1
|
Miao X, Huang Y, Ge KX, Xu Y. Application of scRNA-seq in Dental Research: Seeking Regenerative Clues From the Structure of Tooth and Periodontium in Physical or Pathological States. FRONT BIOSCI-LANDMRK 2025; 30:26200. [PMID: 40018926 DOI: 10.31083/fbl26200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 03/01/2025]
Abstract
This review presents a comprehensive overview of single-cell RNA sequencing (scRNA-seq) analyses used to study tooth and periodontal tissues. The intricate cellular composition of both teeth and periodontium are revealed, leading to the identification of new cell types and tracing lineage profiles for each cell type. Herein, we summarize the progression of dental and periodontal tissue formation, tooth homeostasis, and regenerative mechanisms. scRNA-seq analyses have demonstrated that the cellular constituent ratio of dental and periodontal tissues transforms homeostasis or injury repair. Importantly, single-cell data in the diseased tissue demonstrated a change in both cell types and intercellular communication patterns compared to the normal state. These findings provide valuable insights into the underlying disease mechanisms at the cellular level in the context of single-cell vision, thereby facilitating the investigation of potential therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Miao
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, 310052 Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, 310052 Hangzhou, Zhejiang, China
| | - Yufen Huang
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, 310052 Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, 310052 Hangzhou, Zhejiang, China
| | - Kelsey Xingyun Ge
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R., China
| | - Yunlong Xu
- Endodontic Department, Changzhou Stomatological Hospital, 213000 Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Fuchen-Ramos DM, Leija-Montoya AG, González-Ramírez J, Isiordia-Espinoza M, García-Arévalo F, Pitones-Rubio V, Olvera-Sandoval C, Mateos-Corral I, Serafín-Higuera N. Current Insights into the Roles of LncRNAs and CircRNAs in Pulpitis: A Narrative Review. Int J Mol Sci 2024; 25:13603. [PMID: 39769365 PMCID: PMC11677139 DOI: 10.3390/ijms252413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Pulpitis, an inflammation of the dental pulp, is generated by bacterial invasion through different ways as caries. In the establishment and development of this disease, different biological processes are involved. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are transcripts with regulatory capacity participating in different biological functions and have been implicated in different diseases. The aim of this narrative review is to critically analyze available evidence on the biological role of lncRNAs and circRNAs in pulpitis and discuss possible new research prospects. LncRNAs and circRNAs involved in pulpitis were explored, addressing their expression, molecular mechanisms, targets and biological effects studied in animal and in vitro models, as well as in studies in human patients. LncRNAs and circRNAs are emerging as key regulators of diverse biological functions in pulpitis including apoptosis, proliferation, differentiation, oxidative stress, autophagy, ferroptosis, inflammation and immune response. The molecular mechanisms performed by these non-coding RNAs (ncRNAs) involved interactions with miRNAs and the formation of regulatory networks in the context of pulpitis. Further studies more deeply analyzing the participation of lncRNAs and circRNAs in pulpitis will reveal the potential applications of these ncRNAs as biomarkers or their use in therapeutic strategies in pulp inflammation.
Collapse
Affiliation(s)
- Dulce Martha Fuchen-Ramos
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (C.O.-S.)
| | - Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico;
| | - Mario Isiordia-Espinoza
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, JAL, Mexico;
| | - Fernando García-Arévalo
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Viviana Pitones-Rubio
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Carlos Olvera-Sandoval
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (C.O.-S.)
| | - Isis Mateos-Corral
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Nicolás Serafín-Higuera
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| |
Collapse
|
3
|
Zhang M, Feng J, Li Y, Qin PZ, Chai Y. Generation of tamoxifen-inducible Tfap2b-CreER T2 mice using CRISPR-Cas9. Genesis 2024; 62:e23582. [PMID: 38069547 PMCID: PMC11021159 DOI: 10.1002/dvg.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/11/2024]
Abstract
Tfap2b, a pivotal transcription factor, plays critical roles within neural crest cells and their derived lineage. To unravel the intricate lineage dynamics and contribution of these Tfap2b+ cells during craniofacial development, we established a Tfap2b-CreERT2 knock-in transgenic mouse line using the CRISPR-Cas9-mediated homologous direct repair. By breeding with tdTomato reporter mice and initiating Cre activity through tamoxifen induction at distinct developmental time points, we show the Tfap2b lineage within the key neural crest-derived domains, such as the facial mesenchyme, midbrain, cerebellum, spinal cord, and limbs. Notably, the migratory neurons stemming from the dorsal root ganglia are visible subsequent to Cre activity initiated at E8.5. Intriguingly, Tfap2b+ cells, serving as the progenitors for limb development, show activity predominantly commencing at E10.5. Across the mouse craniofacial landscape, Tfap2b exhibits a widespread presence throughout the facial organs. Here we validate its role as a marker of progenitors in tooth development and have confirmed that this process initiates from E12.5. Our study not only validates the Tfap2b-CreERT2 transgenic line, but also provides a powerful tool for lineage tracing and genetic targeting of Tfap2b-expressing cells and their progenitor in a temporally and spatially regulated manner during the intricate process of development and organogenesis.
Collapse
Affiliation(s)
- Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yue Li
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Z. Qin
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
4
|
Pei F, Ma L, Guo T, Zhang M, Jing J, Wen Q, Feng J, Lei J, He J, Janečková E, Ho TV, Chen JF, Chai Y. Sensory nerve regulates progenitor cells via FGF-SHH axis in tooth root morphogenesis. Development 2024; 151:dev202043. [PMID: 38108472 PMCID: PMC10820866 DOI: 10.1242/dev.202043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Nerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored. Here, we use tooth root development in mouse as a model to investigate how sensory nerves regulate organogenesis. We show that sensory nerve fibers are enriched in the dental papilla at the initiation of tooth root development. Through single cell RNA-sequencing analysis of the trigeminal ganglion and developing molar, we reveal several signaling pathways that connect the sensory nerve with the developing molar, of which FGF signaling appears to be one of the important regulators. Fgfr2 is expressed in the progenitor cells during tooth root development. Loss of FGF signaling leads to shortened roots with compromised proliferation and differentiation of progenitor cells. Furthermore, Hh signaling is impaired in Gli1-CreER;Fgfr2fl/fl mice. Modulation of Hh signaling rescues the tooth root defects in these mice. Collectively, our findings elucidate the nerve-progenitor crosstalk and reveal the molecular mechanism of the FGF-SHH signaling cascade during tooth root morphogenesis.
Collapse
Affiliation(s)
- Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jie Lei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Kiel M, Wuebker S, Remy M, Riemondy K, Smith F, Carey C, Williams T, Van Otterloo E. MEMO1 Is Required for Ameloblast Maturation and Functional Enamel Formation. J Dent Res 2023; 102:1261-1271. [PMID: 37475472 PMCID: PMC11066519 DOI: 10.1177/00220345231185758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Coordinated mineralization of soft tissue is central to organismal form and function, while dysregulated mineralization underlies several human pathologies. Oral epithelial-derived ameloblasts are polarized, secretory cells responsible for generating enamel, the most mineralized substance in the human body. Defects in ameloblast development result in enamel anomalies, including amelogenesis imperfecta. Identifying proteins critical in ameloblast development can provide insight into specific pathologies associated with enamel-related disorders or, more broadly, mechanisms of mineralization. Previous studies identified a role for MEMO1 in bone mineralization; however, whether MEMO1 functions in the generation of additional mineralized structures remains unknown. Here, we identify a critical role for MEMO1 in enamel mineralization. First, we show that Memo1 is expressed in ameloblasts and, second, that its conditional deletion from ameloblasts results in enamel defects, characterized by a decline in mineral density and tooth integrity. Histology revealed that the mineralization defects in Memo1 mutant ameloblasts correlated with a disruption in ameloblast morphology. Finally, molecular profiling of ameloblasts and their progenitors in Memo1 oral epithelial mutants revealed a disruption to cytoskeletal-associated genes and a reduction in late-stage ameloblast markers, relative to controls. Collectively, our findings integrate MEMO1 into an emerging network of molecules important for ameloblast development and provide a system to further interrogate the relationship of cytoskeletal and amelogenesis-related defects.
Collapse
Affiliation(s)
- M. Kiel
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - S. Wuebker
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - M.T. Remy
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - K.A. Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F. Smith
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C.M. Carey
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - T. Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO, USA
| | - E. Van Otterloo
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
- Department of Periodontics, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- The University of Iowa Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Liu Q, Gao Y, He J. Stem Cells from the Apical Papilla (SCAPs): Past, Present, Prospects, and Challenges. Biomedicines 2023; 11:2047. [PMID: 37509686 PMCID: PMC10377451 DOI: 10.3390/biomedicines11072047] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Dental diseases occurring on young permanent teeth usually lead to the premature arrest of tooth root development. Sustained tooth root elongation is necessary to achieve the goal of long-term preservation of affected teeth. To this end, stem cell-based regenerative endodontic treatment has been regarded as one of the most promising strategies for treating young permanent teeth with pulp and periapical infections. Endogenous stem cells residing in the apical papilla, named stem cells from the apical papilla (SCAPs), have been intensively investigated due to their critical roles in pulp regeneration and root redevelopment. The present review summarizes advances in the field of SCAPs studies and discusses the challenges that need to be further addressed.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuan Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Coste A, Fordyce RE, Loch C. A new dolphin with tusk-like teeth from the late Oligocene of New Zealand indicates evolution of novel feeding strategies. Proc Biol Sci 2023; 290:20230873. [PMID: 37312551 PMCID: PMC10265015 DOI: 10.1098/rspb.2023.0873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
All extant toothed whales (Cetacea, Odontoceti) are aquatic mammals with homodont dentitions. Fossil evidence from the late Oligocene suggests a greater diversity of tooth forms among odontocetes, including heterodont species with a variety of tooth shapes and orientations. A new fossil dolphin from the late Oligocene of New Zealand, Nihohae matakoi gen. et sp. nov., consisting of a near complete skull, earbones, dentition and some postcranial material, represents this diverse dentition. Several preserved teeth are horizontally procumbent, including all incisors and canines. These tusk-like teeth suggest adaptive advantages for horizontally procumbent teeth in basal dolphins. Phylogenetic analysis places Nihohae among the poorly constrained basal waipatiid group, many with similarly procumbent teeth. Features of N. matakoi such as its dorsoventrally flattened and long rostrum, long mandibular symphysis, unfused cervical vertebrae, lack of attritional or occlusal wear on the teeth and thin enamel cover suggest the rostrum and horizontally procumbent teeth were used to injure and stun prey though swift lateral head movements, a feeding mode that did not persist in extant odontocetes.
Collapse
Affiliation(s)
- Ambre Coste
- Department of Geology, University of Otago, Dunedin, New Zealand
| | - R. Ewan Fordyce
- Department of Geology, University of Otago, Dunedin, New Zealand
| | - Carolina Loch
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Jiravejchakul N, Abe GL, Loza M, Park S, Matangkasombut P, Sasaki JI, Imazato S, Diez D, Standley DM. Intercellular crosstalk in adult dental pulp is mediated by heparin-binding growth factors Pleiotrophin and Midkine. BMC Genomics 2023; 24:184. [PMID: 37024794 PMCID: PMC10077760 DOI: 10.1186/s12864-023-09265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND In-depth knowledge of the cellular and molecular composition of dental pulp (DP) and the crosstalk between DP cells that drive tissue homeostasis are not well understood. To address these questions, we performed a comparative analysis of publicly available single-cell transcriptomes of healthy adult human DP to 5 other reference tissues: peripheral blood mononuclear cells, bone marrow, adipose tissue, lung, and skin. RESULTS Our analysis revealed that DP resident cells have a unique gene expression profile when compared to the reference tissues, and that DP fibroblasts are the main cell type contributing to this expression profile. Genes coding for pleiotrophin (PTN) and midkine (MDK), homologous heparin-binding growth-factors, possessed the highest differential expression levels in DP fibroblasts. In addition, we identified extensive crosstalk between DP fibroblasts and several other DP resident cells, including Schwann cells, mesenchymal stem cells and odontoblasts, mediated by PTN and MDK. CONCLUSIONS DP fibroblasts emerge as unappreciated players in DP homeostasis, mainly through their crosstalk with glial cells. These findings suggest that fibroblast-derived growth factors possess major regulatory functions and thus have a potential role as dental therapeutic targets.
Collapse
Affiliation(s)
- Natnicha Jiravejchakul
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Gabriela L Abe
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, 565-0871, Japan.
| | - Martin Loza
- Laboratory of Functional Analysis in silico, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108- 8639, Japan
| | - Soyoung Park
- Department of Systems Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Jun-Ichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, 565-0871, Japan
| | - Satoshi Imazato
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, 565-0871, Japan
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, 565-0871, Japan
| | - Diego Diez
- Quantitative Immunology Research Unit, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan.
- Department of Systems Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
9
|
Krivanek J, Buchtova M, Fried K, Adameyko I. Plasticity of Dental Cell Types in Development, Regeneration, and Evolution. J Dent Res 2023; 102:589-598. [PMID: 36919873 DOI: 10.1177/00220345231154800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Recent years have improved our understanding of the plasticity of cell types behind inducing, building, and maintaining different types of teeth. The latest efforts were aided by progress in single-cell transcriptomics, which helped to define not only cell states with mathematical precision but also transitions between them. This includes new aspects of dental epithelial and mesenchymal stem cell niches and beyond. These recent efforts revealed continuous and fluid trajectories connecting cell states during dental development and exposed the natural plasticity of tooth-building progenitors. Such "developmental" plasticity seems to be employed for organizing stem cell niches in adult continuously growing teeth. Furthermore, transitions between mature cell types elicited by trauma might represent a replay of embryonic continuous cell states. Alternatively, they could constitute transitions that evolved de novo, not known from the developmental paradigm. In this review, we discuss and exemplify how dental cell types exhibit plasticity during dynamic processes such as development, self-renewal, repair, and dental replacement. Hypothetically, minor plasticity of cell phenotypes and greater plasticity of transitions between cell subtypes might provide a better response to lifetime challenges, such as damage or dental loss. This plasticity might be additionally harnessed by the evolutionary process during the elaboration of dental cell subtypes in different animal lineages. In turn, the diversification of cell subtypes building teeth brings a diversity of their shape, structural properties, and functions.
Collapse
Affiliation(s)
- J Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - M Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - K Fried
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - I Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
10
|
Retana-Lobo C, Reyes-Carmona J. Immunohistochemical characterization of stem cell, vascular, neural, and differentiation markers in the apical papilla and dental pulp of human teeth at various stages of root development. J Histotechnol 2023; 46:17-27. [PMID: 36111541 DOI: 10.1080/01478885.2022.2122665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study aimed to evaluate the expression of several differentiation markers in the apical papilla (AP) and dental pulp (DP) of human permanent teeth. Twenty young human teeth were extracted and classified according to three Moorrees tooth development stages: initial root formation (Ri), root length ½ (R1/2), and root length complete (Rc). Immunohistochemical assays were performed using STRO-1, VEGF Receptor-2, Neurofilament heavy (NFH), and Nestin antibodies and analyzed under light microscopy. Decalcified, formalin fixed paraffin embedded tooth sections stained with hematoxylin and eosin showed an apical cell rich zone between the DP and AP. The AP revealed fewer vascular and cellular components than the DP. STRO-1 was expressed on vascular and neuronal elements beneath the odontoblast (OB) and in the sub-odontoblastic (SOB) zone, and VEGFR-2 positive cells were observed in the endothelium, arterioles, and blood vessels. Neuroepithelial stem cell protein (Nestin) was highly expressed in differentiated odontoblasts in the predentin odontotoblast and odontoblast cell processes. Neurofilament heavy (NFH) was expressed in mature axons throughout the DP. STRO-1 and VEGFR-2 microvascular expression was higher at the stages Ri and R1/2 while STRO-1 and NFH expression showed strong spatial distribution of Rc neuronal elements as compared to Ri and R1/2. Differentiated OB and SOB cells showed Nestin expression, indicating a reservoir of newly differentiated odontoblast-like cells.
Collapse
Affiliation(s)
- Cristina Retana-Lobo
- Endodontics Section, Restorative Science Department, Faculty of Dentistry, University of Costa Rica, San José, Costa Rica
| | - Jessie Reyes-Carmona
- Endodontics Section, Restorative Science Department, Faculty of Dentistry, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
11
|
Ohyama S, Ouchi T, Kimura M, Kurashima R, Yasumatsu K, Nishida D, Hitomi S, Ubaidus S, Kuroda H, Ito S, Takano M, Ono K, Mizoguchi T, Katakura A, Shibukawa Y. Piezo1-pannexin-1-P2X 3 axis in odontoblasts and neurons mediates sensory transduction in dentinal sensitivity. Front Physiol 2022; 13:891759. [PMID: 36589456 PMCID: PMC9795215 DOI: 10.3389/fphys.2022.891759] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
According to the "hydrodynamic theory," dentinal pain or sensitivity is caused by dentinal fluid movement following the application of various stimuli to the dentin surface. Recent convergent evidence in Vitro has shown that plasma membrane deformation, mimicking dentinal fluid movement, activates mechanosensitive transient receptor potential (TRP)/Piezo channels in odontoblasts, with the Ca2+ signal eliciting the release of ATP from pannexin-1 (PANX-1). The released ATP activates the P2X3 receptor, which generates and propagates action potentials in the intradental Aδ afferent neurons. Thus, odontoblasts act as sensory receptor cells, and odontoblast-neuron signal communication established by the TRP/Piezo channel-PANX-1-P2X3 receptor complex may describe the mechanism of the sensory transduction sequence for dentinal sensitivity. To determine whether odontoblast-neuron communication and odontoblasts acting as sensory receptors are essential for generating dentinal pain, we evaluated nociceptive scores by analyzing behaviors evoked by dentinal sensitivity in conscious Wistar rats and Cre-mediated transgenic mouse models. In the dentin-exposed group, treatment with a bonding agent on the dentin surface, as well as systemic administration of A-317491 (P2X3 receptor antagonist), mefloquine and 10PANX (non-selective and selective PANX-1 antagonists), GsMTx-4 (selective Piezo1 channel antagonist), and HC-030031 (selective TRPA1 channel antagonist), but not HC-070 (selective TRPC5 channel antagonist), significantly reduced nociceptive scores following cold water (0.1 ml) stimulation of the exposed dentin surface of the incisors compared to the scores of rats without local or systemic treatment. When we applied cold water stimulation to the exposed dentin surface of the lower first molar, nociceptive scores in the rats with systemic administration of A-317491, 10PANX, and GsMTx-4 were significantly reduced compared to those in the rats without systemic treatment. Dentin-exposed mice, with somatic odontoblast-specific depletion, also showed significant reduction in the nociceptive scores compared to those of Cre-mediated transgenic mice, which did not show any type of cell deletion, including odontoblasts. In the odontoblast-eliminated mice, P2X3 receptor-positive A-neurons were morphologically intact. These results indicate that neurotransmission between odontoblasts and neurons mediated by the Piezo1/TRPA1-pannexin-1-P2X3 receptor axis is necessary for the development of dentinal pain. In addition, odontoblasts are necessary for sensory transduction to generate dentinal sensitivity as mechanosensory receptor cells.
Collapse
Affiliation(s)
- Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,Oral Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Ryuya Kurashima
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | | - Daisuke Nishida
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan,Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Sobhan Ubaidus
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Hidetaka Kuroda
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,Department of Dental Anesthesiology, Kanagawa Dental University, Yokosuka, Japan
| | - Shinichirou Ito
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Takano
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | | | - Akira Katakura
- Department of Oral Pathological Science and Surgery, Tokyo Dental College, Tokyo, Japan
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,*Correspondence: Yoshiyuki Shibukawa,
| |
Collapse
|
12
|
Jing J, Feng J, Yuan Y, Guo T, Lei J, Pei F, Ho TV, Chai Y. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nat Commun 2022; 13:4803. [PMID: 35974052 PMCID: PMC9381504 DOI: 10.1038/s41467-022-32490-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Cranial neural crest cells are an evolutionary innovation of vertebrates for craniofacial development and function, yet the mechanisms that govern the cell fate decisions of postmigratory cranial neural crest cells remain largely unknown. Using the mouse molar as a model, we perform single-cell transcriptome profiling to interrogate the cell fate diversification of postmigratory cranial neural crest cells. We reveal the landscape of transcriptional heterogeneity and define the specific cellular domains during the progression of cranial neural crest cell-derived dental lineage diversification, and find that each domain makes a specific contribution to distinct molar mesenchymal tissues. Furthermore, IGF signaling-mediated cell-cell interaction between the cellular domains highlights the pivotal role of autonomous regulation of the dental mesenchyme. Importantly, we reveal cell-type-specific gene regulatory networks in the dental mesenchyme and show that Foxp4 is indispensable for the differentiation of periodontal ligament. Our single-cell atlas provides comprehensive mechanistic insight into the cell fate diversification process of the cranial neural crest cell-derived odontogenic populations.
Collapse
Affiliation(s)
- Junjun Jing
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA ,grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan 610041 China
| | - Jifan Feng
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Yuan Yuan
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Tingwei Guo
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Jie Lei
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Fei Pei
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Thach-Vu Ho
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
13
|
Gruenhagen GW, Mubeen T, Patil C, Stockert J, Streelman JT. Single Cell RNA Sequencing Reveals Deep Homology of Dental Cell Types Across Vertebrates. FRONTIERS IN DENTAL MEDICINE 2022; 3. [DOI: 10.3389/fdmed.2022.845449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Like most mammals, humans replace their teeth once throughout their lives and have limited regenerative capabilities. In contrast, mice continually renew tissues lost due to gnawing through a well characterized population of stem cells on the labial surface of the incisor. Most non-mammalian vertebrates replace teeth throughout life; the cellular and molecular mechanisms of successional tooth replacement are largely unknown. Here we use single nuclei RNA sequencing (snRNA-seq) of replacement teeth and adjacent oral lamina in Lake Malawi cichlids, species with lifelong whole–tooth replacement, to make two main discoveries. First, despite hundreds of millions of years of evolution, we demonstrate conservation of cell type gene expression across vertebrate teeth (fish, mouse, human). Second, we used an approach that combines marker gene expression and developmental potential of dental cells to uncover the transcriptional signature of stem-like cells in regenerating teeth. Our work underscores the importance of a comparative framework in the study of vertebrate oral and regenerative biology.
Collapse
|
14
|
Lavicky J, Kolouskova M, Prochazka D, Rakultsev V, Gonzalez-Lopez M, Steklikova K, Bartos M, Vijaykumar A, Kaiser J, Pořízka P, Hovorakova M, Mina M, Krivanek J. The Development of Dentin Microstructure Is Controlled by the Type of Adjacent Epithelium. J Bone Miner Res 2022; 37:323-339. [PMID: 34783080 PMCID: PMC9300090 DOI: 10.1002/jbmr.4471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Considerable amount of research has been focused on dentin mineralization, odontoblast differentiation, and their application in dental tissue engineering. However, very little is known about the differential role of functionally and spatially distinct types of dental epithelium during odontoblast development. Here we show morphological and functional differences in dentin located in the crown and roots of mouse molar and analogous parts of continuously growing incisors. Using a reporter (DSPP-cerulean/DMP1-cherry) mouse strain and mice with ectopic enamel (Spry2+/- ;Spry4-/- ), we show that the different microstructure of dentin is initiated in the very beginning of dentin matrix production and is maintained throughout the whole duration of dentin growth. This phenomenon is regulated by the different inductive role of the adjacent epithelium. Thus, based on the type of interacting epithelium, we introduce more generalized terms for two distinct types of dentins: cementum versus enamel-facing dentin. In the odontoblasts, which produce enamel-facing dentin, we identified uniquely expressed genes (Dkk1, Wisp1, and Sall1) that were either absent or downregulated in odontoblasts, which form cementum-facing dentin. This suggests the potential role of Wnt signalling on the dentin structure patterning. Finally, we show the distribution of calcium and magnesium composition in the two developmentally different types of dentins by utilizing spatial element composition analysis (LIBS). Therefore, variations in dentin inner structure and element composition are the outcome of different developmental history initiated from the very beginning of tooth development. Taken together, our results elucidate the different effects of dental epithelium, during crown and root formation on adjacent odontoblasts and the possible role of Wnt signalling which together results in formation of dentin of different quality. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Magdalena Kolouskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Prochazka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Vladislav Rakultsev
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcos Gonzalez-Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Klara Steklikova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jozef Kaiser
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Pavel Pořízka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mina Mina
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
15
|
Li Y, Liu A, Zhang L, Wang Z, Hui N, Zhai Q, Zhang L, Jin Z, Jin F. Epithelial Cell Rests of Malassez Provide a Favorable Microenvironment for Ameliorating the Impaired Osteogenic Potential of Human Periodontal Ligament Stem Cells. Front Physiol 2021; 12:735234. [PMID: 34707510 PMCID: PMC8542701 DOI: 10.3389/fphys.2021.735234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Human periodontal ligament stromal/stem cells (PDLSCs) are ideal candidates for periodontal regeneration and are of significant importance in clinical practice. However, PDLSCs derived from diseased microenvironments exert impaired behavior, which leads to the failure of periodontal regeneration. The epithelial cell rests of Malassez (ERM), which are involved in periodontal homeostasis, are residual cells from Hertwig's epithelial root sheath (HERS). However, the function of ERM remains largely unknown. Therefore, the aim of this study was to evaluate the effect of ERM on the osteogenic potential of PDLSCs from an impaired microenvironment. PDLSCs from healthy donors (H-PDLSCs), periodontitis donors (P-PDLSCs) and human ERM were harvested. Osteogenic evaluation showed a lower osteogenic potential of P-PDLSCs compared to that of H-PDLSCs. Then, we co-cultured ERM with P-PDLSCs, and the data showed that ERM promoted the expression of osteogenic genes and proteins in P-PDLSCs. In addition, we collected the PDLSCs from aged donors (A-PDLSCs) and analyzed the osteogenesis capacity of the A-PDLSCs and A-PDLSCs + ERM groups, which displayed similar results to P-PDLSCs. Finally, we evaluated the Wnt pathway, which is associated with osteogenic differentiation of stromal/stem cells, in A-PDLSCs + ERM and P-PDLSCs + ERM groups, which indicated that suppression of the Wnt pathway may result in an increase in the osteogenic properties of A-PDLSCs + ERM and P-PDLSCs + ERM groups. Taken together, the above findings shed new light on the function of ERM and provide a novel therapeutic for optimizing PDLSCs-based periodontal regeneration.
Collapse
Affiliation(s)
- Yanjiao Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontic, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontic, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Stomatology, The 985 Hospital of PLA, Taiyuan, China
| | - Liqiang Zhang
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhiwei Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontic, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Nana Hui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontic, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qiming Zhai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontic, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Lishu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontic, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontic, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fang Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontic, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Al Madhoun A, Sindhu S, Haddad D, Atari M, Ahmad R, Al-Mulla F. Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief Review. Front Cell Dev Biol 2021; 9:717624. [PMID: 34712658 PMCID: PMC8545885 DOI: 10.3389/fcell.2021.717624] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The fields of regenerative medicine and stem cell-based tissue engineering have the potential of treating numerous tissue and organ defects. The use of adult stem cells is of particular interest when it comes to dynamic applications in translational medicine. Recently, dental pulp stem cells (DPSCs) have been traced in third molars of adult humans. DPSCs have been isolated and characterized by several groups. DPSCs have promising characteristics including self-renewal capacity, rapid proliferation, colony formation, multi-lineage differentiation, and pluripotent gene expression profile. Nevertheless, genotypic, and phenotypic heterogeneities have been reported for DPSCs subpopulations which may influence their therapeutic potentials. The underlying causes of DPSCs' heterogeneity remain poorly understood; however, their heterogeneity emerges as a consequence of an interplay between intrinsic and extrinsic cellular factors. The main objective of the manuscript is to review the current literature related to the human DPSCs derived from the third molar, with a focus on their physiological properties, isolation procedures, culture conditions, self-renewal, proliferation, lineage differentiation capacities and their prospective advances use in pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Maher Atari
- Biointelligence Technology Systems S.L., Barcelona, Spain
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
17
|
Mahdee AF, Ali AH, Gillespie JI. Structural and functional relations between the connective tissue and epithelium of enamel organ and their role during enamel maturation. J Mol Histol 2021; 52:975-989. [PMID: 34100179 DOI: 10.1007/s10735-021-09992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The morphological and possible functional interactions between the connective tissue and enamel organ cells were examined during the maturation phase of enamel formation, using immunohistochemical techniques. Decalcified mandibular sections (10 µm) including incisors were used from Wistar rats ages 10-12 weeks. Sections were incubated with one or two primary antibodies targeting cell cytoskeleton (vimentin, α-actin, α-tubulin), dendritic marker (OX6), gap junctions (cx-43), enzymes (nitric-oxide synthase (nos1) and cyclooxygenase (cox1)), and the ion transporters (Na+/H+ exchanger (NHE1) and Na+/Ca2+ exchanger (NCX)) for 24 h, before incubation with the appropriate conjugated fluorescent secondary antibodies. Sections were examined by fluorescence microscopy. Haematoxylin-eosin slides were also employed. Cellular heterogeneity and morphological modulations were identified within enamel organ cells and connective tissue covering suggesting complex cellular interactions and indicating a new functional concept and possible complementary role during enamel maturation. Also, some ion transportation activity, and nos1 and cox1 signalling pathways have been identified, indicating intercellular communication between these regions. A hypothesis is suggested, to explain the morphological modulation of ameloblasts and papillary cells during enamel maturation which functions to increase the transporting membrane surface area to accomplish faster and bulker ion transportation to achieve controlled pH and to direct Ca2+ towards enamel.
Collapse
Affiliation(s)
- Anas F Mahdee
- Department of Restorative and Aesthetic Dentistry, College of Dentistry, University of Baghdad, Baghdad, Iraq.
| | - Ahmed H Ali
- Department of Restorative and Aesthetic Dentistry, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - James I Gillespie
- Department of Urology, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Pieles O, Reichert TE, Morsczeck C. Classical isoforms of protein kinase C (PKC) and Akt regulate the osteogenic differentiation of human dental follicle cells via both β-catenin and NF-κB. Stem Cell Res Ther 2021; 12:242. [PMID: 33853677 PMCID: PMC8048169 DOI: 10.1186/s13287-021-02313-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human dental follicle cells (DFCs) are the precursor cells of the periodontium with a high potential for regenerative therapies of (alveolar) bone. However, the molecular mechanisms of osteogenic differentiation are inadequately understood. Classical isoforms of protein kinase C (PKC) are reported to inhibit osteogenesis of stem/precursor cells. This study evaluated the role of classical PKCs and potential downstream targets on the osteogenic differentiation of DFCs. METHODS DFCs were osteogenic differentiated with dexamethasone or bone morphogenetic protein 2 (BMP2). Expression of PKC and potential upstream/downstream regulators was manipulated using activators, inhibitors, and small interfering ribonucleic acid (siRNA). Expression of proteins was examined by Western blot analysis, while the activation levels of enzymes and transcription factors were examined by their phosphorylation states or by specific activation assays. Expression levels of osteogenic markers were examined by RT-qPCR (reverse transcription-quantitative polymerase chain reaction) analysis. Activity of alkaline phosphatase (ALP) and accumulation of calcium nodules by Alizarin Red staining were measured as indicators of mineralization. RESULTS Classical PKCs like PKCα inhibit the osteogenic differentiation of DFCs, but do not interfere with the induction of differentiation. Inhibition of classical PKCs by Gö6976 enhanced activity of Akt after osteogenic induction. Akt was also regulated during differentiation and especially disturbed BMP2-induced mineralization. The PKC/Akt axis was further shown to regulate the canonical Wnt signaling pathway and eventually nuclear expression of active β-catenin during dexamethasone-induced osteogenesis. Moreover, the nuclear factor "kappa-light-chain-enhancer" of activated B cells (NF-κB) pathway is regulated during osteogenic differentiation of DFCs and via the PKC/Akt axis and disturbs the mineralization. Upstream, parathyroid hormone-related protein (PTHrP) sustained the activity of PKC, while Wnt5a inhibited it. CONCLUSIONS Our results demonstrate that classical PKCs like PKCα and Akt regulate the osteogenic differentiation of DFCs partly via both β-catenin and NF-κB.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
19
|
Krivanek J, Soldatov RA, Kastriti ME, Chontorotzea T, Herdina AN, Petersen J, Szarowska B, Landova M, Matejova VK, Holla LI, Kuchler U, Zdrilic IV, Vijaykumar A, Balic A, Marangoni P, Klein OD, Neves VCM, Yianni V, Sharpe PT, Harkany T, Metscher BD, Bajénoff M, Mina M, Fried K, Kharchenko PV, Adameyko I. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun 2020; 11:4816. [PMID: 32968047 PMCID: PMC7511944 DOI: 10.1038/s41467-020-18512-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation.
Collapse
Affiliation(s)
- Jan Krivanek
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ruslan A Soldatov
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Maria Eleni Kastriti
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana Chontorotzea
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Anna Nele Herdina
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Julian Petersen
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bara Szarowska
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marie Landova
- Institute of Animal Physiology and Genetics, CAS, Brno, Czech Republic
| | - Veronika Kovar Matejova
- Clinic of Stomatology, Institution Shared with St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ulrike Kuchler
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
- Department of Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Ivana Vidovic Zdrilic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Anamaria Balic
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Vitor C M Neves
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences. King's College London, London, UK
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences. King's College London, London, UK
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences. King's College London, London, UK
| | - Tibor Harkany
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Brian D Metscher
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Mina Mina
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Igor Adameyko
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Chiba Y, Saito K, Martin D, Boger ET, Rhodes C, Yoshizaki K, Nakamura T, Yamada A, Morell RJ, Yamada Y, Fukumoto S. Single-Cell RNA-Sequencing From Mouse Incisor Reveals Dental Epithelial Cell-Type Specific Genes. Front Cell Dev Biol 2020; 8:841. [PMID: 32984333 PMCID: PMC7490294 DOI: 10.3389/fcell.2020.00841] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Dental epithelial stem cells give rise to four types of dental epithelial cells: inner enamel epithelium (IEE), outer enamel epithelium (OEE), stratum intermedium (SI), and stellate reticulum (SR). IEE cells further differentiate into enamel-forming ameloblasts, which play distinct roles, and are essential for enamel formation. These are conventionally classified by their shape, although their transcriptome and biological roles are yet to be fully understood. Here, we aimed to use single-cell RNA sequencing to clarify the heterogeneity of dental epithelial cell types. Unbiased clustering of 6,260 single cells from incisors of postnatal day 7 mice classified them into two clusters of ameloblast, IEE/OEE, SI/SR, and two mesenchymal populations. Secretory-stage ameloblasts expressed Amel and Enam were divided into Dspp + and Ambn + ameloblasts. Pseudo-time analysis indicated Dspp + ameloblasts differentiate into Ambn + ameloblasts. Further, Dspp and Ambn could be stage-specific markers of ameloblasts. Gene ontology analysis of each cluster indicated potent roles of cell types: OEE in the regulation of tooth size and SR in the transport of nutrients. Subsequently, we identified novel dental epithelial cell marker genes, namely Pttg1, Atf3, Cldn10, and Krt15. The results not only provided a resource of transcriptome data in dental cells but also contributed to the molecular analyses of enamel formation.
Collapse
Affiliation(s)
- Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Craig Rhodes
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| |
Collapse
|
21
|
Marinkovic M, Dybdal-Hargreaves NF, Block TJ, Dean DD, Yeh CK, Chen XD. Oral and Craniofacial Stem Cells: An Untapped Source for Neural Tissue Regeneration. Tissue Eng Part A 2020; 26:935-938. [PMID: 32164476 DOI: 10.1089/ten.tea.2020.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nerve tissue regeneration continues to represent an intractable obstacle to realizing the promise of tissue engineering. Although neurobiology works to shed light on the mechanisms governing neuronal growth and repair, considerable technical gaps remain that hinder progress. Chief among these is the absence of an appropriate culture environment to faithfully reproduce the neuronal niche ex vivo. We propose that the various multipotent cells found in the oral cavity may represent an important yet underutilized resource for preparing such neurogenic microenvironments. Similar to those of nerve tissue, these cell populations are of ectodermal origin and have clinically demonstrated neurogenic potential. Although there is a lack of consensus on whether putative types of oral and craniofacial stem cells constitute distinct populations, their contribution to neural tissue engineering may be twofold: as a cellular feedstock for neoneurogenesis and for the production of specialized in vitro environments for neurogenic differentiation, phenotype maintenance, and use in therapeutic applications. Impact statement We propose that addressing gaps in understanding the neurogenic role of dental stem cells and their microenvironment may yield efficient and reliable strategies for long-term neuronal cell culture and open new avenues for neural regeneration in both dental, nerve, and other tissues.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Nicholas F Dybdal-Hargreaves
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Travis J Block
- Department of Research and Development, StemBioSys, San Antonio, Texas, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Audie Murphy VA Medical Center, San Antonio, Texas, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA.,Audie Murphy VA Medical Center, San Antonio, Texas, USA
| |
Collapse
|
22
|
Svandova E, Peterkova R, Matalova E, Lesot H. Formation and Developmental Specification of the Odontogenic and Osteogenic Mesenchymes. Front Cell Dev Biol 2020; 8:640. [PMID: 32850793 PMCID: PMC7396701 DOI: 10.3389/fcell.2020.00640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Within the mandible, the odontogenic and osteogenic mesenchymes develop in a close proximity and form at about the same time. They both originate from the cranial neural crest. These two condensing ecto-mesenchymes are soon separated from each other by a very loose interstitial mesenchyme, whose cells do not express markers suggesting a neural crest origin. The two condensations give rise to mineralized tissues while the loose interstitial mesenchyme, remains as a soft tissue. This is crucial for proper anchorage of mammalian teeth. The situation in all three regions of the mesenchyme was compared with regard to cell heterogeneity. As the development progresses, the early phenotypic differences and the complexity in cell heterogeneity increases. The differences reported here and their evolution during development progressively specifies each of the three compartments. The aim of this review was to discuss the mechanisms underlying condensation in both the odontogenic and osteogenic compartments as well as the progressive differentiation of all three mesenchymes during development. Very early, they show physical and structural differences including cell density, shape and organization as well as the secretion of three distinct matrices, two of which will mineralize. Based on these data, this review highlights the consecutive differences in cell-cell and cell-matrix interactions, which support the cohesion as well as mechanosensing and mechanotransduction. These are involved in the conversion of mechanical energy into biochemical signals, cytoskeletal rearrangements cell differentiation, or collective cell behavior.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Renata Peterkova
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| |
Collapse
|
23
|
Nasoori A. Tusks, the extra-oral teeth. Arch Oral Biol 2020; 117:104835. [PMID: 32668361 DOI: 10.1016/j.archoralbio.2020.104835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The present review aims to: a) describe the features that support tusks in extra-oral position, and b) represent distinctive features of tusks, which provide insights into tusks adaptation to ambient conditions. DESIGN A comprehensive review of scientific literature relevant to tusks and comparable dental tissues was conducted. RESULTS The oral cavity provides a desirable condition which is conducive to tooth health. Therefore, it remains questionable how the bare (exposed) tusks resist the extra-oral conditions. The common features among tusked mammals indicate that the structural (e.g. the peculiar dentinal alignment), cellular (e.g. low or lack of cell populations in the tusk), hormonal (e.g. androgens), and behavioral traits have impact on a tusk's preservation and occurrence. CONCLUSIONS Understanding of bare mineralized structures, such as tusks and antlers, and their compatibility with different environments, can provide important insight into oral biology.
Collapse
Affiliation(s)
- Alireza Nasoori
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
24
|
Abstract
Nearly one-third of adults over the age of 65 have lost all their teeth. We set out to understand tooth renewal in animals that have replacement and regeneration capabilities. Using cichlid fishes and mouse models, we discovered plasticity between tooth and taste bud progenitor cell derivatives, mediated by BMP. Our results suggest that oral organs have surprising regenerative capabilities and can be manipulated to express characteristics of different tissue types. In Lake Malawi cichlids, each tooth is replaced in one-for-one fashion every ∼20 to 50 d, and taste buds (TBs) are continuously renewed as in mammals. These structures are colocalized in the fish mouth and throat, from the point of initiation through adulthood. Here, we found that replacement teeth (RT) share a continuous band of epithelium with adjacent TBs and that both organs coexpress stem cell factors in subsets of label-retaining cells. We used RNA-seq to characterize transcriptomes of RT germs and TB-bearing oral epithelium. Analysis revealed differential usage of developmental pathways in RT compared to TB oral epithelia, as well as a repertoire of genome paralogues expressed complimentarily in each organ. Notably, BMP ligands were expressed in RT but excluded from TBs. Morphant fishes bathed in a BMP chemical antagonist exhibited RT with abrogated shh expression in the inner dental epithelium (IDE) and ectopic expression of calb2 (a TB marker) in these very cells. In the mouse, teeth are located on the jaw margin while TBs and other oral papillae are located on the tongue. Previous study reported that tongue intermolar eminence (IE) oral papillae of Follistatin (a BMP antagonist) mouse mutants exhibited dysmorphic invagination. We used these mutants to demonstrate altered transcriptomes and ectopic expression of dental markers in tongue IE. Our results suggest that vertebrate oral epithelium retains inherent plasticity to form tooth and taste-like cell types, mediated by BMP specification of progenitor cells. These findings indicate underappreciated epithelial cell populations with promising potential in bioengineering and dental therapeutics.
Collapse
|
25
|
Sanz-Navarro M, Delgado I, Torres M, Mustonen T, Michon F, Rice DP. Dental Epithelial Stem Cells Express the Developmental Regulator Meis1. Front Physiol 2019; 10:249. [PMID: 30914971 PMCID: PMC6423187 DOI: 10.3389/fphys.2019.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/25/2019] [Indexed: 11/13/2022] Open
Abstract
MEIS1 is a key developmental regulator of several organs and participates in stem cell maintenance in different niches. However, despite the murine continuously growing incisor being a well described model for the study of adult stem cells, Meis1 has not been investigated in a dental context. Here, we uncover that Meis1 expression in the tooth is confined to the epithelial compartment. Its expression arises during morphogenesis and becomes restricted to the mouse incisor epithelial stem cell niche, the labial cervical loop. Meis1 is specifically expressed by Sox2+ stem cells, which give rise to all dental epithelial cell lineages. Also, we have found that Meis1 in the incisor is coexpressed with potential binding partner Pbx1 during both embryonic and adult stages. Interestingly, Meis2 is present in different areas of the forming tooth and it is not expressed by dental epithelial stem cells, suggesting different roles for these two largely homologous genes. Additionally, we have established the expression patterns of Meis1 and Meis2 during tongue, hair, salivary gland and palate formation. Finally, analysis of Meis1-null allele mice indicated that, similarly, to SOX2, MEIS1 is not essential for tooth initiation, but might have a role during adult incisor renewal.
Collapse
Affiliation(s)
- Maria Sanz-Navarro
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Irene Delgado
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Torres
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Tuija Mustonen
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Frederic Michon
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,The Institute for Neurosciences of Montpellier, Inserm UMR1051, University of Montpellier, Saint Eloi Hospital, Montpellier, France
| | - David P Rice
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
26
|
Vidovic-Zdrilic I, Vining K, Vijaykumar A, Kalajzic I, Mooney D, Mina M. FGF2 Enhances Odontoblast Differentiation by αSMA + Progenitors In Vivo. J Dent Res 2018; 97:1170-1177. [PMID: 29649366 PMCID: PMC6169028 DOI: 10.1177/0022034518769827] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The goal of this study was to examine the effects of early and limited exposure of perivascular cells expressing α (αSMA) to fibroblast growth factor 2 (FGF2) in vivo. We performed in vivo fate mapping by inducible Cre-loxP and experimental pulp injury in molars to induce reparative dentinogenesis. Our results demonstrate that early delivery of exogenous FGF2 to exposed pulp led to proliferative expansion of αSMA-tdTomato+ cells and their accelerated differentiation into odontoblasts. In vivo lineage-tracing experiments showed that the calcified bridge/reparative dentin in FGF2-treated pulps were lined with an increased number of Dspp+ odontoblasts and devoid of BSP+ osteoblasts. The increased number of odontoblasts derived from αSMA-tdTomato+ cells and the formation of reparative dentin devoid of osteoblasts provide in vivo evidence for the stimulatory effects of FGF signaling on odontoblast differentiation from early progenitors in dental pulp.
Collapse
Affiliation(s)
- I. Vidovic-Zdrilic
- Departments of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - K.H. Vining
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - A. Vijaykumar
- Departments of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - I. Kalajzic
- Departments of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - D.J. Mooney
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - M. Mina
- Departments of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
27
|
Mitsiadis TA, Pagella P, Cantù C. Early Determination of the Periodontal Domain by the Wnt-Antagonist Frzb/Sfrp3. Front Physiol 2017; 8:936. [PMID: 29209231 PMCID: PMC5702314 DOI: 10.3389/fphys.2017.00936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Odontogenesis results from the continuous and reciprocal interaction between cells of the oral epithelium and cranial neural crest-derived mesenchyme. The canonical Wnt signaling pathway plays a fundamental role in mediating these interactions from the earliest stages of tooth development. Here we analyze by in situ hybridization the expression patterns of the extracellular Wnt antagonist Frzb/Sfrp3. Although Frzb is expressed in dental mesenchymal cells from the earliest stages of odontogenesis, its expression is absent from a tiny population of mesenchymal cells immediately adjacent to the invaginating dental epithelium. Cell proliferation studies using BrdU showed that the Frzb expressing and Frzb non-expressing cell populations display different proliferative behavior during the initial stages of odontogenesis. DiI-mediated cell-fate tracing studies demonstrated that the Frzb expressing cells contribute to the formation of the dental follicle, the future periodontium. In contrast, the Frzb non-expressing cells give rise to the dental pulp. The present results indicate that Frzb is discriminating the presumptive periodontal territory from the rest of the dental mesenchyme from the very beginning of odontogenesis, where it might act as a barrier for the diffusion of Wnt molecules, thus regulating the activation of Wnt-dependent transcription within dental tissues.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Couve E, Lovera M, Suzuki K, Schmachtenberg O. Schwann Cell Phenotype Changes in Aging Human Dental Pulp. J Dent Res 2017; 97:347-355. [PMID: 28972819 DOI: 10.1177/0022034517733967] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Schwann cells are glial cells that support axonal development, maintenance, defense, and regeneration in the peripheral nervous system. There is limited knowledge regarding the organization, plasticity, and aging of Schwann cells within the dental pulp in adult permanent teeth. The present study sought to relate changes in the pattern of Schwann cell phenotypes between young and old adult teeth with neuronal, immune, and vascular components of the dental pulp. Schwann cells are shown to form a prominent glial network at the dentin-pulp interface, consisting of nonmyelinating and myelinating phenotypes, forming a multicellular neuroimmune interface in association with nerve fibers and dendritic cells. Schwann cell phenotypes are recognized by the expression of S100, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), Sox10, GAP43, and p75NTR markers. In young adult teeth, a dense population of nonmyelinating Schwann cells projects processes in close association with sensory nerve terminals through the odontoblast layer, reaching the adjacent predentin/dentin domain. While GAP43 and p75NTR are highly expressed in nonmyelinating Schwann cells from young adult teeth, the presence of these markers declines significantly in old adult teeth. Myelinated axons, identified by MBP expression, are mainly present at the Raschkow plexus and within nerve bundles in the dental pulp, but their density is significantly reduced in old adult versus young adult teeth. These data reveal age-related changes within the glial network of the dental pulp, in association with a reduction of coronal dental pulp innervation in old adult versus young adult teeth. The prominence of Schwann cells as a cellular component at the dentin-pulp interface supports the notion that their association with sensory nerve terminals and immune system components forms part of an integrated multicellular barrier for defense against pathogens and dentin repair.
Collapse
Affiliation(s)
- E Couve
- 1 Instituto de Biología, Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - M Lovera
- 1 Instituto de Biología, Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - K Suzuki
- 1 Instituto de Biología, Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - O Schmachtenberg
- 2 Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|