1
|
Majidpour M, Azizi SG, Davodabadi F, Sabeti Akbar-Abad M, Abdollahi Z, Sargazi S, Shahriari H. Recent advances in TGF-β signaling pathway in COVID-19 pathogenesis: A review. Microb Pathog 2025; 199:107236. [PMID: 39701478 DOI: 10.1016/j.micpath.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in approximately 7.0 million fatalities between 2019 and 2022, underscoring a pressing need for comprehensive research into its underlying mechanisms and therapeutic avenues. A distinctive feature of severe COVID-19 is the dysregulated immune response characterized by excessive activation of immune cells and the consequent cytokine storms. Recent advancements in our understanding of cellular signaling pathways have illuminated the role of Transforming Growth Factor Beta (TGF-β) as a pivotal signaling molecule with significant implications for the pathogenesis of infectious diseases, including COVID-19. Emerging evidence reveals that TGF-β signaling, when activated by viral components or secondary pathways, adversely affects diverse cell types, particularly immune cells, and lung tissue, leading to complications such as pulmonary fibrosis. In our review article, we critically evaluate recent literature on the involvement of TGF-β signaling in the progression of COVID-19. We discuss a range of pharmacological interventions, including nintedanib, pirfenidone, corticosteroids, proton pump inhibitors, and histone deacetylase inhibitors, and their potential to modulate the TGF-β pathway in the context of COVID-19 treatment. Additionally, we explore ongoing clinical trials involving mesenchymal stem cells, low-dose radiation therapy, and artemisinin derivatives to assess their impact on TGF-β levels and subsequent clinical outcomes in COVID-19 patients. This review is particularly relevant at this juncture as the global health community continues to grapple with the ramifications of the COVID-19 pandemic, highlighting the urgent need for targeted therapeutic strategies aimed at TGF-β modulation to mitigate disease severity and improve patient outcomes.
Collapse
Affiliation(s)
- Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Fatemeh Davodabadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahboobeh Sabeti Akbar-Abad
- Department of Clinical Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Zahra Abdollahi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
2
|
King EM, Zhao Y, Moore CM, Steinhart B, Anderson KC, Vestal B, Moore PK, McManus SA, Evans CM, Mould KJ, Redente EF, McCubbrey AL, Janssen WJ. Gpnmb and Spp1 mark a conserved macrophage injury response masking fibrosis-specific programming in the lung. JCI Insight 2024; 9:e182700. [PMID: 39509324 PMCID: PMC11665561 DOI: 10.1172/jci.insight.182700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Macrophages are required for healthy repair of the lungs following injury, but they are also implicated in driving dysregulated repair with fibrosis. How these 2 distinct outcomes of lung injury are mediated by different macrophage subsets is unknown. To assess this, single-cell RNA-Seq was performed on lung macrophages isolated from mice treated with LPS or bleomycin. Macrophages were categorized based on anatomic location (airspace versus interstitium), developmental origin (embryonic versus recruited monocyte derived), time after inflammatory challenge, and injury model. Analysis of the integrated dataset revealed that macrophage subset clustering was driven by macrophage origin and tissue compartment rather than injury model. Gpnmb-expressing recruited macrophages that were enriched for genes typically associated with fibrosis were present in both injury models. Analogous GPNMB-expressing macrophages were identified in datasets from both fibrotic and nonfibrotic lung disease in humans. We conclude that this subset represents a conserved response to tissue injury and is not sufficient to drive fibrosis. Beyond this conserved response, we identified that recruited macrophages failed to gain resident-like programming during fibrotic repair. Overall, fibrotic versus nonfibrotic tissue repair is dictated by dynamic shifts in macrophage subset programming and persistence of recruited macrophages.
Collapse
Affiliation(s)
- Emily M. King
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yifan Zhao
- Center for Genes, Environment, and Health, and
| | | | | | | | | | - Peter K. Moore
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Christopher M. Evans
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kara J. Mould
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Alexandra L. McCubbrey
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - William J. Janssen
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Quan J, Xie D, Li Z, Yu X, Liang Z, Chen Y, Wu L, Huang D, Lin L, Fan L. Luteolin alleviates airway remodeling in asthma by inhibiting the epithelial-mesenchymal transition via β-catenin regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156090. [PMID: 39393303 DOI: 10.1016/j.phymed.2024.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Asthma is a prevalent long-term inflammatory condition that causes airway inflammation and remodeling. Increasing evidence indicates that epithelial-mesenchymal transition (EMT) holds a prominent implication in airway reconstruction in patients with asthma. Flavonoids obtained from Chinese Materia Medica (CMM), such as Luteolin (Lut), exhibit various beneficial effects in various asthma models. Lut has been shown to mitigate various asthma symptoms, including airway inflammation, hyperresponsiveness, bronchoconstriction, excessive mucus production, pulmonary autophagy, and neutrophilic asthma. However, whether flavonoids can suppress EMT-associated airway remodeling in asthma and the fundamental mechanisms involved remain unclear, with no studies specifically addressing Lut in this context. PURPOSE To evaluate the inhibition of airway remodeling in asthma by Lut and its potential mechanisms, while examining the significance of β-catenin in this process through cellular and animal studies. METHODS A BEAS-2B cell model stimulated by lipopolysaccharide (LPS) was established in vitro. Wound closure and Transwell assays were utilized to assess the cellular migratory ability. EMT- and fibrosis-related markers in LPS-stimulated cells were evaluated using RT-qPCR and western blotting. The status of the β-catenin/E-cadherin and β-catenin destruction complexes was evaluated using western blotting, immunofluorescence (IF) staining, and co-immunoprecipitation (Co-IP) analysis. The regulatory function of Lut in β-catenin-dependent EMT was further validated by β-catenin overexpression with adenovirus transduction and siRNA-mediated knockdown of β-catenin. Moreover, the counts of different types of bronchoalveolar lavage fluid (BALF) inflammatory cells from mice with asthma induced by ovalbumin (OVA) were evaluated in vivo using Congo red staining. Hematoxylin and eosin (H&E), Masson's trichrome, and periodic acid-Schiff (PAS) staining were used to evaluate collagen deposition, mucus production, and inflammation in murine lung tissues. Western blotting and immunohistochemistry (IHC) assays were used to assess EMT- and fibrosis-related markers in the lung tissues in vivo. RESULT Six naturally derived flavonoids, including Lut, attenuated cell migration and prevented EMT in LPS-treated BEAS-2B cells. Moreover, Lut suppressed TGF-β1, MMP-9, fibronectin (FN), and α-smooth muscle actin (α-SMA) levels in LPS-stimulated BEAS-2B cells. Additionally, Lut downregulated the levels of β-catenin by modulating the β-catenin/E-cadherin and β-catenin destruction complexes, highlighting the pivotal role of β-catenin in EMT inhibition by Lut in LPS-stimulated BEAS-2B cells. Furthermore, Lut suppressed airway inflammation and attenuated EMT-associated airway remodeling through β-catenin blockade in OVA-induced asthmatic mice. The bronchial wall thickness notably reduced from 37.24 ± 4.00 μm in the asthmatic model group to 30.06 ± 4.40 μm in the Lut low-dose group and 24.69 ± 2.87 μm in the Lut high-dose group. CONCLUSION According to our current understanding, this research is the first to reveal that Lut diminishes airway remodeling in asthma by inhibiting EMT via β-catenin regulation, thereby filling a research gap concerning Lut and flavonoids. These results provide a theoretical basis for treating asthma with anti-asthmatic CMM, as well as a candidate and complementary therapeutic approach to treat asthma.
Collapse
Affiliation(s)
- Jingyu Quan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Zihong Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Donghui Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Lin Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
4
|
Niayesh-Mehr R, Kalantar M, Bontempi G, Montaldo C, Ebrahimi S, Allameh A, Babaei G, Seif F, Strippoli R. The role of epithelial-mesenchymal transition in pulmonary fibrosis: lessons from idiopathic pulmonary fibrosis and COVID-19. Cell Commun Signal 2024; 22:542. [PMID: 39538298 PMCID: PMC11558984 DOI: 10.1186/s12964-024-01925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the tremendous advancements in the knowledge of the pathophysiology and clinical aspects of SARS-CoV-2 infection, still many issues remain unanswered, especially in the long-term effects. Mounting evidence suggests that pulmonary fibrosis (PF) is one of the most severe complications associated with COVID-19. Therefore, understanding the molecular mechanisms behind its development is helpful to develop successful therapeutic strategies. Epithelial to mesenchymal transition (EMT) and its cell specific variants endothelial to mesenchymal transition (EndMT) and mesothelial to mesenchymal transition (MMT) are physio-pathologic cellular reprogramming processes induced by several infectious, inflammatory and biomechanical stimuli. Cells undergoing EMT acquire invasive, profibrogenic and proinflammatory activities by secreting several extracellular mediators. Their activity has been implicated in the pathogenesis of PF in a variety of lung disorders, including idiopathic pulmonary fibrosis (IPF) and COVID-19. Aim of this article is to provide an updated survey of the cellular and molecular mechanisms, with emphasis on EMT-related processes, implicated in the genesis of PF in IFP and COVID-19.
Collapse
Affiliation(s)
- Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Kalantar
- Department of Occupational Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Giulio Bontempi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Saeedeh Ebrahimi
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy.
| |
Collapse
|
5
|
Buibaş FI, Cercel RA, Şerbănescu MS, Turcu AA, Dumitrescu F, Pirici D, Marinescu I, Ionovici N, Busuioc CJ, Zorilă MV, Mogoantă L. Morphopathology of the lesions induced by SARS-CoV-2 infection in the lungs. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:637-645. [PMID: 39957025 PMCID: PMC11924890 DOI: 10.47162/rjme.65.4.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection spread rapidly from China around the world, causing the worst pandemic since the beginning of the 21st century. Although the disease named coronavirus disease 2019 (COVID-19) has multiple organ symptoms, the main pathological lesions occur in the lung, causing respiratory failure, pulmonary embolism, secondary bacterial pneumonia and pulmonary fibrosis. Despite the best efforts of researchers, the pathogenesis of SARS-CoV-2-induced cellular and tissue damage in organs and systems is poorly understood. Therefore, in our study, we aimed to highlight the pulmonary lesions and their extent, which could explain the complex symptomatology presented by patients who died with acute respiratory distress syndrome (ARDS). The study was performed on a number of 36 patients diagnosed with COVID-19 who died under legally suspicious conditions, requiring autopsy within the Romanian Forensic Medicine Institutes. All patients presented a local inflammatory reaction of pneumonic type, with exudative and proliferative phenomena, with intra-alveolar and interstitial inflammatory infiltrates formed by lymphocytes, macrophages and neutrophilic granulocytes, with congested or ruptured blood vessels with intra-alveolar or interstitial hemorrhages, with multiple thrombosis, with proliferation of local fibroblasts transformed into myofibroblasts and presence of granulation tissue that remodeled the entire lung parenchyma.
Collapse
|
6
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and Cholesterol-Lowering Medications in COVID-19-An Unresolved Matter. Int J Mol Sci 2024; 25:10489. [PMID: 39408818 PMCID: PMC11477656 DOI: 10.3390/ijms251910489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 2019 (COVID-19), a disease with very heterogeneous symptoms. Dyslipidaemia is prevalent in at least 20% of Europeans, and dyslipidaemia before SARS-CoV-2 infection increases the risk for severe COVID-19 and mortality by 139%. Many reports described reduced serum cholesterol levels in virus-infected patients, in particular in those with severe disease. The liver is the major organ for lipid homeostasis and hepatic dysfunction appears to occur in one in five patients infected with SARS-CoV-2. Thus, SARS-CoV-2 infection, COVID-19 disease severity and liver injury may be related to impaired cholesterol homeostasis. These observations prompted efforts to assess the therapeutic opportunities of cholesterol-lowering medications to reduce COVID-19 severity. The majority of studies implicate statins to have beneficial effects on disease severity and outcome in COVID-19. Proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies have also shown potential to protect against COVID-19. This review describes the relationship between systemic cholesterol levels, liver injury and COVID-19 disease severity. The potential effects of statins and PCSK9 in COVID-19 are summarised. Finally, the relationship between cholesterol and lung function, the first organ to be affected by SARS-CoV-2, is described.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Suarez-Castillejo C, Calvo N, Preda L, Córdova Díaz R, Toledo-Pons N, Martínez J, Pons J, Vives-Borràs M, Pericàs P, Ramón L, Iglesias A, Cànaves-Gómez L, Valera Felices JL, Morell-García D, Núñez B, Sauleda J, Sala-Llinàs E, Alonso-Fernández A. Cardiopulmonary Complications after Pulmonary Embolism in COVID-19. Int J Mol Sci 2024; 25:7270. [PMID: 39000378 PMCID: PMC11242326 DOI: 10.3390/ijms25137270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Although pulmonary embolism (PE) is a frequent complication in COVID-19, its consequences remain unknown. We performed pulmonary function tests, echocardiography and computed tomography pulmonary angiography and identified blood biomarkers in a cohort of consecutive hospitalized COVID-19 patients with pneumonia to describe and compare medium-term outcomes according to the presence of PE, as well as to explore their potential predictors. A total of 141 patients (56 with PE) were followed up during a median of 6 months. Post-COVID-19 radiological lung abnormalities (PCRLA) and impaired diffusing capacity for carbon monoxide (DLCOc) were found in 55.2% and 67.6% cases, respectively. A total of 7.3% had PE, and 6.7% presented an intermediate-high probability of pulmonary hypertension. No significant difference was found between PE and non-PE patients. Univariate analysis showed that age > 65, some clinical severity factors, surfactant protein-D, baseline C-reactive protein, and both peak red cell distribution width and Interleukin (IL)-10 were associated with DLCOc < 80%. A score for PCRLA prediction including age > 65, minimum lymphocyte count, and IL-1β concentration on admission was constructed with excellent overall performance. In conclusion, reduced DLCOc and PCRLA were common in COVID-19 patients after hospital discharge, but PE did not increase the risk. A PCRLA predictive score was developed, which needs further validation.
Collapse
Affiliation(s)
- Carla Suarez-Castillejo
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Néstor Calvo
- Servicio de Radiodiagnóstico, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Luminita Preda
- Servicio de Radiodiagnóstico, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Rocío Córdova Díaz
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Nuria Toledo-Pons
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joaquín Martínez
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jaume Pons
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Miquel Vives-Borràs
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
| | - Pere Pericàs
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Luisa Ramón
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Cànaves-Gómez
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jose Luis Valera Felices
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Morell-García
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Análisis Clínicos, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Belén Núñez
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jaume Sauleda
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ernest Sala-Llinàs
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alberto Alonso-Fernández
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Bergantini L, Gangi S, d'Alessandro M, Cameli P, Perea B, Meocci M, Fabbri G, Bianchi F, Bargagli E. Altered serum concentrations of IL-8, IL-32 and IL-10 in patients with lung impairment 6 months after COVID-19. Immunobiology 2024; 229:152813. [PMID: 38805808 DOI: 10.1016/j.imbio.2024.152813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Post-COVID symptoms are reported in 10-35 % of patients not requiring hospitalization, and in up to 80 % of hospitalized patients and patients with severe disease. The pathogenesis of post-COVID syndrome remains largely unknown. Some evidence suggests that prolonged inflammation has a key role in the pathogenesis of most post-COVID manifestations. We evaluated a panel of inflammatory and immune-mediated cytokines in individuals with altered HRCT features and in patients without any long-term COVID symptoms. Blood samples of 89 adult patients previously hospitalized with COVID-19 were collected and stratified as patients with and without HRCT evidence of fibrotic lung alterations. Serum analyte concentrations of IL-4, IL-2, CXCL10 (IP-10), IL-1β, TNF-α, CCL2 (MCP-1), IL-17A, IL-6, IL-10, IFN-γ, IL-12p70 and TGF-β1 (free active form) were quantified by bead-based multiplex assay. Clinical and functional data were recorded in a database. With the use of machine learning approach, IL-32, IL-8, and IL-10 proved to be associated with the development of HRCT evidence of lung sequelae at follow-up. Direct comparison of cytokine levels in the two groups showed increased levels of IL-32 and decreased levels of IL-8 in patients with lung impairment. After further stratification of patients by severity (severe versus mild/moderate) during hospitalization, IL-10 emerged as the only cytokine showing decreased levels in severe patients. These findings contribute to a better understanding of the immune response and potential prognostic markers in patients with lung sequelae after COVID-19.
Collapse
Affiliation(s)
- Laura Bergantini
- Department of Medical Science, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, Italy
| | - Sara Gangi
- Department of Medical Science, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, Italy
| | - Miriana d'Alessandro
- Department of Medical Science, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, Italy.
| | - Paolo Cameli
- Department of Medical Science, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, Italy
| | - Beatrice Perea
- Department of Medical Science, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, Italy
| | - Martina Meocci
- Department of Medical Science, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, Italy
| | - Gaia Fabbri
- Department of Medical Science, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, Italy
| | - Francesco Bianchi
- Department of Medical Science, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, Italy
| | - Elena Bargagli
- Department of Medical Science, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, Italy
| |
Collapse
|
9
|
Wada N, Hunninghake GM, Hatabu H. Interstitial Lung Abnormalities: Current Understanding. Clin Chest Med 2024; 45:433-444. [PMID: 38816098 DOI: 10.1016/j.ccm.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Interstitial lung abnormalities (ILAs) are incidental findings on computed tomography scans, characterized by nondependent abnormalities affecting more than 5% of any lung zone. They are associated with factors such as age, smoking, genetic variants, worsened clinical outcomes, and increased mortality. Risk stratification based on clinical and radiological features of ILAs is crucial in clinical practice, particularly for identifying cases at high risk of progression to pulmonary fibrosis. Traction bronchiectasis/bronchiolectasis index has emerged as a promising imaging biomarker for prognostic risk stratification in ILAs. These findings suggest a spectrum of fibrosing interstitial lung diseases, encompassing from ILAs to pulmonary fibrosis.
Collapse
Affiliation(s)
- Noriaki Wada
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Gary M Hunninghake
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Hiroto Hatabu
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Diar Bakerly N, Smith N, Darbyshire JL, Kwon J, Bullock E, Baley S, Sivan M, Delaney B. Pathophysiological Mechanisms in Long COVID: A Mixed Method Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:473. [PMID: 38673384 PMCID: PMC11050596 DOI: 10.3390/ijerph21040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Long COVID (LC) is a global public health crisis affecting more than 70 million people. There is emerging evidence of different pathophysiological mechanisms driving the wide array of symptoms in LC. Understanding the relationships between mechanisms and symptoms helps in guiding clinical management and identifying potential treatment targets. METHODS This was a mixed-methods systematic review with two stages: Stage one (Review 1) included only existing systematic reviews (meta-review) and Stage two (Review 2) was a review of all primary studies. The search strategy involved Medline, Embase, Emcare, and CINAHL databases to identify studies that described symptoms and pathophysiological mechanisms with statistical analysis and/or discussion of plausible causal relationships between mechanisms and symptoms. Only studies that included a control arm for comparison were included. Studies were assessed for quality using the National Heart, Lung, and Blood Institute quality assessment tools. RESULTS 19 systematic reviews were included in Review 1 and 46 primary studies in Review 2. Overall, the quality of reporting across the studies included in this second review was moderate to poor. The pathophysiological mechanisms with strong evidence were immune system dysregulation, cerebral hypoperfusion, and impaired gas transfer in the lungs. Other mechanisms with moderate to weak evidence were endothelial damage and hypercoagulation, mast cell activation, and auto-immunity to vascular receptors. CONCLUSIONS LC is a complex condition affecting multiple organs with diverse clinical presentations (or traits) underpinned by multiple pathophysiological mechanisms. A 'treatable trait' approach may help identify certain groups and target specific interventions. Future research must include understanding the response to intervention based on these mechanism-based traits.
Collapse
Affiliation(s)
- Nawar Diar Bakerly
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK
- Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK;
| | - Nikki Smith
- Locomotion Study Patient Advisory Group, Leeds Institute of Rheumatic and Musculoskeletal Medicine, Level D, Martin Wing, Leeds General Infirmary, Leeds LS1 3EX, UK;
| | - Julie L. Darbyshire
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK; (J.L.D.); (J.K.)
| | - Joseph Kwon
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK; (J.L.D.); (J.K.)
| | - Emily Bullock
- Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK;
| | - Sareeta Baley
- Birmingham Community Healthcare NHS Trust, Birmingham B7 4BN, UK;
| | - Manoj Sivan
- Rehabilitation Medicine, University of Leeds, Leeds Teaching Hospitals and Leeds Community Healthcare NHS Trusts, Leeds LS11 0DL, UK;
| | - Brendan Delaney
- Medical Informatics and Decision Making, Imperial College, London SW7 2AZ, UK;
| |
Collapse
|
11
|
Rasool G, Khan WA, Khan AM, Riaz M, Abbas M, Rehman AU, Irshad S, Ahmad S. COVID-19: A threat to the respiratory system. Int J Immunopathol Pharmacol 2024; 38:3946320241310307. [PMID: 39716038 DOI: 10.1177/03946320241310307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causes acute coronavirus disease-19 (COVID-19) that has emerged on a pandemic level. Coronaviruses are well-known to have a negative impact on the lungs and cardiovascular system. SARS-CoV-2 induces a cytokine storm that primarily targets the lungs, causing widespread clinical disorders, including COVID-19. Although, SARS-CoV-2 positive individuals often show no or mild upper respiratory tract symptoms, severe cases can progress to acute respiratory distress syndrome (ARDS). Novel CoV-2 infection in 2019 resulted in viral pneumonia as well as other complications and extrapulmonary manifestation. ARDS is also linked to a higher risk of death. Now, it is essential to develop our perception of the long term sequelae coronavirus infection for the identification of COVID-19 survivors who are at higher risk of developing the chronic lung fibrosis. This review study was planned to provide an overview of the effects of SARS-CoV-2 infection on various parts of the respiratory system such as airways, pulmonary vascular, lung parenchymal and respiratory neuromuscular system as well as the potential mechanism of the ARDS related respiratory complications including the lung fibrosis in patients with severe COVID-19.
Collapse
Affiliation(s)
- Ghulam Rasool
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Waqas Ahmed Khan
- Department of Biotechnology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Arif Muhammad Khan
- Department of Biotechnology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Mazhar Abbas
- Department of Basic Sciences (Section Biochemistry), University of Veterinary and Animal Sciences Lahore (Jhang Campus), Jhang, Punjab, Pakistan
| | - Aziz Ur Rehman
- Department of Pathobiology (Section Pathology), University of Veterinary and Animal Sciences Lahore (Jhang Campus), Jhang, Punjab, Pakistan
| | - Saba Irshad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Saeed Ahmad
- Office of Research, Innovation and Commercialization (ORIC), University of Sargodha, Sargodha, Punjab, Pakistan
| |
Collapse
|
12
|
Bergantini L, d’Alessandro M, Gangi S, Bianchi F, Cameli P, Perea B, Meocci M, Fabbri G, Marrucci S, Ederbali M, Bargagli E. Predictive Role of Cytokine and Adipokine Panel in Hospitalized COVID-19 Patients: Evaluation of Disease Severity, Survival and Lung Sequelae. Int J Mol Sci 2023; 24:12994. [PMID: 37629176 PMCID: PMC10455616 DOI: 10.3390/ijms241612994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) may determine a multisystemic chronic syndrome after resolution of SARS-CoV-2 infection in a significant percentage of patients. Persistent cytokine dysregulation can contribute to long-lasting inflammation and tissue damage, resulting in the diverse, often debilitating symptoms experienced by some patients (so-called long COVID syndrome). The aim of our study was to evaluate the value of a panel of serum biomarkers of severity and prognosis in patients hospitalized for COVID-19 and also as predictive factors for the development of post-COVID lung sequelae after discharge from the hospital. All blood sampling was performed in the first 24 h after admission to the hospital. Serum analyte concentrations of IL-4, IL-2, CXCL10 (IP-10), IL-1β, TNF-α, CCL2 (MCP-1), IL-17A, IL-6, IL-10, IFN-γ, IL-12p70 and TGF-β1 were quantified by bead-based multiplex LEGENDplex™ analysis and commercially available ELISA kits. A total of 108 COVID-19 patients were enrolled in the study. Comparative analysis of these proteins showed higher levels of TGF-β and IL-6 and lower levels of RBP-4 and IL-10 in the severe group. Age, adiponectin, IL-8 and IL-32 resulted as the best predictors for survival. Moreover, IL-1β, IL17A, TNF-α, TGF-β, IL-4 and IL-6 were significantly higher in patients who showed HRCT evidence of fibrotic interstitial alterations at follow-up than patients who did not. The initial inflammatory status of patients on admission to the hospital with COVID-19, as reflected by the present panel of adipose tissue-related biomarkers and cytokines, offered insights into medium-term prognosis.
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Miriana d’Alessandro
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Sara Gangi
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Francesco Bianchi
- Pneumology Department, Azienda USL Toscana Sud-Est, “Misericordia” Hospital, 58100 Grosseto, Italy
| | - Paolo Cameli
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Beatrice Perea
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Martina Meocci
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Gaia Fabbri
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Sofia Marrucci
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Moftah Ederbali
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| | - Elena Bargagli
- Respiratory Disease and Lung Transplant Unit, Department of Medical Science, Surgery and Neurosciences, Siena University, 53100 Siena, Italy; (L.B.); (M.d.); (S.G.); (E.B.)
| |
Collapse
|
13
|
Makena P, Kikalova T, Prasad GL, Baxter SA. Oxidative Stress and Lung Fibrosis: Towards an Adverse Outcome Pathway. Int J Mol Sci 2023; 24:12490. [PMID: 37569865 PMCID: PMC10419527 DOI: 10.3390/ijms241512490] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Lung fibrosis is a progressive fatal disease in which deregulated wound healing of lung epithelial cells drives progressive fibrotic changes. Persistent lung injury due to oxidative stress and chronic inflammation are central features of lung fibrosis. Chronic cigarette smoking causes oxidative stress and is a major risk factor for lung fibrosis. The objective of this manuscript is to develop an adverse outcome pathway (AOP) that serves as a framework for investigation of the mechanisms of lung fibrosis due to lung injury caused by inhaled toxicants, including cigarette smoke. Based on the weight of evidence, oxidative stress is proposed as a molecular initiating event (MIE) which leads to increased secretion of proinflammatory and profibrotic mediators (key event 1 (KE1)). At the cellular level, these proinflammatory signals induce the recruitment of inflammatory cells (KE2), which in turn, increase fibroblast proliferation and myofibroblast differentiation (KE3). At the tissue level, an increase in extracellular matrix deposition (KE4) subsequently culminates in lung fibrosis, the adverse outcome. We have also defined a new KE relationship between the MIE and KE3. This AOP provides a mechanistic platform to understand and evaluate how persistent oxidative stress from lung injury may develop into lung fibrosis.
Collapse
Affiliation(s)
- Patrudu Makena
- RAI Services Company, P.O. Box 1487, Winston-Salem, NC 27102, USA;
| | - Tatiana Kikalova
- Clarivate Analytics, 1500 Spring Garden, Philadelphia, PA 19130, USA
| | - Gaddamanugu L. Prasad
- Former Employee of RAI Services Company, Winston-Salem, NC 27101, USA
- Prasad Scientific Consulting LLC, 490 Friendship Place Ct, Lewisville, NC 27023, USA
| | - Sarah A. Baxter
- RAI Services Company, P.O. Box 1487, Winston-Salem, NC 27102, USA;
| |
Collapse
|
14
|
Pi P, Zeng Z, Zeng L, Han B, Bai X, Xu S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front Pharmacol 2023; 14:1218059. [PMID: 37601070 PMCID: PMC10436482 DOI: 10.3389/fphar.2023.1218059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
As the outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in Hubei Province, China, at the end of 2019. It has brought great challenges and harms to global public health. SARS-CoV-2 mainly affects the lungs and is mainly manifested as pulmonary disease. However, one of the biggest crises arises from the emergence of COVID-19-induced fibrosis. At present, there are still many questions about how COVID-19 induced pulmonary fibrosis (PF) occurs and how to treat and regulate its long-term effects. In addition, as an important process of fibrosis, the effect of COVID-19 on epithelial-mesenchymal transition (EMT) may be an important factor driving PF. This review summarizes the main pathogenesis and treatment mechanisms of COVID-19 related to PF. Starting with the basic mechanisms of PF, such as EMT, transforming growth factor-β (TGF-β), fibroblasts and myofibroblasts, inflammation, macrophages, innate lymphoid cells, matrix metalloproteinases and tissue inhibitors of metalloproteinases, hedgehog pathway as well as Notch signaling. Further, we highlight the importance of COVID-19-induced EMT in the process of PF and provide an overview of the related molecular mechanisms, which will facilitate future research to propose new clinical therapeutic solutions for the treatment of COVID-19-induced PF.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shousheng Xu
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|
15
|
López-Ayllón BD, de Lucas-Rius A, Mendoza-García L, García-García T, Fernández-Rodríguez R, Suárez-Cárdenas JM, Santos FM, Corrales F, Redondo N, Pedrucci F, Zaldívar-López S, Jiménez-Marín Á, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins involvement in inflammatory and profibrotic processes through IL11 signaling. Front Immunol 2023; 14:1220306. [PMID: 37545510 PMCID: PMC10399023 DOI: 10.3389/fimmu.2023.1220306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
SARS-CoV-2, the cause of the COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood. In this study, transcriptomics analysis revealed that both WNT5A and IL11 were significantly up-regulated in A549 cells expressing individual accessory proteins ORF6, ORF8, ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate). IL11 is a member of the IL6 family of cytokines. IL11 signaling-related genes were also differentially expressed. Bioinformatics analysis disclosed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease and functional assays confirmed their association with profibrotic cell responses. Subsequently, data comparison with lung cell lines infected with SARS-CoV-2 or lung biopsies from patients with COVID-19, evidenced altered profibrotic gene expression that matched those obtained in this study. Our results show ORF6, ORF8, ORF9b and ORF9c involvement in inflammatory and profibrotic responses. Thus, these accessory proteins could be targeted by new therapies against COVID-19 disease.
Collapse
Affiliation(s)
- Blanca D. López-Ayllón
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Ana de Lucas-Rius
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Laura Mendoza-García
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Tránsito García-García
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - José M. Suárez-Cárdenas
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Natalia Redondo
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
- Unit of Infectious Diseases, University Hospital ‘12 de Octubre’, Institute for Health Research Hospital ‘12 de Octubre’ (imas12), Madrid, Spain
- Centre for Biomedical Research Network on Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Federica Pedrucci
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Sara Zaldívar-López
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Juan J. Garrido
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - María Montoya
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|
16
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Bergantini L, Baldassarri M, d'Alessandro M, Brunelli G, Fabbri G, Zguro K, Degl'Innocenti A, Fallerini C, Bargagli E, Renieri A. Ultra-rare RTEL1 gene variants associate with acute severity of COVID-19 and evolution to pulmonary fibrosis as a specific long COVID disorder. Respir Res 2023; 24:158. [PMID: 37328761 DOI: 10.1186/s12931-023-02458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel coronavirus that caused an ongoing pandemic of a pathology termed Coronavirus Disease 19 (COVID-19). Several studies reported that both COVID-19 and RTEL1 variants are associated with shorter telomere length, but a direct association between the two is not generally acknowledged. Here we demonstrate that up to 8.6% of severe COVID-19 patients bear RTEL1 ultra-rare variants, and show how this subgroup can be recognized. METHODS A cohort of 2246 SARS-CoV-2-positive subjects, collected within the GEN-COVID Multicenter study, was used in this work. Whole exome sequencing analysis was performed using the NovaSeq6000 System, and machine learning methods were used for candidate gene selection of severity. A nested study, comparing severely affected patients bearing or not variants in the selected gene, was used for the characterisation of specific clinical features connected to variants in both acute and post-acute phases. RESULTS Our GEN-COVID cohort revealed a total of 151 patients carrying at least one RTEL1 ultra-rare variant, which was selected as a specific acute severity feature. From a clinical point of view, these patients showed higher liver function indices, as well as increased CRP and inflammatory markers, such as IL-6. Moreover, compared to control subjects, they present autoimmune disorders more frequently. Finally, their decreased diffusion lung capacity for carbon monoxide after six months of COVID-19 suggests that RTEL1 variants can contribute to the development of SARS-CoV-2-elicited lung fibrosis. CONCLUSION RTEL1 ultra-rare variants can be considered as a predictive marker of COVID-19 severity, as well as a marker of pathological evolution in pulmonary fibrosis in the post-COVID phase. This notion can be used for a rapid screening in hospitalized infected people, for vaccine prioritization, and appropriate follow-up assessment for subjects at risk. Trial Registration NCT04549831 ( www. CLINICALTRIAL org ).
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Miriana d'Alessandro
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
| | - Giulia Brunelli
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Gaia Fabbri
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
| | - Kristina Zguro
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Andrea Degl'Innocenti
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Chiara Fallerini
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Elena Bargagli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy.
| | - Alessandra Renieri
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy.
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy.
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100, Siena, Italy.
| |
Collapse
|
18
|
Lassan S, Tesar T, Tisonova J, Lassanova M. Pharmacological approaches to pulmonary fibrosis following COVID-19. Front Pharmacol 2023; 14:1143158. [PMID: 37397477 PMCID: PMC10308083 DOI: 10.3389/fphar.2023.1143158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background: In the past few years, COVID-19 became the leading cause of morbidity and mortality worldwide. Although the World Health Organization has declared an end to COVID-19 as a public health emergency, it can be expected, that the emerging new cases at the top of previous ones will result in an increasing number of patients with post-COVID-19 sequelae. Despite the fact that the majority of patients recover, severe acute lung tissue injury can in susceptible individuals progress to interstitial pulmonary involvement. Our goal is to provide an overview of various aspects associated with the Post-COVID-19 pulmonary fibrosis with a focus on its potential pharmacological treatment options. Areas covered: We discuss epidemiology, underlying pathobiological mechanisms, and possible risk and predictive factors that were found to be associated with the development of fibrotic lung tissue remodelling. Several pharmacotherapeutic approaches are currently being applied and include anti-fibrotic drugs, prolonged use or pulses of systemic corticosteroids and non-steroidal anti-inflammatory and immunosuppressive drugs. In addition, several repurposed or novel compounds are being investigated. Fortunately, clinical trials focused on pharmacological treatment regimens for post-COVID-19 pulmonary fibrosis have been either designed, completed or are already in progress. However, the results are contrasting so far. High quality randomised clinical trials are urgently needed with respect to the heterogeneity of disease behaviour, patient characteristics and treatable traits. Conclusion: The Post-COVID-19 pulmonary fibrosis contributes to the burden of chronic respiratory consequences among survivors. Currently available pharmacotherapeutic approaches mostly comprise repurposed drugs with a proven efficacy and safety profile, namely, corticosteroids, immunosuppressants and antifibrotics. The role of nintedanib and pirfenidone is promising in this area. However, we still need to verify conditions under which the potential to prevent, slow or stop progression of lung damage will be fulfilled.
Collapse
Affiliation(s)
- Stefan Lassan
- Department of Pneumology, Phthisiology and Functional Diagnostics, Slovak Medical University and Bratislava University Hospital, Bratislava, Slovakia
| | - Tomas Tesar
- Department of Organisation and Management of Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Jana Tisonova
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Monika Lassanova
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
19
|
Zheng Z, Peng F, Zhou Y. Pulmonary fibrosis: A short- or long-term sequelae of severe COVID-19? CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:77-83. [PMID: 37388822 PMCID: PMC9988550 DOI: 10.1016/j.pccm.2022.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2022] [Accepted: 12/04/2022] [Indexed: 07/01/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID‑19), caused by a novel severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has caused an enormous impact on the global healthcare. SARS-CoV-2 infection primarily targets the respiratory system. Although most individuals testing positive for SARS-CoV-2 present mild or no upper respiratory tract symptoms, patients with severe COVID-19 can rapidly progress to acute respiratory distress syndrome (ARDS). ARDS-related pulmonary fibrosis is a recognized sequelae of COVID-19. Whether post-COVID-19 lung fibrosis is resolvable, persistent, or even becomes progressive as seen in human idiopathic pulmonary fibrosis (IPF) is currently not known and remains a matter of debate. With the emergence of effective vaccines and treatments against COVID-19, it is now important to build our understanding of the long-term sequela of SARS-CoV-2 infection, to identify COVID-19 survivors who are at risk of developing chronic pulmonary fibrosis, and to develop effective anti-fibrotic therapies. The current review aims to summarize the pathogenesis of COVID-19 in the respiratory system and highlights ARDS-related lung fibrosis in severe COVID-19 and the potential mechanisms. It envisions the long-term fibrotic lung complication in COVID-19 survivors, in particular in the aged population. The early identification of patients at risk of developing chronic lung fibrosis and the development of anti-fibrotic therapies are discussed.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fei Peng
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, Hunan 410011, China
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
20
|
Grewal T, Buechler C. Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19. Biomedicines 2023; 11:1302. [PMID: 37238973 PMCID: PMC10215701 DOI: 10.3390/biomedicines11051302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulating evidence implicates obesity as a risk factor for increased severity of disease outcomes in patients infected with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Obesity is associated with adipose tissue dysfunction, which not only predisposes individuals to metabolic complications, but also substantially contributes to low-grade systemic inflammation, altered immune cell composition, and compromised immune function. This seems to impact the susceptibility and outcome of diseases caused by viruses, as obese people appear more vulnerable to developing infections and they recover later from infectious diseases than normal-weight individuals. Based on these findings, increased efforts to identify suitable diagnostic and prognostic markers in obese Coronavirus disease 2019 (COVID-19) patients to predict disease outcomes have been made. This includes the analysis of cytokines secreted from adipose tissues (adipokines), which have multiple regulatory functions in the body; for instance, modulating insulin sensitivity, blood pressure, lipid metabolism, appetite, and fertility. Most relevant in the context of viral infections, adipokines also influence the immune cell number, with consequences for overall immune cell activity and function. Hence, the analysis of the circulating levels of diverse adipokines in patients infected with SARS-CoV-2 have been considered to reveal diagnostic and prognostic COVID-19 markers. This review article summarizes the findings aimed to correlate the circulating levels of adipokines with progression and disease outcomes of COVID-19. Several studies provided insights on chemerin, adiponectin, leptin, resistin, and galectin-3 levels in SARS-CoV-2-infected patients, while limited information is yet available on the adipokines apelin and visfatin in COVID-19. Altogether, current evidence points at circulating galectin-3 and resistin levels being of diagnostic and prognostic value in COVID-19 disease.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Resnik R, Lopez Mingorance F, Rivera F, Mitchell F, Gonzalez CD, Vaccaro MI. Autophagy in Inflammatory Response against SARS-CoV-2. Int J Mol Sci 2023; 24:4928. [PMID: 36902354 PMCID: PMC10002778 DOI: 10.3390/ijms24054928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The coronavirus disease pandemic, which profoundly reshaped the world in 2019 (COVID-19), and is currently ongoing, has affected over 200 countries, caused over 500 million cumulative cases, and claimed the lives of over 6.4 million people worldwide as of August 2022. The causative agent is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Depicting this virus' life cycle and pathogenic mechanisms, as well as the cellular host factors and pathways involved during infection, has great relevance for the development of therapeutic strategies. Autophagy is a catabolic process that sequesters damaged cell organelles, proteins, and external invading microbes, and delivers them to the lysosomes for degradation. Autophagy would be involved in the entry, endo, and release, as well as the transcription and translation, of the viral particles in the host cell. Secretory autophagy would also be involved in developing the thrombotic immune-inflammatory syndrome seen in a significant number of COVID-19 patients that can lead to severe illness and even death. This review aims to review the main aspects that characterize the complex and not yet fully elucidated relationship between SARS-CoV-2 infection and autophagy. It briefly describes the key concepts regarding autophagy and mentions its pro- and antiviral roles, while also noting the reciprocal effect of viral infection in autophagic pathways and their clinical aspects.
Collapse
Affiliation(s)
- Roxana Resnik
- Instituto de Bioquimica y Medicina Molecular, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad de Buenos Aires, Buenos Aires C1425FQB, Argentina
| | - Fabiana Lopez Mingorance
- Instituto de Bioquimica y Medicina Molecular, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad de Buenos Aires, Buenos Aires C1425FQB, Argentina
| | - Francisco Rivera
- Centro de Educacion Medica e Investigaciones Clinicas, Medicina Traslacional, Buenos Aires C1430EFA, Argentina
| | - Florencia Mitchell
- Centro de Educacion Medica e Investigaciones Clinicas, Medicina Traslacional, Buenos Aires C1430EFA, Argentina
| | - Claudio D. Gonzalez
- Centro de Educacion Medica e Investigaciones Clinicas, Medicina Traslacional, Buenos Aires C1430EFA, Argentina
| | - Maria I. Vaccaro
- Instituto de Bioquimica y Medicina Molecular, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad de Buenos Aires, Buenos Aires C1425FQB, Argentina
| |
Collapse
|
22
|
Karadeniz H, Avanoğlu Güler A, Özger HS, Yıldız PA, Erbaş G, Bozdayı G, Deveci Bulut T, Gülbahar Ö, Yapar D, Küçük H, Öztürk MA, Tufan A. The Prognostic Value of Lung Injury and Fibrosis Markers, KL-6,
TGF-β1, FGF-2 in COVID-19 Patients. Biomark Insights 2022; 17:11772719221135443. [PMCID: PMC9643117 DOI: 10.1177/11772719221135443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Biomarkers of lung injury and interstitial fibrosis give insight about the
extent of involvement and prognosis in well-known interstitial lung diseases
(ILD). Serum Krebs von den Lungen-6 (KL-6) reflects direct alveolar injury
and, transforming growth factor-beta1 (TGF-β1) and fibroblast growth
factor-2 (FGF-2) are principal mediators of fibrosis in ILD and in almost
all fibrotic diseases. In this sense, we aimed to assess associations of
these biomarkers with traditional inflammatory markers and clinical course
of COVID-19. Methods: Patients with COVID-19 who had confirmed diagnosis with SARS-CoV-2 nucleic
acid RT-PCR were enrolled and followed up prospectively with a standardized
approach one month after diagnosis. Patients were divided into severe and
non-severe groups according to National Institutes of Health criteria.
Outcome was assessed for the requirement of intensive care unit (ICU)
admission, long term respiratory support and death. Blood samples were
collected at enrollment and serum levels of KL-6, TGF-β1, FGF-2 were
determined by ELISA. Association between these markers with other prognostic
markers and prognosis were analyzed. Results: Overall 31 severe and 28 non-severe COVID-19 patients were enrolled and were
compared with healthy control subjects (n = 30). Serum KL-6 levels in
COVID-19 patients were significantly higher (median [IQR]; 11.54 [4.86] vs
8.54 [3.98] ng/mL, P = .001] and FGF-2 levels were lower
(median [IQR]; 76.84 [98.2] vs 101.62 [210.6] pg/mL) compared to healthy
control group. A significant correlation was found between KL-6 values and
CRP, fibrinogen, d-dimer and lymphocyte counts. However, we did not
find an association between these markers and subsequent severity of
COVID-19, mortality and long-term prognosis. Conclusions: Serum KL-6 levels were significantly elevated at the diagnosis of COVID-19
and correlated well with the other traditional prognostic inflammatory
markers. Serum levels of principal fibrosis mediators, TGF-β1, FGF-2, were
not elevated at diagnosis of COVID-19, therefore did not help to anticipate
long term prognosis.
Collapse
Affiliation(s)
- Hazan Karadeniz
- Division of Rheumatology, Department of
Internal Medicine, Gazi University Faculty of Medicine, Ankara, Turkey,Hazan Karadeniz, Department of Internal
Medicine, Division of Rheumatology, Gazi University Faculty of Medicine,
Bahriucok Street, Ankara 06100, Turkey.
| | - Aslıhan Avanoğlu Güler
- Division of Rheumatology, Department of
Internal Medicine, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Hasan Selçuk Özger
- Department of Infectious Disease, Gazi
University Faculty of Medicine, Ankara, Turkey
| | - Pınar Aysert Yıldız
- Department of Infectious Disease, Gazi
University Faculty of Medicine, Ankara, Turkey
| | - Gonca Erbaş
- Department of Radiology, Gazi
University Faculty of Medicine, Ankara, Turkey
| | - Gülendam Bozdayı
- Department of Medical Microbiology,
Gazi University Faculty of Medicine, Ankara, Turkey
| | - Tuba Deveci Bulut
- Department of Biochemistry, Gazi
University Faculty of Medicine, Ankara, Turkey
| | - Özlem Gülbahar
- Department of Biochemistry, Gazi
University Faculty of Medicine, Ankara, Turkey
| | - Dilek Yapar
- Department of Public Health and
Biostatistics Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Hamit Küçük
- Division of Rheumatology, Department of
Internal Medicine, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Akif Öztürk
- Division of Rheumatology, Department of
Internal Medicine, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Abdurrahman Tufan
- Division of Rheumatology, Department of
Internal Medicine, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|