1
|
Alomran WK, Nizami MZI, Xu HHK, Sun J. Evolution of Dental Resin Adhesives-A Comprehensive Review. J Funct Biomater 2025; 16:104. [PMID: 40137383 PMCID: PMC11942969 DOI: 10.3390/jfb16030104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
This comprehensive review of dental resin adhesives explores their historical development, key components, recent innovations, and potential future directions, highlighting a dynamic and continually advancing field. From Buonocore's breakthrough acid-etching technique and Bowen's pioneering dental resin invention, successive generations of clinicians and scientists have pushed forward the technological and materials development for secure bonding, while preserving dental tissues. The review discusses the substantial advances in improving adhesive reliability, enabling more conservative treatment approaches. It also delves into enhancing fundamental adhesive components and their synergistic combinations. Recent innovations, including biostable and functional resins, nanotechnology, and bioactive components, address persistent challenges such as durability, antimicrobial efficacy, and therapeutic functionality. Emerging technologies, such as digital dentistry, artificial intelligence, and bioinspired adhesives, portend an exciting and promising future for dental adhesives. This review underscores the critical role of ongoing research in developing biocompatible, multifunctional, and durable adhesives. It aims to support dental professionals and researchers by providing a comprehensive understanding of the dynamic progression of dental adhesives, inspiring continued innovation and excellence in restorative dentistry.
Collapse
Affiliation(s)
- Waad Khalid Alomran
- ADA Forsyth Institute, Cambridge, MA 02142, USA
- Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, USA
| | | | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jirun Sun
- ADA Forsyth Institute, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Anumula L, Ramesh S, Kolaparthi VSK. Matrix metalloproteinases in dentin: Assessing their presence, activity, and inhibitors - a review of current trends. Dent Mater 2024; 40:2051-2073. [PMID: 39368893 DOI: 10.1016/j.dental.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION Dentin integrity is a critical aspect of tooth structure, with matrix metalloproteinases (MMPs) playing a crucial role in dentinogenesis, caries formation, and dental bonding. It is crucial to accurately assess MMP activity to understand dentin pathophysiology and develop effective clinical strategies. OBJECTIVES The study aimed to conduct a thorough review and comprehensive summary of diverse techniques employed in assessing MMPs in dentin. DATA AND SOURCES To conduct the research, electronic databases were systematically searched and manual citation searches were performed. A total of 621 articles were identified. After eliminating duplicates and irrelevant studies, 70 articles were included in the review. 25 articles with overlapping methodologies were also excluded. STUDY SELECTION The selection criteria were based on the relevance of the studies to MMPs and MMP inhibitors in dentin without regard to the study design. Only peer-reviewed articles published in English were included. The search was restricted to studies published until November 2022. CONCLUSION The comprehensive analysis of various studies has yielded 37 techniques for evaluating MMPs and MMP inhibitors, which hold significant promise in creating diagnostic markers and devising targeted therapeutic interventions.
Collapse
Affiliation(s)
- Lavanya Anumula
- Dept of Conservative Dentistry and Endodontics, Narayana Dental College and Hospital, Nellore, 524003 Andhra Pradesh, India.
| | - Sindhu Ramesh
- Dept of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| | | |
Collapse
|
3
|
García-Manríquez N, Lozano C, Muñoz A, Morales MF, Giacaman RA. Anticaries properties of natural berries: systematic literature review. Nutr Rev 2024; 82:302-317. [PMID: 37352393 DOI: 10.1093/nutrit/nuad063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
Abstract
CONTEXT Anticariogenic properties have been ascribed to polyphenolic compounds present in high concentrations in numerous fruits. Berries, in particular, have been reported as potentially having an inhibitory effect on the dental biofilm and subsequently on caries, but the evidence is unclear. OBJECTIVE The objective of this review was to explore the literature and summarize the evidence for berries having an inhibitory effect on the dental biofilm and an anticariogenic effect. DATA SOURCES Following Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, the PubMed, Web of Science, and SCOPUS databases were scanned using predefined and accessible terms, with a search strategy based on a structured PICO question. DATA EXTRACTION After article selection, 23 studies met the inclusion criteria, most of them being in vitro studies. A risk assessment was performed, and data were extracted and presented in a table for qualitative analysis. DATA ANALYSIS Meta-analyses were conducted using standardized mean differences (SMDs) with a 95% confidence interval (CI) by Review manager 5.4. RESULTS Only 3 types of berries were found to have a reported anticaries effect: grape seed extract (GSE), cranberry, and sour cherry. Nine studies that fulfilled the eligibility criteria were subjected to quantitative analysis. Meta-analyses showed GSE was associated with enhanced remineralization of dental enamel (SMD = .96 95% CI [.45, 1.46], P < .0002) and of dentin (SMD = .65 95% CI [.13, 1.17], P = .01). Cranberry extracts positively influenced the cariogenic dental biofilm by decreasing the biofilm biomass (SMD = -2.23 95% CI [-4.40, -.05], P = .04), and biovolume (SMD = -2.86 95% CI [-4.34, -1.37], P = .0002), and increasing the biofilm pH (SMD = 7.9 95% CI [3.49, 12.31], P < .0004). CONCLUSION Within the limitations of this systematic review and metaanalysis, GSE and cranberries or their active compounds could represent an alternative for caries management. Further clinical trials are needed to verify this effect in a clinical setting. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020223579.
Collapse
Affiliation(s)
- Natalia García-Manríquez
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca, Chile
| | - Carla Lozano
- Biochemistry and Oral Biology Laboratory, Research Institute for Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ana Muñoz
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca, Chile
| | - María Fernanda Morales
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca, Chile
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca, Chile
- Biochemistry and Oral Biology Laboratory, Research Institute for Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
- In teruniversity Center for Healthy Aging, Chilean State Universities, Chile
| |
Collapse
|
4
|
Reis-Havlat M, Alania Y, Zhou B, Jing SX, McAlpine JB, Chen SN, Pauli GF, Bedran-Russo AK. Modulatory role of terminal monomeric flavan-3-ol units in the viscoelasticity of dentin. J Biomed Mater Res B Appl Biomater 2024; 112:e35333. [PMID: 37792302 PMCID: PMC10842555 DOI: 10.1002/jbm.b.35333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/27/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Flavan-3-ol monomers are the building blocks of proanthocyanidins (PACs), natural compounds from plants shown to mediate specific biologic activities on dentin. While the stereochemistry of the terminal flavan-3-ols, catechin (C) versus epicatechin (EC), impacts the biomechanical properties of the dentin matrix treated with oligomeric PACs, structure-activity relationships driving this bioactivity remain elusive. To gain insights into the modulatory role of the terminal monomers, two highly congruent trimeric PACs from Pinus massoniana only differing in the stereochemistry of the terminal unit (Trimer-C vs. Trimer-EC) were prepared to evaluate their chemical characteristics as well as their effects on the viscoelasticity and biostability of biomodified dentin matrices via infrared spectroscopy and multi-scale dynamic mechanical analyses. The subtle alteration of C versus EC as terminal monomers lead to distinct immediate PAC-trimer biomodulation of the dentin matrix. Nano- and micro-dynamic mechanical analyses revealed that Trimer-EC increased the complex moduli (0.51 GPa) of dentin matrix more strongly than Trimer-C (0.26 GPa) at the nanoscale length (p < 0.001), whereas the reverse was found at the microscale length (p < .001). The damping capacity (tan δ) of dentin matrix decreased by 70% after PAC treatment at the nano-length scale, while increased values were found at the micro-length scale (~0.24) compared to the control (0.18 ; p < .001). An increase in amide band intensities and a decrease of complex moduli was observed after storage in simulated body fluid for both Trimer-C and Trimer-EC modified dentin. The stereochemical configuration of the terminal monomeric units, C and EC, did not impact the chemo-mechanical stability of dentin matrix.
Collapse
Affiliation(s)
- Mariana Reis-Havlat
- Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, WI, 53233, United States’
| | - Yvette Alania
- Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, WI, 53233, United States’
| | - Bin Zhou
- Pharmacognosy Institute and Department of Pharmaceutical Sciences (PSCI), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Shu-Xi Jing
- Pharmacognosy Institute and Department of Pharmaceutical Sciences (PSCI), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - James B. McAlpine
- Pharmacognosy Institute and Department of Pharmaceutical Sciences (PSCI), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Shao-Nong Chen
- Pharmacognosy Institute and Department of Pharmaceutical Sciences (PSCI), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Guido F. Pauli
- Pharmacognosy Institute and Department of Pharmaceutical Sciences (PSCI), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Ana K. Bedran-Russo
- Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, WI, 53233, United States’
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
5
|
Reis M, Alania Y, Leme-Kraus A, Free R, Joester D, Ma W, Irving T, Bedran-Russo AK. The stoic tooth root: how the mineral and extracellular matrix counterbalance to keep aged dentin stable. Acta Biomater 2022; 138:351-360. [PMID: 34740855 PMCID: PMC8815755 DOI: 10.1016/j.actbio.2021.10.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
Aging is a physiological process with profound impact on the biology and function of biosystems, including the human dentition. While resilient, human teeth undergo wear and disease, affecting overall physical, psychological, and social human health. However, the underlying mechanisms of tooth aging remain largely unknown. Root dentin is integral to tooth function in that it anchors and dissipates mechanical load stresses of the tooth-bone system. Here, we assess the viscoelastic behavior, composition, and ultrastructure of young and old root dentin using nano-dynamic mechanical analysis, micro-Raman spectroscopy, small angle X-ray scattering, atomic force and transmission electron microscopies. We find that the root dentin overall stiffness increases with age. Unlike other mineralized tissues and even coronal dentin, however, the ability of root dentin to dissipate energy during deformation does not decay with age. Using a deconstruction method to dissect the contribution of mineral and organic matrix, we find that the damping factor of the organic matrix does deteriorate. Compositional and ultrastructural analyses revealed higher mineral-to-matrix ratio, altered enzymatic and non-enzymatic collagen cross-linking, increased collagen d-spacing and fibril diameter, and decreased abundance of proteoglycans and sulfation pattern of glycosaminoglycans . Therefore, even in the absence of remodeling, the extracellular matrix of root dentin shares traits of aging with other tissues. To explain this discrepancy, we propose that altered matrix-mineral interactions, possibly mediated by carbonate ions sequestered at the mineral interface and/or altered glycosaminoglycans counteract the deleterious effects of aging on the structural components of the extracellular matrix. STATEMENT OF SIGNIFICANCE: Globally, a quarter of the population will be over 65 years old by 2050. Because many will retain their dentition, it will become increasingly important to understand and manage how aging affects teeth. Dentin is integral to the protective, biomechanical, and regenerative features of teeth. Here, we demonstrate that older root dentin not only has altered mechanical properties, but shows characteristic shifts in mineralization, composition, and post-translational modifications of the matrix. This strongly suggests that there is a mechanistic link between mineral and matrix components to the biomechanical performance of aging dentin with implications for efforts to slow or even reverse the aging process.
Collapse
Affiliation(s)
- Mariana Reis
- Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA,Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yvette Alania
- Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA,Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ariene Leme-Kraus
- Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Free
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology. Chicago, IL, USA
| | - Thomas Irving
- Department of Biological Sciences, Illinois Institute of Technology. Chicago, IL, USA
| | - Ana K. Bedran-Russo
- Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA,Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Alania Y, Zhou B, Reis M, Leme-Kraus AA, McAlpine JB, Chen SN, Pauli GF, Bedran-Russo AK. Paradoxical effects of galloyl motifs in the interactions of proanthocyanidins with collagen-rich dentin. J Biomed Mater Res A 2022; 110:196-203. [PMID: 34309176 PMCID: PMC8900943 DOI: 10.1002/jbm.a.37276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/02/2021] [Accepted: 07/11/2021] [Indexed: 01/03/2023]
Abstract
Plant-derived proanthocyanidins (PACs) mediate physicochemical modifications to the dentin extracellular matrix (ECM). The structure-activity relationships of PACs remain largely unknown, mostly due to the varied complex composition of crude extracts, as well as the challenges of purification and mechanistic assessment. To assess the role of galloylated PACs as significant contributors to high yet unstable biomodification activity to the dentin ECM, we removed the galloyl moieties (de-galloylation) via enzymatic hydrolysis from three galloyl-rich PAC-containing extracts (Camellia sinensis, Vitis vinifera, and Hamamelis virginiana). The biomechanical and biological properties of dentin were assessed upon treatment with these extracts vs. their de-galloylated counterparts. An increase in the complex modulus of the dentin matrix was found with all extracts, however, the crude extract was significantly higher when compared to the de-galloylated version. Exhibiting the highest content of galloylated PACs among the investigated plants, Camellia sinensis crude extract also exhibited the biggest relapse in mechanical properties after one-month incubation. De-galloylation did not modify the damping capacity of dentin ECM. Moreover, PAC-mediated protection against proteolytic degradation was unaffected by de-galloylation. The de-galloylation experiments confirmed that gallic acid in galloylated rich-PAC extracts drive stronger yet significantly less sustained mechanical effects in dentin ECM.
Collapse
Affiliation(s)
- Yvette Alania
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612,Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, WI 53233
| | - Bin Zhou
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612
| | - Mariana Reis
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612,Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, WI 53233
| | - Ariene A. Leme-Kraus
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612
| | - James B. McAlpine
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612
| | - Shao-Nong Chen
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612
| | - Guido F. Pauli
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612
| | - Ana K. Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612,Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
7
|
Xiang K, Chen L, Chen W, Yang D. Remineralization of dentin induced by a compound of polyamide-amine and chlorhexidine in a resin dentin bonding microenvironment. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:472. [PMID: 33850869 PMCID: PMC8039710 DOI: 10.21037/atm-21-472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The purpose of this study was to investigate the effect of a complex of polyamide-amine dendrimer (PAMAM) and chlorhexidine gluconate (CG) on remineralization of dentin in an artificial simulated resin dentin bonding microenvironment. Methods The structure of this complex was characterized by FT-IR. Twelve standard dentin samples were randomly divided into four treatment fluid groups namely a PAMAM group, CG group, PAMAM + CG group, and deionized water group. A microenvironmental mineralization model was established in vitro with 50 µm gap width between resin and dentin. The dentin surface was observed by a scanning electron microscope (SEM), and the chemical structure of the surface was analyzed by X-ray energy spectrum (EDS), X-ray diffraction (XRD), and laser Raman spectroscopy. Results SEM showed the density of dentinal tubules exposed in the PAMAM group decreased after a 14-day immersion, with corn rod-shaped crystal structures gathered around the tubules. In addition, visible mineralization occurred in partial areas of the CG group, rod-shaped crystals and in comparison, dentinal tubules in the PAMAM + CG group were almost completely covered by flaky crystal structures. Raman spectrum analysis showed that crystals formed by PAMAM, CG, and PAMAM + CG solution all had strong phosphate characteristic peaks, indicating the presence of hydroxyapatite (HA), that of the PAMAM + CG group was the strongest. The EDS results showed that the Ca and P levels of the PAMAM group and the CG group were slightly higher than those of the deionized water group, while PAMAM + CG group significantly higher than the others, Ca/P value approaching 1.67. The results of XRD showed the characteristic peaks of hydroxyapatite detected by the PAMAM + CG group at 2θ=26.0 (002), 2θ=32.0 (211), and 2θ=33.0 (112) were high and sharp, with a few diffraction line burrs indicating it had high crystallinity and purity. The Scherrer equation results showed that the appearance and size of the grains formed by the PAMAM + CG group were basically consistent with those of healthy dentin. Conclusions Altogether, the compound of polyamide-amine dendrimer and chlorhexidine could induce the remineralization of human dentin in a resin dentin bonding microenvironment with a gap of 50 µm to form a crystal structure similar to dentin hydroxyapatite.
Collapse
Affiliation(s)
- Kezhen Xiang
- Department of Endodontics, Stomatological Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Liang Chen
- Department of Endodontics, Stomatological Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Wang Chen
- Department of Endodontics, Stomatological Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital Affiliated to Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Effect of TiF 4 varnish after pre-treatment with proanthocyanidin or chlorhexidine on the progression of erosive dentin loss in the presence or absence of the demineralized organic matrix. J Mech Behav Biomed Mater 2020; 115:104287. [PMID: 33352427 DOI: 10.1016/j.jmbbm.2020.104287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 11/23/2022]
Abstract
This study evaluated the protective effect of TiF4 varnish, after pre-treatment with proantocyanidin or chlorhexidine, on the progression of erosive dentin loss (EDL), under the presence or absence of the demineralized organic matrix (DOM). Bovine root dentin samples were eroded for 30 min (0.1% citric acid, pH 2.5) and the loss was measured by profilometry. Half of them were subjected to the DOM removal using collagenase for 4 days, while the other half remained immersed in water. The removal of DOM was checked by profilometry. Samples were divided into 24 groups (n = 15) according to the factors: 1- With or without DOM; 2- Pre-treatment with 0.012% chlorhexidine gel, 10% proanthocyanidin gel or untreated for 1 min; 3-Final Treatment with TiF4 varnish, NaF varnish, placebo varnish or untreated for 6 h. The samples were submitted to a pH cycling for 5 days: 0.1% citric acid (4 × 90s/day) and artificial saliva between the challenges. The final profile was obtained for the calculation of EDL (μm, three-way ANOVA/Tukey test). When DOM was preserved, the EDL was lower compared to the condition without DOM (7.08 ± 4.03 μm and 9.80 ± 3.79 μm, p < 0.001, respectively), regardless of the treatments. The pre-treatment had no influence on the progression of EDL (p = 0.637), while the final treatment (TiF4 varnish only, 6.77 ± 4.08 μm) was effective in reducing the progression of EDL (NaF varnish: 9.52 ± 4.02 μm; Placebo varnish: 8.64 ± 4.06 μm and no treatment: 8.80 ± 3.95 μm). It can be concluded that DOM has important protective effect on the progression of EDL. TiF4 was the unique treatment capable of reducing EDL progression, regardless of the pre-treatment of DOM.
Collapse
|
9
|
Wanchoo A, Zhang W, Ortiz-Urquiza A, Boswell J, Xia Y, Keyhani NO. Red Imported Fire Ant ( Solenopsis invicta) Chemosensory Proteins Are Expressed in Tissue, Developmental, and Caste-Specific Patterns. Front Physiol 2020; 11:585883. [PMID: 33192598 PMCID: PMC7646262 DOI: 10.3389/fphys.2020.585883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
The red imported fire ant, Solenopsis invicta, is a eusocial invasive insect that has spread worldwide. Chemosensory proteins (CSPs) are ligand-binding proteins that participate in a diverse range of physiological processes that include olfaction and chemical transport. Here, we performed a systematic survey of the expression of the 21 gene S. invicta CSP family that includes at least two groups of apparent S. invicta-specific gene expansions. These data revealed caste, tissue, and developmental stage-specific differential expression of the SiCSPs. In general, moderate to high SiCSP expression was seen in worker antennae and abdomen tissues with lower expression in head/thorax regions. Male and female alates showed high antennal expression of fewer SiCSPs, with the female alate thorax showing comparatively high SiCSP expression. SiCSP expression was lower in male alates tissues compared to workers and female alates, albeit with some highly expressed SiCSPs. SiCSP expression was low during development including in eggs, larvae (early and late instars), and pupae. Global analyses revealed examples of conserved, divergent, and convergent SiCSP expression patterns linked to phylogenetic relationships. The developmental and caste-specific variation seen in SiCSP expression patterns suggests specific functional diversification of CSPs that may translate into differential chemical recognition and communication among individuals and/or reflect other cellular roles of CSPs. Our results support a model for CSPs acting as general ligand carriers involved in a wide range of physiological processes beyond olfaction. As compared to the expression patterns of the S. invicta odorant binding proteins (OBPs), an inverse correlation between SiOBP and SiCSP expression was seen, suggesting potential complementary and/or compensatory functions between these two classes of ligand carriers.
Collapse
Affiliation(s)
- Arun Wanchoo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Wei Zhang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| | - Almudena Ortiz-Urquiza
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - John Boswell
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Ozan G, Sar Sancakli H, Yucel T. Effect of black tea and matrix metalloproteinase inhibitors on eroded dentin in situ. Microsc Res Tech 2020; 83:834-842. [PMID: 32196821 DOI: 10.1002/jemt.23475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/03/2020] [Accepted: 03/08/2020] [Indexed: 01/08/2023]
Abstract
Purpose of this in situ study was to evaluate the surface properties of eroded dentin specimens activated with three different matrix metalloproteinase (MMP) inhibitors (chlorhexidine [CHX], fluoride, green tea), black tea, and water. One hundred eighty dentin samples were prepared from extracted third molars and then samples divided into six groups. Ten volunteers were carried three specimens of each group, on acrylic palatal appliances, which were fabricated exactly for them (n = 3). Erosive cycles were done by immersing appliances in cup containing Cola and was followed by rinsing with test solutions. Microhardness values were measured. Surface properties were investigated by atomic force microscopy (AFM). Lowest change in microhardness was shown in fluoride group whereas negative control group (water) had the highest change. There were no statistically significant differences among surface roughness changes (p > .05). The least change in microhardness was seen in the fluoride group (13.05 ± 8.07), while the control group showed the highest change (33.80 ± 12.42) and was statistically significant when compared to other groups (p < .05). Besides lowest depth, values were shown in fluoride group as well. AFM evaluations showed macromolecular deposits on surfaces of fluoride, CHX, and black tea groups. No superior results were detected in CHX + fluoride group and black tea showed similar surface characteristics as green tea. Mouthrinses containing not only green tea but also black tea could be beneficial for patients with exposed dentin surfaces. Catechines and theaflavins in teas could be useful for improving surface quality.
Collapse
Affiliation(s)
- Gunce Ozan
- Department of Restorative Dentistry, Istanbul University, Istanbul, Turkey
| | - Hande Sar Sancakli
- Department of Restorative Dentistry, Istanbul University, Istanbul, Turkey
| | - Taner Yucel
- Department of Restorative Dentistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
11
|
Alania Y, Creighton J, Trevelin LT, Zamperini CA, Bedran-Russo AK. Regional contribution of proteoglycans to the fracture toughness of the dentin extracellular matrix. J Biomech 2020; 101:109633. [PMID: 32035660 DOI: 10.1016/j.jbiomech.2020.109633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 12/11/2022]
Abstract
This study investigated the contribution of small leucine rich proteoglycans (SLRPs) to the fracture toughness of the dentin extracellular matrix (ECM) by enzymatically-assisted selective removal of glycosaminoglycan chains (GAGs) and proteoglycans (PGs) core protein. We adapted the Mode III trouser tear test to evaluate the energy required to tear the dentin ECM. Trouser-shaped dentin specimens from crown and root were demineralized. Depletion of GAGs and PGs followed enzymatic digestion using chondroitinase ABC (c-ABC) and matrix metalloproteinase 3 (MMP-3), respectively. The legs from specimen were stretched under tensile force and the load at tear propagation was determined to calculate the tear energy (T, kJ/m2). SLRPs decorin and biglycan were visualized by immunohistochemistry and ECM tear pattern was analyzed in SEM. Results showed T of crown ECM was not affected by PGs/GAGs depletion (p = 0.799), whereas the removal of PGs significantly reduced T in root dentin ECM (p = 0.001). Root dentin ECM exhibited higher T than crown (p < 0.03), however no regional difference are present after PG depletion (p = 0.480). Immunohistochemistry confirmed removal of GAGs and PGs. SEM images showed structural modifications after PGs/GAGs removal such as enlargement of dentinal tubules, increased interfibrillar spaces and presence of untwisted fibrils with increased diameter. Findings indicate that the capacity of the PGs to unfold and untwist contribute to the dentin ECM resistance to tear, possibly influencing crack growth propagation. The regional differences are likely an evolutionary design to increase tooth survival, that undergoes repetitive mechanical loading and load stress dissipation over a lifetime of an individual.
Collapse
Affiliation(s)
- Yvette Alania
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL 60612, USA
| | - Johnathon Creighton
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL 60612, USA
| | - Livia T Trevelin
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL 60612, USA; Department of Restorative Dentistry, School of Dentistry, Municipal University of São Caetano do Sul, Rua Santo Antônio 50, São Caetano do Sul, São Paulo 09521-160, Brazil
| | - Camila A Zamperini
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL 60612, USA
| | - Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Bond stability of conventional adhesive system with MMP inhibitors to superficial and deep dentin. J Mech Behav Biomed Mater 2019; 100:103402. [DOI: 10.1016/j.jmbbm.2019.103402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 11/22/2022]
|
13
|
Nosrati R, Kheirouri S, Ghodsi R, Ojaghi H. The effects of zinc treatment on matrix metalloproteinases: A systematic review. J Trace Elem Med Biol 2019; 56:107-115. [PMID: 31442948 DOI: 10.1016/j.jtemb.2019.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Zinc (Zn) acts as a cofactor of matrix metalloproteinases (MMPs) and is vital for their activity and controlling their expression. Alteration of Zn in the body could affect the expression, activity, and destructive impacts of MMPs. OBJECTIVE This systematic review aimed to summarize existing evidence on the effects of Zn treatment on the expression and activity of MMPs. METHOD International sources from Pub Med, Scopus and Google Scholar were searched for the original and English-language studies, published up to the end of May 2018. RESULTS During the initial search, 179 records were found, and 135 articles of them remained after the exclusion of duplicate articles. 47 studies met the inclusion criteria, after multiple stages of screening and critical reviews of articles. CONCLUSION Approximately 62% of the included studies (29 of 47) showed an inhibitory impact of Zn on MMPs production and activities. The inhibitory or stimulatory effect of Zn on MMPs seems to depend on physiological conditions of the cells or animals used, dose of Zn used, and duration of treatment.
Collapse
Affiliation(s)
- Rahmat Nosrati
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ramin Ghodsi
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Ojaghi
- Department of Ophthalmology, Ardabil University of Medical Sciences, Iran
| |
Collapse
|
14
|
UVA-activated riboflavin promotes collagen crosslinking to prevent root caries. Sci Rep 2019; 9:1252. [PMID: 30718745 PMCID: PMC6362121 DOI: 10.1038/s41598-018-38137-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/13/2018] [Indexed: 11/09/2022] Open
Abstract
Root caries is an increasingly problem in aging societies with severe implications for the general health and wellbeing of large numbers of people. Strengthening type-I collagen, a major organic component of human dentin, has proved effective in preventing root caries. This study sought to determine whether exposure to riboflavin followed by UVA irradiation (RF/UVA) could promote additional collagen crosslinking, and thus improve the acid and enzymatic resistance of human dentin under simulated oral environments. If so, it could offer potential for treatment of the intractable problem of root caries. The greatest flexural strengths were found in dentin exposed to a 0.1% riboflavin solution for 1 minute followed by 1,600 mW/cm2 UVA irradiation for 10 minutes. Mineral loss and lesion depth were significantly lower in the RF/UVA group than in the control group. The microstructures of dentinal tubules and collagen networks after RF/UVA treatment retained their original forms after acidic and enzymatic degradation. In conclusion, RF/UVA treatment may be a new method for preventing root caries with promising prospects for clinical application.
Collapse
|
15
|
Aydin B, Leme-Kraus AA, Vidal CMP, Aguiar TR, Phansalkar RS, Nam JW, McAlpine JB, Chen SN, Pauli GF, Bedran-Russo AK. Evidence to the role of interflavan linkages and galloylation of proanthocyanidins at sustaining long-term dentin biomodification. Dent Mater 2018; 35:328-334. [PMID: 30580969 DOI: 10.1016/j.dental.2018.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/13/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The interactivity of proanthocyanidins (PACs) with collagen modulates dentin matrix biomechanics and biostability. Herein, PAC extracts selected based on structural diversity were investigated to determine key PAC features driving sustained effects on dentin matrices over a period of 18months. METHODS The chemical profiles of PAC-rich plant sources, Pinus massoniana (PM), Cinnamomum verum (CV) and Hamamelis virginiana (HV) barks, as well as Vitis vinifera (VV) seeds, were obtained by diol HPLC analysis after partitioning of the extracts between methyl acetate and water. Dentin matrices (n=15) were prepared from human molars to determine the apparent modulus of elasticity over 18months of aging. Susceptibility of the dentin matrix to degradation by endogenous and exogenous proteases was determined by presence of solubilized collagen in supernatant, and resistance to degradation by bacterial collagenase, respectively. Data were analyzed using ANOVA and Games-Howell post hoc tests (α=0.05). RESULTS After 18months, dentin matrices modified by PM and CV extracts, containing only non-galloylated PACs, were highly stable mechanically (p<0.05). Dentin matrices treated with CV exhibited the lowest degradation by bacterial collagenase after 1h and 18months of aging (p<0.05), while dentin matrices treated with PM showed the least mass loss and collagen solubilization by endogenous enzymes over time (p<0.05). SIGNIFICANCE Resistance against long-term degradation was observed for all experimental groups; however, the most potent and long-lasting dentin biomodification resulted from non-galloylated PACs.
Collapse
Affiliation(s)
- Berdan Aydin
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ariene A Leme-Kraus
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Cristina M P Vidal
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Thaiane R Aguiar
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Rasika S Phansalkar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joo-Won Nam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - James B McAlpine
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA; Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shao-Nong Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA; Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Guido F Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA; Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA; Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Breschi L, Maravic T, Cunha SR, Comba A, Cadenaro M, Tjäderhane L, Pashley DH, Tay FR, Mazzoni A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent Mater 2018; 34:78-96. [DOI: 10.1016/j.dental.2017.11.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
|
17
|
Effect of Proanthocyanidin-enriched extracts on the inhibition of wear and degradation of dentin demineralized organic matrix. Arch Oral Biol 2017; 84:118-124. [PMID: 28987724 DOI: 10.1016/j.archoralbio.2017.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/07/2017] [Accepted: 09/24/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of Cranberry and Grape seed-enriched extract gels in inhibiting wear and degradation of demineralized organic matrix (DOM). DESIGN 225 dentin specimens obtained from bovine incisors were randomly allocated into 5 groups (n=45): 10% Grape seed extract gel (GSE), 10% Cranberry extract gel (CE), 0.012% Chlorhexidine gel (CX), 1.23% NaF gel (F), and no active compound gel (P, placebo). Before the treatments, samples were demineralized by immersion in 0.87M citric acid, pH 2.3 (36h). Then, the studied gels were applied once over dentin for 1min. Next, the samples were immersed in artificial saliva containing collagenase obtained from Clostridium histolyticum for 5days. The response variable for dentin wear was depth of dentin loss measured by profilometry and for collagen degradation was hydroxyproline determination. Data were analyzed by ANOVA followed by Tukey's test and Pearson Correlation Test (p<0.05). RESULTS Grape seed extract significantly reduced dentin wear compared to the other groups (p<0.05). Cranberry extract and Chlorhexidine did not differ statistically and were able to reduce wear when compared to NaF and placebo treatments. The hydroxyproline analysis showed that there was no significant difference among groups for all treatments (p<0.05). Correlation analysis showed a significant correlation between the amount of degraded DOM evaluated by profilometry and the determination of hydroxyproline. CONCLUSION Cranberry extract was able to reduce the dentin wear and collagen degradation, likely due to the proanthocyanidin content and its action. Therefore, Cranberry could be suggested as an interesting natural-based agent to prevent dentin erosion.
Collapse
|
18
|
Fawzy AS, Priyadarshini BM, Selvan ST, Lu TB, Neo J. Proanthocyanidins-Loaded Nanoparticles Enhance Dentin Degradation Resistance. J Dent Res 2017; 96:780-789. [PMID: 28182862 DOI: 10.1177/0022034517691757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies reported that grapeseed extract (GSE), which is rich in proanthocyanidins (PAs), improves the biodegradation resistance of demineralized dentin. This study aimed to investigate the effect of a new GSE delivery strategy to demineralized dentin through loading into biodegradable polymer poly-[lactic-co-glycolic acid] (PLGA) nanoparticles on the biodegradation resistance in terms of structural stability and surface/bulk mechanical and biochemical properties with storage time in collagenase-containing solutions. GSE-loaded nanoparticles were synthetized by nanoprecipitation at PLGA/GSE (w/w) ratios of 100:75, 100:50, and 100:25 and characterized for their morphological/structural features, physicochemical characteristics, and drug loading, entrapment, and release. Nanoparticle suspensions in distilled water (12.5% w/v) were applied (1 min) to demineralized dentin specimens by simulating pulpal pressure. The nanoparticle delivery was investigated by scanning electron microscopy (SEM)/transmission electron microscopy (TEM), and the GSE release from the delivered nanoparticles was further characterized. The variations in surface and bulk mechanical properties were characterized in terms of reduced elastic-modulus, hardness, nanoindentation testing, and apparent elastic-modulus with a storage time up to 3 mo. Hydroxyproline release with exposure to collagenase up to 7 d was estimated. An etch-and-rinse dentin adhesive was applied to investigate the morphology of the resin-dentin interface after nanoparticle delivery. Treatment with the GSE-loaded nanoparticles enhanced the collagen fibril structural resistance, reflected from the TEM investigation, and improved the biomechanical and biochemical stability of demineralized dentin. Nanoparticles having PLGA/GSE of 100:75 (w/w) showed the highest cumulative GSE release and were associated with the best improvement in biodegradation resistance. TEM/SEM showed the ability of the nanoparticles to infiltrate dentinal tubules' main and lateral branches. SEM revealed the formation of a uniform hybrid layer and well-formed resin tags with the presence of numerous nanoparticles located within the dentinal tubules and/or attached to the resin tag. This study demonstrated the potential significance of delivering collagen crosslinkers loaded into biodegradable polymer nanoparticles through the dentinal tubules of demineralized dentin on the biodegradation resistance.
Collapse
Affiliation(s)
- A S Fawzy
- 1 Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - B M Priyadarshini
- 1 Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - S T Selvan
- 2 Institute of Materials Research and Engineering (IMRE), Innovis, Singapore
| | - T B Lu
- 3 Electron Microscopy Unit, YLLSOM, National University of Singapore, Singapore
| | - J Neo
- 4 Discipline of Prosthodontics, Operative Dentistry and Endodontics, Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
19
|
Serum Heme Oxygenase-1 and BMP-7 Are Potential Biomarkers for Bone Metabolism in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7870925. [PMID: 27314037 PMCID: PMC4899581 DOI: 10.1155/2016/7870925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 02/05/2023]
Abstract
Backgrounds. Heme oxygenase-1 (HO-1) has been reported to play a regulatory role in osteoclastogenesis. Bone morphogenetic protein (BMP) pathways induce osteoblastic differentiation and bone remodeling. Aims. To identify serum levels of HO-1, BMP-7, and Runt related-transcription factor 2 (Runx2) in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS) and to investigate the relationships between HO-1, BMP-7, Runx2, and other common biomarkers for bone metabolism. Results. Serum levels of HO-1 and BMP-7 were revealed to be significantly higher in patients with RA or AS than in healthy controls (p < 0.01). In RA group, HO-1 was positively correlated with BMP-7, Runx2, and tartrate-resistant acid phosphatase-5b (TRAP-5b) (p < 0.05, resp.), BMP-7 was positively correlated with Runx2 and TRAP-5b (p < 0.05, resp.), and Runx2 was negatively correlated with N-terminal midfragment of osteocalcin (NMID) (p < 0.05). In AS group, we observed identical correlation between HO-1 and BMP-7, but opposite correlations between BMP-7 and TRAP-5b and between Runx2 and NMID, when comparing with the RA cohort. Conclusion. Our findings suggest that HO-1 and BMP-7 are potential biomarkers for bone metabolism in patients with RA and AS. The different correlations between the bone markers point to distinct differences in bone remodeling pathways in the two types of arthritis.
Collapse
|
20
|
van Strijp AJP, Takatsuka T, Sono R, Iijima Y. Inhibition of dentine collagen degradation by hesperidin: an in situ study. Eur J Oral Sci 2015; 123:447-52. [PMID: 26513330 DOI: 10.1111/eos.12225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 11/28/2022]
Abstract
Dentine caries is a process of demineralization and subsequent degradation of the collagenous matrix. Host-derived proteolytic enzymes, such as matrix metalloproteinases (MMPs), play a role in this process of dentine collagen degradation. Hampering this degradation retards the caries process. Dietary antioxidants, such as the flavonoid hesperidin, can inhibit the proteolytic activity of MMPs and act as natural stabilizers of collagen. The aim of this study was to investigate the anti-collagenolytic activity of hesperidin in an in situ model. A single-blind, split-mouth, in situ experiment was designed. Seventeen participants received two completely demineralized dentine specimens placed contralaterally in the buccal flanges of their partial prosthesis. During the 4-wk experimental period, the participants immersed the dentine specimens in a test solution [1,000 parts per million (p.p.m.) hesperidin] or a control solution (saline), twice daily for 3 min. After the in situ period, the specimens were retrieved and their collagen content was determined. A saliva sample was taken at the start and at the end of the experimental period, to assess collagenolytic activity. A significant protection of collagen, of 24%, was observed in the hesperidin-treated specimens compared with the control-treated specimens. No correlation was found between salivary collagenolytic activity and loss of collagen in the control-treated specimens. The results of this in situ study show that hesperidin could play a role in the preservation of dentine collagen matrix.
Collapse
Affiliation(s)
- Augustinus J P van Strijp
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | | | | | - Youichi Iijima
- Department of Oral Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
21
|
Hashimoto M, Kawai K, Kawakami H, Imazato S. Matrix metalloproteases inhibition and biocompatibility of gold and platinum nanoparticles. J Biomed Mater Res A 2015; 104:209-17. [PMID: 26282184 DOI: 10.1002/jbm.a.35557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/07/2022]
Abstract
Matrix metalloprotease (MMP) inhibitors improve the longevity of dental adhesives/tooth bonds; however, biocompatibility is required for their clinical use. This study evaluated the inhibition of MMPs and toxicity of two gold (AuNPs) and platinum nanoparticles (PtNPs) as possible compounds for use in dental adhesives. The MMP assay for studying the interaction of MMPs and nanoparticles (NPs) was evaluated by an MMP assay kit and gelatin zymography. Cultured L929 fibroblast cells or RAW264 macrophages were exposed to NPs. The cellular responses to NPs were examined using cytotoxic (cell viability) and genotoxic assays (comet assay), and transmission electron microscopic (TEM) analysis. The mechanical properties (elastic modulus) of the experimental resin loaded with NPs were examined using thermomechanical analysis. All NPs inhibited MMP activity at relatively low concentrations. The NPs inhibit MMPs by chelating with the Zn(2+) bound in the active sites of MMPs. No cytotoxic and genotoxic effects were found in AuNPs, whereas the PtNPs possessed both adverse effects. In TEM analysis, the NPs were localized mainly in lysosomes without penetration into nuclei. The mechanical properties of the resins increased when AuNPs were added in resins, but not by PtNPs. AuNPs are attractive candidates to inhibit MMPs and improve the mechanical properties of resins without cytotoxic/genotoxic effects to cells, and therefore should be suitable for applications in adhesive resin systems.
Collapse
Affiliation(s)
- Masanori Hashimoto
- Department of Biomaterials Science, Osaka University, Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koji Kawai
- Miyoshi Oil & Fat Co., Ltd., Research & Development Department, Chemical Division, Horikiri Katsushika-Ku, Tokyo, 124-8510, Japan
| | - Hayato Kawakami
- Miyoshi Oil & Fat Co., Ltd., Research & Development Department, Chemical Division, Horikiri Katsushika-Ku, Tokyo, 124-8510, Japan
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University, Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Buzalaf MAR, Charone S, Tjäderhane L. Role of Host-Derived Proteinases in Dentine Caries and Erosion. Caries Res 2015; 49 Suppl 1:30-7. [DOI: 10.1159/000380885] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Demineralization in dentinal caries and erosion exposes dentine organic matrix. This exposed matrix, containing type I collagen and non-collagenous proteins, is then degraded by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. The knowledge of the identities and function of these enzymes in dentine has accumulated only within the last 15 years, but has already formed a field of research called ‘dentine degradomics'. This research has demonstrated the role of endogenous collagenolytic enzymes in caries and erosion development. In demineralized dentine, the enzymes degrade triple-helical collagen molecules, leading to the gradual loss of collagen matrix. Even before that, they can cleave off the terminal non-helical ends of collagen molecules called telopeptides, leading to the structural changes at the intramolecular gap areas, which may affect or even prevent intrafibrillar remineralization, which is considered essential in restoring the dentine's mechanical properties. They may also cause the loss of non-collagenous proteins that could serve as nucleation sites for remineralization. Here we review the findings demonstrating that inhibition of salivary or dentine endogenous MMPs and cysteine cathepsins may provide preventive means against the progression of caries or erosion. Furthermore, we also suggest the future directions for the new experimental preventive research to gain more knowledge of the enzymes and their function during and after dentine demineralization, and the pathways to find the clinically acceptable means to prevent the functional activity of these enzymes.
Collapse
|
23
|
Tjäderhane L, Buzalaf MAR, Carrilho M, Chaussain C. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'. Caries Res 2015; 49:193-208. [PMID: 25661522 DOI: 10.1159/000363582] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Dentin organic matrix, with type I collagen as the main component, is exposed after demineralization in dentinal caries, erosion or acidic conditioning during adhesive composite restorative treatment. This exposed matrix is prone to slow hydrolytic degradation by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. Here we review the recent findings demonstrating that inhibition of salivary or dentin endogenous collagenolytic enzymes may provide preventive means against progression of caries or erosion, just as they have been shown to retain the integrity and improve the longevity of resin composite filling bonding to dentin. This paper also presents the case that the organic matrix in caries-affected dentin may not be preserved as intact as previously considered. In partially demineralized dentin, MMPs and cysteine cathepsins with the ability to cleave off the terminal non-helical ends of collagen molecules (telopeptides) may lead to the gradual loss of intramolecular gap areas. This would seriously compromise the matrix ability for intrafibrillar remineralization, which is considered essential in restoring the dentin's mechanical properties. More detailed data of the enzymes responsible and their detailed function in dentin-destructive conditions may not only help to find new and better preventive means, but better preservation of demineralized dentin collagenous matrix may also facilitate true biological remineralization for the better restoration of tooth structural and mechanical integrity and mechanical properties.
Collapse
Affiliation(s)
- Leo Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|