eucommia ulmoides polysaccharides: extraction, purification, structure, bioactivities and applications. Front Pharmacol 2024; 15:1421662. [PMID: 39221141 PMCID: PMC11361956 DOI: 10.3389/fphar.2024.1421662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Eucommia ulmoides (EU) is a precious tree species native to China originating during the ice age. This species has important economic value and comprehensive development potential, particularly in medicinal applications. The medicinal parts of EU are its bark (Eucommiae cortex) and leaves (Eucommiae folium) which have been successively used as a traditional Chinese medicine to treat diseases since the first century BC. During the last 2 decades, as natural polysaccharides have become of increasing interest in pharmacology, biomedicine, cosmetic and food applications, more and more scholars have begun to study polysaccharides derived from EU as well. EU polysaccharides have been found to have a variety of biological functions both in vivo and in vitro, including immunomodulatory, antioxidant, anti-inflammatory, anticomplementary, antifatigue, and hepatoprotective activities. This review aims to summarize these recent advances in extraction, purification, structural characteristics, pharmacological activities and applications in different fields of EU bark and leaf polysaccharides. It was found that both Eucommiae folium polysaccharides and Eucommiae cortex polysaccharides were suitable for medicinal use. Eucommiae folium may potentially be used to substitute for Eucommiae cortex in terms of immunomodulation and antioxidant activities. This study serves as a valuable reference for improving the comprehensive utilization of EU polysaccharides and further promoting the application of EU polysaccharides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
6
|
Peng X, Ma Y, Yan C, Wei X, Zhang L, Jiang H, Ma Y, Zhang S, Xing M, Gao Y. Mechanism, Formulation, and Efficacy Evaluation of Natural Products for Skin Pigmentation Treatment. Pharmaceutics 2024; 16:1022. [PMID: 39204367 PMCID: PMC11359997 DOI: 10.3390/pharmaceutics16081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Skin pigmentation typically arises from the excessive secretion and accumulation of melanin, resulting in a darker complexion compared to normal skin. Currently, the local application of chemical drugs is a first-line strategy for pigmentation disorders, but the safety and efficacy of drugs still cannot meet clinical treatment needs. For long-term and safe medication, researchers have paid attention to natural products with higher biocompatibility. This article begins by examining the pathogenesis and treatment approaches of skin pigmentation diseases and summarizes the research progress and mechanism of natural products with lightening or whitening effects that are clinically common or experimentally proven. Moreover, we outline the novel formulations of natural products in treating pigmentation disorders, including liposomes, nanoparticles, microemulsions, microneedles, and tocosomes. Finally, the pharmacodynamic evaluation methods in the study of pigmentation disorder were first systematically analyzed. In brief, this review aims to collect natural products for skin pigmentation treatment and investigate their formulation design and efficacy evaluation to provide insights for the development of new products for this complex skin disease.
Collapse
Affiliation(s)
- Xueli Peng
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Chenxin Yan
- Beijing CAS Microneedle Technology, Ltd., Beijing 102609, China;
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Linlin Zhang
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Hehe Jiang
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Yuxia Ma
- Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China;
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Yunhua Gao
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
- Beijing CAS Microneedle Technology, Ltd., Beijing 102609, China;
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
7
|
Wei S, Li M, Zhao L, Wang T, Wu K, Yang J, Tang M, Zhao Y, Shen J, Du F, Chen Y, Deng S, Xiao Z, Wei M, Li Z, Wu X. Fingerprint profiling for quality evaluation and the related biological activity analysis of polysaccharides from Liuweizhiji Gegen-Sangshen beverage. Front Nutr 2024; 11:1431518. [PMID: 39040925 PMCID: PMC11260736 DOI: 10.3389/fnut.2024.1431518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Liuweizhiji Gegen-Sangshen beverage (LGS) is popular in China, which has been used for alleviating alcohol-mediated discomfort and preventing alcoholic liver disease (ALD). This beverage is consisted of six herbal components that are known as functional foods and fruits. LGS is rich in polysaccharides, however, the activity and quality evaluation of LGS-derived polysaccharides remain unexplored. The purpose of this study is thus to establish a comprehensive quality control methodology for the assessment of LGS polysaccharides (LGSP) and to further explore the anti-oxidant, anti-inflammatory as well as prebiotic effect of LGSP. Methods LGSP was extracted, followed by analysis of molecular weight distribution, monosaccharide content and structural characterization via integrating the application of high-performance size exclusion chromatography (HPSEC), 1-phenyl-3-methyl-5-pyrazolone-HPLC (PMP-HPLC), fourier transform infrared spectroscopy (FT-IR) as well as nuclear magnetic resonance spectroscopy (NMR) techniques. The anti-oxidation activity of LGSP was determined by DPPH, ABTS, hydroxyl radical scavenging capacity and total antioxidant capacity. The anti-inflammation of LGSP were assessed on the RAW 264.7 cells. The effect of LGSP on growth of Lactobacillus, Bifidobacterium bifidum and Bifidobacterium adolescentis was evaluated. Results The results demonstrated that LGSP had two molecular weight distribution peaks, with the average molecular weights of (6.569 ± 0.12) × 104 Da and (4.641 ± 0.30) × 104 Da. LGSP was composed of 8 monosaccharides, with galacturonic acid, glucose rhamnose and galactose representing the highest molar ratios. Homogalacturonic acid (HG) type and rhamnosegalacturonic acid glycans I (RG-I) type and α-1,4-glucan were present in LGSP. LGSP concentration in LGS was 17.94 ± 0.28 mg/mL. Furthermore, fingerprint analysis combined with composition quantification of 10 batches of LGSP demonstrated that there was a high similarity among batches. Notably, LGSP exhibited anti-oxidant effect and inhibited expressions of pro-inflammatory factors (TNF-α and IL-6) in LPS-stimulated RAW 264.7 cells. In addition, LGSP remarkably promoted the proliferation of probiotics Lactobacillus, Bifidobacterium bifidum and Bifidobacterium adolescentis, showing good prebiotic activity. Discussion The results of present study would be of help to gain the understanding of structure-activity relationship of LGSP, provide a reference for quality evaluation of bioactive LGSP, and facilitate development of unique health and functional products in the future.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingyun Tang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mei Wei
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
8
|
Zhang X, Guan L, Zhu L, Wang K, Gao Y, Li J, Yan S, Ji N, Zhou Y, Yao X, Li B. A review of the extraction and purification methods, biological activities, and applications of active compounds in Acanthopanax senticosus. Front Nutr 2024; 11:1391601. [PMID: 38846546 PMCID: PMC11153764 DOI: 10.3389/fnut.2024.1391601] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Acanthopanax senticosus (AS) is a geo-authentic crude medicinal plant that grows in China, Korea, Russia, and Japan. AS contains bioactive compounds such as eleutherosides, polysaccharides, and flavonoids. It is also a key traditional herb in the Red List of Chinese Species. AS is mainly distributed in Northeast China, specifically in Heilongjiang, Jilin, and Liaoning provinces. Its active compounds contribute to significant biological activities, including neuroprotective, antioxidant, anti-fatigue, and antitumor effects. However, the extraction methods of active compounds are complex, the extraction efficiency is poor, and the structure-activity relationship is unclear. This study focused on the nutrients in AS, including protein, carbohydrates, and lipids. Particularly, the active ingredients (eleutherosides, polysaccharides, and flavonoids) in AS and their extraction and purification methods were analyzed and summarized. The biological activities of extracts have been reviewed, and the mechanisms of anti-oxidation, antitumor, anti-inflammation, and other activities are introduced in detail. The applications of AS in various domains, such as health foods, medicines, and animal dietary supplements, are then reported. Compared with other extraction methods, ultrasonic or microwave extraction improves efficiency, yet they can damage structures. Challenges arise in the recovery of solvents and in achieving extraction efficiency when using green solvents, such as deep eutectic solvents. Improvements can be made by combining extraction methods and controlling conditions (power, temperature, and time). Bioactive molecules and related activities are exposited clearly. The applications of AS have not been widely popularized, and the corresponding functions require further development.
Collapse
Affiliation(s)
- Xindi Zhang
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Lijun Guan
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Ling Zhu
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Kunlun Wang
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Yang Gao
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Jialei Li
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Song Yan
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Nina Ji
- Soybean Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ye Zhou
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Xinmiao Yao
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Bo Li
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| |
Collapse
|
9
|
Wang S, Zhao X, Li C, Dong J, Ma J, Long Y, Xing Z. DNA methylation regulates the secondary metabolism of saponins to improve the adaptability of Eleutherococcus senticosus during drought stress. BMC Genomics 2024; 25:330. [PMID: 38565995 PMCID: PMC10986080 DOI: 10.1186/s12864-024-10237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Plant growth and development can be significantly impacted by drought stress. Plants will adjust the synthesis and accumulation of secondary metabolites to improve survival in times of water constraint. Simultaneously, drought stress can lead to modifications in the DNA methylation status of plants, and these modifications can directly impact gene expression and product synthesis by changing the DNA methylation status of functional genes involved in secondary metabolite synthesis. However, further research is needed to fully understand the extent to which DNA methylation modifies the content of secondary metabolites to mediate plants' responses to drought stress, as well as the underlying mechanisms involved. Our study found that in Eleutherococcus senticosus (E. senticosus), moderate water deprivation significantly decreased DNA methylation levels throughout the genome and at the promoters of EsFPS, EsSS, and EsSE. Transcription factors like EsMYB-r1, previously inhibited by DNA methylation, can re-bind to the EsFPS promotor region following DNA demethylation. This process promotes gene expression and, ultimately, saponin synthesis and accumulation. The increased saponin levels in E. senticosus acted as antioxidants, enhancing the plant's adaptability to drought stress.
Collapse
Affiliation(s)
- Shuo Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - XueLei Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Chang Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jing Dong
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - JiaCheng Ma
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - YueHong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| | - ZhaoBin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
10
|
Zhu L, Guan L, Wang K, Ren C, Gao Y, Li J, Yan S, Zhang X, Yao X, Zhou Y, Li B, Lu S. Recent trends in extraction, purification, structural characterization, and biological activities evaluation of Perilla frutescens (L.) Britton polysaccharide. Front Nutr 2024; 11:1359813. [PMID: 38585610 PMCID: PMC10995927 DOI: 10.3389/fnut.2024.1359813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 04/09/2024] Open
Abstract
Perilla frutescens (L.) Britton is an annual herb plant of the Perilla genus in the Labiatae family, which is commonly utilized as an edible and medicinal resource. Polysaccharides are among the major components and essential bioactive compounds of P. frutescens, which exhibit a multitude of biological activities, including antioxidant, antitumor, anti-fatigue, immunoregulation, hepatoprotective, anti-inflammatory, and lipid-lowering effects. As a natural carbohydrate, P. frutescens polysaccharide has the potential to be utilized in the development of drugs and functional materials. In this paper, we provide an overview of progress made on the extraction, purification, structural characterization, and bioactivity of polysaccharides from different parts of P. frutescens. The challenges and opportunities for research are discussed, along with the potential development prospects and future areas of focus in the study of P. frutescens polysaccharides.
Collapse
Affiliation(s)
- Ling Zhu
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Lijun Guan
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Kunlun Wang
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Chuanying Ren
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Yang Gao
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Jialei Li
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Song Yan
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Xindi Zhang
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Xinmiao Yao
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Ye Zhou
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Bo Li
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Shuwen Lu
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| |
Collapse
|
11
|
Ye L, Zhang QQ, Lin S, Zhang Q, Yan J, Wu DT, Liu SX, Qin W. A Polysaccharide from Ficus carica L. Exerts Immunomodulatory Activity in Both In Vitro and In Vivo Experimental Models. Foods 2024; 13:195. [PMID: 38254496 PMCID: PMC10814953 DOI: 10.3390/foods13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Polysaccharides from Ficus carica L. (FCP) exert multiple biological activities. As a biological macromolecule, the available knowledge about the specific structures and mechanisms of the biological activity of purified 'Brunswick' fig polysaccharides is currently limited. In the present study, chemical purification and characteristics were identified via chemical and instrumental analysis, and then the impact of FCP on immunomodulation activity in vitro and in vivo was examined. Structural characteristics showed that the molecular weight of the FCP sample was determined to be 127.5 kDa; the primary monosaccharides present in the FCP sample were galacturonic acid (GalA), arabinose (Ara), galactose (Gal), rhamnose (Rha), glucose (Glc), and xylose (Xyl) at a ratio of 0.321:0.287:0.269:0.091:0.013:0.011. Based on the investigation of in vitro immunomodulatory activity, FCP was found to stimulate the production of NO, TNF-α, and IL-6, and increased the pinocytic activity of macrophages. Further analysis revealed that FCP activated macrophages by interacting with Toll-like receptor 4 (TLR4). Moreover, the in vivo test results indicate that FCP showed a significant increase in serum pro-inflammatory factors in immunosuppressed mice. Overall, this study suggests that FCP has the potential to be utilized as a novel immunomodulator in the pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Lin Ye
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Qin-Qiu Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Shang Lin
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Jing Yan
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
| | - Shu-Xiang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (L.Y.); (Q.-Q.Z.); (S.L.); (Q.Z.); (J.Y.); (S.-X.L.)
| |
Collapse
|
12
|
Misak A, Grman M, Tomasova L, Makara O, Rostakova Z, Waczulikova I, Ondrias K. Use of a rat model to characterize 35 arterial pulse wave parameters in a comparative study of isoflurane and Zoletil/xylazine anesthesia and the effect of Acanthopanax senticosus extract. Animal Model Exp Med 2023; 6:474-488. [PMID: 37828718 PMCID: PMC10614128 DOI: 10.1002/ame2.12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Information obtained from arterial pulse waveforms (APW) can be useful for characterizing the cardiovascular system. To achieve this, it is necessary to know the detailed characteristics of APWs in different states of an organism, which would allow APW parameters (APW-Ps) to be assigned to particular (patho)physiological conditions. Therefore, our work aimed to characterize 35 APW-Ps in rats under the influence of isoflurane (ISO) and Zoletil/xylazine (ZO/XY) anesthesia and to study the effect of root extract from Acanthopanax senticosus (ASRE) in these anesthetic conditions. METHODS The right jugular vein of anesthetized rats was cannulated for the administration of ASRE and the left carotid artery for the detection of APWs from which 35 APW-Ps were evaluated. RESULTS We obtained data on 35 APW-Ps, which significantly depended on the anesthesia, and thus, they characterized the cardiovascular system under these two conditions. ASRE transiently modulated all 35 APW-Ps, including a transient decrease in systolic and diastolic blood pressure (BP) and heart rate or increases in pulse BP, dP/dtmax , and systolic and diastolic areas. Whereas the transient effects of ASRE were similar, the extract had prolonged disturbing effects on the cardiovascular system in rats under ZO/XY but not under ISO anesthesia. This negative effect can result from the disturbance caused by ZO/XY anesthesia on the cardiovascular system. CONCLUSIONS We characterized 35 APW-Ps of rats under ISO and ZO/XY anesthesia and found that ASRE contains compounds that can modulate the properties of the cardiovascular system, which significantly depended on the status of the cardiovascular system. This should be considered when using ASRE as a nutritional supplement by individuals with cardiovascular problems.
Collapse
Affiliation(s)
- Anton Misak
- Institute of Clinical and Translational Research, Department of Molecular Physiology, Biomedical Research CenterSlovak Academy of SciencesBratislavaSlovak Republic
| | - Marian Grman
- Institute of Clinical and Translational Research, Department of Molecular Physiology, Biomedical Research CenterSlovak Academy of SciencesBratislavaSlovak Republic
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Department of Molecular Physiology, Biomedical Research CenterSlovak Academy of SciencesBratislavaSlovak Republic
| | - Ondrej Makara
- Forest Arboretum Liptovsky HradokLiptovsky HradokSlovak Republic
| | - Zuzana Rostakova
- Institute of Measurement Science, Department of Theoretical MethodsSlovak Academy of SciencesBratislavaSlovak Republic
| | - Iveta Waczulikova
- Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovak Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Department of Molecular Physiology, Biomedical Research CenterSlovak Academy of SciencesBratislavaSlovak Republic
| |
Collapse
|
13
|
Wang S, Dong J, Zhao XL, Song X, Long YH, Xing ZB. Genome-wide identification of MBD gene family members in Eleutherococcus senticosus with their expression motifs under drought stress and DNA demethylation. BMC Genomics 2023; 24:84. [PMID: 36814191 PMCID: PMC9948437 DOI: 10.1186/s12864-023-09191-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Methyl-binding domain (MBD) is a class of methyl-CpG-binding domain proteins that affects the regulation of gene expression through epigenetic modifications. MBD genes are not only inseparable from DNA methylation but have also been identified and validated in various plants. Although MBD is involved in a group of physiological processes and stress regulation in these plants, MBD genes in Eleutherococcus senticosus remain largely unknown. RESULTS Twenty EsMBD genes were identified in E. senticosus. Among the 24 chromosomes of E. senticosus, EsMBD genes were unevenly distributed on 12 chromosomes, and only one tandem repeat gene existed. Collinearity analysis showed that the fragment duplication was the main motif for EsMBD gene expansion. As the species of Araliaceae evolved, MBD genes also evolved and gradually exhibited different functional differentiation. Furthermore, cis-acting element analysis showed that there were numerous cis-acting elements in the EsMBD promoter region, among which light response elements and anaerobic induction elements were dominant. The expression motif analysis revealed that 60% of the EsMBDs were up-regulated in the 30% water content group. CONCLUSIONS By comparing the transcriptome data of different saponin contents of E. senticosus and integrating them with the outcomes of molecular docking analysis, we hypothesized that EsMBD2 and EsMBD5 jointly affect the secondary metabolic processes of E. senticosus saponins by binding to methylated CpG under conditions of drought stress. The results of this study laid the foundation for subsequent research on the E. senticosus and MBD genes.
Collapse
Affiliation(s)
- Shuo Wang
- grid.440734.00000 0001 0707 0296College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jing Dong
- grid.440734.00000 0001 0707 0296College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xue-Lei Zhao
- grid.440734.00000 0001 0707 0296College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xin Song
- grid.440734.00000 0001 0707 0296College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Yue-Hong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| | - Zhao-Bin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
14
|
Luo L, Xue J, Shao Z, Zhou Z, Tang W, Liu J, Hu H, Yang F. Recent developments in Salvia miltiorrhiza polysaccharides: Isolation, purification, structural characteristics and biological activities. Front Pharmacol 2023; 14:1139201. [PMID: 36937857 PMCID: PMC10020221 DOI: 10.3389/fphar.2023.1139201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
In recent years, natural polysaccharides have attracted more and more attention and research because of their value in the medicine, beauty and food fields. Salvia miltiorrhiza is a traditional Chinese herb that has been used for thousands of years and has antidiabetic, antifibrotic, neuroprotective, antioxidation, anti-inflammatory and other effects. It mainly includes rosmarinic acid, tanshinone I, tanshinone IIA, tanshinone IIB, procatechualdehyde, polysaccharide and salvianolic acids. Salvia miltiorrhiza polysaccharide is a polysaccharide extracted and isolated from Salvia miltiorrhiza and has diverse biological functions, including antioxidation, anti-tumor, hepatoprotective, anti-inflammatory, immune regulatory and cardioprotective effect. In this review, the extraction, purification, structural characterization and biological activity of SMPs are summarized and new perspectives for the future work of SMPs were also proposed, we hope our research can provide a reference for further research on SMPs.
Collapse
Affiliation(s)
- Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Juan Xue
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese and Western Medicine, Wuhan, China
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Zheng Shao
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhang Zhou
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan, China
| | - Wenqian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jinxin Liu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Hongfei Hu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Fan Yang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- *Correspondence: Fan Yang,
| |
Collapse
|
15
|
Extract of Acanthopanax senticosus and Its Components Interacting with Sulfide, Cysteine and Glutathione Increase Their Antioxidant Potencies and Inhibit Polysulfide-Induced Cleavage of Plasmid DNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175735. [PMID: 36080497 PMCID: PMC9457693 DOI: 10.3390/molecules27175735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Aqueous root extract from Acanthopanax senticosus (ASRE) has a wide range of medicinal effects. The present work was aimed at studying the influence of sulfide, cysteine and glutathione on the antioxidant properties of ASRE and some of its selected phytochemical components. Reduction of the 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide (●cPTIO) stable radical and plasmid DNA (pDNA) cleavage in vitro assays were used to evaluate antioxidant and DNA-damaging properties of ASRE and its individual components. We found that the interaction of ASRE and its two components, caffeic acid and chlorogenic acid (but not protocatechuic acid and eleutheroside B or E), with H2S/HS−, cysteine or glutathione significantly increased the reduction of the ●cPTIO radical. In contrast, the potency of ASRE and its selected components was not affected by Na2S4, oxidized glutathione, cystine or methionine, indicating that the thiol group is a prerequisite for the promotion of the antioxidant effects. ASRE interacting with H2S/HS− or cysteine displayed a bell-shaped effect in the pDNA cleavage assay. However, ASRE and its components inhibited pDNA cleavage induced by polysulfides. In conclusion, we suggest that cysteine, glutathione and H2S/HS− increase antioxidant properties of ASRE and that changes of their concentrations and the thiol/disulfide ratio can influence the resulting biological effects of ASRE.
Collapse
|
16
|
Yang X, Liu T, Qi S, Gu H, Li J, Yang L. Tea saponin additive to extract eleutheroside B and E from Eleutherococcus senticosus by ultrasonic mediation and its application in a semi-pilot scale. ULTRASONICS SONOCHEMISTRY 2022; 86:106039. [PMID: 35598514 PMCID: PMC9127216 DOI: 10.1016/j.ultsonch.2022.106039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 05/26/2023]
Abstract
The safety of ethanol in operations and its effects on human health are gradually being questioned. Under this premise, we attempted to use the natural surfactant tea saponin, which originates from the processing residues of camellia oil, as the additive of the extraction solvent and to extract eleutheroside B and eleutheroside E in the roots and rhizomes of E. senticosus by ultrasonic mediation. After a single-factor experiment, extraction kinetics at different powers and reaction temperatures, and Box-Behnken design optimization, the optimal conditions obtained were 0.3% tea saponin solution as the extraction solvent, 20 mL/g liquid-solid ratio, 250 W ultrasonic irradiation power (43.4 mW/g ultrasonic power density) and 40 min ultrasonic irradiation time. Under optimal conditions, satisfactory yields of eleutheroside B (1.06 ± 0.04 mg/g) and eleutheroside E (2.65 ± 0.12 mg/g) were obtained with semi pilot scale ultrasonic extraction equipment. The experiments showed that compared with the traditional thermal extraction process, the extraction time is significantly reduced at lower operating temperatures.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Shuwen Qi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Huiyan Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Jialei Li
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Lei Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China.
| |
Collapse
|