1
|
Tarin M, Saljooghi AS. Gasdermin E as a potential target and biomarker for CRISPR-Cas9-based cancer therapy. Biochem Pharmacol 2025; 237:116961. [PMID: 40300704 DOI: 10.1016/j.bcp.2025.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Gasdermin E (GSDME), a protein pivotal in mediating pyroptosis, has gained significant attention due to its role in cancer pathogenesis and its potential as a therapeutic target. The advent of CRISPR-Cas9, a precise genome editing tool, has revolutionized cancer therapy by enabling the manipulation of GSDME expression and function. This review explores the interplay of GSDME and CRISPR-Cas9 in cancer, emphasizing GSDME's unique mechanism of cleavage-dependent pore formation in the cell membrane and its emerging applications as both a therapeutic target and a diagnostic biomarker. We discuss the potential and challenges of using GSDME-induced pyroptosis as a therapeutic strategy and how can enhance its efficacy and specificity. We conclude by highlighting promising future research directions in this emerging field.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Alsaab J, Sarawi WS, Alhusaini AM, Hasan IH, Alturaif S, Ali RA, Alrasheed NM, Mohammad R, Algarzae NK. Procyanidin B2 mitigates methotrexate-induced hepatic pyroptosis by suppressing TLR4/NF-κB and caspase-3/GSDME pathways. Food Chem Toxicol 2025; 199:115341. [PMID: 39988050 DOI: 10.1016/j.fct.2025.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Methotrexate (MTX), a potent chemotherapeutic and immunosuppressive agent, is widely used for cancer and autoimmune diseases. MTX-induced hepatotoxicity is a well-recognized adverse response, even at relatively low doses. This study investigates the possible protective effects of procyanidin B2 (PCB2) on MTX-induced hepatotoxicity. Rats were orally treated with PCB2 (40 mg/kg) for 10 days, followed by a single intraperitoneal MTX injection (20 mg/kg) on day 8. The study also included a positive control group treated with quercetin (20 mg/kg), a known antioxidant, alongside MTX. The results revealed that MTX-induced hepatic injury was evidenced by elevation in serum transaminases. This elevation was accompanied by hepatic oxidative stress due to an imbalance in oxidative/antioxidant markers, specifically elevated malondialdehyde (MDA) and decreased glutathione (GSH) levels and superoxide dismutase (SOD) activity. The inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), were markedly upregulated in the liver of MTX-intoxicated rats. Additionally, the expressions of nuclear factor kappa B (NF-κB), toll-like receptor 4 (TLR4), caspase-3 and gasdermin E (GSDME) were significantly increased in MTX rats. The use of PCB2 significantly ameliorated the deleterious effect of MTX on previous parameters by restoring oxidant/antioxidant balance, decreasing the inflammatory markers, and normalizing the expression of NF-κB, TLR4, caspase-3 and GSDME. In conclusion, this study uncovered the potential role of PCB2 on MTX-induced hepatotoxicity, confirming its antioxidant, anti-inflammatory, and anti-pyroptosis effects yet, further studies are needed to support its use as a protective therapy against such toxicity.
Collapse
Affiliation(s)
- Juman Alsaab
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Ahlam M Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Sumayya Alturaif
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Rehab A Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Nouf M Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Raeesa Mohammad
- Department of Histology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia.
| | - Norah K Algarzae
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia.
| |
Collapse
|
3
|
Xu W, Huang Y, Zhou R. NLRP3 inflammasome in neuroinflammation and central nervous system diseases. Cell Mol Immunol 2025; 22:341-355. [PMID: 40075143 PMCID: PMC11955557 DOI: 10.1038/s41423-025-01275-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of various central nervous system (CNS) diseases. The NLRP3 inflammasome is an important intracellular multiprotein complex composed of the innate immune receptor NLRP3, the adaptor protein ASC, and the protease caspase-1. The activation of the NLRP3 inflammasome can induce pyroptosis and the release of the proinflammatory cytokines IL-1β and IL-18, thus playing a central role in immune and inflammatory responses. Recent studies have revealed that the NLRP3 inflammasome is activated in the brain to induce neuroinflammation, leading to further neuronal damage and functional impairment, and contributes to the pathological process of various neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke. In this review, we summarize the important role of the NLRP3 inflammasome in the pathogenesis of neuroinflammation and the pathological course of CNS diseases and discuss potential approaches to target the NLRP3 inflammasome for the treatment of CNS diseases.
Collapse
Grants
- 81821001, 82130107, 82330052, 82202038, U20A20359 National Natural Science Foundation of China (National Science Foundation of China)
- National Key research and development program of China (grant number (2020YFA0509101), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0940000),
- MEXT | JST | Strategic Promotion of Innovative R and D (Strategic Promotion of Innovative R&D)
- the CAS Project for Young Scientists in Basic Research (YSBR-074) and the Fundamental Research Funds for the Central Universities, the outstanding Youth Project of Anhui Provincial Natural Science Foundation (2408085Y049), the Research Start-up Funding of the Institute of Health and Medicine, Hefei Comprehensive National Science Center (2024KYQD004), the Natural Science Foundation of Jiangsu Province (BK20221085),
- The key project of Anhui Provincial Department of Education Fund (2024AH052060).
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Yi Huang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Rongbin Zhou
- National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
4
|
Wu PP, Shen XJ, Zheng SS. Cisplatin induces acute liver injury by triggering caspase-3/GSDME-mediated cell pyroptosis. Hepatobiliary Pancreat Dis Int 2025; 24:177-187. [PMID: 39419722 DOI: 10.1016/j.hbpd.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Cisplatin triggers Gasdermin E (GSDME) cleavage, causing membrane bubble formation, content release, and inflammation. Caspase-3 activation initiates GSDME cleavage, and thus inhibiting this pathway mitigates cisplatin-induced pyroptosis in hepatocytes. This study aimed to delve into how cisplatin induces liver injury via pyroptosis. METHODS For animal experiments, C57BL/6J mice were divided into three groups: control, liver injury model group, and Ac-DMLD-CMK (caspase-3 inhibitor) intervention group. The liver histology was evaluated by hematoxylin and eosin staining, immunohistochemistry, immunofluorescence and TUNEL staining. The mRNA and protein levels were detected by real-time polymerase chain reaction (PCR) and Western blot analysis. For in vitro experiments, HL-7702 cells were treated with cisplatin or GSDME siRNA. Cell pyroptosis was determined via cellular morphology, cytotoxicity and viability detection, flow cytometric assay, and Western blot detection for the expression of pyroptosis-related proteins. RESULTS Cisplatin-induced distinct liver morphological changes, hepatocellular injury, and inflammation in mice, along with elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and increased pro-inflammatory cytokine expression. Heightened macrophage infiltration and hepatocellular death indicated cisplatin-induced hepatotoxicity. Cisplatin upregulated GSDME activation, along with Bax-mediated caspase-3 cleavage both in vivo and in vitro, implicating caspase-3/GSDME-dependent pyroptosis in liver injury. Treatment with Ac-DMLD-CMK ameliorated cisplatin-induced liver injury, reducing hepatocellular lesions, serum ALT and AST levels, cytokine expression, macrophage infiltration, and hepatocyte death. Ac-DMLD-CMK also attenuated GSDME-dependent pyroptosis post-cisplatin induction, as evidenced by decreased GSDME expression, Bax upregulation, and cleaved caspase-3 activation. For HL-7702 cells, GSDME siRNA transfection reduced GSDME expression, attenuated typical signs of cisplatin-induced pyroptosis, partially restored cell viability, and significantly inhibited cytotoxicity and a decrease in the proportion of propidium iodide-positive cells, indicating protection against cisplatin-induced hepatocyte pyroptosis. CONCLUSIONS Our study underscores the role of the caspase-3/GSDME signaling pathway in mediating cisplatin-induced hepatotoxicity, particularly in cases of excessive or cumulative cisplatin exposure. These findings suggest that targeting GSDME could represent a promising therapeutic approach to mitigate cisplatin-induced liver damage.
Collapse
Affiliation(s)
- Ping-Ping Wu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiu-Jin Shen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou 310003, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
5
|
Qi M, Zhao X, Fan R, Lin J, Li Z, Liu N, Sun X, Xu D, Zheng J, Liu D, Zhou R, Rong M, Ostrikov KK. Plasma-activated saline hyperthermic perfusion-induced pyroptosis boosts peritoneal carcinomatosis immunotherapy. Free Radic Biol Med 2025; 230:177-189. [PMID: 39914684 DOI: 10.1016/j.freeradbiomed.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Peritoneal carcinomatosis (PC) is a common metastatic cancer with limited treatment options. Herein, we present a novel strategy for the combined treatment of PC involving plasma-activated saline (PAS) and hyperthermic intraperitoneal perfusion. PAS revealed a strong cytotoxic effect because of reactive oxygen species (ROS) in two-dimensional cultures and three-dimensional tumor spheroids of PC-related cell lines. Notably, PAS induced Gasdermin E (GSDME)-dependent pyroptosis and immunogenic cell death in vitro. PAS-enhanced hyperthermic intraperitoneal perfusion (PE-HIP) increased the number of CD3+, CD4+ and CD8+ T cells, while decreased the number of regulatory T cells, indicating that PAS stimulated T cell-based immune responses in vivo. Moreover, PE-HIP significantly inhibited tumor growth and improved survival in a PC-mice model, with no significant toxic side effects. Meanwhile, vaccination with PAS-induced cell pyroptosis activated systemic antitumor immunity to prevent subcutaneous tumor growth. Overall, PE-HIP can serve as a new approach for PC treatment by ROS-assisted cancer immunotherapy.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xinyi Zhao
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jiao Lin
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhuo Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Na Liu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, PR China.
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Kostya Ken Ostrikov
- Centre for Materials Science, and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
6
|
Mucke HAM. Drug Repurposing Patent Applications July-September 2024. Assay Drug Dev Technol 2025; 23:44-52. [PMID: 39611655 DOI: 10.1089/adt.2024.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
|
7
|
Liu D, Liu J, Liu K, Hu Y, Feng J, Bu Y, Wang Q. SIRT1 Inhibition-Induced Mitochondrial Damage Promotes GSDME-Dependent Pyroptosis in Hepatocellular Carcinoma Cells. Mol Biotechnol 2024; 66:3628-3639. [PMID: 38044396 PMCID: PMC11564359 DOI: 10.1007/s12033-023-00964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor that affects the liver and poses a significant threat to human health. Further investigation is necessary to fully understand the role of SIRT1, a protein linked to tumorigenesis, in HCC development. To investigate the effect of SIRT1 on HCC and elucidate the underlying mechanism. Eight pairs of HCC and paracancerous normal tissue specimens were collected. The levels of SIRT1 and GSDME in tissue samples were assessed using immunohistochemistry and western blotting. SIRT1 levels were determined in HCC (Huh7, HepG2, SNU-423, SNU-398, and HCCLM3) and L-02 cells using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. SNU-423 and HCCLM3 cells were transfected with si-SIRT1 and/or si-GSDME to knock down SIRT1 or GSDME expression. RT-qPCR and western blotting were performed to measure the expression of SIRT1, pro-casp-3, cl-casp-3, GSDME, GSDME-N, PGC-1α, Bax, and cytochrome c (Cyto C). Cell proliferation, migration, invasion, and apoptosis were assessed using the cell counting kit-8 (CCK-8), wound healing assay, Transwell invasion assay, and flow cytometry, respectively. The release of lactate dehydrogenase (LDH) was evaluated using an LDH kit. SIRT1 was upregulated in HCC tissues and cells, and a negative correlation was observed between SIRT1 and GSDME-N. SIRT1 silencing suppressed the proliferation, migration, and invasion of HCC cells while also promoting apoptosis and inducing mitochondrial damage. Additionally, the silencing of SIRT1 resulted in the formation of large bubbles on the plasma membrane of HCC cells, leading to cellular swelling and aggravated GSDME-dependent pyroptosis, resulting in an increase in LDH release. Inhibition of GSDME reduced SIRT1 silencing-induced cell swelling, decreased LDH release rate, and promoted apoptosis. SIRT1 silencing promotes GSDME-dependent pyroptosis in HCC cells by damaging mitochondria.
Collapse
Affiliation(s)
- Di Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Junhao Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Kejun Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Yanchao Hu
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jinming Feng
- Department of Surgery, Shapotou District People's Hospital, Zhongwei City, China
| | - Yang Bu
- Department of Hepatobiliary Surgery, People's Hospital of Ningxia Hui Autonomous Region, No.301, Zhengyuan North Street, Jinfeng District, Yinchuan City, Ningxia Hui Autonomous Region, China.
| | - Qi Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
8
|
Long Y, Jia X, Chu L. Insight into the structure, function and the tumor suppression effect of gasdermin E. Biochem Pharmacol 2024; 226:116348. [PMID: 38852642 DOI: 10.1016/j.bcp.2024.116348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Gasdermin E (GSDME), which is also known as DFNA5, was first identified as a deafness-related gene that is expressed in cochlear hair cells, and mutation of this gene causes autosomal dominant neurogenic hearing loss. Later studies revealed that GSDME is mostly expressed in the kidney, placenta, muscle and brain cells, but it is expressed at low levels in tumor cells. The GSDME gene encodes the GSDME protein, which is a member of the gasdermin (GSDM) family and has been shown to participate in the induction of apoptosis and pyroptosis. The current literature suggests that Caspase-3 and Granzyme B (Gzm B) can cleave GSDME to generate the active N-terminal fragment (GSDME-NT), which integrates with the cell membrane and forms pores in this membrane to induce pyroptosis. Furthermore, GSDME also forms pores in mitochondrial membranes to release apoptosis factors, such as cytochrome c (Cyt c) and high-temperature requirement protein A2 (HtrA2/Omi), and subsequently activates the intrinsic apoptosis pathway. In recent years, GSDME has been shown to exert tumor-suppressive effects, suggesting that it has potential therapeutic effects on tumors. In this review, we introduce the structure and function of GSDME and the mechanism by which it induces cell death, and we discuss its tumor suppressive effect.
Collapse
Affiliation(s)
- Yuge Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
9
|
Fang Q, Xu Y, Tan X, Wu X, Li S, Yuan J, Chen X, Huang Q, Fu K, Xiao S. The Role and Therapeutic Potential of Pyroptosis in Colorectal Cancer: A Review. Biomolecules 2024; 14:874. [PMID: 39062587 PMCID: PMC11274949 DOI: 10.3390/biom14070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. The unlimited proliferation of tumor cells is one of the key features resulting in the malignant development and progression of CRC. Consequently, understanding the potential proliferation and growth molecular mechanisms and developing effective therapeutic strategies have become key in CRC treatment. Pyroptosis is an emerging type of regulated cell death (RCD) that has a significant role in cells proliferation and growth. For the last few years, numerous studies have indicated a close correlation between pyroptosis and the occurrence, progression, and treatment of many malignancies, including CRC. The development of effective therapeutic strategies to inhibit tumor growth and proliferation has become a key area in CRC treatment. Thus, this review mainly summarized the different pyroptosis pathways and mechanisms, the anti-tumor (tumor suppressor) and protective roles of pyroptosis in CRC, and the clinical and prognostic value of pyroptosis in CRC, which may contribute to exploring new therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Qing Fang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yunhua Xu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiangwen Tan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaofeng Wu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuxiang Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Jinyi Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Xiguang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Qiulin Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuai Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| |
Collapse
|
10
|
LI H, TANG X. [Research Progress on the Role of GSDME-mediated Pyroptosis in the Treatment of
Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:529-534. [PMID: 39147707 PMCID: PMC11333950 DOI: 10.3779/j.issn.1009-3419.2024.106.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 08/17/2024]
Abstract
Lung cancer causes a significant threat to human health. Despite considerable advancements in the treatment technologies in recent years, the five-year survival rate for lung cancer patients remains low. In this context, the discovery of pyroptosis, a unique cell death mechanism, offers a novel perspective for exploring new pathways of lung cancer treatment. Particularly, the role of gasdermin E (GSDME) in the process of pyroptosis reveals its tremendous potential in lung cancer therapy. Recent studies have made considerable progress in understanding the role of GSDME-mediated pyroptosis in lung cancer growth, the lung cancer microenvironment, and the effect of GSDME methylation on lung cancer treatment. This paper summarizes these research advancements and analyzes the potential and possible side effects of GSDME-mediated pyroptosis in lung cancer therapy, aiming to provide a theoretical foundation for developing more effective strategies for lung cancer treatment.
.
Collapse
|
11
|
Marzetti E, Calvani R, Landi F, Coelho-Júnior HJ, Picca A. Mitochondrial Quality Control Processes at the Crossroads of Cell Death and Survival: Mechanisms and Signaling Pathways. Int J Mol Sci 2024; 25:7305. [PMID: 39000412 PMCID: PMC11242688 DOI: 10.3390/ijms25137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Helio José Coelho-Júnior
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
12
|
Zhao M, Xian W, Liu W, Chen D, Wang S, Cao J. Maresin1 alleviates neuroinflammation by inhibiting caspase-3/ GSDME-mediated pyroptosis in mice cerebral ischemia-reperfusion model. J Stroke Cerebrovasc Dis 2024; 33:107789. [PMID: 38782167 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE To explore the mechanism of Maresin1 in reducing cerebral ischemia-reperfusion injury. MATERIALS AND METHODS Male C57BL/6 mice were randomly divided (n = 5 in each group), and focal middle cerebral artery occlusion (MCAO) model was used to simulate cerebral ischemia/reperfusion injury. TTC and the Longa score were used to detect the degree of neurological deficits. Western blot was used to detect the expression levels of GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in cerebral ischemic penumbra tissue, and immunofluorescence was used to detect the expression levels of GSDME-N. The mRNA expression levels of GSDME and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) were detected by RT-PCR. RESULTS Compared with sham group, GSDME mRNA levels in MCAO group were significantly increased at 12 h and 24 h after reperfusion, and GSDME and GSDME-N significantly increased at 6-48 h after reperfusion. Compared with sham group, the percentage of infarct size, the Longa score, the mRNA expression levels of IL-1β, IL-6 and TNF-α, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in MCAO group was significantly increased. Then, the percentage of infarct size and the Longa score significantly decreased after MaR1 administration, the mRNA expression levels of IL-1β and IL-6 downregulated, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 were also reduced. After administration of Z-DEVD-FMK(ZDF), the expression of caspase-3, cleaved caspase-3 and GSDME-N was decreased, which in MCAO+MaR1+ZDF group was not statistically significant compared with MCAO+ ZDF group. CONCLUSION Maresin1 alleviates cerebral ischemia/reperfusion injury by inhibiting pyroptosis mediated by caspase-3/GSDME pathway and alleviating neuroinflammation.
Collapse
Affiliation(s)
- Maoji Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Wenjing Xian
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Wenyi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Daiyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Siqi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China.
| |
Collapse
|
13
|
Guerra F, Ponziani FR, Cardone F, Bucci C, Marzetti E, Picca A. Mitochondria-Derived Vesicles, Sterile Inflammation, and Pyroptosis in Liver Cancer: Partners in Crime or Innocent Bystanders? Int J Mol Sci 2024; 25:4783. [PMID: 38732000 PMCID: PMC11084658 DOI: 10.3390/ijms25094783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in cellular signaling, chronic inflammation, and tissue remodeling contribute to hepatocellular carcinoma (HCC) development. The release of damage-associated molecular patterns (DAMPs) upon tissue injury and the ensuing sterile inflammation have also been attributed a role in HCC pathogenesis. Cargoes of extracellular vesicles (EVs) and/or EVs themselves have been listed among circulating DAMPs but only partially investigated in HCC. Mitochondria-derived vesicles (MDVs), a subpopulation of EVs, are another missing link in the comprehension of the molecular mechanisms underlying the onset and progression of HCC biology. EVs have been involved in HCC growth, dissemination, angiogenesis, and immunosurveillance escape. The contribution of MDVs to these processes is presently unclear. Pyroptosis triggers systemic inflammation through caspase-dependent apoptotic cell death and is implicated in tumor immunity. The analysis of this process, together with MDV characterization, may help capture the relationship among HCC development, mitochondrial quality control, and inflammation. The combination of immune checkpoint inhibitors (i.e., atezolizumab and bevacizumab) has been approved as a synergistic first-line systemic treatment for unresectable or advanced HCC. The lack of biomarkers that may allow prediction of treatment response and, therefore, patient selection, is a major unmet need. Herein, we overview the molecular mechanisms linking mitochondrial dysfunction, inflammation, and pyroptosis, and discuss how immunotherapy targets, at least partly, these routes.
Collapse
Affiliation(s)
- Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Via Provinciale Lecce–Moteroni 165, 73100 Lecce, Italy;
| | - Francesca Romana Ponziani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (F.R.P.); (F.C.); (E.M.)
| | - Ferdinando Cardone
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (F.R.P.); (F.C.); (E.M.)
| | - Cecilia Bucci
- Department of Experimental Medicine, Università del Salento, Via Provinciale Lecce–Moteroni 165, 73100 Lecce, Italy;
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (F.R.P.); (F.C.); (E.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (F.R.P.); (F.C.); (E.M.)
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
14
|
Wu Z, Ding Q, Yue M, Zhang X, Han D, Zhang L. Caspase-3/GSDME-mediated pyroptosis leads to osteogenic dysfunction of osteoblast-like cells. Oral Dis 2024; 30:1392-1402. [PMID: 37004144 DOI: 10.1111/odi.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE Cell pyroptosis is implicated in progressive bone loss in dental inflammatory diseases. We induced caspase-3/Gasdermin E (GSDME)-mediated pyroptosis in osteoblast-like cells and evaluated the effects on osteogenesis. MATERIALS AND METHODS Osteoblast-like cells were treated with various concentrations of sodium butyrate (NaB) to identify the most appropriate for inducing caspase-3/GSDME-mediated pyroptosis. Cells were divided into control, NaB and NaB+Ac-DEVD-CHO (specific caspase-3 inhibitor) groups. Pyroptosis level was evaluated by immunofluorescence, morphological observation, flow cytometry, lactate dehydrogenase (LDH) release assays, mRNA and protein levels of pyroptosis-related markers. Then, inflammation level, osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) expression and osteogenic function were detected. RESULTS Treatment with 10 mM NaB increased caspase-3 expression, GSDME cleavage, LDH release and the number of pyroptotic cells, with morphologic changes, indicating GSDME-mediated pyroptosis induction. The pyroptosis-related changes were abolished by caspase-3 inhibition. Caspase-3/GSDME-mediated pyroptosis triggered the expression of inflammatory cytokines and RANKL, downregulated alkaline phosphatase (ALP) activity, mineralisation level, mRNA and protein levels of multiple osteogenic markers. These effects were partly reversed by Ac-DEVD-CHO. CONCLUSION Caspase-3/GSDME-mediated pyroptosis induced by NaB activated the inflammatory response, reduced osteogenic differentiation and disturbed OPG/RANKL axis, leading to osteogenic dysfunction in osteoblast-like cells.
Collapse
Affiliation(s)
- Zhixiao Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qian Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
15
|
Yang J, Jiang J. Gasdermins: a dual role in pyroptosis and tumor immunity. Front Immunol 2024; 15:1322468. [PMID: 38304430 PMCID: PMC10830654 DOI: 10.3389/fimmu.2024.1322468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The gasdermin (GSDM) protein family plays a pivotal role in pyroptosis, a process critical to the body's immune response, particularly in combatting bacterial infections, impeding tumor invasion, and contributing to the pathogenesis of various inflammatory diseases. These proteins are adept at activating inflammasome signaling pathways, recruiting immune effector cells, creating an inflammatory immune microenvironment, and initiating pyroptosis. This article serves as an introduction to the GSDM protein-mediated pyroptosis signaling pathways, providing an overview of GSDMs' involvement in tumor immunity. Additionally, we explore the potential applications of GSDMs in both innovative and established antitumor strategies.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
16
|
Liang J, Wan Z, Qian C, Rasheed M, Cao C, Sun J, Wang X, Chen Z, Deng Y. The pyroptosis mediated biomarker pattern: an emerging diagnostic approach for Parkinson's disease. Cell Mol Biol Lett 2024; 29:7. [PMID: 38172670 PMCID: PMC10765853 DOI: 10.1186/s11658-023-00516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) affects 1% of people over 60, and long-term levodopa treatment can cause side effects. Early diagnosis is of great significance in slowing down the pathological process of PD. Multiple pieces of evidence showed that non-coding RNAs (ncRNAs) could participate in the progression of PD pathology. Pyroptosis is known to be regulated by ncRNAs as a key pathological feature of PD. Therefore, evaluating ncRNAs and pyroptosis-related proteins in serum could be worthy biomarkers for early diagnosis of PD. METHODS NcRNAs and pyroptosis/inflammation mRNA levels were measured with reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Luciferase assays were performed to confirm GSDME as a target of miR-675-5p and HMGB1 as a target of miR-1247-5p. In the serum of healthy controls (n = 106) and PD patients (n = 104), RT-qPCR was utilized to assess miR-675-5p, miR-1247-5p, and two related ncRNAs (circSLC8A1and lncH19) levels. The enzyme-linked immunosorbent assay measured serum levels of pyroptosis-related proteins in controls (n = 54) and PD patients (n = 70). RESULTS Our data demonstrated that miR-675-5p and miR-1247-5p significantly changed in PD neuron and animal models. Overexpressed miR-675-5p or downregulated miR-1247-5p could regulate pyroptosis and inflammation in PD neuron models. Using the random forest algorithm, we constructed a classifier based on PD neuron-pyroptosis pathology (four ncRNAs and six proteins) having better predictive power than single biomarkers (AUC = 92%). Additionally, we verified the performance of the classifier in early-stage PD patients (AUC ≥ 88%). CONCLUSION Serum pyroptosis-related ncRNAs and proteins could serve as reliable, inexpensive, and non-invasive diagnostic biomarkers for PD. LIMITATIONS All participants were from the same region. Additionally, longitudinal studies in the aged population are required to explore the practical application value of the classifier.
Collapse
Affiliation(s)
- Junhan Liang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhirong Wan
- Department of Neurology, Aerospace Center Hospital, Beijing, 100049, People's Republic of China
| | - Cheng Qian
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Changling Cao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Jingyan Sun
- School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xuezhe Wang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
17
|
Fei X, Wu J, Tian H, Jiang D, Chen H, Yan K, Wang Y, Zhao Y, Chen H, Xie X, Wang Z, Zhu W, Huang Q. Glioma stem cells remodel immunotolerant microenvironment in GBM and are associated with therapeutic advancements. Cancer Biomark 2024; 41:1-24. [PMID: 39240627 PMCID: PMC11492047 DOI: 10.3233/cbm-230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS). Glioblastoma (GBM) is incurable with current treatment strategies. Additionally, the treatment of recurrent GBM (rGBM) is often referred to as terminal treatment, necessitating hospice-level care and management. The presence of the blood-brain barrier (BBB) gives GBM a more challenging or "cold" tumor microenvironment (TME) than that of other cancers and gloma stem cells (GSCs) play an important role in the TME remodeling, occurrence, development and recurrence of giloma. In this review, our primary focus will be on discussing the following topics: niche-associated GSCs and macrophages, new theories regarding GSC and TME involving pyroptosis and ferroptosis in GBM, metabolic adaptations of GSCs, the influence of the cold environment in GBM on immunotherapy, potential strategies to transform the cold GBM TME into a hot one, and the advancement of GBM immunotherapy and GBM models.
Collapse
Affiliation(s)
- Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Jie Wu
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Haiyan Tian
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of GCP, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Dongyi Jiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Hanchun Chen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Ke Yan
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Yuan Wang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangtong Xie
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Wenyu Zhu
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Qiang Huang
- Department of Neurosurgery, Second Affiliated Hospital of Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
李 丹, 王 洪, 王 秋. [Splicing mutations of GSDME cause late-onset non-syndromic hearing loss]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:30-37. [PMID: 38297846 PMCID: PMC11116152 DOI: 10.13201/j.issn.2096-7993.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Indexed: 02/02/2024]
Abstract
Objective:To dentify the genetic and audiological characteristics of families affected by late-onset hearing loss due to GSDMEgene mutations, aiming to explore clinical characteristics and pathogenic mechanisms for providing genetic counseling and intervention guidance. Methods:Six families with late-onset hearing loss from the Chinese Deafness Genome Project were included. Audiological tests, including pure-tone audiometry, acoustic immittance, speech recognition scores, auditory brainstem response, and distortion product otoacoustic emission, were applied to evaluate the hearing levels of patients. Combining with medical history and physical examination to analyze the phenotypic differences between the probands and their family members. Next-generation sequencing was used to identify pathogenic genes in probands, and validations were performed on their relatives by Sanger sequencing. Pathogenicity analysis was performed according to the American College of Medical Genetics and Genomics Guidelines. Meanwhile, the pathogenic mechanisms of GSDME-related hearing loss were explored combining with domestic and international research progress. Results:Among the six families with late-onset hearing loss, a total of 30 individuals performed hearing loss. The onset of hearing loss in these families ranged from 10 to 50 years(mean age: 27.88±9.74 years). In the study, four splicing mutations of the GSDME were identified, including two novel variants: c. 991-7C>G and c. 1183+1G>T. Significantly, the c. 991-7C>G was a de novo variant. The others were previously reported variants: c. 991-1G>C and c. 991-15_991-13del, the latter was identified in three families. Genotype-phenotype correlation analysis revealed that probands with the c. 991-7C>G and c. 1183+1G>T performed a predominantly high-frequency hearing loss. The three families carrying the same mutation exhibited varying degrees of hearing loss, with an annual rate of hearing deterioration exceeding 0.94 dB HL/year. Furthermore, follow-up of interventions showed that four of six probands received intervention(66.67%), but the results of intervention varied. Conclusion:The study analyzed six families with late-onset non-syndromic hearing loss linked to GSDME mutations, identifying four splicing variants. Notably, c. 991-7C>G is the first reported de novo variant of GSDME globally. Audiological analysis revealed that the age of onset generally exceeded 10 years,with variable effectiveness of interventions.
Collapse
Affiliation(s)
- 丹阳 李
- 中国人民解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科解放军医学院(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, 100853, China
- 南开大学医学院Nankai University School of Medicine
- 国家耳鼻咽喉疾病临床医学研究中心National Clinical Research Center for Otolaryngologic Diseases
| | - 洪阳 王
- 中国人民解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科解放军医学院(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, 100853, China
- 国家耳鼻咽喉疾病临床医学研究中心National Clinical Research Center for Otolaryngologic Diseases
| | - 秋菊 王
- 中国人民解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科解放军医学院(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, 100853, China
- 南开大学医学院Nankai University School of Medicine
- 国家耳鼻咽喉疾病临床医学研究中心National Clinical Research Center for Otolaryngologic Diseases
| |
Collapse
|
19
|
Pariente A, Peláez R, Ochoa R, Pérez-Sala Á, Villanueva-Martínez Á, Bobadilla M, Larráyoz IM. Targeting 7KCh-Induced Cell Death Response Mediated by p38, P2X7 and GSDME in Retinal Pigment Epithelium Cells with Sterculic Acid. Pharmaceutics 2023; 15:2590. [PMID: 38004569 PMCID: PMC10675123 DOI: 10.3390/pharmaceutics15112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Age-related macular degeneration (AMD) is the main cause of blindness in developed countries. AMD is characterized by the formation of drusen, which are lipidic deposits, between retinal pigment epithelium (RPE) and the choroid. One of the main molecules accumulated in drusen is 7-Ketocholesterol (7KCh), an oxidized-cholesterol derivative. It is known that 7KCh induces inflammatory and cytotoxic responses in different cell types and the study of its mechanism of action is interesting in order to understand the development of AMD. Sterculic acid (SA) counteracts 7KCh response in RPE cells and could represent an alternative to improve currently used AMD treatments, which are not efficient enough. In the present study, we determine that 7KCh induces a complex cell death signaling characterized by the activation of necrosis and an alternative pyroptosis mediated by P2X7, p38 and GSDME, a new mechanism not yet related to the response to 7KCh until now. On the other hand, SA treatment can successfully attenuate the activation of both necrosis and pyroptosis, highlighting its therapeutic potential for the treatment of AMD.
Collapse
Affiliation(s)
- Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
| | - Rodrigo Ochoa
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
- Proteomics Research Core Facility, Aragonese Institute of Health Sciences (IACS), San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
| | - Ángela Villanueva-Martínez
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
| | - Miriam Bobadilla
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
- Biomarkers, Artificial Intelligence and Signaling (BIAS), Department of Nursing, University of La Rioja, Duquesa de la Victoria 88, 26006 Logroño, Spain
| |
Collapse
|
20
|
Jiao C, Zhang H, Li H, Fu X, Lin Y, Cao C, Liu S, Liu Y, Li P. Caspase-3/GSDME mediated pyroptosis: A potential pathway for sepsis. Int Immunopharmacol 2023; 124:111022. [PMID: 37837715 DOI: 10.1016/j.intimp.2023.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The inflammatory response is one of the host's mechanisms to combat pathogens. Normal and controlled inflammation can accelerate the clearance of pathogens. However, in sepsis, the host often exhibits an excessive inflammatory response to infection, leading to tissue and organ damage. Therefore, studying the mechanisms underlying the occurrence and development of sepsis is of significant importance. Pyroptosis is a form of programmed cell death (PCD) executed by the gasdermins (GSDMs) family, and its pro-inflammatory characteristics are considered a crucial component of the sepsis mechanism. Previous research on pyroptosis in sepsis has mainly focused on the caspase-1/4/5/11-GSDMD pathway, which has made significant progress. However, there is a lack of research on the roles of other GSDMs family members in sepsis. New research has revealed that the caspase-3/GSDME pathway can also mediate pyroptosis, playing important roles in cancer, other inflammatory diseases, and even some sepsis-related conditions. This discovery suggests the potential value of investigating caspase-3/GSDME in sepsis research. This review provides an overview of the role of the GSDMs family in infectious diseases, summarizes current research on the caspase-1/4/5/11-GSDMD pathway, describes the role of caspase-3 in sepsis, and discusses the research findings related to pyroptosis mediated by the caspase-3/GSDME pathway in cancer, inflammatory diseases, and sepsis-related conditions. The aim of this article is to propose the concept of caspase-3/GSDME as a potential target in sepsis research. Considering the role of this pathway in other diseases, including inflammatory conditions, and given the unique nature of sepsis as an inflammatory disease, the article suggests that this pathway may also play a role in sepsis. This hypothesis provides new insights and options for future sepsis research, although direct experiments are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Chaoze Jiao
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Haidan Zhang
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Hongyao Li
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Xu Fu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yujie Lin
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Chenglong Cao
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Shixian Liu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yijing Liu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Peiwu Li
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China.
| |
Collapse
|
21
|
Ma J, Xu J, Gao Q, Sun Y, Wang Y, Liu Z, Ma Z. Engineering single-domain antibodies targeting Gasdermin E activation by the chemotherapeutic agent cis-diaminodichloroplatinum. Biotechnol J 2023; 18:e2200633. [PMID: 37204010 DOI: 10.1002/biot.202200633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/20/2023]
Abstract
As mediators of pyroptosis, gasdermins (GSDMs) are closely associated with systemic cytotoxicity or so-called side effects and are also involved in the inflammatory response during chemotherapy. Using in situ proximity ligation assay followed by sequencing (isPLA-seq), which we recently developed, we screened a single-domain antibody (sdAb) library and identified several sdAbs against Gasdermin E (GSDME) that specifically recognize the N-terminal domain (1-270 aa) of GSDME (GSDME-NT). One of them mitigated the release of inflammatory damage-associated molecular patterns (DAMPs) and cytokines, including high mobility group protein b1 (Hmgb1) and interleukin-1β (Il-1β), in isolated mouse alveolar epithelial cells (AECs) upon chemotherapeutic agent cis-diaminodichloroplatinum (CDDP) treatment. Further investigation showed that this anti-GSDME sdAb also alleviated CDDP-induced pyroptotic cell death and lung tissue injury and decreased systemic Hmgb1 release in C57/BL6 mice, due to GSDME inactivation. Collectively, our data define an inhibitory role of the specific sdAb against GSDME, providing a potential strategy for systemically alleviating chemotherapeutic toxicities in vivo.
Collapse
Affiliation(s)
- Jinyi Ma
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jintao Xu
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiuyun Gao
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanan Sun
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhe Liu
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhenyi Ma
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Nowowiejska J, Baran A, Pryczynicz A, Hermanowicz JM, Sieklucka B, Pawlak D, Flisiak I. Gasdermin E (GSDME)-A New Potential Marker of Psoriasis and Its Metabolic Complications: The First Combined Study on Human Serum, Urine and Tissue. Cells 2023; 12:2149. [PMID: 37681881 PMCID: PMC10486754 DOI: 10.3390/cells12172149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Psoriasis is a frequent and incurable skin disease whose pathogenesis is still not fully understood. It is characterized by immune disturbances leading to hyperproliferation and improper differentiation of keratinocytes. Gasdermin E (GSDME) is a protein from the gasdermin family involved in the processes of inflammation and cell death based on apoptosis, necroptosis and pyroptosis. It has never been studied in psoriatics' sera or urine before. Our study enrolled 60 patients with psoriasis and 30 volunteers without dermatoses as controls. Serum and urinary GSDME concentrations were examined by ELISA and tissue expression of GSDME by immunohistochemistry. Serum GSDME concentration was significantly higher in patients than controls (p < 0.05). There were no differences in urinary GSDME concentrations between patients and controls. GSDME expression was significantly higher in the psoriatic plaque than non-lesional patients' skin and compared to controls (both p < 0.001). There was no correlation between serum GSDME or its lesional expression and psoriasis severity, age or disease duration. GSDME serum concentration was significantly negatively correlated with BMI, triglycerides and glucose concentrations. The obtained results suggest the engagement of GSDME in psoriasis pathogenesis. It could potentially become a new non-invasive psoriasis marker. Considering its pro-apoptotic influence, GSDME could be compensatively elevated to direct cells towards apoptosis, whereas under other circumstances, it may lead to pyroptosis and sustain inflammation. GSDME may exert a protective influence on the metabolic complications in psoriasis which requires further studies.
Collapse
Affiliation(s)
- Julia Nowowiejska
- Department of Dermatology and Venereology, Medical University of Bialystok, 14 Zurawia St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
| | - Anna Baran
- Department of Dermatology and Venereology, Medical University of Bialystok, 14 Zurawia St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, 13 Waszyngtona St., 15-269 Bialystok, Poland;
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, 2C Mickiewicza St., 15-089 Bialystok, Poland; (J.M.H.); (B.S.); (D.P.)
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, 2C Mickiewicza St., 15-089 Bialystok, Poland; (J.M.H.); (B.S.); (D.P.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, 2C Mickiewicza St., 15-089 Bialystok, Poland; (J.M.H.); (B.S.); (D.P.)
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, 14 Zurawia St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
| |
Collapse
|
23
|
Tuncer M, Alcan S. Pyroptosis: a new therapeutic strategy in cancer. Mol Biol Rep 2023:10.1007/s11033-023-08482-6. [PMID: 37243815 DOI: 10.1007/s11033-023-08482-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/29/2023]
Abstract
Programmed cell death pathways play important roles in a wide variety of physiological processes. Although it has similarities with apoptosis pyroptosis is a different type of programmed cell death. Pyroptosis can be triggered by different molecules originating from the cells or their environment. Once a pyroptotic pathway is started, it is followed by different molecular steps, and, it ends with the disruption of cell membrane integrity and the onset of inflammatory processes. In addition to the role of pyroptosis in the host's innate immunity against pathogens, uncontrolled pyroptosis can lead to increased inflammation and lead various diseases. The contradictory role of pyroptosis-related molecular changes in the pathogenesis of cancer has attracted attention lately. Excessive or decreased expression of molecules involved in pyroptotic pathways is associated with various cancers. There are ongoing studies on the use of different treatment methods for cancer in combination with new therapies targeting pyroptosis. The potential beneficial effects or side-effect profiles of these protocols targeting pyroptosis still need to be investigated. This will provide us with more efficient and safer options to treat cancer. This review aims to overview the main pathways and mechanisms of pyroptosis and to discuss its role in cancer.
Collapse
Affiliation(s)
- Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06100, Sıhhiye-Ankara, Turkey.
| | - Simay Alcan
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06100, Sıhhiye-Ankara, Turkey
| |
Collapse
|
24
|
Kong Q, Zhang Z. Cancer-associated pyroptosis: A new license to kill tumor. Front Immunol 2023; 14:1082165. [PMID: 36742298 PMCID: PMC9889862 DOI: 10.3389/fimmu.2023.1082165] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Pyroptosis is a programmed necrotic cell death mediated by pore-forming Gasdermin (GSDM) proteins. After being unleashed from the C-terminal auto-inhibitory domains by proteolytic cleavage, the N-terminal domains of GSDMs oligomerize and perforate on the plasma membrane to induce cytolytic pyroptosis, releasing immune mediators and alarming the immune system. Upon infection or danger signal perception, GSDMD that functions downstream of the inflammasome, a supramolecular complex for inflammatory caspase activation, is cleaved and activated by inflammasome-activated caspase-1/4/5/11 in immune cells and epithelial cells to trigger pyroptosis and exert anti-infection protection. Unlike this inflammasome-activated pyroptosis (IAP), recent studies also suggest an emerging role of cancer-associated pyroptosis (CAP), mediated by other GSDMs in cancer cells, in provoking anti-tumor immunity. IAP and CAP share common features like cell membrane rupture but also differ in occurrence sites, activating mechanisms, secreting cytokines and biological outcomes. Here we review the most recent knowledge of cancer-associated pyroptosis and present a promising avenue for developing therapeutic interventions to enhance anti-tumor immunity for cancer treatment.
Collapse
Affiliation(s)
- Qing Kong
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhibin Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|