1
|
Xu M, Trung TS, Zhu Z, Li S, Gong S, Cheng N, Zhou P, Wang S. ESR1-dependent suppression of LCN2 transcription reverses autophagy-linked ferroptosis and enhances sorafenib sensitivity in hepatocellular carcinoma. J Physiol Biochem 2025:10.1007/s13105-025-01073-y. [PMID: 40126852 DOI: 10.1007/s13105-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
Sorafenib resistance is a significant hurdle in the treatment landscape of hepatocellular carcinoma (HCC). Lipocalin 2 (LCN2), a secretory glycoprotein that transports lipophilic molecules across cell membranes, is thought to affect the s therapeutic efficacy of sorafenib. Despite its importance, the detailed regulatory pathways involving LCN2 are still being deciphered. We probed the correlation between LCN2 expression and sorafenib resistance in HCC cells. Through the modulation of LCN2 levels, we investigated its role in cell proliferation, apoptosis, and its regulatory effects on autophagy-driven ferroptosis. With the aid of hTFtarget and JASPAR databases, ESR1 was pinpointed as a transcriptional inhibitor of LCN2. The impact of the ESR1-LCN2 axis on sorafenib resistance in HCC was then examined in vitro and validated in a xenograft tumor mouse model. In HCC cells, elevated LCN2 levels were found to be associated with resistance to sorafenib. Depletion of LCN2 resulted in attenuated HCC cell growth and elevated rates of apoptosis and ferroptosis. Overexpression of LCN2 had the opposite effect, promoting cell proliferation and suppressing cell death pathways, a response that could be overridden by autophagy agonists. ESR1 suppressed LCN2 transcription, which in turn activated autophagy-mediated ferroptosis, mitigating sorafenib tolerance in HCC and enhancing the therapeutic index. ESR1 targets LCN2 transcription to initiate autophagy-driven ferroptosis, thereby reducing sorafenib resistance in HCC cells.
Collapse
Affiliation(s)
- Mingfang Xu
- Department of Otolaryngology Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Tran Sy Trung
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Zhiyong Zhu
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Shijia Li
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Shicheng Gong
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Nuo Cheng
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Peng Zhou
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China.
| |
Collapse
|
2
|
Zimmerman SP, DeGraw LB, Counter CM. The essential clathrin adapter protein complex-2 is tumor suppressive specifically in vivo. Nat Commun 2025; 16:2254. [PMID: 40050266 PMCID: PMC11885535 DOI: 10.1038/s41467-025-57521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
The microenvironment is a rich source of new cancer targets. We thus used a targeted single-guide RNA library to screen a panel of human pancreatic cancer lines for genes uniquely affecting tumorigenesis. Here we show inactivation of the Adapter Protein complex-2 of clathrin-mediated endocytosis reduces cell growth in vitro, but completely oppositely, promotes tumor growth in vivo. In culture, loss of the complex reduces transferrin endocytosis and iron import required for cell fitness. In tumors, alternative iron transport pathways allow pro-tumor effects of Adapter Protein complex-2 loss to manifest. In the most sensitive case, this is attributed to reprogramming the plasma membrane proteome, retaining integrins on the surface leading to Focal Adhesion Kinase phosphorylation and induction of proliferative signals. Adapter Protein complex-2 function in tumorigenesis is thus dependent upon the microenvironment, behaving as a common essential gene in culture via iron import, but as a tumor suppressor in tumors via integrin trafficking.
Collapse
Affiliation(s)
- Seth P Zimmerman
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Lili B DeGraw
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Christopher M Counter
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA.
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
3
|
Shin HJ, Kim KE, An HS, Jeong EA, Oh J, Sun Y, Park DJ, Lee J, Yang J, Roh GS. Carbon tetrachloride does not promote hepatic fibrosis in ob/ob mice via downregulation of lipocalin-2 protein. Redox Biol 2025; 80:103506. [PMID: 39832399 PMCID: PMC11787671 DOI: 10.1016/j.redox.2025.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/01/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
Although leptin-deficient ob/ob mice have been investigated to determine whether hepatic steatosis promotes susceptibility to hepatotoxic insults, carbon tetrachloride (CCl4)-induced hepatic fibrosis in ob/ob mice remains largely unknown. In this study, we evaluate the pathogenic mechanisms of hepatic fibrosis in CCl4-treated wild-type (WT) and ob/ob mice and analyze some parameters related to lipogenesis, inflammation, fibrosis, oxidative stress, apoptosis, and autophagy. CCl4 treatment attenuated liver weight and lipogenesis in ob/ob mice. Increased hepatic fibrosis-related proteins were reduced in CCl4-treated ob/ob mice compared with CCl4-treated WT mice. Specifically, the expression of lipocalin-2 (LCN2) was markedly reduced in CCl4-treated ob/ob mice versus CCl4-treated WT mice. Compared with CCl4-treated WT mice, CCl4-treated ob/ob mice had reduced expression of neutrophil-related inflammatory genes and proteins. Hepatic heme oxygenase-1 protein was reduced in CCl4-treated ob/ob mice compared with CCl4-treated WT mice. However, CCl4 did not promote hepatic apoptosis in ob/ob mice. Therefore, these findings highlight LCN2 as a key signaling factor in CCl4-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jiwon Oh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Yundong Sun
- Department of Anatomy and Convergence Medical Science, College of Medicine, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Dong-Ju Park
- Department of Anatomy and Convergence Medical Science, College of Medicine, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
4
|
Liu R, Cui H, Li D, Guo X, Zhang Z, Tan S, Zhu X. Roles and Mechanisms of Ferroptosis in Sorafenib Resistance for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:2493-2504. [PMID: 39717509 PMCID: PMC11665174 DOI: 10.2147/jhc.s500084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent malignant tumor, characterized by a poor prognosis. In recent decades, both the incidence and mortality rates of HCC have risen sharply. Sorafenib has emerged as the first conventional drug approved by the US Food and Drug Administration for first-line treatment in advanced HCC patients due to its favorable safety profile. However, its effectiveness is severely hindered by acquired drug resistance, which leads to only approximately 30% of HCC patients benefited from sorafenib therapy. Sorafenib resistance involves various mechanisms that inhibit cellular uptake of iron and reactive oxygen species (ROS). Consequently, ferroptosis a novel form of cell death contingent upon the accumulation of intracellular iron and ROS plays a critical role in mediating sorafenib resistance through the Hippo YAP pathway or Keap1-Nrf2 system. This review aimed to comprehensively elucidate the mechanisms underlying sorafenib resistance in HCC, particularly focusing on ferroptosis and its pathways, to provide valuable insights into targeting ferroptosis or its pathways for sorafenib-resistant HCC treatment.
Collapse
Affiliation(s)
- Ruyuan Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Huanyu Cui
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Di Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Xuefeng Guo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Shengkui Tan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Xiaonian Zhu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| |
Collapse
|
5
|
Martiniakova M, Mondockova V, Kovacova V, Babikova M, Zemanova N, Biro R, Penzes N, Omelka R. Interrelationships among metabolic syndrome, bone-derived cytokines, and the most common metabolic syndrome-related diseases negatively affecting bone quality. Diabetol Metab Syndr 2024; 16:217. [PMID: 39238022 PMCID: PMC11378428 DOI: 10.1186/s13098-024-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Metabolic syndrome (MetS), as a set of medical conditions including hyperglycemia, hypertension, abdominal obesity, and dyslipidemia, represents a highly prevalent disease cluster worldwide. The individual components of MetS together increase the risk of MetS-related disorders. Recent research has demonstrated that bone, as an endocrine organ, releases several systemic cytokines (osteokines), including fibroblast growth factor 23 (FGF23), lipocalin 2 (LCN2), and sclerostin (SCL). This review not only summarizes current knowledge about MetS, osteokines and the most common MetS-related diseases with a detrimental impact on bone quality (type 2 diabetes mellitus: T2DM; cardiovascular diseases: CVDs; osteoporosis: OP), but also provides new interpretations of the relationships between osteokines and individual components of MetS, as well as between osteokines and MetS-related diseases mentioned above. In this context, particular emphasis was given on available clinical studies. According to the latest knowledge, FGF23 may become a useful biomarker for obesity, T2DM, and CVDs, as FGF23 levels were increased in patients suffering from these diseases. LCN2 could serve as an indicator of obesity, dyslipidemia, T2DM, and CVDs. The levels of LCN2 positively correlated with obesity indicators, triglycerides, and negatively correlated with high-density lipoprotein (HDL) cholesterol. Furthermore, subjects with T2DM and CVDs had higher LCN2 levels. SCL may act as a potential biomarker predicting the incidence of MetS including all its components, T2DM, CVDs, and OP. Elevated SCL levels were noted in individuals with T2DM, CVDs and reduced in patients with OP. The aforementioned bone-derived cytokines have the potential to serve as promising predictors and prospective treatment targets for MetS and MetS-related diseases negatively affecting bone quality.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
6
|
Buniatian GH, Schwinghammer U, Tremmel R, Cynis H, Weiss TS, Weiskirchen R, Lauschke VM, Youhanna S, Ramos I, Valcarcel M, Seferyan T, Rahfeld J, Rieckmann V, Klein K, Buadze M, Weber V, Kolak V, Gebhardt R, Friedman SL, Müller UC, Schwab M, Danielyan L. Consequences of Amyloid-β Deficiency for the Liver. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307734. [PMID: 38430535 PMCID: PMC11095235 DOI: 10.1002/advs.202307734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/27/2024] [Indexed: 03/04/2024]
Abstract
The hepatic content of amyloid beta (Aβ) decreases drastically in human and rodent cirrhosis highlighting the importance of understanding the consequences of Aβ deficiency in the liver. This is especially relevant in view of recent advances in anti-Aβ therapies for Alzheimer's disease (AD). Here, it is shown that partial hepatic loss of Aβ in transgenic AD mice immunized with Aβ antibody 3D6 and its absence in amyloid precursor protein (APP) knockout mice (APP-KO), as well as in human liver spheroids with APP knockdown upregulates classical hallmarks of fibrosis, smooth muscle alpha-actin, and collagen type I. Aβ absence in APP-KO and deficiency in immunized mice lead to strong activation of transforming growth factor-β (TGFβ), alpha secretases, NOTCH pathway, inflammation, decreased permeability of liver sinusoids, and epithelial-mesenchymal transition. Inversely, increased systemic and intrahepatic levels of Aβ42 in transgenic AD mice and neprilysin inhibitor LBQ657-treated wild-type mice protect the liver against carbon tetrachloride (CCl4)-induced injury. Transcriptomic analysis of CCl4-treated transgenic AD mouse livers uncovers the regulatory effects of Aβ42 on mitochondrial function, lipid metabolism, and its onco-suppressive effects accompanied by reduced synthesis of extracellular matrix proteins. Combined, these data reveal Aβ as an indispensable regulator of cell-cell interactions in healthy liver and a powerful protector against liver fibrosis.
Collapse
Affiliation(s)
- Gayane Hrachia Buniatian
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Ute Schwinghammer
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Roman Tremmel
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
| | - Holger Cynis
- Department of Drug Design and Target ValidationFraunhofer Institute for Cell Therapy and ImmunologyWeinbergweg 2206120Halle (Saale)Germany
- Junior Research Group, Immunomodulation in Pathophysiological ProcessesFaculty of MedicineMartin‐Luther‐University Halle‐WittenbergWeinbergweg 2206120Halle (Saale)Germany
| | - Thomas S. Weiss
- Children's University Hospital (KUNO)University Hospital RegensburgFranz‐Josef‐Strauss‐Allee 1193053RegensburgGermany
| | - Ralf Weiskirchen
- Institute of Molecular PathobiochemistryExperimental Gene Therapy and Clinical ChemistryRWTH University Hospital AachenPauwelsstr. 3052074AachenGermany
| | - Volker M. Lauschke
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
- Department of Physiology and Pharmacology Karolinska InstituteStockholm171 77Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology Karolinska InstituteStockholm171 77Sweden
| | - Isbaal Ramos
- Innovative Technologies in Biological Systems SL (INNOPROT)BizkaiaDerio48160Spain
| | - Maria Valcarcel
- Innovative Technologies in Biological Systems SL (INNOPROT)BizkaiaDerio48160Spain
| | - Torgom Seferyan
- H. Buniatian Institute of BiochemistryNational Academy of Sciences of the Republic of Armenia (NAS RA)5/1 Paruir Sevak St.Yerevan0014Armenia
| | - Jens‐Ulrich Rahfeld
- Department of Drug Design and Target ValidationFraunhofer Institute for Cell Therapy and ImmunologyWeinbergweg 2206120Halle (Saale)Germany
| | - Vera Rieckmann
- Department of Drug Design and Target ValidationFraunhofer Institute for Cell Therapy and ImmunologyWeinbergweg 2206120Halle (Saale)Germany
| | - Kathrin Klein
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
| | - Marine Buadze
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Victoria Weber
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Valentina Kolak
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Rolf Gebhardt
- Rudolf‐Schönheimer Institute of BiochemistryFaculty of MedicineUniversity of LeipzigJohannisstraße 3004103LeipzigGermany
| | - Scott L. Friedman
- Division of Liver DiseasesIcahn School of Medicine at Mount Sinai1425 Madison AveNew YorkNY10029USA
| | - Ulrike C. Müller
- Institute for Pharmacy and Molecular Biotechnology IPMBDepartment of Functional GenomicsUniversity of HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Matthias Schwab
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- Departments of Biochemistry and Clinical Pharmacologyand Neuroscience LaboratoryYerevan State Medical University2‐ Koryun StYerevan0025Armenia
- Cluster of Excellence iFIT (EXC2180) “Image‐guided and Functionally Instructed Tumor Therapies”University of Tübingen72076TübingenGermany
| | - Lusine Danielyan
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
- Departments of Biochemistry and Clinical Pharmacologyand Neuroscience LaboratoryYerevan State Medical University2‐ Koryun StYerevan0025Armenia
| |
Collapse
|
7
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Structure, Functions, and Implications of Selected Lipocalins in Human Disease. Int J Mol Sci 2024; 25:4290. [PMID: 38673873 PMCID: PMC11050150 DOI: 10.3390/ijms25084290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).
Collapse
Affiliation(s)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
8
|
Yan L, Yang F, Wang Y, Shi L, Wang M, Yang D, Wang W, Jia Y, So KF, Zhang L. Stress increases hepatic release of lipocalin 2 which contributes to anxiety-like behavior in mice. Nat Commun 2024; 15:3034. [PMID: 38589429 PMCID: PMC11001612 DOI: 10.1038/s41467-024-47266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Chronic stress induces anxiety disorders via both neural pathways and circulating factors. Although many studies have elucidated the neural circuits involved in stress-coping behaviors, the origin and regulatory mechanism of peripheral cytokines in behavioural regulation under stress conditions are not fully understood. Here, we identified a serum cytokine, lipocalin 2 (LCN2), that was upregulated in participants with anxiety disorders. Using a mouse model of chronic restraint stress (CRS), circulating LCN2 was found to be related to stress-induced anxiety-like behaviour via modulation of neural activity in the medial prefrontal cortex (mPFC). These results suggest that stress increases hepatic LCN2 via a neural pathway, leading to disrupted cortical functions and behaviour.
Collapse
Affiliation(s)
- Lan Yan
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Fengzhen Yang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yajie Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Lingling Shi
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Mei Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Diran Yang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wenjing Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yanbin Jia
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Institute of Clinical Research for Mental Health, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Institute of Clinical Research for Mental Health, Jinan University, Guangzhou, China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
- Institute of Clinical Research for Mental Health, Jinan University, Guangzhou, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
9
|
Lee EH, Lee JH, Kim DY, Lee YS, Jo Y, Dao T, Kim KE, Song DK, Seo JH, Seo YK, Seong JK, Moon C, Han E, Kim MK, Ryu S, Shin M, Roh GS, Jung HR, Osborne TF, Ryu D, Jeon TI, Im SS. Loss of SREBP-1c ameliorates iron-induced liver fibrosis by decreasing lipocalin-2. Exp Mol Med 2024; 56:1001-1012. [PMID: 38622198 PMCID: PMC11058876 DOI: 10.1038/s12276-024-01213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 04/17/2024] Open
Abstract
Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Eun-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Do-Young Kim
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Young-Seung Lee
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Tam Dao
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, 16419, Republic of Korea
| | - Kyung Eun Kim
- Department of Anatomy, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Young-Kyo Seo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eugene Han
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Mi Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Seungwan Ryu
- Department of Surgery, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 42601, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hye Ra Jung
- Department of Pathology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Timothy F Osborne
- Institute for Fundamental Biomedical Research, Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, FL, 33701, USA
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea.
| |
Collapse
|
10
|
Rodriguez-Ramiro I, Pastor-Fernández A, López-Aceituno JL, Garcia-Dominguez E, Sierra-Ramirez A, Valverde AM, Martinez-Pastor B, Efeyan A, Gomez-Cabrera MC, Viña J, Fernandez-Marcos PJ. Pharmacological and genetic increases in liver NADPH levels ameliorate NASH progression in female mice. Free Radic Biol Med 2024; 210:448-461. [PMID: 38036067 DOI: 10.1016/j.freeradbiomed.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the fastest growing liver diseases worldwide, and oxidative stress is one of NASH main key drivers. Nicotinamide adenine dinucleotide phosphate (NADPH) is the ultimate donor of reductive power to a number of antioxidant defences. Here, we explored the potential of increasing NADPH levels to prevent NASH progression. We used nicotinamide riboside (NR) supplementation or a G6PD-tg mouse line harbouring an additional copy of the human G6PD gene. In a NASH mouse model induced by feeding mice a methionine-choline deficient (MCD) diet for three weeks, both tools increased the hepatic levels of NADPH and ameliorated the NASH phenotype induced by the MCD intervention, but only in female mice. Boosting NADPH levels in females increased the liver expression of the antioxidant genes Gsta3, Sod1 and Txnrd1 in NR-treated mice, or of Gsr for G6PD-tg mice. Both strategies significantly reduced hepatic lipid peroxidation. NR-treated female mice showed a reduction of steatosis accompanied by a drop of the hepatic triglyceride levels, that was not observed in G6PD-tg mice. NR-treated mice tended to reduce their lobular inflammation, showed a reduction of the NK cell population and diminished transcription of the damage marker Lcn2. G6PD-tg female mice exhibited a reduction of their lobular inflammation and hepatocyte ballooning induced by the MCD diet, that was related to a reduction of the monocyte-derived macrophage population and the Tnfa, Ccl2 and Lcn2 gene expression. As conclusion, boosting hepatic NADPH levels attenuated the oxidative lipid damage and the exhausted antioxidant gene expression specifically in female mice in two different models of NASH, preventing the progression of the inflammatory process and hepatic injury.
Collapse
Affiliation(s)
- Ildefonso Rodriguez-Ramiro
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain; Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - Andrés Pastor-Fernández
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - José Luis López-Aceituno
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Aranzazu Sierra-Ramirez
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, E28029, Spain; Centro de Investigaciones Biomédicas en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Spain
| | - Bárbara Martinez-Pastor
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain.
| |
Collapse
|
11
|
Roberts JL, Chiedo B, Drissi H. Systemic inflammatory and gut microbiota responses to fracture in young and middle-aged mice. GeroScience 2023; 45:3115-3129. [PMID: 37821753 PMCID: PMC10643610 DOI: 10.1007/s11357-023-00963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Age is a patient-specific factor that can significantly delay fracture healing and exacerbate systemic sequelae during convalescence. The basis for this difference in healing rates is not well-understood, but heightened inflammation has been suggested to be a significant contributor. In this study, we investigated the systemic cytokine and intestinal microbiome response to closed femur fracture in 3-month-old (young adult) and 15-month-old (middle-aged) female wild-type mice. Middle-aged mice had a serum cytokine profile that was distinct from young mice at days 10, 14, and 18 post-fracture. This was characterized by increased concentrations of IL-17a, IL-10, IL-6, MCP-1, EPO, and TNFα. We also observed changes in the community structure of the gut microbiota in both young and middle-aged mice that was evident as early as day 3 post-fracture. This included an Enterobacteriaceae bloom at day 3 post-fracture in middle-aged mice and an increase in the relative abundance of the Muribaculum genus. Moreover, we observed an increase in the relative abundance of the health-promoting Bifidobacterium genus in young mice after fracture that did not occur in middle-aged mice. There were significant correlations between serum cytokines and specific genera, including a negative correlation between Bifidobacterium and the highly induced cytokine IL-17a. Our study demonstrates that aging exacerbates the inflammatory response to fracture leading to high levels of pro-inflammatory cytokines and disruption of the intestinal microbiota.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
- College of Health Solutions, Arizona State University, 850 N 5th St, Office 360J, Phoenix, AZ, 85004, USA.
| | - Brandon Chiedo
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
| |
Collapse
|
12
|
Park S, Kim D, Kim J, Kwon HJ, Lee Y. SARS-CoV-2 infection induces expression and secretion of lipocalin-2 and regulates iron in a human lung cancer xenograft model. BMB Rep 2023; 56:669-674. [PMID: 37915137 PMCID: PMC10761745 DOI: 10.5483/bmbrep.2023-0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 07/10/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to various clinical symptoms including anemia. Lipocalin-2 has various biological functions, including defense against bacterial infections through iron sequestration, and it serves as a biomarker for kidney injury. In a human protein array, we observed increased lipocalin-2 expression due to parental SARS-CoV-2 infection in the Calu-3 human lung cancer cell line. The secretion of lipocalin-2 was also elevated in response to parental SARS-CoV-2 infection, and the SARS-CoV-2 Alpha, Beta, and Delta variants similarly induced this phenomenon. In a Calu-3 implanted mouse xenograft model, parental SARSCoV- 2 and Delta variant induced lipocalin-2 expression and secretion. Additionally, the iron concentration increased in the Calu-3 tumor tissues and decreased in the serum due to infection. In conclusion, SARS-CoV-2 infection induces the production and secretion of lipocalin-2, potentially resulting in a decrease in iron concentration in serum. Because the concentration of iron ions in the blood is associated with anemia, this phenomenon could contribute to developing anemia in COVID-19 patients. [BMB Reports 2023; 56(12): 669-674].
Collapse
Affiliation(s)
- Sangkyu Park
- Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jinsoo Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Younghee Lee
- Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Korea
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
13
|
Xu F, Ziebarth JD, Goeminne LJ, Gao J, Williams EG, Quarles LD, Makowski L, Cui Y, Williams RW, Auwerx J, Lu L. Gene network based analysis identifies a coexpression module involved in regulating plasma lipids with high-fat diet response. J Nutr Biochem 2023; 119:109398. [PMID: 37302664 PMCID: PMC10896179 DOI: 10.1016/j.jnutbio.2023.109398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Plasma lipids are modulated by gene variants and many environmental factors, including diet-associated weight gain. However, understanding how these factors jointly interact to influence molecular networks that regulate plasma lipid levels is limited. Here, we took advantage of the BXD recombinant inbred family of mice to query weight gain as an environmental stressor on plasma lipids. Coexpression networks were examined in both nonobese and obese livers, and a network was identified that specifically responded to the obesogenic diet. This obesity-associated module was significantly associated with plasma lipid levels and enriched with genes known to have functions related to inflammation and lipid homeostasis. We identified key drivers of the module, including Cidec, Cidea, Pparg, Cd36, and Apoa4. The Pparg emerged as a potential master regulator of the module as it can directly target 19 of the top 30 hub genes. Importantly, activation of this module is causally linked to lipid metabolism in humans, as illustrated by correlation analysis and inverse-variance weighed Mendelian randomization. Our findings provide novel insights into gene-by-environment interactions for plasma lipid metabolism that may ultimately contribute to new biomarkers, better diagnostics, and improved approaches to prevent or treat dyslipidemia in patients.
Collapse
Affiliation(s)
- Fuyi Xu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China; Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jesse D Ziebarth
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ludger Je Goeminne
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Lausanne, Switzerland
| | - Jun Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Leigh D Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Liza Makowski
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yan Cui
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Lausanne, Switzerland.
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
14
|
Huang C, Fan X, Shen Y, Shen M, Yang L. Neutrophil subsets in noncancer liver diseases: Cellular crosstalk and therapeutic targets. Eur J Immunol 2023; 53:e2250324. [PMID: 37495829 DOI: 10.1002/eji.202250324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Neutrophils are the most abundant circulating granulocytes, linking innate and adaptive immunity. Neutrophils can regulate inflammatory and immune responses through degranulation, reactive oxygen species generation, the production of cytokines and chemokines, and NETosis. Emerging evidence has indicated that neutrophils contribute to the pathogenesis of various noncancer liver diseases, including nonalcoholic fatty liver disease, alcohol-associated liver disease, hepatic ischemia-reperfusion injury, and liver fibrosis. Cellular interactions among neutrophils, other immune cells, and nonimmune cells constitute a complex network that regulates the immune microenvironment of the liver. This review summarizes novel neutrophil subtypes, including CD177+ neutrophils and low-density neutrophils. Moreover, we provide an overview of the cellular cros stalk of neutrophils in noncancer liver diseases, aiming to shed new light on mechanistic studies of novel neutrophil subtypes. In addition, we discuss the potential of neutrophils as therapeutic targets in noncancer liver diseases, including inhibitors targeting NETosis, granule proteins, and chemokines.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Guo L, Hu C, Yao M, Han G. Mechanism of sorafenib resistance associated with ferroptosis in HCC. Front Pharmacol 2023; 14:1207496. [PMID: 37351514 PMCID: PMC10282186 DOI: 10.3389/fphar.2023.1207496] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most familiar primary hepatic malignancy with a poor prognosis. The incidence of HCC and the associated deaths have risen in recent decades. Sorafenib is the first drug to be approved by the Food and Drug Administration (FDA) for routine use in the first-line therapy of patients with advanced HCC. However, only about 30% of patients with HCC will be benefited from sorafenib therapy, and drug resistance typically develops within 6 months. In recent years, the mechanisms of resistance to sorafenib have gained the attention of a growing number of researchers. A promising field of current studies is ferroptosis, which is a novel form of cell death differing from apoptosis, necroptosis, and autophagy. This process is dependent on the accumulation of intracellular iron and reactive oxygen species (ROS). Furthermore, the increase in intracellular iron levels and ROS can be significantly observed in cells resistant to sorafenib. This article reviews the mechanisms of resistance to sorafenib that are related to ferroptosis, evaluates the relationship between ferroptosis and sorafenib resistance, and explores new therapeutic approaches capable of reversing sorafenib resistance in HCC through the modulation of ferroptosis.
Collapse
|
16
|
Kessel JC, Weiskirchen R, Schröder SK. Expression Analysis of Lipocalin 2 (LCN2) in Reproductive and Non-Reproductive Tissues of Esr1-Deficient Mice. Int J Mol Sci 2023; 24:ijms24119280. [PMID: 37298232 DOI: 10.3390/ijms24119280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Estrogen receptor alpha (ERα) is widely expressed in reproductive organs, but also in non-reproductive tissues of females and males. There is evidence that lipocalin 2 (LCN2), which has diverse immunological and metabolic functions, is regulated by ERα in adipose tissue. However, in many other tissues, the impact of ERα on LCN2 expression has not been studied yet. Therefore, we used an Esr1-deficient mouse strain and analyzed LCN2 expression in reproductive (ovary, testes) and non-reproductive tissues (kidney, spleen, liver, lung) of both sexes. Tissues collected from adult wild-type (WT) and Esr1-deficient animals were analyzed by immunohistochemistry, Western blot analysis, and RT-qPCR for Lcn2 expression. In non-reproductive tissues, only minor genotype- or sex-specific differences in LCN2 expression were detected. In contrast, significant differences in LCN2 expression were observed in reproductive tissues. Particularly, there was a strong increase in LCN2 in Esr1-deficient ovaries when compared to WTs. In summary, we found an inverse correlation between the presence of ERα and the expression of LCN2 in testes and ovaries. Our results provide an important basis to better understand LCN2 regulation in the context of hormones and in health and disease.
Collapse
Affiliation(s)
- Jan C Kessel
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Sarah K Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
17
|
Jo D, Jung YS, Song J. Lipocalin-2 Secreted by the Liver Regulates Neuronal Cell Function Through AKT-Dependent Signaling in Hepatic Encephalopathy Mouse Model. Clin Nutr Res 2023; 12:154-167. [PMID: 37214781 PMCID: PMC10193436 DOI: 10.7762/cnr.2023.12.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| |
Collapse
|
18
|
Kim KE, Lee J, Shin HJ, Jeong EA, Jang HM, Ahn YJ, An HS, Lee JY, Shin MC, Kim SK, Yoo WG, Kim WH, Roh GS. Lipocalin-2 activates hepatic stellate cells and promotes nonalcoholic steatohepatitis in high-fat diet-fed Ob/Ob mice. Hepatology 2023; 77:888-901. [PMID: 35560370 PMCID: PMC9936980 DOI: 10.1002/hep.32569] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS In obesity and type 2 diabetes mellitus, leptin promotes insulin resistance and contributes to the progression of NASH via activation of hepatic stellate cells (HSCs). However, the pathogenic mechanisms that trigger HSC activation in leptin-deficient obesity are still unknown. This study aimed to determine how HSC-targeting lipocalin-2 (LCN2) mediates the transition from simple steatosis to NASH. APPROACH AND RESULTS Male wild-type (WT) and ob/ob mice were fed a high-fat diet (HFD) for 20 weeks to establish an animal model of NASH with fibrosis. Ob/ob mice were subject to caloric restriction or recombinant leptin treatment. Double knockout (DKO) mice lacking both leptin and lcn2 were also fed an HFD for 20 weeks. In addition, HFD-fed ob/ob mice were treated with gadolinium trichloride to deplete Kupffer cells. The LX-2 human HSCs and primary HSCs from ob/ob mice were used to investigate the effects of LCN2 on HSC activation. Serum and hepatic LCN2 expression levels were prominently increased in HFD-fed ob/ob mice compared with normal diet-fed ob/ob mice or HFD-fed WT mice, and these changes were closely linked to liver fibrosis and increased hepatic α-SMA/matrix metalloproteinase 9 (MMP9)/signal transducer and activator of transcription 3 (STAT3) protein levels. HFD-fed DKO mice showed a marked reduction of α-SMA protein compared with HFD-fed ob/ob mice. In particular, the colocalization of LCN2 and α-SMA was increased in HSCs from HFD-fed ob/ob mice. In primary HSCs from ob/ob mice, exogenous LCN2 treatment induced HSC activation and MMP9 secretion. By contrast, LCN2 receptor 24p3R deficiency or a STAT3 inhibitor reduced the activation and migration of primary HSCs. CONCLUSIONS LCN2 acts as a key mediator of HSC activation in leptin-deficient obesity via α-SMA/MMP9/STAT3 signaling, thereby exacerbating NASH.
Collapse
Affiliation(s)
- Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hye Min Jang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yu Jeong Ahn
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Soo Kyoung Kim
- Department of Internal Medicine, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Won Ho Kim
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
19
|
Wang J, Zhang Z, Guan J, Tung HC, Xie J, Huang H, Chen Y, Xu M, Ren S, Li S, Zhang M, Yang D, Xie W. Hepatocyte estrogen sulfotransferase inhibition protects female mice from concanavalin A-induced T cell-mediated hepatitis independent of estrogens. J Biol Chem 2023; 299:103026. [PMID: 36796516 PMCID: PMC10027562 DOI: 10.1016/j.jbc.2023.103026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a typical T cell-mediated chronic liver disease with a higher incidence in females. However, the molecular mechanism for the female predisposition is poorly understood. Estrogen sulfotransferase (Est) is a conjugating enzyme best known for its function in sulfonating and deactivating estrogens. The goal of this study is to investigate whether and how Est plays a role in the higher incidence of AIH in females. Concanavalin A (ConA) was used to induce T cell-mediated hepatitis in female mice. We first showed that Est was highly induced in the liver of ConA-treated mice. Systemic or hepatocyte-specific ablation of Est, or pharmacological inhibition of Est, protected female mice from ConA-induced hepatitis regardless of ovariectomy, suggesting the effect of Est inhibition was estrogen independent. In contrast, we found that hepatocyte-specific transgenic reconstitution of Est in the whole-body Est knockout (EstKO) mice abolished the protective phenotype. Upon the ConA challenge, EstKO mice exhibited a more robust inflammatory response with elevated production of proinflammatory cytokines and changed liver infiltration of immune cells. Mechanistically, we determined that ablation of Est led to the hepatic induction of lipocalin 2 (Lcn2), whereas ablation of Lcn2 abolished the protective phenotype of EstKO females. Our findings demonstrate that hepatocyte Est is required for the sensitivity of female mice to ConA-induced and T cell-mediated hepatitis in an estrogen-independent manner. Est ablation may have protected female mice from ConA-induced hepatitis by upregulating Lcn2. Pharmacological inhibition of Est might be a potential strategy for the treatment of AIH.
Collapse
Affiliation(s)
- Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ziteng Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jibin Guan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hung-Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jiaxuan Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haozhe Huang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuang Chen
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Song Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Min Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
20
|
Roberts JL, Golloshi M, Harding DB, Conduah M, Liu G, Drissi H. Bifidobacterium longum supplementation improves age-related delays in fracture repair. Aging Cell 2023; 22:e13786. [PMID: 36704918 PMCID: PMC10086533 DOI: 10.1111/acel.13786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Age-related delays in bone repair remains an important clinical issue that can prolong pain and suffering. It is now well established that inflammation increases with aging and that this exacerbated inflammatory response can influence skeletal regeneration. Recently, simple dietary supplementation with beneficial probiotic bacteria has been shown to influence fracture repair in young mice. However, the contribution of the gut microbiota to age-related impairments in fracture healing remains unknown. Here, we sought to determine whether supplementation with a single beneficial probiotic species, Bifidobacterium longum (B. longum), would promote fracture repair in aged (18-month-old) female mice. We found that B. longum supplementation accelerated bony callus formation which improved mechanical properties of the fractured limb. We attribute these pro-regenerative effects of B. longum to preservation of intestinal barrier, dampened systemic inflammation, and maintenance of the microbiota community structure. Moreover, B. longum attenuated many of the fracture-induced systemic pathologies. Our study provides evidence that targeting the gut microbiota using simple dietary approaches can improve fracture healing outcomes and minimize systemic pathologies in the context of aging.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Mateo Golloshi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Derek B Harding
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Madison Conduah
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Guanglu Liu
- Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta VA Health Care System, Decatur, Georgia, USA
| |
Collapse
|
21
|
Wang C, Su Z, Xu J, Ko C. Danshensu attenuated lipopolysaccharide-induced LX-2 and T6 cells activation through regulation of ferroptosis. Food Sci Nutr 2023; 11:344-349. [PMID: 36655094 PMCID: PMC9834887 DOI: 10.1002/fsn3.3065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023] Open
Abstract
Liver fibrosis and cirrhosis are primarily caused by the activation of hepatic stellate cells (HSCs), regardless of their etiology. Collagen type I (collagen I) and connective tissue growth factor (CTGF) is produced more readily by activated HSCs. Consequently, identifying the molecular and cellular mechanisms responsible for HSCs activation is essential to better understand its mechanism of action and therapeutic potential. Cell death is caused by iron-dependent lipid peroxidation during ferroptosis. Ferroptosis plays an important role in the survival of activated HSCs and could contribute to the development of innovative prevention and treatment strategies for liver fibrosis. Danshensu (Dan) is a pure molecule extracted from the Salvia miltiorrhiza herb that protects against liver damage. However, Dan's effect on attenuating HSCs activation by regulating ferroptosis remains unclear. The results of this study indicated that lipopolysaccharide (LPS)-induced LX-2 and T6 cells activation occurs through the upregulation of collagen I, CTGF, Gpx4, and SLC7A11. Interestingly, Dan attenuated LPS-induced liver fibrosis in those cells by upregulating collagen I, CTGF, Gpx4, and SLC7A11 and by increasing lipid reactive oxygen species accumulation. Furthermore, the results also showed that the ferroptosis inhibitor liproxstatin attenuated the overproduction of lipid reactive oxygen species in LPS-activated LX-2 cells. We conclude that Dan attenuates LPS-induced HSC activation during liver fibrosis by regulating ferroptosis in LX-2 and T6 cells.
Collapse
Affiliation(s)
- Changting Wang
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Zhiming Su
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Jian‐Hua Xu
- Department of Tumor SurgeryThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Chih‐Yuan Ko
- Department of Clinical NutritionThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
- School of Public HealthFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
22
|
Role of Zerumbone, a Phytochemical Sesquiterpenoid from Zingiber zerumbet Smith, in Maintaining Macrophage Polarization and Redox Homeostasis. Nutrients 2022; 14:nu14245402. [PMID: 36558562 PMCID: PMC9783216 DOI: 10.3390/nu14245402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophages and microglia are highly versatile cells that can be polarized into M1 and M2 phenotypes in response to diverse environmental stimuli, thus exhibiting different biological functions. In the central nervous system, activated resident macrophages and microglial cells trigger the production of proinflammatory mediators that contribute to neurodegenerative diseases and psychiatric disorders. Therefore, modulating the activation of macrophages and microglia by optimizing the inflammatory environment is beneficial for disease management. Several naturally occurring compounds have been reported to have anti-inflammatory and neuroprotective properties. Zerumbone is a phytochemical sesquiterpenoid and also a cyclic ketone isolated from Zingiber zerumbet Smith. In this study, we found that zerumbone effectively reduced the expression of lipocalin-2 in macrophages and microglial cell lines. Lipocalin-2, also known as neutrophil gelatinase-associated lipocalin (NGAL), has been characterized as an adipokine/cytokine implicated in inflammation. Moreover, supplement with zerumbone inhibited reactive oxygen species production. Phagocytic activity was decreased following the zerumbone supplement. In addition, the zerumbone supplement remarkably reduced the production of M1-polarization-associated chemokines CXC10 and CCL-2, as well as M1-polarization-associated cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-α. Furthermore, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 and the production of NO were attenuated in macrophages and microglial cells supplemented with zerumbone. Notably, we discovered that zerumbone effectively promoted the production of the endogenous antioxidants heme oxygenase-1, glutamate-cysteine ligase modifier subunit, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinone oxidoreductase-1 and remarkably enhanced IL-10, a marker of M2 macrophage polarization. Endogenous antioxidant production and M2 macrophage polarization were increased through activation of the AMPK/Akt and Akt/GSK3 signaling pathways. In summary, this study demonstrated the protective role of zerumbone in maintaining M1 and M2 polarization homeostasis by decreasing inflammatory responses and enhancing the production of endogenous antioxidants in both macrophages and microglia cells. This study suggests that zerumbone can be used as a potential therapeutic drug for the supplement of neuroinflammatory diseases.
Collapse
|
23
|
Daniluk K, Lange A, Pruchniewski M, Małolepszy A, Sawosz E, Jaworski S. Delivery of Melittin as a Lytic Agent via Graphene Nanoparticles as Carriers to Breast Cancer Cells. J Funct Biomater 2022; 13:278. [PMID: 36547538 PMCID: PMC9787603 DOI: 10.3390/jfb13040278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Melittin, as an agent to lyse biological membranes, may be a promising therapeutic agent in the treatment of cancer. However, because of its nonspecific actions, there is a need to use a delivery method. The conducted research determined whether carbon nanoparticles, such as graphene and graphene oxide, could be carriers for melittin to breast cancer cells. The studies included the analysis of intracellular pH, the potential of cell membranes, the type of cellular transport, and the expression of receptor proteins. By measuring the particle size, zeta potential, and FT-IT analysis, we found that the investigated nanoparticles are connected by electrostatic interactions. The level of melittin encapsulation with graphene was 86%, while with graphene oxide it was 78%. A decrease in pHi was observed for all cell lines after administration of melittin and its complex with graphene. The decrease in membrane polarization was demonstrated for all lines treated with melittin and its complex with graphene and after exposure to the complex of melittin with graphene oxide for the MDA-MB-231 and HFFF2 lines. The results showed that the investigated melittin complexes and the melittin itself act differently on different cell lines (MDA-MB-231 and MCF-7). It has been shown that in MDA-MD-231 cells, melittin in a complex with graphene is transported to cells via caveolin-dependent endocytosis. On the other hand, the melittin-graphene oxide complex can reach breast cancer cells through various types of transport. Other differences in protein expression changes were also observed for tumor lines after exposure to melittin and complexes.
Collapse
Affiliation(s)
- Karolina Daniluk
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Michał Pruchniewski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-654 Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
24
|
Adzuki Bean MY59 Extract Reduces Insulin Resistance and Hepatic Steatosis in High-Fat-Fed Mice via the Downregulation of Lipocalin-2. Nutrients 2022; 14:nu14235049. [PMID: 36501079 PMCID: PMC9739659 DOI: 10.3390/nu14235049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Adzuki bean is well known as a potential functional food that improves metabolic complications from obesity and diabetes. Lipocalin-2 (LCN2) has been implicated to have an important role in obesity and diabetes. However, the protective roles of adzuki bean MY59 extract (ABE) on insulin resistance and hepatic steatosis are not fully understood. In the present study, we investigated the effects of ABE on LCN2 expression in high-fat diet (HFD)-fed mice. ABE reduced HFD-induced fat mass and improved insulin resistance. In addition to hepatic steatosis, HFD-fed mice showed many apoptotic cells and neutrophils in the epididymal fat pads. However, these findings were significantly reduced by ABE supplementation. In particular, we found that increased LCN2 proteins from serum, epididymal fat pads, and liver in HFD-fed mice are significantly reduced by ABE. Furthermore, ABE reduced increased heme oxygenase-1 and superoxide dismutase-1 expressions in adipose tissue and liver in HFD-fed mice. We found that hepatic nuclear factor-kappa B (NF-κB) p65 expression in HFD-fed mice was also reduced by ABE. Thus, these findings indicate that ABE feeding could improve insulin resistance and hepatic steatosis by decreasing LCN2-mediated inflammation and oxidative stress in HFD-fed mice.
Collapse
|
25
|
Chen YL, Li HK, Wang L, Chen JW, Ma X. No safe renal warm ischemia time-The molecular network characteristics and pathological features of mild to severe ischemia reperfusion kidney injury. Front Mol Biosci 2022; 9:1006917. [PMID: 36465563 PMCID: PMC9709142 DOI: 10.3389/fmolb.2022.1006917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/03/2022] [Indexed: 07/25/2023] Open
Abstract
Ischemic acute kidney injury (AKI) has always been a hot and difficult research topic in the field of renal diseases. This study aims to illustrate the safe warm ischemia time of kidney and the molecular network characteristics and pathological features of mild to severe ischemia reperfusion kidney injury. We established varying degrees of renal injury due to different ischemia time (0 min, 16 min, 18 min, 20 min, 22 min, 24 min, 26 min, 28 min, and 30 min) on unilateral (left kidney) ischemia-reperfusion injury and contralateral (right kidney) resection (uIRIx) mouse model. Mice were sacrificed 24 h after uIRIx, blood samples were harvested to detect serum creatinine (Scr), and kidney tissue samples were harvested to perform Periodic Acid-Schiff (PAS) staining and RNA-Seq. Differentially expressed genes (DEGs) were identificated, time-dependent gene expression patterns and functional enrichment analysis were further performed. Finally, qPCR was performed to validated RNA-Seq results. Our results indicated that there was no absolute safe renal warm ischemia time, and every minute of ischemia increases kidney damage. Warm ischemia 26min or above in mice makes severe kidney injury, renal pathology and SCr were both significantly changed. Warm ischemia between 18 and 26 min makes mild kidney injury, with changes in pathology and renal molecular expression, while SCr did not change. No obvious pathological changes but significant differences in molecular expression were found less than 16min warm ischemia. There are two key time intervals in the process of renal ischemia injury, 0 min-16 min (short-term) and 26 min-28 min (long-term). Gene expression of immune-related pathways were most significantly down-regulated in short-term ischemia, while metabolism-related pathways were the mainly enriched pathway in long-term ischemia. Taken together, this study provides novel insights into safe renal artery occlusion time in partial nephrectomy, and is of great value for elucidating molecular network characteristics and pathological features of mild to severe ischemia reperfusion kidney injury, and key genes related to metabolism and immune found in this study also provide potential diagnostic and therapeutic biomarkers for AKI.
Collapse
Affiliation(s)
- Ya-Lei Chen
- Department of Critical Care Medicine, Capital Medical University Electric Power Teaching Hospital/State Grid Beijing Electric Power Hospital, Beijing, China
| | - Huai-Kang Li
- Senior Department of Urology, The Third Medical Centre of PLA General Hospital, Beijing, China
| | - Lei Wang
- Senior Department of Urology, The Third Medical Centre of PLA General Hospital, Beijing, China
| | - Jian-Wen Chen
- Senior Department of Urology, The Third Medical Centre of PLA General Hospital, Beijing, China
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xin Ma
- Senior Department of Urology, The Third Medical Centre of PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Kim D, Kim B, Brocker CN, Karri K, Waxman DJ, Gonzalez FJ. Long non-coding RNA G23Rik attenuates fasting-induced lipid accumulation in mouse liver. Mol Cell Endocrinol 2022; 557:111722. [PMID: 35917881 PMCID: PMC9561029 DOI: 10.1016/j.mce.2022.111722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a key mediator of lipid metabolism and metabolic stress in the liver. A recent study revealed that PPARα-dependent long non-coding RNAs (lncRNAs) play an important role in modulating metabolic stress and inflammation in the livers of fasted mice. Here hepatic lncRNA 3930402G23Rik (G23Rik) was found to have active peroxisome proliferator response elements (PPREs) within its promoter and is directly regulated by PPARα. Although G23Rik RNA was expressed to varying degrees in several tissues, the PPARα-dependent regulation of this lncRNA was only observed in the liver. Pharmacological activation of PPARα induced PPARα recruitment at the G23Rik promoter and a pronounced increase in hepatic G23Rik lncRNA expression. A G23Rik-null mouse line was developed to further characterize the function of this lncRNA in the liver. G23Rik-null mice were more susceptible to hepatic lipid accumulation in response to acute fasting. Histological analysis further revealed a pronounced buildup of lipid droplets and a significant increase in neutral triglycerides and lipids as indicated by enhanced oil red O staining of liver sections. Hepatic cholesterol, non-esterified fatty acid, and triglyceride levels were significantly elevated in G23Rik-null mice and associated with induction of the lipid-metabolism related gene Cd36. These findings provide evidence for a lncRNA dependent mechanism by which PPARα attenuates hepatic lipid accumulation in response to metabolic stress through lncRNA G23Rik induction.
Collapse
Affiliation(s)
- Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Bora Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Massachusetts, 02215, Boston, United States
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Massachusetts, 02215, Boston, United States
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA.
| |
Collapse
|
27
|
Papakonstantinou E, Piperigkou Z, Karamanos NK, Zolota V. Altered Adipokine Expression in Tumor Microenvironment Promotes Development of Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:4139. [PMID: 36077676 PMCID: PMC9454958 DOI: 10.3390/cancers14174139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a remarkably important factor for breast carcinogenesis and aggressiveness. The implication of increased BMI in triple negative breast cancer (TNBC) development is also well established. A malignancy-promoting role of the adipose tissue has been supposed, where the adipocytes that constitute the majority of stromal cells release pro-inflammatory cytokines and growth factors. Alterations in adipokines and their receptors play significant roles in breast cancer initiation, progression, metastasis, and drug response. Classic adipokines, such as leptin, adiponectin, and resistin, have been extensively studied in breast cancer and connected with breast cancer risk and progression. Notably, new molecules are constantly being discovered and the list is continuously growing. Additionally, substantial progress has been made concerning their differential expression in association with clinical and pathological parameters of tumors and the prognostic and predictive value of their dysregulation in breast cancer carcinogenesis. However, evidence regarding the mechanisms by which adipose tissue is involved in the development of TNBC is lacking. In the present article we comment on current data on the suggested involvement of these mediators in breast cancer development and progression, with particular emphasis on TNBC, to draw attention to the design of novel targeted therapies and biomarkers.
Collapse
Affiliation(s)
- Efthymia Papakonstantinou
- Department of Gynecology and Obstetrics, School of Medicine, University of Patras, 26504 Patras, Greece or
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
28
|
Canesin G, Feldbrügge L, Wei G, Janovicova L, Janikova M, Csizmadia E, Ariffin J, Hedblom A, Herbert ZT, Robson SC, Celec P, Swanson KD, Nasser I, Popov YV, Wegiel B. Heme oxygenase-1 mitigates liver injury and fibrosis via modulation of LNX1/Notch1 pathway in myeloid cells. iScience 2022; 25:104983. [PMID: 36093061 PMCID: PMC9450142 DOI: 10.1016/j.isci.2022.104983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023] Open
Abstract
Activation of resident macrophages (Mϕ) and hepatic stellate cells is a key event in chronic liver injury. Mice with heme oxygenase-1 (HO-1; Hmox1)-deficient Mϕ (LysM-Cre:Hmox1 flfl ) exhibit increased inflammation, periportal ductular reaction, and liver fibrosis following bile duct ligation (BDL)-induced liver injury and increased pericellular fibrosis in NASH model. RiboTag-based RNA-sequencing profiling of hepatic HO-1-deficient Mϕ revealed dysregulation of multiple genes involved in lipid and amino acid metabolism, regulation of oxidative stress, and extracellular matrix turnover. Among these genes, ligand of numb-protein X1 (LNX1) expression is strongly suppressed in HO-1-deficient Mϕ. Importantly, HO-1 and LNX1 were expressed by hepatic Mϕ in human biliary and nonbiliary end-stage cirrhosis. We found that Notch1 expression, a downstream target of LNX1, was increased in LysM-Cre:Hmox1 flfl mice. In HO-1-deficient Mϕ treated with heme, transient overexpression of LNX1 drives M2-like Mϕ polarization. In summary, we identified LNX1/Notch1 pathway as a downstream target of HO-1 in liver fibrosis.
Collapse
Affiliation(s)
- Giacomo Canesin
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linda Feldbrügge
- Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, 13353 Berlin, Germany,Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Guangyan Wei
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Radiation Oncology, First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Lubica Janovicova
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Institute of Molecular Biomedicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Monika Janikova
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Institute of Molecular Biomedicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Juliana Ariffin
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andreas Hedblom
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zachary T. Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Simon C. Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peter Celec
- Institute of Molecular Biomedicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Kenneth D. Swanson
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yury V. Popov
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Corresponding author
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Corresponding author
| |
Collapse
|
29
|
Recombinant FGF21 Attenuates Polychlorinated Biphenyl-Induced NAFLD/NASH by Modulating Hepatic Lipocalin-2 Expression. Int J Mol Sci 2022; 23:ijms23168899. [PMID: 36012166 PMCID: PMC9408415 DOI: 10.3390/ijms23168899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Although recent studies have demonstrated that polychlorinated biphenyls (PCB) exposure leads to toxicant-associated steatohepatitis, the underlying mechanism of this condition remains unsolved. Male C57Bl/6 mice fed a standard diet (SD) or 60% high fat diet (HFD) were exposed to the nondioxin-like PCB mixture Aroclor1260 or dioxin-like PCB congener PCB126 by intraperitoneal injection for a total of four times for six weeks. We observed hepatic injury, steatosis, inflammation, and fibrosis in not only the Aroclor1260-treated mice fed a HFD but the PCB126-treated mice fed either a SD or a HFD. We also observed that both types of PCB exposure induced hepatic iron overload (HIO). Noticeably, the expression of hepatic lipocalin-2 (LCN2) was significantly increased in the PCB-induced nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) models. The knockdown of LCN2 resulted in improvement of PCB-induced lipid and iron accumulation in vitro, suggesting that LCN2 plays a pivotal role in PCB-induced NAFLD/NASH. We observed that recombinant FGF21 improved hepatic steatosis and HIO in the PCB-induced NAFLD/NASH models. Importantly, recombinant FGF21 reduced the PCB-induced overexpression of hepatic LCN2 in vivo and in vitro. Our findings indicate that recombinant FGF21 attenuates PCB-induced NAFLD/NASH by modulating hepatic lipocalin-2 expression. Our data suggest that hepatic LCN2 might represent a suitable therapeutic target for improving PCB-induced NAFLD/NASH accompanying HIO.
Collapse
|
30
|
Gasterich N, Bohn A, Sesterhenn A, Nebelo F, Fein L, Kaddatz H, Nyamoya S, Kant S, Kipp M, Weiskirchen R, Zendedel A, Beyer C, Clarner T. Lipocalin 2 attenuates oligodendrocyte loss and immune cell infiltration in mouse models for multiple sclerosis. Glia 2022; 70:2188-2206. [PMID: 35856297 DOI: 10.1002/glia.24245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is a central nervous system disease characterized by both degenerative and inflammatory processes. Various mediators are involved in the interplay of degeneration and innate immunity on one hand and peripheral adaptive immunity on the other hand. The secreted protein lipocalin 2 (LCN2) is an inflammatory modulator in a variety of pathologies. Although elevated intrathecal levels of LCN2 have been reported in MS patients, it's functional role is widely unknown. Here, we identified a subpopulation of astrocytes as a source of LCN2 in MS lesions and respective animal models. We investigated the functional role of LCN2 for both autoimmune and degenerative aspects in three MS mouse models including both wild type (WT) and Lcn2-/- mouse strains. While the experimental autoimmune encephalomyelitis (EAE) model reflects primary autoimmunity, the cuprizone model reflects selective oligodendrocyte loss and demyelination. In addition, we included a combinatory Cup/EAE model in which primary cytodegeneration is followed by inflammatory lesions within the forebrain. While in the EAE model, the disease outcome was comparable in between the two mouse strains, cuprizone intoxicated Lcn2-/- animals showed an increased loss of oligodendrocytes. In the Cup/EAE model, Lcn2-/- animals showed increased inflammation when compared to WT mice. Together, our results highlight LCN2 as a potentially protective molecule in MS lesion formation, which might be able to limit loss of oligodendrocytes immune-cell invasion. Despite these findings, it is not yet clear which glial cell phenotype (and to which extent) contributes to the observed neuroprotective effects, that is, microglia and/or astroglia or even endothelial cells in the brain.
Collapse
Affiliation(s)
- Natalie Gasterich
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Amelie Bohn
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Anika Sesterhenn
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Frederik Nebelo
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Lena Fein
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Hannes Kaddatz
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Stella Nyamoya
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Sebastian Kant
- RWTH University Hospital Aachen, Institute of Molecular and Cellular Anatomy, Aachen, Germany
| | - Markus Kipp
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Ralf Weiskirchen
- RWTH University Hospital Aachen, Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Aachen, Germany
| | - Adib Zendedel
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Cordian Beyer
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| | - Tim Clarner
- RWTH University Hospital Aachen, Institute of Neuroanatomy, Aachen, Germany
| |
Collapse
|
31
|
Lipocalin2 as a useful biomarker for risk stratification in patients with acute cholangitis: A single-center prospective and observational study. Clin Chim Acta 2022; 533:22-30. [DOI: 10.1016/j.cca.2022.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/07/2022]
|
32
|
Lipocalin2 as a potential antibacterial drug against Acinetobacter baumannii infection. J Microbiol 2022; 60:444-449. [DOI: 10.1007/s12275-022-2007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
|
33
|
Thioredoxin Domain Containing 5 Suppression Elicits Serum Amyloid A-Containing High-Density Lipoproteins. Biomedicines 2022; 10:biomedicines10030709. [PMID: 35327511 PMCID: PMC8945230 DOI: 10.3390/biomedicines10030709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Thioredoxin domain containing 5 (TXNDC5) is a protein disulfide isomerase involved in several diseases related to oxidative stress, energy metabolism and cellular inflammation. In a previous manuscript, a negative association between fatty liver development and hepatic Txndc5 expression was observed. To study the role of TXNDC5 in the liver, we generated Txndc5-deficient mice. The absence of the protein caused an increased metabolic need to gain weight along with a bigger and fatter liver. RNAseq was performed to elucidate the putative mechanisms, showing a substantial liver overexpression of serum amyloid genes (Saa1, Saa2) with no changes in hepatic protein, but discrete plasma augmentation by the gene inactivation. Higher levels of malonyldialdehyde, apolipoprotein A1 and platelet activating factor-aryl esterase activity were also found in serum from Txndc5-deficient mice. However, no difference in the distribution of high-density lipoproteins (HDL)-mayor components and SAA was found between groups, and even the reactive oxygen species decreased in HDL coming from Txndc5-deficient mice. These results confirm the relation of this gene with hepatic steatosis and with a fasting metabolic derive remedying an acute phase response. Likewise, they pose a new role in modulating the nature of HDL particles, and SAA-containing HDL particles are not particularly oxidized.
Collapse
|
34
|
Chawla H, Bhosale V, Misra R, Sonkar SK, Kohli N, Jamal N, Vimal SR, Dangi B, Durgapal K, Singh S, Negi MPS, Ghatak A. Lipocalin-2 levels increase in plasma of non-alcoholic fatty liver disease patients with metabolic syndrome. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Chen J, Lei S, Huang Y, Zha X, Gu L, Zhou D, Li J, Liu F, Li N, Du L, Huang X, Lin Z, Bu L, Qu S. The relationship between Lipocalin-2 level and hepatic steatosis in obese patients with NAFLD after bariatric surgery. Lipids Health Dis 2022; 21:10. [PMID: 35034646 PMCID: PMC8761269 DOI: 10.1186/s12944-022-01622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipocalin-2 (LCN2) has a critical effect on obesity as well as its associated comorbidities. The present study focused on analyzing serum LCN2 levels of obese patients with nonalcoholic fatty liver disease (NAFLD) and on determining relationship of hepatic steatosis improvement with LCN2 levels after laparoscopic sleeve gastrectomy (LSG). METHODS This work enrolled ninety patients with obesity and NAFLD. Twenty-three of them underwent LSG. Anthropometric and biochemical parameters and serum LCN2 levels were determined at baseline and those at 6-month post-LSG. Controlled attenuation parameter (CAP) measured by FibroScan was adopted for evaluating hepatic steatosis. RESULTS Among severe obesity patients, serum LCN2 levels were significantly increased (111.59 ± 51.16 ng/mL vs. 92.68 ± 32.68 ng/mL, P = 0.035). The CAP value was higher indicating higher liver fat content (360.51 ± 45.14 dB/m vs. 340.78 ± 45.02 dB/m, P = 0.044). With regard to surgical patients, liver function, glucose, and lipid levels were significantly improved after surgery. Serum LCN2 levels significantly decreased (119.74 ± 36.15 ng/mL vs. 87.38 ± 51.65 ng/mL, P = 0.001). Decreased CAP indicated a significant decrease in liver fat content (358.48 ± 46.13 dB/m vs. 260.83 ± 69.64 dB/m, P < 0.001). The decrease in LCN2 levels was significantly related to the reduced hepatic fat content and improvement in steatosis grade after adjusting for gender, age, and BMI decrease. CONCLUSIONS Serum LCN2 levels are related to obesity and NAFLD. The decreased serum LCN2 levels could be an indicator of hepatic steatosis improvement.
Collapse
Affiliation(s)
- Jiaqi Chen
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China ,grid.440227.70000 0004 1758 3572Department of Endocrinology and Metabolism, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shihui Lei
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Yueye Huang
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Xiaojuan Zha
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Lei Gu
- grid.24516.340000000123704535Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Donglei Zhou
- grid.24516.340000000123704535Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- grid.24516.340000000123704535Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- grid.24516.340000000123704535Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nannan Li
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Lei Du
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Xiu Huang
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Ziwei Lin
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Le Bu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Clinical Medicine School of Nanjing Medical University, Medicine School of Tongji University, Shanghai, 200072, China.
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Clinical Medicine School of Nanjing Medical University, Medicine School of Tongji University, Shanghai, 200072, China.
| |
Collapse
|
36
|
Qin J, Wuniqiemu T, Wei Y, Teng F, Cui J, Sun J, Yi L, Tang W, Zhu X, Xu W, Dong J. Proteomics analysis reveals suppression of IL-17 signaling pathways contributed to the therapeutic effects of Jia-Wei Bu-Shen-Yi-Qi formula in a murine asthma model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153803. [PMID: 34785105 DOI: 10.1016/j.phymed.2021.153803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Jia-Wei Bu-Shen-Yi-Qi formula (JWBSYQF), a Chinese herbal formula, is a commonly used prescription for treating asthma patients. However, the targeted proteins associated with JWBSYQF treatment remain unknown. PURPOSE Present study aims to evaluate the therapeutic efficacy of JWBSYQF and identify the targeted proteins in addition to functional pathways. STUDY DESIGN The ovalbumin (OVA)-induced murine asthma model was established to explore the therapeutic effect of JWBSYQF treatment. Proteomic profiling and quantifications were performed using data-independent acquisition (DIA) methods. Differentially expressed proteins (DEPs) were validated via western blot (WB) and immunohistochemistry (IHC). METHODS A murine asthma model was made by OVA sensitization and challenge, and JWBSYQF (2.25, 4.50, 9,00 g/kg body weight) or dexamethasone (1 mg/ kg body weight) were administered orally. Airway hyperresponsiveness (AHR) to methacholine (Mch), inflammatory cell counts and classification in bronchoalveolar lavage fluid (BALF), lung histopathology, and cytokine levels were measured. Furthermore, DIA proteomic analyses were performed to explore the DEPs targeted by JWBSYQF and were further validated by WB and IHC. RESULTS Our results exhibited that JWBSYQF attenuated AHR which was mirrored by decreased airway resistance and increased lung compliance. In addition, JWBSYQF-treated mice showed reduced inflammatory score, mucus hypersecretion, as well as reduced the number of BALF leukocytes along with decreased content of BALF Th2 inflammatory cytokines (IL-4, IL-5, IL-13) and serum IgE. Proteomics analysis identified 704 DEPs between the asthmatic mice and control group (MOD vs CON), and 120 DEPs between the JWBSYQF-treatment and the asthmatic mice (JWB-M vs MOD). A total of 33 overlapped DEPs were identified among the three groups. Pathway enrichment analysis showed that DEPs were significantly enriched in IL-17 signaling pathway, in which DEPs, Lcn2, TGF-β1, Gngt2, and Ppp2r5e were common DEPs between three experimental groups. WB and IHC results further validated expressional levels and tendency of these proteins. Our results also showed that JWBSYQF affects mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways, that are activated by IL-17 signaling. CONCLUSION The present study suggested that JWBSYQF could attenuate AHR and airway inflammation in OVA-induced asthmatic mice. In addition, proteomics analysis revealed that suppression of IL-17 signaling pathways contributes to the therapeutic effects of JWBSYQF.
Collapse
Affiliation(s)
- Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifang Xu
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Guangdong, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Yao F, Deng Y, Zhao Y, Mei Y, Zhang Y, Liu X, Martinez C, Su X, Rosato RR, Teng H, Hang Q, Yap S, Chen D, Wang Y, Chen MJM, Zhang M, Liang H, Xie D, Chen X, Zhu H, Chang JC, You MJ, Sun Y, Gan B, Ma L. A targetable LIFR-NF-κB-LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. Nat Commun 2021; 12:7333. [PMID: 34921145 PMCID: PMC8683481 DOI: 10.1038/s41467-021-27452-9] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
The growing knowledge of ferroptosis has suggested the role and therapeutic potential of ferroptosis in cancer, but has not been translated into effective therapy. Liver cancer, primarily hepatocellular carcinoma (HCC), is highly lethal with limited treatment options. LIFR is frequently downregulated in HCC. Here, by studying hepatocyte-specific and inducible Lifr-knockout mice, we show that loss of Lifr promotes liver tumorigenesis and confers resistance to drug-induced ferroptosis. Mechanistically, loss of LIFR activates NF-κB signaling through SHP1, leading to upregulation of the iron-sequestering cytokine LCN2, which depletes iron and renders insensitivity to ferroptosis inducers. Notably, an LCN2-neutralizing antibody enhances the ferroptosis-inducing and anticancer effects of sorafenib on HCC patient-derived xenograft tumors with low LIFR expression and high LCN2 expression. Thus, anti-LCN2 therapy is a promising way to improve liver cancer treatment by targeting ferroptosis.
Collapse
Affiliation(s)
- Fan Yao
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ying Mei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaohua Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Roberto R Rosato
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shannon Yap
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dahu Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mei-Ju May Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mutian Zhang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jenny C Chang
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
The effect of lipocalin-2 (LCN2) on apoptosis: a proteomics analysis study in an LCN2 deficient mouse model. BMC Genomics 2021; 22:892. [PMID: 34903175 PMCID: PMC8670060 DOI: 10.1186/s12864-021-08211-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies have shown that lipocalin-2 (LCN2) has multiple functions involved in various biological and pathological processes including energy homeostasis, cancer, inflammation, and apoptosis. We aimed to investigate the effect of LCN2 on apoptosis that influences the pathogenetic process of metabolic diseases and cancer. METHODS We performed a proteomics analysis of livers taken from LCN2-knockout mice and wild type mice by using label-free LC-MS/MS quantitative proteomics. RESULTS Proteomic analysis revealed that there were 132 significantly differentially expressed proteins (49 upregulated and 83 downregulated) among 2140 proteins in the liver of LCN2-knockout mice compared with wild type mice. Of these, seven apoptosis-associated proteins were significantly upregulated and seven apoptosis-associated proteins downregulated. CONCLUSION Proteomics demonstrated that there were seven upregulated and seven downregulated apoptosis-associated proteins in liver of LCN2-knockout mice. It is important to clarify the effect of LCN2 on apoptosis that might contribute to the pathogenesis of insulin resistance, cancer, and various nervous system diseases.
Collapse
|
39
|
Klüber P, Meurer SK, Lambertz J, Schwarz R, Zechel-Gran S, Braunschweig T, Hurka S, Domann E, Weiskirchen R. Depletion of Lipocalin 2 (LCN2) in Mice Leads to Dysbiosis and Persistent Colonization with Segmented Filamentous Bacteria. Int J Mol Sci 2021; 22:ijms222313156. [PMID: 34884961 PMCID: PMC8658549 DOI: 10.3390/ijms222313156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Lipocalin 2 (LCN2) mediates key roles in innate immune responses. It has affinity for many lipophilic ligands and binds various siderophores, thereby limiting bacterial growth by iron sequestration. Furthermore, LCN2 protects against obesity and metabolic syndrome by interfering with the composition of gut microbiota. Consequently, complete or hepatocyte-specific ablation of the Lcn2 gene is associated with higher susceptibility to bacterial infections. In the present study, we comparatively profiled microbiota in fecal samples of wild type and Lcn2 null mice and show, in contrast to previous reports, that the quantity of DNA in feces of Lcn2 null mice is significantly lower than that in wild type mice (p < 0.001). By using the hypervariable V4 region of the 16S rDNA gene and Next-Generation Sequencing methods, we found a statistically significant change in 16 taxonomic units in Lcn2-/- mice, including eight gender-specific deviations. In particular, members of Clostridium, Escherichia, Helicobacter, Lactococcus, Prevotellaceae_UCG-001 and Staphylococcus appeared to expand in the intestinal tract of knockout mice. Interestingly, the proportion of Escherichia (200-fold) and Staphylococcus (10-fold) as well as the abundance of intestinal bacteria encoding the LCN2-sensitive siderphore enterobactin (entA) was significantly increased in male Lcn2 null mice (743-fold, p < 0.001). This was accompanied by significant higher immune cell infiltration in the ileum as demonstrated by increased immunoreactivity against the pan-leukocyte protein CD45, the lymphocyte transcription factor MUM-1/IRF4, and the macrophage antigen CD68/Macrosialin. In addition, we found a higher expression of mucosal mast cell proteases indicating a higher number of those innate immune cells. Finally, the ileum of Lcn2 null mice displayed a high abundance of segmented filamentous bacteria, which are intimately associated with the mucosal cell layer, provoking epithelial antimicrobial responses and affecting T-helper cell polarization.
Collapse
Affiliation(s)
- Patrick Klüber
- German Centre for Infection Research, Institute of Medical Microbiology, Justus-Liebig-University, D-35392 Giessen, Germany; (P.K.); (S.Z.-G.)
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
| | - Jessica Lambertz
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
| | - Roman Schwarz
- Labor Mönchengladbach, Medical Care Centre, D-41169 Mönchengladbach, Germany;
| | - Silke Zechel-Gran
- German Centre for Infection Research, Institute of Medical Microbiology, Justus-Liebig-University, D-35392 Giessen, Germany; (P.K.); (S.Z.-G.)
| | - Till Braunschweig
- Institute of Pathology, RWTH Aachen University Hospital, D-52074 Aachen, Germany;
| | - Sabine Hurka
- Institute for Insect Biotechnology, Justus-Liebig-University, D-35392 Giessen, Germany;
| | - Eugen Domann
- German Centre for Infection Research, Institute of Hygiene and Environmental Medicine, Justus-Liebig-University, D-35392 Giessen, Germany
- Correspondence: (E.D.); (R.W.); Tel.: +49-(0)641-99-41280 (E.D.); +49-(0)241-80-88683 (R.W.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
- Correspondence: (E.D.); (R.W.); Tel.: +49-(0)641-99-41280 (E.D.); +49-(0)241-80-88683 (R.W.)
| |
Collapse
|
40
|
6-Shogaol Mitigates Sepsis-Associated Hepatic Injury through Transcriptional Regulation. Nutrients 2021; 13:nu13103427. [PMID: 34684425 PMCID: PMC8540559 DOI: 10.3390/nu13103427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
Sepsis-associated liver dysfunction presents a significant public health problem. 6-Shogaol is the key bioactive component in dry ginger, which has antioxidant and anti-inflammation capacity. The present study aims to investigate the preventive effect of 6-shogaol on sepsis-induced liver injury. 6-Shogaol was administered to mice for 7 consecutive days before being intraperitoneally injected with lipopolysaccharide (LPS). After 24 h, mice were sacrificed, and biochemical and transcriptomic analyses were performed. Our results demonstrated that 6-shogaol prevented LPS-induced impairment in antioxidant enzymes and elevation in malondialdehyde level in the liver. The hepatic inflammatory response was significantly suppressed by 6-shogaol through suppressing the MAPK/NFκB pathway. RNA-sequencing data analysis revealed that 41 overlapped genes between the LPS vs. control group and 6-shogaol vs. LPS group were identified, among which 36 genes were upregulated, and 5 genes were downregulated for the LPS vs. control group. These overlapped genes are enriched in inflammation-related pathways, e.g., TNF and NFκB. The mRNA expression of the overlapped genes was also verified in the LPS-induced BRL-3A cell model. In summary, 6-shogaol shows great potential as a natural chemopreventive agent to treat sepsis-associated hepatic disorders.
Collapse
|
41
|
Choi JA, Cho SN, Lee J, Son SH, Nguyen DT, Lee SA, Song CH. Lipocalin 2 regulates expression of MHC class I molecules in Mycobacterium tuberculosis-infected dendritic cells via ROS production. Cell Biosci 2021; 11:175. [PMID: 34563261 PMCID: PMC8466733 DOI: 10.1186/s13578-021-00686-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
Background Iron has important roles as an essential nutrient for all life forms and as an effector of the host defense mechanism against pathogenic infection. Lipocalin 2 (LCN2), an innate immune protein, plays a crucial role in iron transport and inflammation. In the present study, we examined the role of LCN2 in immune cells during Mycobacterium tuberculosis (Mtb) infection. Results We found that infection with Mtb H37Ra induced LCN2 production in bone marrow-derived dendritic cells (BMDCs). Notably, expression of MHC class I molecules was significantly reduced in LCN2−/− BMDCs during Mtb infection. The reduced expression of MHC class I molecules was associated with the formation of a peptide loading complex through LCN2-mediated reactive oxygen species production. The reduced expression of MHC class I molecules affected CD8+ T-cell proliferation in LCN2−/− mice infected with Mtb. The difference in the population of CD8+ effector T cells might affect the survival of intracellular Mtb. We also found a reduction of the inflammation response, including serum inflammatory cytokines and lung inflammation in LCN2−/− mice, compared with wild-type mice, during Mtb infection. Conclusions These data suggest that LCN2-mediated reactive oxygen species affects expression of MHC class I molecules in BMDCs, leading to lower levels of CD8+ effector T-cell proliferation during mycobacterial infection. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00686-2.
Collapse
Affiliation(s)
- Ji-Ae Choi
- Department of Microbiology, Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, 35015, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.,Translational Immunology Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, South Korea
| | - Soo-Na Cho
- Department of Microbiology, Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, 35015, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Junghwan Lee
- Department of Microbiology, Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, 35015, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.,Translational Immunology Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, South Korea
| | - Sang-Hun Son
- Department of Microbiology, Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, 35015, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Doan Tam Nguyen
- Department of Microbiology, Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, 35015, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Seong-Ahn Lee
- Department of Microbiology, Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, 35015, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Chang-Hwa Song
- Department of Microbiology, Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, 35015, Daejeon, South Korea. .,Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea. .,Translational Immunology Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, South Korea.
| |
Collapse
|
42
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
43
|
Sun WX, Lou K, Chen LJ, Liu SD, Pang SG. Lipocalin-2: a role in hepatic gluconeogenesis via AMP-activated protein kinase (AMPK). J Endocrinol Invest 2021; 44:1753-1765. [PMID: 33423221 DOI: 10.1007/s40618-020-01494-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/23/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE Evidence is accumulating that lipocalin2 (LCN2) is implicated in insulin resistance and glucose homeostasis, but the underlying possible mechanisms remain unclear. This study is to investigate the possible linkage between LCN2 and AMP-activated protein kinase (AMPK) or forkhead transcription factor O1 (FoxO1), which influences insulin sensitivity and gluconeogenesis in liver. METHODS LCN2 knockout (LCN2KO) mice and wild-type littermates were used to evaluate the effect of LCN2 on insulin sensitivity and hepatic gluconeogenesis through pyruvate tolerance test (PTT), glucose tolerance test (ipGTT), insulin tolerance test (ITT), and hyperinsulinemic-euglycemic clamps, respectively. LCN2KO mice and WT mice in vivo, and in vitro HepG2 cells were co-transfected with adenoviral FoxO1-siRNA (Ad-FoxO1-siRNA) or adenovirus expressing constitutively active form of AMPK (Ad-CA-AMPK), or dominant negative adenovirus AMPK (Ad-DN-AMPK), the relative mRNA and protein levels of two key gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6P) were measured. RESULTS Improved insulin sensitivity and inhibited gluconeogenesis in the LCN2KO mice were confirmed by pyruvate tolerance tests and hyperinsulinemic-euglycemic clamps. Nuclear FoxO1 and its downstream genes PEECK and G6P were decreased in the livers of the LCN2KO mice, and AMPK activity was stimulated and directly phosphorylated FoxO1. In vitro, AMPK activity was inhibited in HepG2 cells overexpressing LCN2 leading to a decrease in phosphorylated FoxO1 and an increase in nuclear FoxO1. CONCLUSION The present study demonstrates that LCN2 regulates insulin sensitivity and glucose metabolism through inhibiting AMPK activity, and regulating FoxO1 and its downstream genes PEPCK/G6P, which regulate hepatic gluconeogenesis.
Collapse
Affiliation(s)
- W-X Sun
- Department of Pharmacy, Taishan Vocational College of Nursing, Taian, 271000, China
| | - K Lou
- Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Road, Jinan, 250013, Shandong Province, China
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - L-J Chen
- Department of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, 250013, Shandong Province, China
| | - S-D Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, 250013, Shandong Province, China.
| | - S-G Pang
- Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Road, Jinan, 250013, Shandong Province, China.
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| |
Collapse
|
44
|
Loss of Function of von Hippel-Lindau Trigger Lipocalin 2-Dependent Inflammatory Responses in Cultured and Primary Renal Tubular Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5571638. [PMID: 34257811 PMCID: PMC8245224 DOI: 10.1155/2021/5571638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
Previous studies have shown that mutations in the tumor suppressor gene von Hippel-Lindau (VHL) can result in the overproduction of reactive oxygen species (ROS) and chronic inflammation and are a significant predisposing factor for the development of clear-cell renal cell carcinoma (ccRCC). To study VHL's role in ccRCC formation, we previously developed a novel conditional knockout mouse model that mimicked the features of kidney inflammation and fibrosis that lead to cyst formation and hyperplasia. However, due to VHL's complex cellular functions, the mechanism of this phenomenon remains unclear. Here, we used the HK-2 cells and mouse primary renal tubule cells (mRTCs) carrying VHL mutations as models to study the effects and underlying molecular mechanisms of ROS accumulation. We also studied the role of lipocalin 2 (LCN2) in regulating macrophage recruitment by HK-2 cells. We measured the level of ROS in HK-2 cells in the presence or absence of LCN2 knockdown and found that the VHL mutation caused ROS overproduction, but an LCN2 knockdown could attenuate the process. VHL was also found to mediate the in vitro and in vivo expression and secretion of LCN2. Thus, VHL likely affects ROS production in an LCN2-dependent manner. Our findings also suggest that LCN2 sensitizes the inflammatory response of HK-2 cells and the chemotactic abilities of macrophage RAW264.7 cells. By demonstrating that the loss of function of von Hippel-Lindau triggers lipocalin 2-dependent inflammatory responses in cultured and primary renal tubular cells, our results offer novel insights into a potential therapeutic approach for interfering with the development of ccRCC.
Collapse
|
45
|
Lim D, Jeong JH, Song J. Lipocalin 2 regulates iron homeostasis, neuroinflammation, and insulin resistance in the brains of patients with dementia: Evidence from the current literature. CNS Neurosci Ther 2021; 27:883-894. [PMID: 33945675 PMCID: PMC8265939 DOI: 10.1111/cns.13653] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
Dementia accompanied by memory loss is considered one of the most common neurodegenerative diseases worldwide, and its prevalence is gradually increasing. Known risk factors for dementia include genetic background, certain lifestyle and dietary patterns, smoking, iron overload, insulin resistance, and impaired glucose metabolism in the brain. Here, we review recent evidence on the regulatory role of lipocalin 2 (LCN2) in dementia from various perspectives. LCN2 is a neutrophil gelatinase-associated protein that influences diverse cellular processes, including the immune system, iron homeostasis, lipid metabolism, and inflammatory responses. Although its functions within the peripheral system are most widely recognized, recent findings have revealed links between LCN2 and central nervous system diseases, as well as novel roles for LCN2 in neurons and glia. Furthermore, LCN2 may modulate diverse pathological mechanisms involved in dementia. Taken together, LCN2 is a promising therapeutic target with which to address the neuropathology of dementia.
Collapse
Affiliation(s)
- Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Chonnam National University, Gwangju, Korea
| |
Collapse
|
46
|
Jia J, Yang L, Cao Z, Wang M, Ma Y, Ma X, Liu Q, Teng J, Shi H, Liu H, Cheng X, Ye J, Su Y, Sun Y, Chi H, Liu T, Wang Z, Wan L, Yang C, Hu Q. Neutrophil-derived lipocalin-2 in adult-onset Still's disease: a novel biomarker of disease activity and liver damage. Rheumatology (Oxford) 2021; 60:304-315. [PMID: 32766690 PMCID: PMC7785307 DOI: 10.1093/rheumatology/keaa368] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Liver damage is a common manifestation and can be life-threatening in adult-onset Still's disease (AOSD), an autoinflammatory disease. The hallmark of AOSD is activation of neutrophils, whose infiltration in liver is suspected to promote tissue injury. Here we aimed to identify a candidate biomarker and to validate its association with liver damage in AOSD. METHODS Transcriptome analysis of neutrophils from treatment-naïve active AOSD patients and healthy donors was performed. Lipocalin-2 (LCN2) expression was assessed in neutrophils, plasma and liver biopsies of AOSD. The correlations of LCN2 with different variables and its ability to identify liver damage from AOSD patients were analysed. RESULTS LCN2, a novel biomarker in hepatic inflammation, was found to be upregulated in AOSD neutrophils by RNA sequencing and confirmed at the mRNA and protein levels. Plasma levels of LCN2 were significantly higher in AOSD patients than healthy controls, RA and SLE patients. Plasma LCN2 levels were closely correlated with inflammatory markers, systemic score, HScore and cytokines. Moreover, LCN2 levels were increased in active AOSD with liver involvement and independently associated with liver dysfunction. Enhanced expression of LCN2 was detected in liver biopsies from three patients with ongoing liver injury. Furthermore, the area under the curve value of LCN2 for identifying AOSD with liver injury from other liver diseases was 0.9694. CONCLUSION Our results reveal that neutrophils-derived LCN2 is higher in plasma and liver tissue in AOSD patients than in healthy controls, and it could serve as a potent biomarker for identifying AOSD with systemic inflammation, especially liver damage caused by hyperinflammation.
Collapse
Affiliation(s)
- Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Luyu Yang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University
| | - Zhujun Cao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Mengyan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yuning Ma
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiaoyan Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhihong Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Liyan Wan
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
47
|
Barsoum I, Elgohary MN, Bassiony MAA. Lipocalin-2: A novel diagnostic marker for hepatocellular carcinoma. Cancer Biomark 2021; 28:523-528. [PMID: 32568173 DOI: 10.3233/cbm-190084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Viral hepatitis, alcoholism and non-alcoholic steatohepatitis are the most common risk factors. Despite the advances in HCC screening and treatment options, HCC still has a high mortality rate and a high rate of recurrence after treatment. Lipocalin-2 (LCN-2) is a glycoprotein transporter that is highly expressed in HCC tissues. OBJECTIVE To evaluate serum LCN-2 as a diagnostic marker for HCC. METHODS The study was carried out in Zagazig university hospitals. It included 210 HCC patients (subdivided in three subgroups), 72 liver cirrhosis patients without HCC and 18 normal control persons (the total is 300 subjects). All the study subjects were evaluated by history taking, physical examination, routine laboratory investigations, alpha-fetoprotein (AFP) and LCN-2 in addition radiology. RESULTS In comparison between HCC and control, there was a statistically significant difference in hemoglobin percent (HB%), platelet count, serum ALT, AST, ALP, bilirubin, albumin and creatinine. In comparison to AFP, LCN-2 > 225 ng/ml had a higher diagnostic performance in HCC patients and was more accurate in differentiation between cirrhosis and HCC patients. CONCLUSION LCN-2 is a good candidate for HCC diagnosis and screening.
Collapse
|
48
|
Xu G, Wang YM, Ying MM, Chen SD, Li ZR, Ma HL, Zheng MH, Wu J, Ding C. Serum lipocalin-2 is a potential biomarker for the clinical diagnosis of nonalcoholic steatohepatitis. Clin Mol Hepatol 2021; 27:329-345. [PMID: 33465844 PMCID: PMC8046622 DOI: 10.3350/cmh.2020.0261] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/30/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) characterized by hepatic steatosis, inflammation, hepatocellular injury, and fibrosis. We aimed to investigate the usefulness of a key biomarker, lipocalin-2 (LCN2), for the detection of NASH progression. METHODS A mouse NASH model was established using a high-fat diet and a high-sugar drinking water. Gene expression profile of the NASH model was analyzed using RNA sequencing. Moreover, 360 NAFLD patients (steatosis, 83; NASH, 277), 40 healthy individuals, and 87 patients with alcoholic fatty liver disease were recruited. RESULTS Inflammatory infiltration, focal necrosis in the leaflets, steatosis, and fibrosis were documented in the mouse liver. In total, 504 genes were differentially expressed in the livers of NASH mice, and showed significant functional enrichment in the inflammation-related category. Upregulated liver LCN2 was found to be significantly interactive with various interleukins and toll-like receptors. Serum LCN2 levels were significantly increased in NAFLD patients. Serum LCN2 levels were correlated with steatosis, intralobular inflammation, semiquantitative fibrosis score, and nonalcoholic fatty liver disease activity score. The area under the curve of serum LCN2 was 0.987 with a specificity of 100% and a sensitivity of 93.5% for NASH diagnosis, and 0.977 with almost the same specificity and sensitivity for steatosis. CONCLUSION LCN2 might be involved in the transition from NAFL to NASH by mediating inflammation. Serum LCN2 levels might be a novel biomarker for the diagnosis of NASH.
Collapse
Affiliation(s)
- Gang Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-Min Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Miao-Miao Ying
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zong-Rui Li
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Lei Ma
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunming Ding
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
Li W, Yuan B, Zhao Y, Lu T, Zhang S, Ding Z, Wang D, Zhong S, Gao G, Yan M. Transcriptome profiling reveals target in primary myelofibrosis together with structural biology study on novel natural inhibitors regarding JAK2. Aging (Albany NY) 2021; 13:8248-8275. [PMID: 33686952 PMCID: PMC8034969 DOI: 10.18632/aging.202635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to identify effective targets for carcinogenesis of primary myelofibrosis (PMF), as well as to screen ideal lead compounds with potential inhibition effect on Janus kinase 2 to contribute to the medication design and development. Gene expression profiles of GSE26049, GSE53482, GSE61629 were obtained from the Gene Expression Omnibus database. The differentially expressed genes were identified, and functional enrichment analyses such as Gene Ontology, protein-protein interaction network etc., were performed step by step. Subsequently, highly-precise computational techniques were conducted to identify potential inhibitors of JAK2. A series of structural biology methods including virtual screening, ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction, molecule docking, molecular dynamics simulation etc., were implemented to discover novel natural compounds. Results elucidated that PMF patients had abnormal LCN2, JAK2, MMP8, CAMP, DEFA4, LTF, MPO, HBD, STAT4, EBF1 mRNA expression compared to normal patients. Functional enrichment analysis revealed that these genes were mainly enriched in erythrocyte differentiation, neutrophil degranulation and killing cells of other organisms. Two novel natural compounds, ZINC000013513540 and ZINC000004099068 were found binding to JAK2 with favorable interaction energy together with high binding affinity. They were predicted with non-Ames mutagenicity, low-rodent carcinogenicity, less developmental toxicity potential as well as non-toxicity with liver. Molecular dynamics simulation demonstrated that these two complexes: ZINC000013513540-JAK2 and ZINC000004099068-JAK2 could exist stably under natural circumstances. In conclusion, this study revealed hub genes in the carcinogenesis of PMF. ZINC000013513540 and ZINC000004099068 were promising drugs in dealing with PMF. This study may also accelerate exploration of new drugs.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bin Yuan
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Orthopaedics, Daxing Hospital, Xi'an, China
| | - Yingjing Zhao
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Tianxing Lu
- Hou Zonglian Medical Experimental Class, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shilei Zhang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ziyi Ding
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dong Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Sheng Zhong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Guangxun Gao
- Department of Hematology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ming Yan
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
50
|
Perego S, Sansoni V, Ziemann E, Lombardi G. Another Weapon against Cancer and Metastasis: Physical-Activity-Dependent Effects on Adiposity and Adipokines. Int J Mol Sci 2021; 22:ijms22042005. [PMID: 33670492 PMCID: PMC7922129 DOI: 10.3390/ijms22042005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
Physically active behavior has been associated with a reduced risk of developing certain types of cancer and improved psychological conditions for patients by reducing anxiety and depression, in turn improving the quality of life of cancer patients. On the other hand, the correlations between inactivity, sedentary behavior, and overweight and obesity with the risk of development and progression of various cancers are well studied, mainly in middle-aged and elderly subjects. In this article, we have revised the evidence on the effects of physical activity on the expression and release of the adipose-tissue-derived mediators of low-grade chronic inflammation, i.e., adipokines, as well as the adipokine-mediated impacts of physical activity on tumor development, growth, and metastasis. Importantly, exercise training may be effective in mitigating the side effects related to anti-cancer treatment, thereby underlining the importance of encouraging cancer patients to engage in moderate-intensity activities. However, the strong need to customize and adapt exercises to a patient’s abilities is apparent. Besides the preventive effects of physically active behavior against the adipokine-stimulated cancer risk, it remains poorly understood how physical activity, through its actions as an adipokine, can actually influence the onset and development of metastases.
Collapse
Affiliation(s)
- Silvia Perego
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Correspondence: ; Tel.: +39-0266214068
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| |
Collapse
|