1
|
Zhong Z, Long H, Li N, Liu T, Wu M, Wang J, Liu M, Zhang X, Mei Z, Fang R, Ge J, Meng P. Guyuan Jiannao Decoction improves neurovascular unit dysfunction by regulating PI3K/AKT/NF-κB signaling pathway in cerebral small vessel disease rats. JOURNAL OF ETHNOPHARMACOLOGY 2025:119942. [PMID: 40350049 DOI: 10.1016/j.jep.2025.119942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMCOLOGICAL RELEVANCE Cerebral small vessel disease (CSVD) is a series of clinical, imaging, and pathological syndromes caused by brain microvascular damage and treated as a major contributing factor in many neurological diseases. Guyuan Jiannao Decoction (GYJND), a traditional Chinese formular, is clinically used for treating CSVD. However, the fundamental mechanism is nevertheless unknown. AIM OF THE STUDY To explore the potential mechanism underlying the effect of GYJND on CSVD. METHODS AND MATERIALS UPLC-Q-TOF/MS was employed to identify the chemical components of GYJND. Subsequently, CSVD models were utilized to assess the impact of GYJND in vivo. Morris Water Maze (MWM) test was used to evaluate cognitive function. Hematoxylin-eosin (HE), luxol fast blue (LFB) staining and transmission electron microscope (TEM) were performed to observe pathological changes of brain. Morphology and function of endothelial cells, astrocytes, microglia, and neurons, including Occludin, GFAP and Iba-1 were detected using immunofluorescence (IF) and immunohistochemistry (ICH). RESULTS A total of 95 compounds were identified from GYJND, mainly including flavonoids, diterpenoids, triterpenoids, saponins, phenolic acids. In animal experiments, treatment with GYJND effectively improved cognitive function in rats, as observed by MWM. GYJND reduced brain tissue injury and improve the permeability of blood-brain-barrier (BBB) and microvascular structure. Further, the morphology and structural damage of neurovascular unit (NVU) were alleviated after treatment of GYJND. GYJND also attenuated neuronal apoptosis, increased NeuN, GFAP and decreased Iba-1, AQP4 level in the prefrontal cortex and hippocampus. In addition, GYJND upregulated PI3K/AKT expression and inhibited NF-κB expression. CONCLUSION Our study suggested that GYJND treatment can protect NVU in the prefrontal cortex and hippo campus of CSVD. These effects may be achieved by inhibiting NF-κB through activation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ziyan Zhong
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Hongping Long
- The First Hospital, Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Nuokun Li
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tongtong Liu
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mei Wu
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jielin Wang
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mailan Liu
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiuli Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhigang Mei
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Rui Fang
- Hunan Academy of Chinese Medicine, Changsha, 410013, China.
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Changsha, 410013, China.
| | - Pan Meng
- Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Cho CH, Chae SH, Thi NHL, Um SH, Lee S, Yu JS, Kang KS, Kim KH. Lambertianic Acid from Platycladus orientalis Inhibits Muscle Atrophy in Dexamethasone-Induced C2C12 Muscle Atrophy Cells. PLANTS (BASEL, SWITZERLAND) 2025; 14:1357. [PMID: 40364384 DOI: 10.3390/plants14091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Platycladus orientalis, an evergreen tree belonging to the Cupressaceae family, has been traditionally used to treat various ailments, including fever, cough, diarrhea, diuresis, cold symptoms, and gastrointestinal disorders in folk medicine. As part of our ongoing investigation aimed at discovering bioactive natural products and elucidating their mechanisms of action from various natural sources, we investigated a methanol (MeOH) extract of P. orientalis leaves. This investigation led to the isolation and identification of a labdane-type diterpene, lambertianic acid (LA), via column chromatography and HPLC purification. The structure of LA was elucidated using LC/MS and NMR spectroscopic analyses, including HR-ESIMS, while its absolute configuration was confirmed through electronic circular dichroism (ECD) calculations. Recent studies have reported that labdane-type diterpenes exhibit diverse pharmacological activities, such as anticancer, anti-inflammatory, anti-obesity, and hypolipidemic effects. Notably, LA has been shown to modulate adipocyte metabolism via AMPK signaling; however, its role in skeletal muscle atrophy remains unexplored. Therefore, in this study, we investigated the effects of LA on dexamethasone (Dex)-induced muscle atrophy in C2C12 myotubes. Treatment with LA at concentrations of 25 µM and 50 µM significantly rescued myotube diameter and reduced the expression of atrophy-related proteins, including MuRF-1 and atrogin-1/MAFbx, without compromising cell viability at these moderate concentrations. These findings suggest that LA derived from P. orientalis exerts protective effects against skeletal muscle atrophy, highlighting its potential as a promising natural therapeutic candidate for muscle-wasting disorders.
Collapse
Affiliation(s)
- Chan Hee Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Si Hyeon Chae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ngoc Han Le Thi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seulah Lee
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jae Sik Yu
- Department of Integrative Biological Sciences and Industry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Qu Y, Ding M, Zhang M, Zheng L, Hu B, An H. Iridoid glycosides in kidney-tonifying Chinese medicinal herbs: Mechanisms and implications for Alzheimer's disease therapy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119870. [PMID: 40288663 DOI: 10.1016/j.jep.2025.119870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/22/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is an incurable and irreversible type of dementia. Existing drugs cannot meet clinical needs; thus, developing new treatments is necessary. Traditional Chinese medicine (TCM) has been used in the prevention and treatment of AD. TCM holds the theory that "the kidney support brain function" and believes that dementia can be addressed from a kidney-based perspective. Kidney-tonifying herbs are a class of medicines that have the effect of tonifying the kidney and benefiting the brain. Some of these herbs have been shown to have anti-AD effects. Iridoid glycosides (IGs), which are important components of kidney-tonifying herbs, may have the potential to prevent and treat AD. However, their effects on AD have not yet been reviewed. AIM OF THE REVIEW This literature review provides a comprehensive summary of the potential of IGs in the prevention and treatment of AD. It also sets the foundation for future studies that will make the use of such drugs in clinical practice possible. MATERIAL AND METHODS Kidney-tonifying Chinese herbs were selected with reference to the Chinese Pharmacopoeia (2020 edition) and the textbook of Chinese Materia Medica (5th edition). Literature survey was conducted using PubMed, Web of Science, Google Scholar, and CNKI, with "Alzheimer's disease," "kidney-tonifying Chinese medicinal herbs," and "Iridoid Glycosides" as the primary keywords. RESULTS Kidney-tonifying herbal IGs include loganin, morroniside, verbenalin, cornuside, catalpol, rehmannioside A, geniposidic acid, and aucubin. These IGs have shown multiple pharmacological effects, including anti-AD effects. The effective mechanisms of IGs for AD treatment include anti-oxidative stress, inhibiting neuronal apoptosis, antagonizing amyloid neurotoxicity and tau protein hyperphosphorylation, regulating immune function, anti-inflammation, normalizing the function of the cholinergic nervous system, recuperating neurobiochemical, and regulating AD-related genes. Consequently, IGs can combat AD by modulating multiple targets and pathways. CONCLUSION Kidney-tonifying herbal IGs have great potential to combat AD.
Collapse
Affiliation(s)
- Yanjie Qu
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Minrui Ding
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Mengxue Zhang
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Bing Hu
- Cancer Institute, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Hongmei An
- Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
4
|
Gopal Krishnan PD, Lee WX, Goh KY, Choy SM, Turqueza LRR, Lim ZH, Tang HW. Transcriptional regulation of autophagy in skeletal muscle stem cells. Dis Model Mech 2025; 18:DMM052007. [PMID: 39925192 PMCID: PMC11849978 DOI: 10.1242/dmm.052007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for the regenerative capabilities of skeletal muscles. MuSCs are maintained in a quiescent state, but, when activated, can undergo proliferation and differentiation into myocytes, which fuse and mature to generate muscle fibers. The maintenance of MuSC quiescence and MuSC activation are processes that are tightly regulated by autophagy, a conserved degradation system that removes unessential or dysfunctional cellular components via lysosomes. Both the upregulation and downregulation of autophagy have been linked to impaired muscle regeneration, causing myopathies such as cancer cachexia, sarcopenia and Duchenne muscular dystrophy. In this Review, we highlight the importance of autophagy in regulating MuSC activity during muscle regeneration. Additionally, we summarize recent studies that link the transcriptional dysregulation of autophagy to muscle atrophy, emphasizing the dominant roles that transcription factors play in myogenic programs. Deciphering and understanding the roles of these transcription factors in the regulation of autophagy during myogenesis could advance the development of regenerative medicine.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | - Zhuo Han Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
5
|
Liu Y, Chen H, Zhang Y, Shang Q, Zhao W, Zhang Y, Qiu W, Qin W, Lin F, He J, Liu H, Chen X, Gong Y, Liu L, Jiang Y, Ren H, Jiang X, Shen G. Plumbagin alleviates muscle atrophy in female mice through inhibiting the DANCR/NF-κB axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156282. [PMID: 39616734 DOI: 10.1016/j.phymed.2024.156282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/12/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Muscle atrophy is a condition of the skeletal muscular system closely related to inflammation and significantly affects a person's quality of life and physical activity. It is characterized primarily by the progressive loss of muscle mass, strength, and function. Plumbagin (PB), the main bioactive component of the traditional Chinese medicine Plumbago zeylanica L., has bFeen shown to treat various inflammatory diseases, such as osteoporosis, osteoarthritis, and sepsis. Furthermore, many biological processes, including inflammation, involve differentiation antagonistic nonprotein-coding RNA (DANCR). However, their role and clinical importance in myogenesis and amyotrophy are not well understood. PURPOSE This study aimed to explore the role of DANCR and the inflammatory response in the anti-muscle atrophy effects of PB. METHODS The expression of DANCR in muscle atrophic mice and during myogenic differentiation was examined using quantitative reverse transcription PCR (RT‒qPCR). The mechanism of DANCR in muscle atrophy was confirmed through gene knockdown, RNA sequencing (RNA-seq), RNA pull-down, RNA immunoprecipitation (RIP), immunofluorescence (IF), and luciferase reporter gene assays. Bioinformatics was utilized to investigate the mechanism by which PB treatment affects muscle atrophy. The relationship between PB and DANCR was verified by surface plasmon resonance (SPR) and RT‒qPCR. Additionally, the role of PB in muscle atrophy was explored through its control of DANCR-mediated regulation of the NF-κB pathway. Finally, the effect of PB on the myogenic differentiation of human skeletal muscle cells (HsKMCs) was investigated. RESULTS DANCR expression was upregulated in the muscle tissues of mice with muscle atrophy and downregulated during myogenic differentiation. Knockout of DANCR promoted myogenic differentiation and significantly alleviated the loss of muscle mass, strength, and function in mice with muscle atrophy. The primary mechanism involved DANCR directly binding to the p65 protein to regulate NF-κB pathway activity. Experiments revealed that PB could target the degradation of DANCR, reduce the nuclear entry of p65, and inhibit the activation of the NF-κB pathway. Consequently, PB significantly inhibited myotube atrophy and the inflammatory response in HsKMCs and promoted their myogenic differentiation by regulating the NF-κB pathway. CONCLUSIONS Our results suggest that PB regulates myogenesis and prevents amyotrophy by targeting the degradation of DANCR and inhibiting the activation of the NF-κB pathway. This study reveals the crucial role of DANCR in maintaining muscle physiology during muscle atrophy and identifies PB as an effective drug that can target DANCR degradation to alleviate muscle atrophy.
Collapse
Affiliation(s)
- Yu Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - You Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wenhua Zhao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China
| | - Yuzhuo Zhang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China
| | - Weiyu Qiu
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China
| | - Weicheng Qin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Feng Lin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiahui He
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, China
| | - Huiwen Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xingda Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yan Gong
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lingjuan Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yixuan Jiang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hui Ren
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China.
| | - Xiaobing Jiang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China.
| | - Gengyang Shen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
6
|
Yao Q, Wei T, Qiu H, Cai Y, Yuan L, Liu X, Li X. Epigenetic Effects of Natural Products in Inflammatory Diseases: Recent Findings. Phytother Res 2025; 39:90-137. [PMID: 39513382 DOI: 10.1002/ptr.8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 11/15/2024]
Abstract
Inflammation is an essential step for the etiology of multiple diseases. Clinically, due to the limitations of current drugs for the treatment of inflammatory diseases, such as serious side effects and expensive costs, it is urgent to explore novel mechanisms and medicines. Natural products have received extensive attention recently because of their multi-component and multi-target characteristics. Epigenetic modifications are crucial pathophysiological targets for developing innovative therapies for pharmacological interventions. Investigations examining how natural products improving inflammation through epigenetic modifications are emerging. This review state that natural products relieve inflammation via regulating the gene transcription levels through chromosome structure regulated by histone acetylation levels and the addition or deletion of methyl groups on DNA duplex. They could also exert anti-inflammatory effects by modulating the proteins in typical inflammatory signaling pathways by ubiquitin-related degradation and the effect of glycolysis derived free glycosyls. Studies on epigenetic modifications have the potential to facilitate the development of natural products as therapeutic agents. Future research directed at better understanding of how natural products modulate inflammatory processes through less studied epigenetic modifications including neddylation, SUMOylation, palmitoylation and lactylation, may provide new implications. Meanwhile, higher quality preclinical studies and more powerful clinical evidence are still needed to firmly establish the clinical efficacy of the natural products. Trial Registration: ClinicalTrials.gov Identifier: NCT01764204; ClinicalTrials.gov Identifier: NCT05845931; ClinicalTrials.gov Identifier: NCT04657926; ClinicalTrials.gov Identifier: NCT02330276.
Collapse
Affiliation(s)
- Qianyi Yao
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Tanjun Wei
- Department of Pharmacy, Dazhou Integrated TCM & Western Medical Hospital, Sichuan, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| |
Collapse
|
7
|
Zhang Y, Zhang H, Liu J, Sun J, Xu Y, Shi N, Zhang H, Yan J, Chen J, Wang H, Yu T. Tuina alleviates the muscle atrophy induced by sciatic nerve injury in rats through regulation of PI3K/Akt signaling. J Orthop Surg Res 2024; 19:892. [PMID: 39736730 DOI: 10.1186/s13018-024-05270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Tuina is an effective treatment for the decrease of skeletal muscle atrophy after peripheral nerve injury. However, the underlying mechanism of action remains unclear. This study aimed to explore the underlying mechanisms of tuina in rats with sciatic nerve injury (SNI). METHODS We established an SNI rat model. After Tuina intervention, curative effects were evaluated by behavioral assessment, nerve function index, and muscle atrophy index (MAI). Pathological changes were observed by transmission electron microscopy and immunofluorescence. Insulin-like growth factor 1 (IGF-1), forkhead box O (FoxO) and p-FoxO levels were detected using enzyme-linked immunosorbent assay. Western blotting was performed to detect the expression of proteins involved in the PI3K/AKT signaling pathway. RESULT Behavioral assessment, nerve function index, and MAI revealed that the tuina had significantly improved muscle atrophy after SNI compared with the SNI model group. Transmission electron microscopy showed that tuina improved muscle ultramicrostructure. CD31 immunofluorescence revealed that tuina improved microcirculation. Furthermore, we observed that tuina differentially regulated the levels of IGF-1, FoxO and p-FoxO, and the protein expression of p-Phosphoinositide 3-kinase (p-PI3K), p-AKT, and vascular endothelial growth factor in the anterior tibial muscle and soleus muscles. CONCLUSION Tuina could effectively inhibit skeletal muscle atrophy via the microcirculation pathway in a rat model of SNI by regulating the expression of IGF-1 and FoxO. The underlying mechanism of action may involve the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yingqi Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Hanyu Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jiayue Liu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jiawei Sun
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yue Xu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Narentuya Shi
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Hongzheng Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jiawang Yan
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jinping Chen
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Hourong Wang
- Department of Acupuncture and Massage, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Tianyuan Yu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
8
|
Huang CY, Liu YH. Sex difference, proteostasis and mitochondrial function impact stroke-related sarcopenia-A systematic review and meta-analysis. Ageing Res Rev 2024; 101:102484. [PMID: 39218079 DOI: 10.1016/j.arr.2024.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The prevalence of stroke-related sarcopenia has been noted; however, epidemiological data and interventions that increase or reduce the incidence of stroke-related sarcopenia remain lacking. METHODS Studies on stroke-related sarcopenia were included in association or interventional analyses. All analyses were performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Two evaluators independently extracted the data. RESULTS Female stroke patients had a higher preference for sarcopenia than male patients (pooled odds ratio [OR] = 0.670, 95 % CI 0.533-0.842, p = 0.001). Although stroke patients without drug use have improved skeletal muscle mass index (SMI) (MD = 0.272, 95 % CI 0.087-0.457, p = 0.004), handgrip strength (HGS) was not significantly altered (MD = -0.068, 95 % CI -0.221-0.076, p = 0.354). Stroke patients with nutrient interventions have improved SMI (MD = -0.354, 95 % CI -0.635- -0.073, p = 0.014) and HGS (MD = -0.394, 95 % CI -0.678- -0.111, p = 0.006); the synergistic effect of rehabilitation exercise has not been ruled out. Whether a sex difference exists in these interventions remains to be investigated. The underlying pathological mechanisms and potential therapeutic strategies for this disease are discussed. CONCLUSION Sex difference, proteostasis, and mitochondrial function may impact the incidence of stroke-related sarcopenia. Understanding the underlying pathological mechanisms and potential therapeutic targets for this disease will provide new insights into disease treatment, prevention, and drug development.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung 404333, Taiwan
| | - Yu-Huei Liu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan; Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung 404328, Taiwan; Drug Development Center, China Medical University, Taichung 404333, Taiwan.
| |
Collapse
|
9
|
Lee DH, Lee HJ, Yang G, Kim DY, Kim JU, Yook TH, Lee JH, Kim HJ. A novel treatment strategy targeting cellular pathways with natural products to alleviate sarcopenia. Phytother Res 2024; 38:5033-5051. [PMID: 39099170 DOI: 10.1002/ptr.8301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Sarcopenia is a condition marked by a significant reduction in muscle mass and strength, primarily due to the aging process, which critically impacts muscle protein dynamics, metabolic functions, and overall physical functionality. This condition leads to increased body fat and reduced daily activity, contributing to severe health issues and a lower quality of life among the elderly. Recognized in the ICD-10-CM only in 2016, sarcopenia lacks definitive treatment options despite its growing prevalence and substantial social and economic implications. Given the aging global population, addressing sarcopenia has become increasingly relevant and necessary. The primary causes include aging, cachexia, diabetes, and nutritional deficiencies, leading to imbalances in protein synthesis and degradation, mitochondrial dysfunction, and hormonal changes. Exercise remains the most effective intervention, but it is often impractical for individuals with limited mobility, and pharmacological options such as anabolic steroids and myostatin inhibitors are not FDA-approved and are still under investigation. This review is crucial as it examines the potential of natural products as a novel treatment strategy for sarcopenia, targeting multiple mechanisms involved in its pathogenesis. By exploring natural products' multi-targeted effects, this study aims to provide innovative and practical solutions for sarcopenia management. Therefore, this review indicates significant improvements in muscle mass and function with the use of specific natural compounds, suggesting promising alternatives for those unable to engage in regular physical activity.
Collapse
Affiliation(s)
- Da Hee Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Hye Jin Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Gabsik Yang
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Dae Yong Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jong Uk Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Tae Han Yook
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
- Da Capo Co., Ltd., Jeonju-si, Republic of Korea
| | - Hong Jun Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| |
Collapse
|
10
|
Wang X, Qian Y, Wei M. Widely Targeted Metabolomics Analysis to Reveal Metabolite of Morus alba L. in Different Medicinal Parts. Molecules 2024; 29:3981. [PMID: 39274829 PMCID: PMC11395776 DOI: 10.3390/molecules29173981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 09/16/2024] Open
Abstract
Morus alba L. is a tradition medical and edible plant. It is rich in many important bioactive components. However, there is a dearth of systematic information about the components. Here, the Mori Cortex, Mori Folium, Mori Fructus, and Mori Ramulus were studied. Ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS) is used to study primary and secondary metabolites. Eight hundred two metabolites were identified and classified into 10 different categories in total. Correlation analysis, hierarchical clustering analysis, and principal component analysis of metabolites showed that different parts of the sample could be significantly different. In different medicinal parts, alkaloids accounted for 4.0%, 3.6%, 5.1%, and 4.5%; flavonoids accounted for 0.7%, 27.2%, 5.6%, 1.2%; terpenes accounted for 20.1%, 2.1%, 2.6%, 2.5%. Furthermore, the abundance of phenols, phenylpropanoids, and lipids metabolites sequentially accounted for 2.3-4.4%, 0.5-1.8%, and 2.4-5.3%. These results have improved our understanding of metabolites and provided a reference for research on the medicinal and edible value of Morus alba L. In addition, the study reveals the correlation between the components of Traditional Chinese medicine and the basic theory of TCM properties and reinterprets the ancient wisdom in the world's traditional herbs through the perspective of modern science.
Collapse
Affiliation(s)
- Xinwei Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yiyun Qian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Min Wei
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
11
|
Kong H, Han JJ, Dmitrii G, Zhang XA. Phytochemicals against Osteoarthritis by Inhibiting Apoptosis. Molecules 2024; 29:1487. [PMID: 38611766 PMCID: PMC11013217 DOI: 10.3390/molecules29071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease that causes pathological changes in articular cartilage, synovial membrane, or subchondral bone. Conventional treatments for OA include surgical and non-surgical methods. Surgical treatment is suitable for patients in the terminal stage of OA. It is often the last choice because of the associated risks and high cost. Medication of OA mainly includes non-steroidal anti-inflammatory drugs, analgesics, hyaluronic acid, and cortico-steroid anti-inflammatory drugs. However, these drugs often have severe side effects and cannot meet the needs of patients. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Apoptosis is programmed cell death, which is a kind of physiologic cell suicide determined by heredity and conserved by evolution. Inhibition of apoptosis-related pathways has been found to prevent and treat a variety of diseases. Excessive apoptosis can destroy cartilage homeostasis and aggravate the pathological process of OA. Therefore, inhibition of apoptosis-related factors or signaling pathways has become an effective means to treat OA. Phytochemicals are active ingredients from plants, and it has been found that phytochemicals can play an important role in the prevention and treatment of OA by inhibiting apoptosis. We summarize preclinical and clinical studies of phytochemicals for the treatment of OA by inhibiting apoptosis. The results show that phytochemicals can treat OA by targeting apoptosis-related pathways. On the basis of improving some phytochemicals with low bioavailability, poor water solubility, and high toxicity by nanotechnology-based drug delivery systems, and at the same time undergoing strict clinical and pharmacological tests, phytochemicals can be used as a potential therapeutic drug for OA and may be applied in clinical settings.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| | - Juan-Juan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| |
Collapse
|
12
|
Rodríguez MP, Cabello-Verrugio C. Soluble Factors Associated with Denervation-induced Skeletal Muscle Atrophy. Curr Protein Pept Sci 2024; 25:189-199. [PMID: 38018212 DOI: 10.2174/0113892037189827231018092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 11/30/2023]
Abstract
Skeletal muscle tissue has the critical function of mechanical support protecting the body. In addition, its functions are strongly influenced by the balanced synthesis and degradation processes of structural and regulatory proteins. The inhibition of protein synthesis and/or the activation of catabolism generally determines a pathological state or condition called muscle atrophy, a reduction in muscle mass that results in partial or total loss of function. It has been established that many pathophysiological conditions can cause a decrease in muscle mass. Skeletal muscle innervation involves stable and functional neural interactions with muscles via neuromuscular junctions and is essential for maintaining normal muscle structure and function. Loss of motor innervation induces rapid skeletal muscle fiber degeneration with activation of atrophy-related signaling and subsequent disassembly of sarcomeres, altering normal muscle function. After denervation, an inflammation stage is characterized by the increased expression of pro-inflammatory cytokines that determine muscle atrophy. In this review, we highlighted the impact of some soluble factors on the development of muscle atrophy by denervation.
Collapse
Affiliation(s)
- Marianny Portal Rodríguez
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
13
|
Wang Y, Hu S, Zhang W, Zhang B, Yang Z. Emerging role and therapeutic implications of p53 in intervertebral disc degeneration. Cell Death Discov 2023; 9:433. [PMID: 38040675 PMCID: PMC10692240 DOI: 10.1038/s41420-023-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Lower back pain (LBP) is a common degenerative musculoskeletal disease that imposes a huge economic burden on both individuals and society. With the aggravation of social aging, the incidence of LBP has increased globally. Intervertebral disc degeneration (IDD) is the primary cause of LBP. Currently, IDD treatment strategies include physiotherapy, medication, and surgery; however, none can address the root cause by ending the degeneration of intervertebral discs (IVDs). However, in recent years, targeted therapy based on specific molecules has brought hope for treating IDD. The tumor suppressor gene p53 produces a transcription factor that regulates cell metabolism and survival. Recently, p53 was shown to play an important role in maintaining IVD microenvironment homeostasis by regulating IVD cell senescence, apoptosis, and metabolism by activating downstream target genes. This study reviews research progress regarding the potential role of p53 in IDD and discusses the challenges of targeting p53 in the treatment of IDD. This review will help to elucidate the pathogenesis of IDD and provide insights for the future development of precision treatments.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Shouye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weisong Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
14
|
Ding K, Jiang W, Zhangwang J, Wang Y, Zhang J, Lei M. The potential of traditional herbal active ingredients in the treatment of sarcopenia animal models: focus on therapeutic effects and mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3483-3501. [PMID: 37526688 DOI: 10.1007/s00210-023-02639-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Sarcopenia is a major global public health problem that harms individual physical function. In 2018, the European Working Group on Sarcopenia in the Elderly 2 classified sarcopenia into primary and secondary sarcopenia. However, information on the pathogenesis and effective treatment of primary and secondary sarcopenia is limited. Traditional herbal active ingredients have biological activities that promote skeletal muscle health, showing potential preventive and therapeutic effects on sarcopenia. Therefore, this narrative review aims to provide a comprehensive overview of global traditional herbal active ingredients' beneficial therapeutic effects and molecular mechanisms on sarcopenia-related animal models. For this purpose, we conducted a literature search in three databases, PubMed, Web of Science, and Embase, consistent with the review objectives. After the screening, 12 animal studies met the review themes. The review results showed that the pathological mechanisms in sarcopenia-related animal models include imbalanced protein metabolism, oxidative stress, inflammation, apoptosis, insulin resistance, endoplasmic reticulum stress, impaired mitochondrial biogenesis, and autophagy-lysosome system aggravation. Eleven traditional herbal active ingredients exerted positive anti-sarcopenic effects by ameliorating these pathological mechanisms. This narrative review will provide meaningful insight into future studies regarding traditional herbal active ingredients for treating sarcopenia.
Collapse
Affiliation(s)
- Kaixi Ding
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wei Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Juejue Zhangwang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yu Wang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210029, China
| | - Jing Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
15
|
Xiao J, Han Q, Yu Z, Liu M, Sun J, Wu M, Yin H, Fu J, Guo Y, Wang L, Ma Y. Morroniside Inhibits Inflammatory Bone Loss through the TRAF6-Mediated NF-κB/MAPK Signalling Pathway. Pharmaceuticals (Basel) 2023; 16:1438. [PMID: 37895909 PMCID: PMC10609728 DOI: 10.3390/ph16101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is a chronic inflammatory disease that severely affects quality of life. Cornus officinalis is a Chinese herbal medicine with various bioactive ingredients, among which morroniside is its signature ingredient. Although anti-bone resorption drugs are the main treatment for bone loss, promoting bone anabolism is more suitable for increasing bone mass. Therefore, identifying changes in bone formation induced by morroniside may be conducive to developing effective intervention methods. In this study, morroniside was found to promote the osteogenic differentiation of bone marrow stem cells (BMSCs) and inhibit inflammation-induced bone loss in an in vivo mouse model of inflammatory bone loss. Morroniside enhanced bone density and bone microstructure, and inhibited the expression of IL6, IL1β, and ALP in serum (p < 0.05). Furthermore, in in vitro experiments, BMSCs exposed to 0-256 μM morroniside did not show cytotoxicity. Morroniside inhibited the expression of IL6 and IL1β and promoted the expression of the osteogenic transcription factors Runx2 and OCN. Furthermore, morroniside promoted osteocalcin and Runx2 expression and inhibited TRAF6-mediated NF-κB and MAPK signaling, as well as osteoblast growth and NF-κB nuclear transposition. Thus, morroniside promoted osteogenic differentiation of BMSCs, slowed the occurrence of the inflammatory response, and inhibited bone loss in mice with inflammatory bone loss.
Collapse
Affiliation(s)
- Jirimutu Xiao
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Mongolia Medicine, Inner Mongolia Medical University, Hohhot 010110, China
| | - Qiuge Han
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziceng Yu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
| | - Mao Wu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; (M.W.); (H.Y.)
| | - Heng Yin
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; (M.W.); (H.Y.)
| | - Jingyue Fu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; (M.W.); (H.Y.)
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; (M.W.); (H.Y.)
| |
Collapse
|
16
|
Zhang H, Qi G, Wang K, Yang J, Shen Y, Yang X, Chen X, Yao X, Gu X, Qi L, Zhou C, Sun H. Oxidative stress: roles in skeletal muscle atrophy. Biochem Pharmacol 2023:115664. [PMID: 37331636 DOI: 10.1016/j.bcp.2023.115664] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Oxidative stress, inflammation, mitochondrial dysfunction, reduced protein synthesis, and increased proteolysis are all critical factors in the process of muscle atrophy. In particular, oxidative stress is the key factor that triggers skeletal muscle atrophy. It is activated in the early stages of muscle atrophy and can be regulated by various factors. The mechanisms of oxidative stress in the development of muscle atrophy have not been completely elucidated. This review provides an overview of the sources of oxidative stress in skeletal muscle and the correlation of oxidative stress with inflammation, mitochondrial dysfunction, autophagy, protein synthesis, proteolysis, and muscle regeneration in muscle atrophy. Additionally, the role of oxidative stress in skeletal muscle atrophy caused by several pathological conditions, including denervation, unloading, chronic inflammatory diseases (diabetes mellitus, chronic kidney disease, chronic heart failure, and chronic obstructive pulmonary disease), sarcopenia, hereditary neuromuscular diseases (spinal muscular atrophy, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy), and cancer cachexia, have been discussed. Finally, this review proposes the alleviation oxidative stress using antioxidants, Chinese herbal extracts, stem cell and extracellular vesicles as a promising therapeutic strategy for muscle atrophy. This review will aid in the development of novel therapeutic strategies and drugs for muscle atrophy.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Guangdong Qi
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, PR China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jiawen Yang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China.
| | - Chun Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
17
|
Lyu W, Kousaka M, Jia H, Kato H. Effects of Turmeric Extract on Age-Related Skeletal Muscle Atrophy in Senescence-Accelerated Mice. Life (Basel) 2023; 13:life13040941. [PMID: 37109470 PMCID: PMC10141758 DOI: 10.3390/life13040941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Muscle atrophy is one of the main causes of sarcopenia—the age-related loss of skeletal muscle. In this study, we investigated the effect of turmeric (Curcuma longa) extract (TE) supplementation on age-related muscle atrophy in a senescence-accelerated mouse model and explored the underlying mechanisms. Twenty-six-week-old male, senescence-accelerated mouse resistant (SAMR) mice received the AIN-93G basal diet, while twenty-six-week-old male, senescence-accelerated mouse prone 8 (SAMP8) mice received the AIN-93G basal diet or a 2% TE powder-supplemented diet for ten weeks. Our findings revealed that TE supplementation showed certain effects on ameliorating the decrease in body weight, tibialis anterior weight, and mesenteric fat tissue weight in SAMP8 mice. TE improved gene expression in the glucocorticoid receptor-FoxO signaling pathway in skeletal muscle, including redd1, klf15, foxo1, murf1, and mafbx. Furthermore, TE might have the certain potential on improving the dynamic balance between anabolic and catabolic processes by inhibiting the binding of glucocorticoid receptor or FoxO1 to the glucocorticoid response element or FoxO-binding element in the MuRF1 promoter in skeletal muscle, thereby promoting muscle mass and strength, and preventing muscle atrophy and sarcopenia prevention. Moreover, TE may have reduced mitochondrial damage and maintained cell growth and division by downregulating the mRNA expression of the genes mfn2 and tsc2. Thus, the results indicated TE’s potential for preventing age-related muscle atrophy and sarcopenia.
Collapse
Affiliation(s)
- Weida Lyu
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Marika Kousaka
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Huijuan Jia
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hisanori Kato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|