1
|
Liao ZY, Hung CY, Hsu YJ, Liang IC, Chen YC, Sung CH, Hung CF. Phlorizin Protects Against Oxidative Stress and Inflammation in Age-Related Macular Degeneration Model. Biomolecules 2025; 15:523. [PMID: 40305267 PMCID: PMC12025036 DOI: 10.3390/biom15040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Sweet Tea (Lithocarpus polystachyus Rehd.), a traditional ethnobotanical medicine, contains phlorizin, a dihydrochalcone compound with antioxidative and anti-inflammatory properties. Given the critical role of oxidative stress and inflammation in age-related macular degeneration (AMD), this study tested the hypothesis that phlorizin mitigates oxidative damage and inflammation in AMD models, thereby offering therapeutic potential. MATERIALS AND METHODS Adult retinal pigmented epithelial cells (ARPE-19) were pre-treated with phlorizin (0.01-0.1 μM) and subjected to oxidative stress induced by ultraviolet A (UVA) radiation or sodium iodate (NaIO3). Cell viability, reactive oxygen species (ROS) production, MAPK/NF-κB signaling, and the level of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and pro-angiogenic factors (VEGF, MMP2, MMP9) expression were assessed using MTT assays, fluorescence imaging, Western blotting, and RT-qPCR. In vivo, a laser-induced choroidal neovascularization (CNV) mouse model was used to evaluate phlorizin's effects on CNV formation and vascular leakage via fundus photography and fluorescence angiography. RESULT Phlorizin significantly enhanced cell viability, reduced ROS production, inhibited MAPK/NF-κB activation, and downregulated inflammatory and angiogenic mediators. In vivo studies confirmed the reduced CNV formation and vascular leakage following the phlorizin treatment. CONCLUSIONS Phlorizin demonstrated significant protective effects against oxidative stress and inflammation, highlighting its therapeutic potential for treating AMD.
Collapse
Affiliation(s)
- Zhen-Yu Liao
- Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
| | - Chih-Yu Hung
- Department of Ophthalmology, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan
| | - Yu-Jou Hsu
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-J.H.); (Y.-C.C.)
| | - I-Chia Liang
- National Defense Medical Center, Department of Ophthalmology, Tri-Service General Hospital, Taipei 114, Taiwan;
| | - Yi-Chun Chen
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-J.H.); (Y.-C.C.)
| | - Chao-Hsien Sung
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-J.H.); (Y.-C.C.)
- Division of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chi-Feng Hung
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-J.H.); (Y.-C.C.)
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Zong FF, Jia DD, Huang GK, Pan M, Hu H, Song SY, Xiao L, Wang RW, Liang L. New perspectives on DNA methylation modifications in ocular diseases. Int J Ophthalmol 2025; 18:340-350. [PMID: 39967986 PMCID: PMC11754021 DOI: 10.18240/ijo.2025.02.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/27/2024] [Indexed: 02/20/2025] Open
Abstract
The methylation of DNA is a prevalent epigenetic modification that plays a crucial role in the pathological progression of ocular diseases. DNA methylation can regulate gene expression, thereby affecting cell function and signal transduction. Ophthalmic diseases are a kind of complex diseases, and their pathogenesis involves many factors such as genetic, environmental and individual differences. In addition, inflammation, oxidative stress and lipid metabolism, which abnormal DNA methylation is closely related to, are also considered to be major factors in eye diseases. The current understanding of DNA methylation in eye diseases is becoming more complex and comprehensive. In addition to the simple suppression of gene expression by hypermethylation, factors such as hypomethylation or demethylation, DNA methylation in non-promoter regions, interactions with other epigenetic modifications, and dynamic changes in DNA methylation must also be considered. Interestingly, although some genes are at abnormal methylation levels, their expression is not significantly changed, which indirectly reflects the complexity of gene regulation. This review aims to summarize and compare some relevant studies, and provide with new ideas and methods for the prevention and treatment of different eye diseases, such as glaucoma, retinoblastoma, and diabetic retinopathy.
Collapse
Affiliation(s)
- Fei-Fei Zong
- The First College of Clinical Medical Science, China Three Gorges University, Department of Pathology, Yichang Central People's Hospital, Yichang 443003, Hubei Province, China
| | - Da-Dong Jia
- The Second People's Hospital of China Three Gorges University, the Second People's Hospital of Yichang, Yichang 443000, Hubei Province, China
| | - Guang-Kun Huang
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Meng Pan
- Shaanxi University of Chinese Medicine, Basic Medical College, Xianyang 712046, Shaanxi Province, China
| | - Hao Hu
- The Second People's Hospital of China Three Gorges University, the Second People's Hospital of Yichang, Yichang 443000, Hubei Province, China
| | - Shi-Yi Song
- The Second People's Hospital of China Three Gorges University, the Second People's Hospital of Yichang, Yichang 443000, Hubei Province, China
| | - Liang Xiao
- The First College of Clinical Medical Science, China Three Gorges University, Department of Pathology, Yichang Central People's Hospital, Yichang 443003, Hubei Province, China
| | - Ru-Weng Wang
- The Second People's Hospital of China Three Gorges University, the Second People's Hospital of Yichang, Yichang 443000, Hubei Province, China
| | - Liang Liang
- The Second People's Hospital of China Three Gorges University, the Second People's Hospital of Yichang, Yichang 443000, Hubei Province, China
| |
Collapse
|
3
|
Long J, Yang S, Bian Z, Zhu H, Ma M, Wang X, Li L, Zhang W, Han Y, Gershwin ME, Lian Z, Zhao Z. PD-1 +CD8 + T Cell-Mediated Hepatocyte Pyroptosis Promotes Progression of Murine Autoimmune Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407284. [PMID: 39494472 PMCID: PMC11714232 DOI: 10.1002/advs.202407284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/10/2024] [Indexed: 11/05/2024]
Abstract
The specific mechanisms underlying effector pathways in autoimmune liver disease remain enigmatic and therefore constructing appropriate murine models to investigate disease pathogenesis becomes critical. A spontaneous severe murine model of autoimmune liver disease has been previously established in dnTGFβRII Aire-/- mice, exhibiting disease phenotypes that resemble both human primary biliary cholangitis (PBC) and autoimmune hepatitis (AIH). The data suggests that auto-reactive liver-specific CD8+ T cells are the primary pathogenic cells in liver injury. In this study, these data are advanced through the use of both single-cell sequencing and extensive in vitro analysis. The results identify a specific expanded pathogenic subset of PD-1+CD8+ T cells in the liver, exhibiting strong functional activity and cytotoxicity against target cells. Depletion of PD-1+CD8+ T cells using CAR-T cells effectively alleviates the disease. GSDMD-mediated pyroptosis is found to be aberrantly activated in the livers of model mice, and treatment with a GSDMD-specific inhibitor significantly inhibits disease progression. In vitro experiments reveal that PD-1+CD8+ T cells can induce the pyroptosis of hepatocytes through elevated production of granzyme B and perforin-1. These results provide a novel explanation for the cytotoxic activity of pathogenic liver PD-1+CD8+ T cells in autoimmune liver diseases and offer potential therapeutic targets.
Collapse
Affiliation(s)
- Jie Long
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Si‐Yu Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Zhen‐Hua Bian
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhou511442China
| | - Hao‐Xian Zhu
- School of MedicineSouth China University of TechnologyGuangzhou510006China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Min Ma
- School of MedicineSouth China University of TechnologyGuangzhou510006China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Xiao‐Qing Wang
- School of MedicineSouth China University of TechnologyGuangzhou510006China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California DavisDavisCA95616USA
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive DiseasesAir Force Military Medical UniversityXi'an710000China
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California DavisDavisCA95616USA
| | - Zhe‐Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Zhi‐Bin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| |
Collapse
|
4
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
5
|
Choi Y, Samad I, Chakravarthy H, Matsubara J, Granville DJ, Yeung SN. Granzyme B Expression in Conjunctiva of Patients with Pterygium. Int J Mol Sci 2024; 25:8679. [PMID: 39201366 PMCID: PMC11354738 DOI: 10.3390/ijms25168679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Pterygium is often associated with chronic ultraviolet (UV) radiation exposure and characterized by the overgrowth of conjunctiva and extracellular matrix (ECM) remodeling. Notably, several studies in the skin have demonstrated that chronic UV radiation can upregulate Granzyme B (GrB) expression and increase ECM degradation. The aim of this study was to compare GrB expression between pterygium and healthy controls and to further link this GrB expression to mast cells. Post-mortem pterygium tissues and conjunctival tissues from age-matched controls were used to assess GrB expression via immunofluorescence and microscopy. We found a significantly higher density of GrB+ cells from pterygium specimens compared to healthy controls. Furthermore, many of the GrB+ cells in pterygium specimens co-expressed tryptase, a mast cell marker. These findings suggest a role for conjunctival mast cell-secreted GrB in the pathogenesis of pterygium and highlight GrB as a possible therapeutic target in delaying or halting pterygium progression.
Collapse
Affiliation(s)
- Yoojin Choi
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Isa Samad
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Harshini Chakravarthy
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Joanne Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - David J. Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| |
Collapse
|
6
|
Ozturk E, Cankaya C, Yildizli Y. Correlation between corneal endothelial layer features and age-related macular degeneration severity. Int Ophthalmol 2024; 44:345. [PMID: 39122890 DOI: 10.1007/s10792-024-03271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE This study aimed to investigate the relationship between corneal endothelial layer features and the severity of age-related macular degeneration (AMD). METHODS The study included 119 patients, with 47 females and 72 males. Patients were categorized into four groups based on the AREDS grading system: no AMD (group 1), mild AMD (group 2), moderate AMD (group 3), and advanced AMD (group 4). Only the right eye of patients with both eyes suitable for the study was included. Corneal endothelial cell density (CD), coefficient of variation (CoV), hexagonal cell ratio (HEX), and central corneal thickness (CCT) were measured using specular microscopy (Konan Medical Inc., Nishinomiya, Japan). RESULTS Group 1 had 40 patients, group 2 had 27 patients, and groups 3 and 4 had 26 patients each. Significant differences were observed between the mean endothelial CD, CoV, and HEX values among the groups, while no significant difference was found in CCT values (p = 0.049, p = 0.002, p = 0.004, and p = 0.883, respectively). A mild negative correlation was observed between AMD severity and CD and HEX values, while a mild positive correlation was found between AMD severity and CoV. CONCLUSION Increasing severity of AMD may negatively impact corneal endothelial layer values.
Collapse
Affiliation(s)
- Emrah Ozturk
- Department of Ophthalmology, Inonu University School of Medicine, Malatya, Turkey.
- Department of Ophthalmology, Malatya Turgut Ozal University School of Medicine, Malatya, Turkey.
| | - Cem Cankaya
- Department of Ophthalmology, Inonu University School of Medicine, Malatya, Turkey
| | - Yakup Yildizli
- Department of Ophthalmology, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
7
|
Obasanmi G, Uppal M, Cui JZ, Xi J, Ju MJ, Song J, To E, Li S, Khan W, Cheng D, Zhu J, Irani L, Samad I, Zhu J, Yoo HS, Aubert A, Stoddard J, Neuringer M, Granville DJ, Matsubara JA. Granzyme B degrades extracellular matrix and promotes inflammation and choroidal neovascularization. Angiogenesis 2024; 27:351-373. [PMID: 38498232 PMCID: PMC11303490 DOI: 10.1007/s10456-024-09909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
Age-related macular degeneration (AMD) is a common retinal neurodegenerative disease among the elderly. Neovascular AMD (nAMD), a leading cause of AMD-related blindness, involves choroidal neovascularization (CNV), which can be suppressed by anti-angiogenic treatments. However, current CNV treatments do not work in all nAMD patients. Here we investigate a novel target for AMD. Granzyme B (GzmB) is a serine protease that promotes aging, chronic inflammation and vascular permeability through the degradation of the extracellular matrix (ECM) and tight junctions. Extracellular GzmB is increased in retina pigment epithelium (RPE) and mast cells in the choroid of the healthy aging outer retina. It is further increased in donor eyes exhibiting features of nAMD and CNV. Here, we show in RPE-choroidal explant cultures that exogenous GzmB degrades the RPE-choroid ECM, promotes retinal/choroidal inflammation and angiogenesis while diminishing anti-angiogenic factor, thrombospondin-1 (TSP-1). The pharmacological inhibition of either GzmB or mast-cell degranulation significantly reduces choroidal angiogenesis. In line with our in vitro data, GzmB-deficiency reduces the extent of laser-induced CNV lesions and the age-related deterioration of electroretinogram (ERG) responses in mice. These findings suggest that targeting GzmB, a serine protease with no known endogenous inhibitors, may be a potential novel therapeutic approach to suppress CNV in nAMD.
Collapse
Affiliation(s)
- Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Manjosh Uppal
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Jing Z Cui
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Jeanne Xi
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Myeong Jin Ju
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
- School of Biomedical Engineering, UBC, Vancouver, BC, Canada
| | - Jun Song
- School of Biomedical Engineering, UBC, Vancouver, BC, Canada
| | - Eleanor To
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Siqi Li
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Wania Khan
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Darian Cheng
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - John Zhu
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Lyden Irani
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Isa Samad
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Julie Zhu
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Alexandre Aubert
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | | | | | - David J Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Gill K, Yoo HS, Chakravarthy H, Granville DJ, Matsubara JA. Exploring the role of granzyme B in subretinal fibrosis of age-related macular degeneration. Front Immunol 2024; 15:1421175. [PMID: 39091492 PMCID: PMC11291352 DOI: 10.3389/fimmu.2024.1421175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.
Collapse
Affiliation(s)
- Karanvir Gill
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Harshini Chakravarthy
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
9
|
Altamirano F, Ortiz-Morales G, O'Connor-Cordova MA, Sancén-Herrera JP, Zavala J, Valdez-Garcia JE. Fuchs endothelial corneal dystrophy: an updated review. Int Ophthalmol 2024; 44:61. [PMID: 38345780 DOI: 10.1007/s10792-024-02994-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/19/2023] [Indexed: 02/15/2024]
Abstract
PURPOSE The present review will summarize FECD-associated genes and pathophysiology, diagnosis, current therapeutic approaches, and future treatment perspectives. METHODS Literature review. RESULTS Fuchs' endothelial corneal dystrophy (FECD) is the most common bilateral corneal dystrophy and accounts for one-third of all corneal transplants performed in the US. FECD is caused by a combination of genetic and non-heritable factors, and there are two types: early-onset FECD, which affects individuals from an early age and is usually more severe, and late-onset FECD, which is more common and typically manifests around the age of 40. The hallmark findings of FECD include progressive loss of corneal endothelial cells and the formation of focal excrescences (guttae) on the Descemet membrane. These pathophysiological changes result in progressive endothelial dysfunction, leading to a decrease in visual acuity and blindness in later stages. The present review will summarize FECD-associated genes and pathophysiology, diagnosis, current therapeutic approaches, and future treatment perspectives. CONCLUSION With the characterization and understanding of FECD-related genes and ongoing research into regenerative therapies for corneal endothelium, we can hope to see more significant improvements in the future in the management and care of the disease.
Collapse
Affiliation(s)
- Francisco Altamirano
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
| | | | | | | | - Judith Zavala
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
| | - Jorge E Valdez-Garcia
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico.
| |
Collapse
|