1
|
Vinayak V, Basir R, Golloshi R, Toth J, Sant'Anna L, Lakadamyali M, McCord RP, Shenoy VB. Polymer model integrates imaging and sequencing to reveal how nanoscale heterochromatin domains influence gene expression. Nat Commun 2025; 16:3816. [PMID: 40268925 DOI: 10.1038/s41467-025-59001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
Chromatin organization regulates gene expression, with nanoscale heterochromatin domains playing a fundamental role. Their size varies with microenvironmental stiffness and epigenetic interventions, but how these factors regulate their formation and influence transcription remains unclear. To address this, we developed a sequencing-informed copolymer model that simulates chromatin evolution through diffusion and active epigenetic reactions. Our model predicts the formation of nanoscale heterochromatin domains and quantifies how domain size scales with epigenetic reaction rates, showing that epigenetic and compaction changes primarily occur at domain boundaries. We validated these predictions via Hi-C and super-resolution imaging of hyperacetylated melanoma cells and identified differential expression of metastasis-related genes through RNA-seq. We validated our findings in hMSCs, where epigenetic reaction rates respond to microenvironmental stiffness. Conclusively, our simulations reveal that heterochromatin domain boundaries regulate gene expression and epigenetic memory. These findings demonstrate how external cues drive chromatin organization and transcriptional memory in development and disease.
Collapse
Affiliation(s)
- Vinayak Vinayak
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramin Basir
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rosela Golloshi
- Departments of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Giovanis Institute for Translational Cell Biology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Joshua Toth
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucas Sant'Anna
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Melike Lakadamyali
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Pang X, Bai S, Feng Z, Zhang Y, Hu B, Zhang Y. Proteomic Analysis of Retinas in a Rat Model of High-Fat Diet-Induced Type 2 Diabetes: Implications of Interventional Targets for Nonproliferative Diabetic Retinopathy. Drug Des Devel Ther 2025; 19:2979-2999. [PMID: 40260199 PMCID: PMC12011038 DOI: 10.2147/dddt.s501318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/25/2025] [Indexed: 04/23/2025] Open
Abstract
Purpose This study aimed to establish a high-fat diet (HFD)-induced rat model of type 2 diabetes mellitus (T2DM) and employed tandem mass tag (TMT) proteomics to search for novel interventional targets for nonproliferative diabetic retinopathy (NPDR). Patients and Methods Six-week-old male Sprague-Dawley rats were randomly divided into a T2DM group fed a HFD and a normal group (NOR group) fed normal chow. After 6 w, the T2DM group was confirmed to have impaired glucose tolerance and was intraperitoneally injected with a single small dose of streptozotocin (STZ, 30 mg/kg), and blood glucose levels were monitored. The HFD was maintained for another 6 w, and an Evans blue assay and a dark-adapted electroretinogram (ERG) were conducted. Rat retinas were collected for morphology analysis, TMT proteomics analysis, and Western blotting. The expression patterns of selected differentially expressed proteins (DEPs) were validated in rat retinas via Western blotting and in aqueous humor from NPDR patients via slot blotting. Results After the 12-w HFD and STZ injection, the rats presented typical symptoms of T2DM. The retinas of T2DM rats presented pathological features of NPDR, including compromised scotopic ERGs, thinning of retinal layers, increased apoptosis and vascular leakage in the retina. Proteomic analysis identified DEPs and revealed profound dyslipidemia in T2DM rat retinas. The significant upregulation of the FABP3, TINAGL1, and COL4A3 proteins was validated in the retinas of the rats by Western blotting and in the aqueous humor of the NPDR patients by slot blotting. Conclusion In a rat model of HFD-induced T2DM that is consistent with the natural history and pathological features of NPDR, proteomics and bioinformatics analyses identified FABP3, TINAGL1, and COL4A3 as the 3 key upregulated proteins in retinas for the first time. These findings are supported by technical and clinical validations and provide novel targets for NPDR intervention.
Collapse
Affiliation(s)
- Xueyi Pang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People’s Republic of China
| | - Siqiong Bai
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People’s Republic of China
| | - Zhinan Feng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People’s Republic of China
| | - Yumin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People’s Republic of China
| | - Bojie Hu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People’s Republic of China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People’s Republic of China
| |
Collapse
|
3
|
Li X, Li X, Jinfeng Z, Yu T, Zhang B, Yang Y. Lysine acetylation and its role in the pathophysiology of acute pancreatitis. Inflamm Res 2025; 74:13. [PMID: 39775049 DOI: 10.1007/s00011-024-01989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) represents a severe inflammatory condition of the exocrine pancreas, precipitating systemic organ dysfunction and potential failure. The global prevalence of acute pancreatitis is on an ascending trajectory. The condition carries a significant mortality rate during acute episodes. This underscores the imperative to elucidate the etiopathogenic pathways of acute pancreatitis, enhance comprehension of the disease's intricacies, and identify precise molecular targets coupled with efficacious therapeutic interventions. The pathobiology of acute pancreatitis encompasses not only the ectopic activation of trypsinogen but also extends to disturbances in calcium homeostasis, mitochondrial impairment, autophagic disruption, and endoplasmic reticulum stress responses. Notably, the realm of epigenetic regulation has garnered extensive attention and rigorous investigation in acute pancreatitis research over recent years. One of these modifications, lysine acetylation, is a reversible post-translational modification of proteins that affects enzyme activity, DNA binding, and protein stability by changing the charge on lysine residues and altering protein structure. Numerous studies have revealed the importance of acetylation modification in acute pancreatitis, and that it is a favorable target for the design of new drugs for this disease. This review centers on lysine acetylation, examining the strides made in acute pancreatitis research with a focus on the contributory role of acetylomic alterations in the pathophysiological landscape of acute pancreatitis, thereby aiming to delineate novel therapeutic targets and advance the development of more efficacious treatment modalities.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, 266071, Shandong, People's Republic of China
| | - Xiaolu Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, Shandong, People's Republic of China
| | - Zhang Jinfeng
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, Shandong, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, 266071, Shandong, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, 266071, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Cai L, Hou B, Hu J. Tomatidine ameliorates high-fat-diet/streptozocin (HFD/STZ)-induced type 2 diabetes mellitus in mice. Arch Physiol Biochem 2024; 130:848-853. [PMID: 38186367 DOI: 10.1080/13813455.2023.2298404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To investigate the effects of tomatidine (Td) on the progression of type 2 diabetes mellitus (T2DM) in mice and uncover the mechanism. METHODS T2DM mice model was induced by high-fat diet (HFD) and intrabitoneal injection of streptozotocin (STZ). The mice were grouped as follows: 1, control; 2, T2D; 3, T2D + tomatidine (5 mg/kg); 4, T2D + tomatidine (10 mg/kg); 5, T2D + tomatidine (20 mg/kg). Fasting blood glucose was detected by glucose metre and fasting insulin was detected by the kit to determine the effect of Td on T2DM mice. ELISA, qPCR, and Immunoblot assays were performed to detect the effects of Td on the hepatic glucose homeostasis and inflammation of mice. Immunoblot assays further confirmed the mechanism. RESULTS Td improved blood glucose and insulin resistance in T2DM mice. In addition, Td improved liver function and lipid metabolism disorder in T2DM mice. Td also affected the liver glucose homeostasis related genes in T2DM mice. Td alleviated serum inflammation in T2DM mice. We further found that Td activated AMPK pathway, therefore ameliorating T2DM. CONCLUSION Td ameliorated HFD/STZ-induced T2DM in mice, suggesting that it could serve as a drug of T2DM.
Collapse
Affiliation(s)
- Li Cai
- Department of Endocrinology, the Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Baojian Hou
- Department of Endocrinology, the Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Juping Hu
- Department of Endocrinology, the Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
5
|
Jacques V, Benaouadi S, Descamps JG, Reina N, Espagnolle N, Marsal D, Sainte-Marie Y, Boudet A, Pinto C, Farge T, Savagner F. Metabolic conditioning enhances human bmMSC therapy of doxorubicin-induced heart failure. Stem Cells 2024; 42:874-888. [PMID: 39133028 DOI: 10.1093/stmcls/sxae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
The therapeutic potential of bone marrow mesenchymal stromal cells (bmMSCs) to address heart failure needs improvement for better engraftment and survival. This study explores the role of metabolic sorting for human bmMSCs in coculture in vitro and on doxorubicin-induced heart failure mice models. Using functional, epigenetic, and gene expression approaches on cells sorted for mitochondrial membrane potential in terms of their metabolic status, we demonstrated that bmMSCs selected for their glycolytic metabolism presented proliferative advantage and resistance to oxidative stress thereby favoring cell engraftment. Therapeutic use of glycolytic bmMSCs rescued left ventricular ejection fraction and decreased fibrosis in mice models of acute heart failure. Metabolic changes were also related to epigenetic histone modifications such as lysine methylation. By targeting LSD1 (lysine-specific demethylase 1) as a conditioning agent to enhance the metabolic profile of bmMSCs, we deciphered the interplay between glycolysis and bmMSC functionality. Our study elucidates novel strategies for optimizing bmMSC-based treatments for heart failure, highlighting the metabolic properties of bmMSCs as a promising target for more effective cardiovascular regenerative therapies.
Collapse
Affiliation(s)
- Virginie Jacques
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
- Biochemistry Laboratory, IFB, CHU, 31059 Toulouse, France
| | - Sabrina Benaouadi
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | | | - Nicolas Reina
- Department of Orthopedic Surgery, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, 31059 Toulouse, Cedex 9, France
- AMIS Laboratory-Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse, Université de Toulouse, UMR 5288 CNRS, UPS, 31000 Toulouse, France
| | - Nicolas Espagnolle
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, Inserm U1031, France
| | | | - Yannis Sainte-Marie
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | - Alexandre Boudet
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | - Carla Pinto
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | - Thomas Farge
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
- Biochemistry Laboratory, IFB, CHU, 31059 Toulouse, France
| | - Frédérique Savagner
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
- Biochemistry Laboratory, IFB, CHU, 31059 Toulouse, France
| |
Collapse
|
6
|
Karabaeva RZ, Vochshenkova TA, Mussin NM, Albayev RK, Kaliyev AA, Tamadon A. Epigenetics of hypertension as a risk factor for the development of coronary artery disease in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1365738. [PMID: 38836231 PMCID: PMC11148232 DOI: 10.3389/fendo.2024.1365738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Hypertension, a multifaceted cardiovascular disorder influenced by genetic, epigenetic, and environmental factors, poses a significant risk for the development of coronary artery disease (CAD) in individuals with type 2 diabetes mellitus (T2DM). Epigenetic alterations, particularly in histone modifications, DNA methylation, and microRNAs, play a pivotal role in unraveling the complex molecular underpinnings of blood pressure regulation. This review emphasizes the crucial interplay between epigenetic attributes and hypertension, shedding light on the prominence of DNA methylation, both globally and at the gene-specific level, in essential hypertension. Additionally, histone modifications, including acetylation and methylation, emerge as essential epigenetic markers linked to hypertension. Furthermore, microRNAs exert regulatory influence on blood pressure homeostasis, targeting key genes within the aldosterone and renin-angiotensin pathways. Understanding the intricate crosstalk between genetics and epigenetics in hypertension is particularly pertinent in the context of its interaction with T2DM, where hypertension serves as a notable risk factor for the development of CAD. These findings not only contribute to the comprehensive elucidation of essential hypertension but also offer promising avenues for innovative strategies in the prevention and treatment of cardiovascular complications, especially in the context of T2DM.
Collapse
Affiliation(s)
- Raushan Zh Karabaeva
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Nadiar M. Mussin
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Rustam K. Albayev
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Asset A. Kaliyev
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- Department for Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Department of Research and Development, PerciaVista R&D Co., Shiraz, Iran
| |
Collapse
|
7
|
Zhang L, Liu W, Li Y, Fu Y, Xu C, Yu M. Polyphyllin I Sensitizes Cisplatin-Resistant Human Cervical Cancer Cells to Cisplatin Treatment. Nutr Cancer 2024; 76:656-665. [PMID: 38733116 DOI: 10.1080/01635581.2024.2350107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Cervical cancer (CC) is a common gynecological malignancy, and improving cisplatin sensitivity has become a hot topic in CC chemotherapy research. Polyphyllin I (PPI), a potent bioactive compound found in Rhizoma Paridis, known for its anticancer properties, remains underexplored in CC resistance. In this study, we evaluated PPI's impact on cisplatin-resistant CC cells and elucidated its underlying mechanism. Our findings reveal that PPI enhances the sensitivity of cisplatin-resistant CC cells to the drug, promotes apoptosis, and inhibits cell migration. Mechanistically, PPI was found to regulate p53 expression and its target genes, and suppressing p53 expression reverses PPI's sensitizing effect in drug-resistant CC cells. In conclusion, PPI showed promise in sensitizing cisplatin-resistant human CC cells to cisplatin treatment, suggesting that it could serve as a potent adjunct therapy for cervical cancer, particularly for cases that have developed resistance to cisplatin, thereby providing a promising basis for further clinical investigation into PPI for enhancing the efficacy of existing chemotherapy regimens in resistant cervical cancer.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Gynecology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, China
| | - Wenzhi Liu
- Department of Gynecology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, China
| | - Yu Li
- Department of Gynecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuanyuan Fu
- Department of Gynecology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, China
| | - Chuanhua Xu
- Department of Gynecology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, China
| | - Minmin Yu
- Department of Gynecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Ariyanto EF, Wijaya I, Pradian ZA, Bhaskara APM, Rahman PHA, Oktavia N. Recent Updates on Epigenetic-Based Pharmacotherapy for Atherosclerosis. Diabetes Metab Syndr Obes 2024; 17:1867-1878. [PMID: 38706808 PMCID: PMC11068051 DOI: 10.2147/dmso.s463221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Atherosclerosis is one of the most dominant pathological processes responsible in cardiovascular diseases (CVD) caused by cholesterol accumulation accompanied by inflammation in the arteries which will subsequently lead to further complications, including myocardial infarction and stroke. Although the incidence of atherosclerosis is decreasing in some countries, it is still considered the leading cause of death worldwide. Atherosclerosis is a vascular pathological process that is chronically inflammatory and is characterized by the invasion of inflammatory cells and cytokines. Many reports have unraveled the pivotal roles of epigenetics such as DNA methylation, post-translational histone modifications, and non-coding RNAs (ncRNAs) in atherogenesis, which regulate the expression of numerous genes related to various responsible pathways. Many studies have been conducted to develop new therapeutical approaches based on epigenetic changes for combating atherosclerosis. This review elaborates on recent updates on the development of new atherosclerosis drugs whose mechanism of action is associated with the modulation of DNA methylation, posttranslational histone modifications, and ncRNA-based gene regulation.
Collapse
Affiliation(s)
- Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ibnu Wijaya
- Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | | | | | | | - Nandina Oktavia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
9
|
Luan Y, Zhu X, Jiao Y, Liu H, Huang Z, Pei J, Xu Y, Yang Y, Ren K. Cardiac cell senescence: molecular mechanisms, key proteins and therapeutic targets. Cell Death Discov 2024; 10:78. [PMID: 38355681 PMCID: PMC10866973 DOI: 10.1038/s41420-023-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Cardiac aging, particularly cardiac cell senescence, is a natural process that occurs as we age. Heart function gradually declines in old age, leading to continuous heart failure, even in people without a prior history of heart disease. To address this issue and improve cardiac cell function, it is crucial to investigate the molecular mechanisms underlying cardiac senescence. This review summarizes the main mechanisms and key proteins involved in cardiac cell senescence. This review further discusses the molecular modulators of cellular senescence in aging hearts. Furthermore, the discussion will encompass comprehensive descriptions of the key drugs, modes of action and potential targets for intervention in cardiac senescence. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of cardiac senescence, this review seeks to provide a fresh perspective and important theoretical foundations for the development of drugs targeting this condition.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaofan Zhu
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People's Hospital, Zhengzhou, 450052, P. R. China
| | - Yawei Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
10
|
Barth J, Loeffler I, Bondeva T, Liebisch M, Wolf G. The Role of Hypoxia on the Trimethylation of H3K27 in Podocytes. Biomedicines 2023; 11:2475. [PMID: 37760919 PMCID: PMC10525388 DOI: 10.3390/biomedicines11092475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic alterations contribute to the pathogenesis of chronic diseases such as diabetes mellitus. Previous studies of our group showed that diabetic conditions reduce the trimethylation of H3K27 in podocytes in a NIPP1- (nuclear inhibitor of protein phosphatase 1) and EZH2- (enhancer of zeste homolog 2) dependent manner. It has been previously reported that in differentiated podocytes, hypoxia decreases the expression of slit diaphragm proteins and promotes foot process effacement, thereby contributing to the progression of renal disease. The exact mechanisms are, however, not completely understood. The aim of this study was to analyze the role of hypoxia and HIFs (hypoxia-inducible factor) on epigenetic changes in podocytes affecting NIPP1, EZH2 and H3K27me3, in vitro and in vivo. In vivo studies were performed with mice exposed to 10% systemic hypoxia for 3 days or injected with 3,4-DHB (dihydroxybenzoate), a PHD (prolyl hydroxylase) inhibitor, 24 h prior analyses. Immunodetection of H3K27me3, NIPP1 and EZH2 in glomerular podocytes revealed, to the best of our knowledge for the first time, that hypoxic conditions and pharmacological HIFs activation significantly reduce the expression of NIPP1 and EZH2 and diminish H3K27 trimethylation. These findings are also supported by in vitro studies using murine-differentiated podocytes.
Collapse
|
11
|
Soukar I, Amarasinghe A, Pile LA. Coordination of cross-talk between metabolism and epigenetic regulation by the SIN3 complex. Enzymes 2023; 53:33-68. [PMID: 37748836 DOI: 10.1016/bs.enz.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Post-translational modifications of histone proteins control the expression of genes. Metabolites from central and one-carbon metabolism act as donor moieties to modify histones and regulate gene expression. Thus, histone modification and gene regulation are connected to the metabolite status of the cell. Histone modifiers, such as the SIN3 complex, regulate genes involved in proliferation and metabolism. The SIN3 complex contains a histone deacetylase and a histone demethylase, which regulate the chromatin landscape and gene expression. In this chapter, we review the cross-talk between metabolic pathways that produce donor moieties, and epigenetic complexes regulating proliferation and metabolic genes. This cross-talk between gene regulation and metabolism is tightly controlled, and disruption of this cross-talk leads to metabolic diseases. We discuss promising therapeutics that directly regulate histone modifiers, and can affect the metabolic status of the cell, alleviating some metabolic diseases.
Collapse
Affiliation(s)
- Imad Soukar
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anjalie Amarasinghe
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
12
|
Abubakar B, Usman D, Sanusi KO, Azmi NH, Imam MU. Preventive Epigenetic Mechanisms of Functional Foods for Type 2 Diabetes. DIABETOLOGY 2023; 4:259-277. [DOI: 10.3390/diabetology4030023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Type 2 diabetes (T2D) is a growing global health problem that requires new and effective prevention and management strategies. Recent research has highlighted the role of epigenetic changes in the development and progression of T2D, and the potential of functional foods as a complementary therapy for the disease. This review aims to provide an overview of the current state of knowledge on the preventive epigenetic mechanisms of functional foods in T2D. We provide background information on T2D and its current treatment approaches, an explanation of the concept of epigenetics, and an overview of the different functional foods with demonstrated preventive epigenetic effects in T2D. We also discuss the epigenetic mechanisms by which these functional foods prevent or manage T2D, and the studies that have investigated their preventive epigenetic effects. In addition, we revisit works on the beneficial influence of functional foods against the programming and complications of parentally-triggered offspring diabetes. We also suggest, albeit based on scarce data, that epigenetic inheritance mechanistically mediates the impacts of functional nutrition against the metabolic risk of diabetes in offspring. Finally, our review highlights the importance of considering the preventive epigenetic mechanisms of functional foods as a potential avenue for the development of new prevention and management strategies for T2D.
Collapse
Affiliation(s)
- Bilyaminu Abubakar
- Department of Pharmacology and Toxicology, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| | - Dawoud Usman
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| | - Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| | - Nur Hanisah Azmi
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Department of Medical Biochemistry, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| |
Collapse
|
13
|
Berlanga-Acosta J, Garcia-Ojalvo A, Guillen-Nieto G, Ayala-Avila M. Endogenous Biological Drivers in Diabetic Lower Limb Wounds Recurrence: Hypothetical Reflections. Int J Mol Sci 2023; 24:10170. [PMID: 37373317 DOI: 10.3390/ijms241210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
An impaired healing response underlies diabetic foot wound chronicity, frequently translating to amputation, disability, and mortality. Diabetics suffer from underappreciated episodes of post-epithelization ulcer recurrence. Recurrence epidemiological data are alarmingly high, so the ulcer is considered in "remission" and not healed from the time it remains epithelialized. Recurrence may result from the combined effects of behavioral and endogenous biological factors. Although the damaging role of behavioral, clinical predisposing factors is undebatable, it still remains elusive in the identification of endogenous biological culprits that may prime the residual scar tissue for recurrence. Furthermore, the event of ulcer recurrence still waits for the identification of a molecular predictor. We propose that ulcer recurrence is deeply impinged by chronic hyperglycemia and its downstream biological effectors, which originate epigenetic drivers that enforce abnormal pathologic phenotypes to dermal fibroblasts and keratinocytes as memory cells. Hyperglycemia-derived cytotoxic reactants accumulate and modify dermal proteins, reduce scar tissue mechanical tolerance, and disrupt fibroblast-secretory activity. Accordingly, the combination of epigenetic and local and systemic cytotoxic signalers induce the onset of "at-risk phenotypes" such as premature skin cell aging, dysmetabolism, inflammatory, pro-degradative, and oxidative programs that may ultimately converge to scar cell demise. Post-epithelialization recurrence rate data are missing in clinical studies of reputed ulcer healing therapies during follow-up periods. Intra-ulcer infiltration of epidermal growth factor exhibits the most consistent remission data with the lowest recurrences during 12-month follow-up. Recurrence data should be regarded as a valuable clinical endpoint during the investigational period for each emergent healing candidate.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| | - Ariana Garcia-Ojalvo
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| | - Gerardo Guillen-Nieto
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| | - Marta Ayala-Avila
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| |
Collapse
|
14
|
Rajsfus BF, Mohana-Borges R, Allonso D. Diabetogenic viruses: linking viruses to diabetes mellitus. Heliyon 2023; 9:e15021. [PMID: 37064445 PMCID: PMC10102442 DOI: 10.1016/j.heliyon.2023.e15021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Diabetes Mellitus (DM) is a group of chronic metabolic diseases distinguished by elevated glycemia due to the alterations in insulin metabolism. DM is one of the most relevant diseases of the modern world, with high incidence and prevalence worldwide, associated with severe systemic complications and increased morbidity and mortality rates. Although genetic factors and lifestyle habits are two of the main factors involved in DM onset, viral infections, such as enteroviruses, cytomegalovirus, hepatitis C virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, among others, have been linked as triggers of type 1 (T1DM) and type 2 (T2DM) diabetes. Over the years, various groups identified different mechanisms as to how viruses can promote these metabolic syndromes. However, this field is still poorly explored and needs further research, as millions of people live with these pathologies. Thus, this review aims to ex-plore the different processes of how viruses can induce DM and their contribution to the prevalence and incidence of DM worldwide.
Collapse
|
15
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
16
|
Xi M, Zhang L, Wei Y, Li T, Qu M, Hua Q, He R, Liu Y. Effect of ribose-glycated BSA on histone demethylation. Front Genet 2022; 13:957937. [PMID: 36276938 PMCID: PMC9581222 DOI: 10.3389/fgene.2022.957937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
A reducing sugar reacts with the protein, resulting in advanced glycation end-products (AGEs), which have been implicated in diabetes-related complications. Recently, it has been found that both type 1 and type 2 diabetic patients suffer from not only glucose but also ribose dysmetabolism. Here, we compared the effects of ribose and glucose glycation on epigenetics, such as histone methylation and demethylation. To prepare ribose-glycated (riboglycated) proteins, we incubated 150 μM bovine serum albumin (BSA) with 1 M ribose at different time periods, and we evaluated the samples by ELISAs, Western blot analysis, and cellular experiments. Riboglycated BSA, which was incubated with ribose for approximately 7 days, showed the strongest cytotoxicity, leading to a significant decrease in the viability of SH-SY5Y cells cultured for 24 h (IC50 = 1.5 μM). A global demethylation of histone 3 (H3K4) was observed in SH-SY5Y cells accompanied with significant increases in lysine-specific demethylase-1 (LSD1) and plant homeodomain finger protein 8 (PHF8) after treatment with riboglycated BSA (1.5 μM), but demethylation did not occur after treatment with glucose-glycated (glucoglycated) proteins or the ribose, glucose, BSA, and Tris–HCl controls. Moreover, a significant demethylation of H3K4, H3K4me3, and H3K4me2, but not H3K4me1, occurred in the presence of riboglycated proteins. A significant increase of formaldehyde was also detected in the medium of SH-SY5Y cells cultured with riboglycated BSA, further indicating the occurrence of histone demethylation. The present study provides a new insight into understanding an epigenetic mechanism of diabetes mellitus (DM) related to ribose metabolic disorders.
Collapse
Affiliation(s)
- Mengqi Xi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lingyun Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wei
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ting Li
- Bayannur Hospital, Bayannur, China
| | - Meihua Qu
- Second People’s Hospital of Weifang, Weifang, Shandong, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rongqiao He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Rongqiao He, ; Ying Liu,
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rongqiao He, ; Ying Liu,
| |
Collapse
|
17
|
Ren Y, Dong H, Jin R, Jiang J, Zhang X. TRIM22 actives PI3K/Akt/mTOR pathway to promote Psoriasis through enhancing cell proliferation and inflammation and inhibiting autophagy. Cutan Ocul Toxicol 2022; 41:304-309. [PMID: 36170453 DOI: 10.1080/15569527.2022.2127750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To reveal the function and underlying mechanism of Tri-domain protein 22 (TRIM22) in psoriasis. MEHTODS M5 cytokines were applied in HaCat cells to mimic psoriasis in vitro. The TRIM22-silencing virus were established to knockdown of TRIM22 in HaCat cells. Western blot and/or real-time PCR were used to detect the expression of TRIM22, KRT1, KRT6, p-P65, P65, LC3, Beclin 1, P62, p-PI3K, PI3K, p-Akt, Akt, p-mTOR and mTOR. ELISA kits were applied to assess levels of TNF-α, IL-1β, IL-18 and HMGB1. RESULTS TRIM22 expression levels were upregulated in M5-treated HaCat cells. M5 treatment enhanced cell proliferation and inflammation, and inhibited autophagy in HaCat cells which were effectively reversed by TRIM22 deficiency. Activation of PI3K/Akt/mTOR pathway is an essential promoter of cell proliferation and inflammation, and inhibitor of autophagy in psoriasis. TRIM22 deficiency blocked M5-induced activation of PI3K/Akt/mTOR pathway in HaCat cells. CONCLUSIONS TRIM22 facilitates cell proliferation and inflammation, and suppresses autophagy in M5-treated HaCat cells through activating PI3K/Akt/mTOR pathway, and inhibition of TRIM22 can be a novel potential treatment for psoriasis.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Department of Dermatology and Venereal Diseases, Hangzhou Lin'an District the First People's Hospital, Hangzhnou, Zhejiang Province, 311300, China
| | - Hailiang Dong
- Department of Dermatology and Venereal Diseases, Hangzhou Lin'an District the First People's Hospital, Hangzhnou, Zhejiang Province, 311300, China
| | - Rujun Jin
- Department of Dermatology and Venereal Diseases, Hangzhou Lin'an District the First People's Hospital, Hangzhnou, Zhejiang Province, 311300, China
| | - Jianxiong Jiang
- Department of Dermatology and Venereal Diseases, Hangzhou Lin'an District the First People's Hospital, Hangzhnou, Zhejiang Province, 311300, China
| | - Xiaoyang Zhang
- Department of Dermatology and Venereal Diseases, Hangzhou Lin'an District the First People's Hospital, Hangzhnou, Zhejiang Province, 311300, China
| |
Collapse
|
18
|
Gabellini D, Pedrotti S. The SUV4-20H Histone Methyltransferases in Health and Disease. Int J Mol Sci 2022; 23:ijms23094736. [PMID: 35563127 PMCID: PMC9102147 DOI: 10.3390/ijms23094736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023] Open
Abstract
The post-translational modification of histone tails is a dynamic process that provides chromatin with high plasticity. Histone modifications occur through the recruitment of nonhistone proteins to chromatin and have the potential to influence fundamental biological processes. Many recent studies have been directed at understanding the role of methylated lysine 20 of histone H4 (H4K20) in physiological and pathological processes. In this review, we will focus on the function and regulation of the histone methyltransferases SUV4-20H1 and SUV4-20H2, which catalyze the di- and tri-methylation of H4K20 at H4K20me2 and H4K20me3, respectively. We will highlight recent studies that have elucidated the functions of these enzymes in various biological processes, including DNA repair, cell cycle regulation, and DNA replication. We will also provide an overview of the pathological conditions associated with H4K20me2/3 misregulation as a result of mutations or the aberrant expression of SUV4-20H1 or SUV4-20H2. Finally, we will critically analyze the data supporting these functions and outline questions for future research.
Collapse
|