1
|
Siddiqui MT, Olceroglu B, Gumus ZP, Senisik AM, Barlas FB. Enhancing Radiotherapy Tolerance With Papaya Seed-Derived Nanoemulsions. Food Sci Nutr 2025; 13:e70145. [PMID: 40191523 PMCID: PMC11971051 DOI: 10.1002/fsn3.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoid-rich plant materials have gained attention for their potential to reduce radiotherapy side effects. Carica papaya (CP) seeds, known for high flavonoid content, hold promise for therapeutic applications. This study explored the extraction and evaluation of two oils-sunflower oil-based papaya oil (SPO) and pure papaya oil (PPO)-and their nano emulsions (SPOE and PPOE), derived from CP seeds, for radioprotective effects. Chemical analysis using QTOF-MS revealed antioxidants and phytochemicals in the oils and emulsions. Size analysis and zeta potential measurements using dynamic light scattering (DLS) showed particle sizes of 140 ± 26.06 nm for PPOE and 293.7 ± 49.42 nm for SPOE. Post-radiation, both SPOE and PPOE significantly enhanced cell viability, with values of 72.24 ± 3.92 (p ≤ 0.001) and 75.85 ± 2.62 (p ≤ 0.001), respectively. These nanoemulsions show potential as topical agents for reducing radiation-induced tissue damage in radiotherapy. Despite the promising in vitro findings, further in vivo studies are needed to confirm the clinical relevance of these nanoemulsions. Additionally, their incorporation into sunscreen formulations could provide further protection against radiation-induced skin damage, broadening their potential applications.
Collapse
Affiliation(s)
| | - Bilge Olceroglu
- Institute of Nanotechnology and BiotechnologyIstanbul Univeristy‐CerrahpasaIstanbulTurkey
- Department of BiotechnologyInstitute of Health Sciences, University of Health Sciences TurkeyIstanbulTurkey
| | - Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research CenterEge UniversityIzmirTurkey
| | | | - Firat Baris Barlas
- Institute of Nanotechnology and BiotechnologyIstanbul Univeristy‐CerrahpasaIstanbulTurkey
- Clinical Research Excellence Application and Research CenterIstanbul Univeristy‐CerrahpasaIstanbulTurkey
| |
Collapse
|
2
|
Maurya S, Swati K, Suvetha S, Ghosh M, Yadav PK. Antiproliferative Effects of Methanolic Fruit Extract of Solanum xenthocarpum (L.) on Human Breast Cancer Cells. Chem Biodivers 2025; 22:e202401672. [PMID: 39363729 DOI: 10.1002/cbdv.202401672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Solanum xanthocarpum, a perennial herb native to India, contains steroidal glycoalkaloids with notable anticancer properties. This study investigated the antioxidant and antiproliferative effects of methanolic fruit extract of S. xanthocarpum on human breast cancer cells (MDA-MB-231). Phytochemical screening and LC-HRMS analysis confirmed presence of various primary and secondary metabolites. Antioxidant activity was assessed through DPPH, ABTS radical scavenging, reducing power, and phosphomolybdate assays. The extract demonstrated significant antioxidant potential with EC50 values of 60.10±0.88 μg/mL (DPPH) and 392.29±3.93 μg/mL (ABTS). Cytotoxicity against MDA-MB-231 cells was evaluated via morphological analysis, MTT assays, and IC50 determination (24.19±0.56 μg/L). Apoptosis was confirmed using dual staining techniques (AO/EB, Hoechst 33342/PI, DAPI), revealing condensed nuclei, apoptotic bodies, and reduced mitochondrial membrane potential, as indicated by Rhodamine staining. Additionally, increased reactive oxygen species (ROS) levels were observed using H2-DCF-DA staining. The total phenolic and flavonoid contents of the extract were 127.78±3.547 mg GAE/g and 98.06±4.289 mg QE/g, respectively. These findings suggest that the methanolic fruit extract of S. xanthocarpum possesses strong antioxidant and anticancer activities, indicating its potential role in cancer treatment. Further studies are warranted to explore its bioactive compounds for developing novel anticancer therapies.
Collapse
Affiliation(s)
- Saumya Maurya
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, 231001, Uttar Pradesh, India
| | - Kumari Swati
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, 231001, Uttar Pradesh, India
| | - S Suvetha
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, 231001, Uttar Pradesh, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology & Biochemistry, Faculty of Veterinary and Animal Sciences, I.Ag.Scs., Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, 231001, Uttar Pradesh, India
| | - Pavan Kumar Yadav
- Department of Veterinary Physiology & Biochemistry, Faculty of Veterinary and Animal Sciences, I.Ag.Scs., Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, 231001, Uttar Pradesh, India
| |
Collapse
|
3
|
Lima E Silva A, de Medeiros Brito TA, Agra MDF, Sobral da Silva M, Tavares JF. Molecular Networks as Strategy for Dereplication of Steroidal Alkaloids of Herbarium Samples of Solanum jabrense Agra and M. Nee, an Endemic and Unexplored Species. Chem Biodivers 2024:e202402513. [PMID: 39629930 DOI: 10.1002/cbdv.202402513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Solanum jabrense is an endemic species from Brazil, distributed in the phytogeographic domains of the Caatinga and Atlantic Forest, in the states of Northeast. Solanum L. species have great economic importance not only because they are used in human food, but also because they present several secondary metabolites, especially glycosylated steroidal alkaloids, giving them medicinal properties. Recently, dry herbarium specimens have been used to identify metabolites of interest preserved even after years of storage, using a simple and fast method of extraction and analysis by liquid chromatography (LC) coupled to mass spectrometry (MS). Dereplication techniques aided by molecular networks (MNs) were used to analyze the chemical composition from samples of S. jabrense herbarium specimens and to identify chemical markers and bioactive molecules with potential medicinal use. From the LC-MS/MS dataset of the crude extracts and a standard (solasodine), an MN was generated that resulted in the dereplication of 19 spirosolane-type alkaminas. Our results suggest that dereplication using fragments of dried Solanum specimens is a quick tool to identify potential conserved metabolites, being useful not only for chemotaxonomy and metabolomic but also for the discovery of new molecules in natural products.
Collapse
Affiliation(s)
- Anauara Lima E Silva
- Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Thiago Araújo de Medeiros Brito
- Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Maria de Fátima Agra
- Department of Biotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marcelo Sobral da Silva
- Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Josean Fechine Tavares
- Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
4
|
Santoso AW, Amalia E, Sari KI, Takarini V, Sufiawati I. Histopathological Evaluation of Wound Healing and Anti-Inflammatory Effects of Granola Potato Peel Ethanol Extract in Rat Oral Mucosa. J Exp Pharmacol 2024; 16:377-395. [PMID: 39469135 PMCID: PMC11514816 DOI: 10.2147/jep.s487373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Oral mucosal wounds present significant clinical challenges due to their susceptibility to infection, inflammation, and delayed healing. The limitation of standard anti-inflammatory drugs (both steroidal and non-steroidal) highlights the urgent need for plant-derived alternative therapies. Granola potato (Solanum tuberosum L.) from Pangalengan, West Java, Indonesia, has shown promise due to its bioactive compounds. However, its potential for wound healing and anti-inflammatory effects, specifically for oral mucosal wounds, remains largely unexplored. Purpose To evaluate the wound healing and anti-inflammatory activity of Granola potato peel ethanol extract (GPPEE) on the oral mucosa of Wistar rats based on histopathological analysis. Materials and Methods Forty-eight Wistar rats were wounded on the palatal mucosa using a 4 mm punch biopsy and subsequently divided into four groups: placebo gel, 0.1% triamcinolone acetonide ointment (TCA), 4% GPPEE gel, and 6% GPPEE gel. The rats were euthanized on days 0, 1, 3, 7, and 14. Histopathological parameters assessed included fibroblast proliferation, collagen deposition, angiogenesis, and the presence of inflammatory cells. Results Phytochemical screening revealed the presence of phenolic compounds, flavonoids, tannins, and alkaloids in the Granola potato peel ethanol extract (GPPEE). Significant differences in the number of inflammatory cells were observed on days 1, 3, 7, and 14 (p<0.05), with the groups treated with 4% and 6% GPPEE gel initially exhibiting pro-inflammatory effects on day 3, followed by significant anti-inflammatory effects on days 7 and 14. The 6% GPPEE gel treatment demonstrated a notable increase in fibroblasts on days 1, 7, and 14 (p<0.05), as well as collagen deposition on days 7 and 14 (p<0.05). However, no significant difference was observed in angiogenesis (p>0.05). Conclusion The application of 4% and 6% GPPEE gel demonstrated superior wound healing efficacy compared to 0.1% TCA and exhibited comparable anti-inflammatory activity to 0.1% TCA.
Collapse
Affiliation(s)
- Astrid Widhowaty Santoso
- Oral Medicine Residency Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Eri Amalia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Kartika Indah Sari
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Veni Takarini
- Department of Dental Material Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Irna Sufiawati
- Department of Oral Medicine, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
5
|
Winkiel MJ, Chowański S, Walkowiak-Nowicka K, Gołębiowski M, Słocińska M. A tomato a day keeps the beetle away - the impact of Solanaceae glycoalkaloids on energy management in the mealworm Tenebrio molitor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58581-58598. [PMID: 39317900 PMCID: PMC11467077 DOI: 10.1007/s11356-024-35099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Solanine (SOL), chaconine (CHA), and tomatine (TOM) are plant secondary metabolites produced mainly by the species of Solanaceae family, such as tomato Solanum lycopersicum L. These glycoalkaloids (GAs) have a wide range of biological activity, also in insects. However, their mechanisms of action are not precisely understood. The purpose of the study was to investigate how pure GAs and tomato leaf extract (EXT) affect glycolysis, Krebs cycle and β-oxidation of fatty acid pathways in Tenebrio molitor L. beetle. For this purpose, the larvae were injected with SOL, CHA, TOM, and EXT at two concentrations (10-8 and 10-5 M). For experiments, fat body, gut, and heamolymph samples were collected 2 and 24 h after injection. Then, the changes in the expression level of phosphofructokinase, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase were measured using the RT-qPCR technique. The catalytic activity of these enzymes and the carbohydrate level in insects after GA treatment were determined by spectrophotometric method. Furthermore, the analysis of the amount of amino acids in tissues was performed with a GC-MS technique. The results obtained show that the GAs changed the activity and expression of the genes encoding key enzymes of crucial metabolic pathways. The effect depends on the type of GA compound, the tissue tested, and the incubation time after treatment. Furthermore, TOM and EXT affected trehalose concentration in the insect hemolymph and led to accumulation of amino acids in the fat body. The observed changes may indicate a protein degradation and/or enhanced catabolism reactions for the production of ATP used in detoxification processes. These results suggest that GAs alter energy metabolism in the mealworm T. molitor. The study contributes to our understanding of the mechanisms of action of secondary metabolites of plants in insects. This knowledge may allow the design of new natural biopesticides against insect pests because proper energy metabolism is necessary for the survival of the organism.
Collapse
Affiliation(s)
- Magdalena Joanna Winkiel
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
6
|
Nandi S, Sikder R, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Zhakipbekov K, Acharya K, Habtemariam S, Arslan Ateşşahin D, Goloshvili T, Ahmed Aldahish A, Sharifi‐Rad J, Calina D. Updated aspects of alpha-Solanine as a potential anticancer agent: Mechanistic insights and future directions. Food Sci Nutr 2024; 12:7088-7107. [PMID: 39479710 PMCID: PMC11521658 DOI: 10.1002/fsn3.4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 11/02/2024] Open
Abstract
Cancer remains a critical global health challenge, with limited progress in reducing mortality despite advancements in diagnosis and treatment. The growing resistance of tumors to existing chemotherapy exacerbates this burden. In response, the search for new anticancer compounds from plants has intensified, given their historical success in yielding effective treatments. This review focuses on α-solanine, a glycoalkaloid primarily derived from potato tubers and nightshade family plants, recognized for its diverse biological activities, including anti-allergic, antipyretic, anti-inflammatory, anti-diabetic, and antibiotic properties. Recently, α-solanine has gained attention as a potential anticancer agent. Utilizing resources like PubMed/MedLine, ScienceDirect, Web of Science, Scopus, the American Chemical Society, Google Scholar, Springer Link, Wiley, and various commercial websites, this review consolidates two decades of research on α-solanine's anticancer effects and mechanisms against nine different cancers, highlighting its role in modulating various signaling pathways. It also discusses α-solanine's potential as a lead compound in cancer therapy. The abundant availability of potato peel, often discarded as waste or sold cheaply, is suggested as a sustainable source for large-scale α-solanine extraction. The study concludes that α-solanine holds promise as a standalone or adjunctive cancer treatment. However, further research is necessary to optimize this lead compound and mitigate its toxicity through various strategies.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Rimpa Sikder
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Anish Nag
- Department of Life SciencesCHRIST (Deemed to be University)BangaloreKarnatakaIndia
| | - Somanjana Khatua
- Department of Botany, Faculty of ScienceUniversity of AllahabadPrayagrajUttar PradeshIndia
| | - Surjit Sen
- Department of BotanyFakir Chand CollegeKolkataIndia
| | | | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Kairat Zhakipbekov
- Department of Organization and Management and Economics of Pharmacy and Clinical PharmacyAsfendiyarov Kazakh National Medical UniversityAlmatyKazakhstan
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | | | - Dilek Arslan Ateşşahin
- Department of Plant and Animal Production, Baskil Vocational SchoolFırat UniversityElazıgTurkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic ResourcesInstitute of Botany, Ilia State UniversityTbilisiGeorgia
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaKingdom of Saudi Arabia
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
7
|
Chen H, Lu J, Wang Z, Wu S, Zhang S, Geng J, Hou C, He P, Lu X. Unlocking reproducible transcriptomic signatures for acute myeloid leukaemia: Integration, classification and drug repurposing. J Cell Mol Med 2024; 28:e70085. [PMID: 39267259 PMCID: PMC11392829 DOI: 10.1111/jcmm.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease, which lead to various findings in transcriptomic research. This study addresses these challenges by integrating 34 datasets, including 26 control groups, 6 prognostic datasets and 2 single-cell RNA sequencing (scRNA-seq) datasets to identify 10,000 AML-related genes (ARGs). We focused on genes with low variability and high consistency and successfully discovered 191 AML signatures (ASs). Leveraging machine learning techniques, specifically the XGBoost model and our custom framework, we classified AML subtypes with both scRNA-seq and bulk RNA-seq data, complementing the ELN2022 classification approach. Our research also identified promising treatments for AML through drug repurposing, with solasonine showing potential efficacy for high-risk AML patients, supported by molecular docking and transcriptomic analyses. To enhance reproducibility and customizability, we developed CSAMLdb, a user-friendly database platform. It facilitates the reuse and personalized analysis of nearly all results obtained in this research, including single-gene prognostics, multi-gene scoring, enrichment analysis, machine learning risk assessment, drug repositioning analysis and literature abstract named entity recognition. CSAMLdb is available at http://www.csamldb.com.
Collapse
Affiliation(s)
- Haoran Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- School of Management, Shanxi Medical University, Taiyuan, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Jinqi Lu
- Department of Computer Science, Boston University, Boston, Massachusetts, USA
| | - Zining Wang
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Shengnan Wu
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
| | - Jie Geng
- Basic Medicine College, Shanxi Medical University, Taiyuan, China
| | - Chuandong Hou
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Xuechun Lu
- School of Management, Shanxi Medical University, Taiyuan, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| |
Collapse
|
8
|
Chen W, Zhao X, Huang Y, Lu K, Li Y, Li X, Ding H, Li X, Sun S. Solamargine acts as an antiviral by interacting to MZF1 and targeting the core promoter of the hepatitis B virus gene. Aging (Albany NY) 2024; 16:11668-11682. [PMID: 39133152 PMCID: PMC11346786 DOI: 10.18632/aging.206047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is still a serious threat to global health and can lead to a variety of liver diseases, including acute and chronic hepatitis, liver cirrhosis, liver failure, hepatocellular carcinoma (HCC), and so on. At present, there are mainly two kinds of drugs for the treatment of hepatitis B at home and abroad: interferon (IFN) and nucleoside/nucleotide analogs (NAs). In recent years, natural compounds have been considered an important source for the development of new anti-HBV drugs due to their complex structure, diverse components, high efficiency, and low toxicity. Many studies have demonstrated that Solamargine has significant anticancer activity, but the antiviral effect is rarely studied. This study aimed to verify the anti-HBV effect of Solamargine and to explore the specific mechanism. METHOD The relative expression of HBV pregenomic RNA (pgRNA) was detected by reverse transcription real-time fluorescence quantitative PCR (RT-qPCR). Northern blot and western blot were used to detect the relative expression of HBV pgRNA and target protein. PCR was used in the construction of HBV pg-promoter, ENII/BCP, and a series of gene deletion mutant fluorescent reporter vectors. The fluorescence relative expression of each mutant was detected by Renilla luciferase assay. RESULTS By binding to MZF1 (Myeloid zinc finger protein 1, MZF1), Solamargine inhibits HBV core promoter activity, reduces pregenomic RNA level, and inhibits HBV, achieving antiviral effects.
Collapse
Affiliation(s)
- Wenwen Chen
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Xinrui Zhao
- Master of Chinese medicine (studies and applications of internal Chinese medicines), Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yingli Huang
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Kai Lu
- Xinxiang Medical University, Clinical Medicine College, Xinxiang, Henan 453000, China
| | - Yuan Li
- The Third Affiliated Hospital Affiliated of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450003, China
| | - Xiaofang Li
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Hui Ding
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Xiuling Li
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Suofeng Sun
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
9
|
Lucier R, Kamileen MO, Nakamura Y, Serediuk S, Barbole R, Wurlitzer J, Kunert M, Heinicke S, O'Connor SE, Sonawane PD. Steroidal scaffold decorations in Solanum alkaloid biosynthesis. MOLECULAR PLANT 2024; 17:1236-1254. [PMID: 38937971 DOI: 10.1016/j.molp.2024.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species, including important vegetable crops such as tomato, potato, and eggplant. Although it has been known that SGAs play important roles in defense in plants and "anti-nutritional" effects (e.g., toxicity and bitterness) to humans, many of these molecules have documented anti-cancer, anti-microbial, anti-inflammatory, anti-viral, and anti-pyretic activities. Among these, α-solasonine and α-solamargine isolated from black nightshade (Solanum nigrum) are reported to have potent anti-tumor, anti-proliferative, and anti-inflammatory activities. Notably, α-solasonine and α-solamargine, along with the core steroidal aglycone solasodine, are the most widespread SGAs produced among the Solanum plants. However, it is still unknown how plants synthesize these bioactive steroidal molecules. Through comparative metabolomic-transcriptome-guided approach, biosynthetic logic, combinatorial expression in Nicotiana benthamiana, and functional recombinant enzyme assays, here we report the discovery of 12 enzymes from S. nigrum that converts the starting cholesterol precursor to solasodine aglycone, and the downstream α-solasonine, α-solamargine, and malonyl-solamargine SGA products. We further identified six enzymes from cultivated eggplant that catalyze the production of α-solasonine, α-solamargine, and malonyl-solamargine SGAs from solasodine aglycone via glycosylation and atypical malonylation decorations. Our work provides the gene tool box and platform for engineering the production of high-value, steroidal bioactive molecules in heterologous hosts using synthetic biology.
Collapse
Affiliation(s)
- Rosalind Lucier
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mohamed O Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Research Group Biosynthesis and NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sofiia Serediuk
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ranjit Barbole
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Jens Wurlitzer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
10
|
Thakur M, Verma R, Kumar D, Das PP, Dhalaria R, Kumar A, Kuca K, Azizov S, Kumar D. Revisiting the ethnomedicinal, ethnopharmacological, phytoconstituents and phytoremediation of the plant Solanum viarum Dunal. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5513-5531. [PMID: 38498057 DOI: 10.1007/s00210-024-03034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
Solanum viarum, a perennial shrub, belongs to the family Solanaceae known for its therapeutic value worldwide. As a beneficial remedial plant, it is used for treating several disorders like dysentery, diabetes, inflammation, and respiratory disorders. Phytochemistry studies of this plant have shown the presence of steroidal glycoside alkaloids, including solasonine, solasodine, and solamargine. It also has flavonoids, saponins, minerals, and other substances. S. viarum extracts and compounds possess a variety of pharmacological effects, including antipyretic, antioxidant, antibacterial, insecticidal, analgesic, and anticancer activity. Most of the heavy metals accumulate in the aerial sections of the plant which is considered a potential phytoremediation, a highly effective method for the treatment of metal-polluted soils. We emphasize the forgoing outline of S. viarum, as well as its ethnomedicinal and ethnopharmacological applications, the chemistry of its secondary metabolites, and heavy metal toxicity. In addition to describing the antitumor activity of compounds and their mechanisms of action isolated from S. viarum, liabilities are also explained and illustrated, including any significant chemical or metabolic stability and toxicity risks. A comprehensive list of information was compiled from Science Direct, PubMed, Google Scholar, and Web of Science using different key phrases (traditional use, ethnomedicinal plants, western Himalaya, Himachal Pradesh, S viarum, and biological activity). According to the findings of this study, we hope that this review will inspire further studies along the drug discovery pathway of the chemicals extracted from the plant of S. viarum. Further, this review shows that ethnopharmacological information from ethnomedicinal plants can be a promising approach to drug discovery for cancer and diabetes.
Collapse
Affiliation(s)
- Mehak Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Ajay Kumar
- ICFRE-Himalayan Forest Research Institute, Shimla, Himachal Pradesh, 171013, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Shavkatjon Azizov
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
11
|
Wang LH, Tan DH, Zhong XS, Jia MQ, Ke X, Zhang YM, Cui T, Shi L. Review on toxicology and activity of tomato glycoalkaloids in immature tomatoes. Food Chem 2024; 447:138937. [PMID: 38492295 DOI: 10.1016/j.foodchem.2024.138937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Owing to the lack of selection and limited intelligence in mechanical picking, some immature tomatoes that contain alkaloids are thrown away. Tomatine alkaloids are steroidal alkaloids naturally present in Solanaceae plants, which are distributed in small amounts in immature tomato fruits and decrease as the fruits ripen. Tomato glycoalkaloids are harmful to human health. However, in small quantities, there is some evidence that these compounds might be beneficial, as other non-antioxidant bioactivities. This article considers recent research on the biological effects of tomato glycoalkaloids in immature tomatoes, providing reference value for the potential development of these compounds.
Collapse
Affiliation(s)
- Li-Hao Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - De-Hong Tan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue-Song Zhong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mei-Qi Jia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue Ke
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yu-Mei Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
12
|
Winkiel MJ, Chowański S, Sulli M, Diretto G, Słocińska M. Analysis of glycoalkaloid distribution in the tissues of mealworm larvae (Tenebrio molitor). Sci Rep 2024; 14:16540. [PMID: 39020013 PMCID: PMC11254912 DOI: 10.1038/s41598-024-67258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Solanine (SOL) and chaconine (CHA) are glycoalkaloids (GAs) produced mainly by Solanum plants. These plant secondary metabolites affect insect metabolism; thus, they have the potential to be applied as natural plant protection products. However, it is not known which GA concentration induces physiological changes in animals. Therefore, the aim of this study was to perform a quantitative analysis of SOL and CHA in the larvae of Tenebrio molitor using LC‒MS to assess how quickly they are eliminated or metabolised. In this experiment, the beetles were injected with 2 μL of 10-5 M SOL or CHA solution, which corresponds to a dosage range of 0.12-0.14 ng/mg body mass. Then, 0.5, 1.5, 8, and 24 h after GA application, the haemolymph (H), gut (G), and the remainder of the larval body (FB) were isolated. GAs were detected in all samples tested for 24 h, with the highest percentage of the amount applied in the FB, while the highest concentration was measured in the H sample. The SOL and CHA concentrations decreased in the haemolymph over time, while they did not change in other tissues. CHA had the highest elimination rate immediately after injection, while SOL slightly later. None of the GA hydrolysis products were detected in the tested samples. One possible mechanism of the detoxification of GAs may be oxidation and/or sequestration. They may be excreted by Malpighian tubules, with faeces or with cuticles during moulting. The results presented are significant because they facilitate the interpretation of studies related to the effects of toxic substances on insect metabolism.
Collapse
Affiliation(s)
- Magdalena Joanna Winkiel
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Development ENEA, Via Anguillarese 301, 00123, Roma, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Development ENEA, Via Anguillarese 301, 00123, Roma, Italy
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
13
|
Silva RMGD, Do Nascimento Pereira I, Camargo Zibordi L, Pereira Rosatto PA, Oliveira Granero F, Malaguti Figueiredo CC, Leopoldo Constantino CJ, da Silva Martin C, Eloizo Job A, Nicolau-Junior N, Pereira Silva L. Cytotoxic, antioxidant, and antiglycation activities, and tyrosinase inhibition using silver nanoparticles synthesized by leaf extract of Solanum aculeatissimum Jacq. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:57-76. [PMID: 37929327 DOI: 10.1080/15287394.2023.2275691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The present study aimed to determine the biological properties of an extract of Solanum aculeatissimum aqueous extract (SaCE) alone as well as silver nanoparticles (AgNPs) generated by green synthesis utilizing S. aculeatissimum aqueous extract (SaCE). These synthesized SaCE AgNPs were characterized using UV-VIS spectrophotometry, scanning transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), zeta potential (ZP), dynamic light scattering (DLS). Determination of total polyphenols, flavonoids, saponins content was conducted. In addition, high performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to identify constituents in this extract. Antioxidant activity was determined by DPPH radical scavenging and ferric ion reducing power (FRAP) methods. Antiglycation activity was demonstrated through relative mobility in electrophoresis (RME) and determination of free amino groups. The inhibitory activity on tyrosinase was also examined. Molecular docking analyses were performed to assess the molecular interactions with DNA and tyrosinase. The antitumor activity SaCE was also measured. Phytochemical analysis of SaCE and AgNPs showed presence polyphenols (1000.41 and 293.37 mg gallic acid equivalent/g), flavonoids (954.87 and 479.87 mg rutin equivalent/g), saponins (37.89 and 23.01% total saponins), in particular steroidal saponins (aculeatiside A and B). Both SaCE and AgNPs exhibited significant antioxidant (respectively, 73.97%, 56.27% in DPPH test, 874.67 and 837.67 μM Trolox Equivalent/g in FRAP test) and antiglycation activities (72.81 and 67.98% free amino groups, results observed in RME). SaCE and AgNPs presented 33.2, 36.1% inhibitory activity on tyrosinase, respectively. In silico assay demonstrated interaction between steroidal saponins, DNA or tyrosinase. SaCE exhibited antitumor action against various human tumor cells. Data demonstrated that extracts SaCE alone and AgNPs synthesized from SaCE presented biological properties of interest for application in new therapeutic formulations in medicine.
Collapse
Affiliation(s)
- Regildo Márcio Gonçalves da Silva
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Isabelly Do Nascimento Pereira
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Laura Camargo Zibordi
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Pedro Augusto Pereira Rosatto
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | | | | | - Carlos José Leopoldo Constantino
- School of Science and Technology, Department of Physics, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Cibely da Silva Martin
- School of Science and Technology, Department of Physics, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Aldo Eloizo Job
- School of Science and Technology, Department of Physics, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Nilson Nicolau-Junior
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | |
Collapse
|
14
|
Akula S, Gonzalez CG, Kermet S, Burleson M. Natural compounds solasonine and alisol B23-acetate target GLI3 signaling to block oncogenesis in MED12-altered breast cancer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:127-135. [PMID: 38915457 PMCID: PMC11194031 DOI: 10.22099/mbrc.2024.49044.1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Breast cancer remains to be the second leading cause of cancer deaths worldwide thereby highlighting the critical need to find superior treatment strategies for this disease. In the current era of cancer treatment, personalized medicine is garnering much attention as this type of treatment is more selective thereby minimizing harmful side effects. Personalized medicine is dependent upon knowing the underlying genetic landscape of the initial tumor. In our study, we focused our efforts on a specific subset of breast cancer that harbors genetic alterations in the Mediator subunit 12 (MED12). Our results show that loss of MED12 leads to enhanced cellular proliferation and colony formation of breast cancer cells through a mechanism that involves activation of GLI3-dependent SHH signaling, a pathway that is central to breast development and homeostasis. To find a personalized treatment option for this subset of breast cancer, we employed a natural compound screening strategy which uncovered a total of ten compounds that selectively target MED12 knockdown breast cancer cells. Our results show that two of these ten compounds, solasonine and alisol B23-acetate, block GLI3-dependent SHH signaling which leads to a reversal of enhanced cellular proliferation and colony formation ability. Thus, our findings provide promising insight into a novel personalized treatment strategy for patients suffering from MED12-altered breast cancer.
Collapse
Affiliation(s)
- Shivani Akula
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX, USA
- These authors contributed equally to this work
| | - Cristian G. Gonzalez
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
- These authors contributed equally to this work
| | - Sophia Kermet
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| | - Marieke Burleson
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| |
Collapse
|
15
|
Winkiel MJ, Chowański S, Gołębiowski M, Bufo SA, Słocińska M. Solanaceae Glycoalkaloids Disturb Lipid Metabolism in the Tenebrio molitor Beetle. Metabolites 2023; 13:1179. [PMID: 38132861 PMCID: PMC10744845 DOI: 10.3390/metabo13121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Glycoalkaloids (GAs) are produced naturally by plants and affect insect survivability and fertility. These compounds can be considered potential bioinsecticides; however, the mechanisms and effects of their action remain undiscovered. As lipids are essential molecules for the proper functioning of an insect organism, this research aimed to determine the effects of GAs on the lipid metabolism of the Tenebrio molitor beetle. Solanine, chaconine, tomatine, and tomato leaf extract were applied to larvae by injection at two concentrations, 10-8 and 10-5 M. Then, the tissue was isolated after 2 and 24 h to determine the levels of free fatty acids, sterols and esters using the GC-MS technique. Moreover, the triacylglyceride level and the activity of the key β-oxidation enzyme, 3-hydroxyacyl-CoA dehydrogenase (HADH), were measured. The results indicate that GAs affect the content and composition of lipid compounds in the beetles' haemolymph and fat body. The effects depend on the GA concentrations, incubation time, and kind of tissue. Moreover, the tested compounds decrease HADH activity, especially in the fat body, which may affect energy production. To our knowledge, this is the first study concerning lipid metabolism in T. molitor after GA application. Our results provide some insights into that topic.
Collapse
Affiliation(s)
- Magdalena Joanna Winkiel
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.C.); (M.S.)
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.C.); (M.S.)
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| | - Sabino Aurelio Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.C.); (M.S.)
| |
Collapse
|
16
|
Sonawane PD, Gharat SA, Jozwiak A, Barbole R, Heinicke S, Almekias-Siegl E, Meir S, Rogachev I, Connor SEO, Giri AP, Aharoni A. A BAHD-type acyltransferase concludes the biosynthetic pathway of non-bitter glycoalkaloids in ripe tomato fruit. Nat Commun 2023; 14:4540. [PMID: 37500644 PMCID: PMC10374582 DOI: 10.1038/s41467-023-40092-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Tomato is the highest value fruit and vegetable crop worldwide, yet produces α-tomatine, a renowned toxic and bitter-tasting anti-nutritional steroidal glycoalkaloid (SGA) involved in plant defense. A suite of modifications during tomato fruit maturation and ripening converts α-tomatine to the non-bitter and less toxic Esculeoside A. This important metabolic shift prevents bitterness and toxicity in ripe tomato fruit. While the enzymes catalyzing glycosylation and hydroxylation reactions in the Esculeoside A pathway have been resolved, the proposed acetylating step remains, to date, elusive. Here, we discovered that GAME36 (GLYCOALKALOID METABOLISM36), a BAHD-type acyltransferase catalyzes SGA-acetylation in cultivated and wild tomatoes. This finding completes the elucidation of the core Esculeoside A biosynthetic pathway in ripe tomato, allowing reconstitution of Esculeoside A production in heterologous microbial and plant hosts. The involvement of GAME36 in bitter SGA detoxification pathway points to a key role in the evolution of sweet-tasting tomato as well as in the domestication and breeding of modern cultivated tomato fruit.
Collapse
Affiliation(s)
- Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany.
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Efrat Almekias-Siegl
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarah E O' Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Ashok P Giri
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
17
|
Patel AH, Sharma HP, Vaishali. Physiological functions, pharmacological aspects and nutritional importance of green tomato- a future food. Crit Rev Food Sci Nutr 2023; 64:9711-9739. [PMID: 37267154 DOI: 10.1080/10408398.2023.2212766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Green tomatoes contain significant levels of steroidal glycoalkoids (SGA) such as α-tomatine and green pigment chlorophyll. Tomatine is an admixture of two glycoalkoids; alpha tomatine and dehydrotomatine reported various health beneficial biological activities. Moreover, a hydrolyzed product of tomatine also contributes to age-related atrophy, and muscle weakness and helps the elderly recover from illness and injuries related to age. However, there is a lack of evidence regarding the absorption of tomatine in the human body concerning proposed biological activity, which should be an area of interest in the future. Once, the absorption study is established compounds concentrated in green tomatoes are potentially involved as protective compounds for several diseases and also used for functional food. To facilitate the use of green tomatoes in food processing, this comprehensive review provides data on the nutritional value of green tomatoes, with emphasis on the evolution of the physiological chemistry, analytical, medicinal, and pharmacological effects of the α-tomatine and chlorophyll in an experimental model. The broad aim of this review is to evaluate the health benefits of green tomatoes in addition to their nutritional value and to study the several features of the role of α-tomatine and chlorophyll in human health.
Collapse
Affiliation(s)
- Arpit H Patel
- College of Food Processing Technology and Bio-energy, Anand Agricultural University, Anand, India
| | - Harsh P Sharma
- Food Science and Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Vaishali
- Food Engineerng, National PG College, Gorakhpur, India
| |
Collapse
|
18
|
Brown G. Targeting the Retinoic Acid Pathway to Eradicate Cancer Stem Cells. Int J Mol Sci 2023; 24:2373. [PMID: 36768694 PMCID: PMC9916838 DOI: 10.3390/ijms24032373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
All-trans retinoic acid is a morphogen during embryogenesis and a teratogen. Cancer is an error of development, and the retinoic acid receptors (RAR) for all-trans retinoic acid play a role in cancer. Expression of the cytosolic aldehyde dehydrogenases, which mediate the last step to the synthesis of all-trans retinoic acid, is deregulated in various human cancers. Inhibiting these enzymes using a variety of agents reduced the proliferation of lung cancer cells, reduced the proliferation and induced apoptosis of ovarian, prostate, squamous, and uterine cancer cells, and sensitised breast, colorectal and ovarian cancer cells to chemotherapeutic agents. RARγ is an oncogene within some cases of AML, cholangiocarcinoma, colorectal cancer, clear cell renal cell carcinoma, hepatocellular carcinoma, pancreatic ductal adenocarcinoma, prostate cancer, and ovarian cancer. Pan-RAR and RARγ antagonist inhibition of the action of RARγ led to necroptosis of human prostate and pediatric brain tumour cancer stem cells. Treatment of hepatocellular carcinoma cells with the flavenoid acacetin, which interferes with the action of RARγ, decreased cell growth and induced apoptosis. Targeting the retinoic acid pathway is promising regarding the development of new drugs to eradicate cancer stem cells.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|