1
|
Karl S, Grünig E, Shaukat M, Held M, Apitz C, von Scheidt F, Geiger R, Halank M, Olsson KM, Hoeper MM, Kamp JC, Kovacs G, Olschewski H, Seyfarth HJ, Milger K, Ewert R, Klose H, Egenlauf B, Xanthouli P, Hinderhofer K, Eichstaedt CA. Pathogenic SMAD6 variants in patients with idiopathic and complex congenital heart disease associated pulmonary arterial hypertension. NPJ Genom Med 2025; 10:28. [PMID: 40133303 PMCID: PMC11937313 DOI: 10.1038/s41525-025-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
In patients with complex congenital heart disease (CHD) pathogenic SMAD6 variants have been described previously. The aim of this study was to analyze if pathogenic SMAD6 variants also occur in patients with CHD associated with pulmonary arterial hypertension (CHD-APAH) or idiopathic PAH. A PAH gene panel with up to 64 genes including SMAD6 was used to sequence 311 patients with idiopathic PAH (IPAH) and 32 with CHD-APAH. In 4 of 32 (12.5%) CHD-APAH and in 2 out of 311 (0.64%) IPAH patients we identified likely pathogenic or rare SMAD6 missense variants. All CHD-APAH patients with a rare SMAD6 variant had complex CHD. One patient had bi-allelic SMAD6 variants, combined pulmonary valve defect and supravalvular aortic stenosis, craniosynostosis and radioulnar synostosis. This is the first description of potentially disease-causing SMAD6 variants in patients with IPAH and complex CHD-APAH. Further studies are needed to assess pathogenesis and prevalence of pathogenic SMAD6 variants in PAH.
Collapse
Affiliation(s)
- Sofia Karl
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Memoona Shaukat
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Matthias Held
- Department of Pulmonary Medicine, KWM Missio Clinic, Würzburg, Germany
| | - Christian Apitz
- Department for Pediatric Cardiology, University Hospital Ulm, Ulm, Germany
| | - Fabian von Scheidt
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Munich, Germany
| | - Ralf Geiger
- Pediatrics III (Cardiopulmonary Unit), Department of Child and Adolescent Health, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Halank
- Devision of Pulmonology, Medical Department I, University Hospital Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Karen M Olsson
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover and Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover and Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jan C Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover and Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Hans-Jürgen Seyfarth
- Department of Pneumology, Medical Clinic II, University Hospital of Leipzig, Leipzig, Germany
| | - Katrin Milger
- Department of Internal Medicine V, Ludwig-Maximilian University of Munich; Asklepios Clinic Gauting, Comprehensive Pneumology Centre Munich (CPC), German Center for Lung Research (DZL), Munich, Germany
| | - Ralf Ewert
- Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University of Greifswald, Greifswald, Germany
| | - Hans Klose
- Department of Pneumology, Department of Medicine II, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Egenlauf
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Panagiota Xanthouli
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Internal Medicine V: Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Katrin Hinderhofer
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Khoynezhad AB, Kay BZ, Kay HS, White RA. Current Management of Uncomplicated Type B Aortic Dissection. Ann Vasc Surg 2024:S0890-5096(24)00833-1. [PMID: 39710191 DOI: 10.1016/j.avsg.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Aortic dissection is the most common thoracic aortic emergency and is associated with significant morbidity and mortality. Initial complications are dependent on reduction of sheer stress against the aortic wall to protect against rupture and minimize progression of the aortic wall injury. In patients with dissection starting at or distal to the left subclavian artery (Stanford type B), initial management includes strict blood pressure and heart rate control with monitoring for any complications such as malperfusion, rupture, or hemodynamic instability. Following the acute dissection event, survivors are faced with the lifelong need for blood pressure control and surveillance imaging to monitor for potential aortic deterioration leading to rupture or aneurysm formation. This review will discuss the latest recommendations for current management of uncomplicated type B aortic dissection including the evolving role of endovascular therapies.
Collapse
Affiliation(s)
| | - Baran Z Kay
- MemorialCare Heart and Vascular Institute, Long Beach, CA
| | - Hanna S Kay
- MemorialCare Heart and Vascular Institute, Long Beach, CA
| | - Rodney A White
- MemorialCare Heart and Vascular Institute, Long Beach, CA
| |
Collapse
|
3
|
Mansoorshahi S, Yetman AT, Bissell MM, Kim YY, Michelena HI, De Backer J, Mosquera LM, Hui DS, Caffarelli A, Andreassi MG, Foffa I, Guo D, Citro R, De Marco M, Tretter JT, Morris SA, Body SC, Chong JX, Bamshad MJ, Milewicz DM, Prakash SK. Whole-exome sequencing uncovers the genetic complexity of bicuspid aortic valve in families with early-onset complications. Am J Hum Genet 2024; 111:2219-2231. [PMID: 39226896 PMCID: PMC11480851 DOI: 10.1016/j.ajhg.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.
Collapse
Affiliation(s)
- Sara Mansoorshahi
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, NE, USA
| | - Malenka M Bissell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Julie De Backer
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Laura Muiño Mosquera
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria G Andreassi
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dongchuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodolfo Citro
- Cardiothoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Shaine A Morris
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, MA, USA
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Terriaca S, Scioli MG, Bertoldo F, Pisano C, Nardi P, Balistreri CR, Magro D, Belmonte B, Savino L, Ferlosio A, Orlandi A. miRNA-Driven Regulation of Endothelial-to-Mesenchymal Transition Differs among Thoracic Aortic Aneurysms. Cells 2024; 13:1252. [PMID: 39120283 PMCID: PMC11312012 DOI: 10.3390/cells13151252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Thoracic aortic aneurysms (TAAs) represent a serious health concern, as they are associated with early aortic dissection and rupture. TAA formation is triggered by genetic conditions, in particular Marfan syndrome (MFS) and bicuspid aortic valve (BAV). During the aneurysmatic process, aortic endothelial cells can undergo endothelial-to-mesenchymal transition (End-MT) with consequent phenotypic and functional alterations. We previously documented that MFS TAA is characterized by miR-632-driven End-MT exacerbation, whereas in BAV aortopathy, the occurrence of this process remains still controversial. We investigated the End-MT process and the underlined regulatory mechanisms in BAV, TAV and MFS TAA tissues. Gene expression and immunohistochemical analysis were performed in order to analyze some important miRNAs and genes characterizing End-MT. We documented that BAV endothelium maintains the expression of the endothelial homeostasis markers, such as ERG, CD31 and miR-126-5p, while it shows lower levels of miR-632 and mesenchymal markers compared with MFS. Interestingly, we also found higher levels of miR-632 in MFS patients' blood. Our findings definitively demonstrate that the End-MT process does not characterize BAV that, among the other TAAs, better maintains the endothelial features. In addition, our results suggest miR-632 as a promising diagnostic/prognostic factor in MFS aortopathy.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (S.T.); (L.S.)
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
| | - Fabio Bertoldo
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Calogera Pisano
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Paolo Nardi
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy; (C.R.B.); (D.M.)
| | - Daniele Magro
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy; (C.R.B.); (D.M.)
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy;
- Azienda sanitaria Provinciale di Catania (ASP), 95124 Catania, Italy
| | - Luca Savino
- Anatomic Pathology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (S.T.); (L.S.)
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1001 Tirana, Albania
| |
Collapse
|
5
|
de Wagenaar NP, van den Bersselaar LM, Odijk HJHM, Stefens SJM, Reinhardt DP, Roos-Hesselink JW, Kanaar R, Verhagen JMA, Brüggenwirth HT, van de Laar IMBH, van der Pluijm I, Essers J. Functional analysis of cell lines derived from SMAD3-related Loeys-Dietz syndrome patients provides insights into genotype-phenotype relation. Hum Mol Genet 2024; 33:1090-1104. [PMID: 38538566 PMCID: PMC11153339 DOI: 10.1093/hmg/ddae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 06/07/2024] Open
Abstract
RATIONALE Pathogenic (P)/likely pathogenic (LP) SMAD3 variants cause Loeys-Dietz syndrome type 3 (LDS3), which is characterized by arterial aneurysms, dissections and tortuosity throughout the vascular system combined with osteoarthritis. OBJECTIVES Investigate the impact of P/LP SMAD3 variants with functional tests on patient-derived fibroblasts and vascular smooth muscle cells (VSMCs), to optimize interpretation of SMAD3 variants. METHODS A retrospective analysis on clinical data from individuals with a P/LP SMAD3 variant and functional analyses on SMAD3 patient-derived VSMCs and SMAD3 patient-derived fibroblasts, differentiated into myofibroblasts. RESULTS Individuals with dominant negative (DN) SMAD3 variant in the MH2 domain exhibited more major events (66.7% vs. 44.0%, P = 0.054), occurring at a younger age compared to those with haploinsufficient (HI) variants. The age at first major event was 35.0 years [IQR 29.0-47.0] in individuals with DN variants in MH2, compared to 46.0 years [IQR 40.0-54.0] in those with HI variants (P = 0.065). Fibroblasts carrying DN SMAD3 variants displayed reduced differentiation potential, contrasting with increased differentiation potential in HI SMAD3 variant fibroblasts. HI SMAD3 variant VSMCs showed elevated SMA expression and altered expression of alternative MYH11 isoforms. DN SMAD3 variant myofibroblasts demonstrated reduced extracellular matrix formation compared to control cell lines. CONCLUSION Distinguishing between P/LP HI and DN SMAD3 variants can be achieved by assessing differentiation potential, and SMA and MYH11 expression. The differences between DN and HI SMAD3 variant fibroblasts and VSMCs potentially contribute to the differences in disease manifestation. Notably, myofibroblast differentiation seems a suitable alternative in vitro test system compared to VSMCs.
Collapse
Affiliation(s)
- Nathalie P de Wagenaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Cardiology and European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Lisa M van den Bersselaar
- Department of Clinical Genetics and European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Hanny J H M Odijk
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sanne J M Stefens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Jolien W Roos-Hesselink
- Department of Cardiology and European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Judith M A Verhagen
- Department of Clinical Genetics and European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Hennie T Brüggenwirth
- Department of Clinical Genetics and European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Ingrid M B H van de Laar
- Department of Clinical Genetics and European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Terriaca S, Ferlosio A, Scioli MG, Coppa F, Bertoldo F, Pisano C, Belmonte B, Balistreri CR, Orlandi A. miRNA Regulation of Cell Phenotype and Parietal Remodeling in Atherosclerotic and Non-Atherosclerotic Aortic Aneurysms: Differences and Similarities. Int J Mol Sci 2024; 25:2641. [PMID: 38473887 DOI: 10.3390/ijms25052641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic aneurysms are a serious health concern as their rupture leads to high morbidity and mortality. Abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) exhibit differences and similarities in their pathophysiological and pathogenetic features. AAA is a multifactorial disease, mainly associated with atherosclerosis, characterized by a relevant inflammatory response and calcification. TAA is rarely associated with atherosclerosis and in some cases is associated with genetic mutations such as Marfan syndrome (MFS) and bicuspid aortic valve (BAV). MFS-related and non-genetic or sporadic TAA share aortic degeneration with endothelial-to-mesenchymal transition (End-Mt) and fibrosis, whereas in BAV TAA, aortic degeneration with calcification prevails. microRNA (miRNAs) contribute to the regulation of aneurysmatic aortic remodeling. miRNAs are a class of non-coding RNAs, which post-transcriptionally regulate gene expression. In this review, we report the involvement of deregulated miRNAs in the different aortic remodeling characterizing AAAs and TAAs. In AAA, miRNA deregulation appears to be involved in parietal inflammatory response, smooth muscle cell (SMC) apoptosis and aortic wall calcification. In sporadic and MFS-related TAA, miRNA deregulation promotes End-Mt, SMC myofibroblastic phenotypic switching and fibrosis with glycosaminoglycan accumulation. In BAV TAA, miRNA deregulation sustains aortic calcification. Those differences may support the development of more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Francesca Coppa
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Fabio Bertoldo
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Calogera Pisano
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
- Azienda sanitaria Provinciale di Catania (ASP), 95124 Catania, Italy
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
7
|
Mansoorshahi S, Yetman AT, Bissell MM, Kim YY, Michelena H, Hui DS, Caffarelli A, Andreassi MG, Foffa I, Guo D, Citro R, De Marco M, Tretter JT, Morris SA, Body SC, Chong JX, Bamshad MJ, Milewicz DM, Prakash SK. Whole Exome Sequencing Uncovers the Genetic Complexity of Bicuspid Aortic Valve in Families with Early Onset Complications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24302406. [PMID: 38370698 PMCID: PMC10871469 DOI: 10.1101/2024.02.07.24302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Bicuspid Aortic Valve (BAV) is the most common adult congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that early onset complications of BAV (EBAV) are driven by specific impactful genetic variants. We analyzed whole exome sequences (WES) to identify rare coding variants that contribute to BAV disease in 215 EBAV families. Predicted pathogenic variants of causal genes were present in 111 EBAV families (51% of total), including genes that cause BAV (8%) or heritable thoracic aortic disease (HTAD, 17%). After appropriate filtration, we also identified 93 variants in 26 novel genes that are associated with autosomal dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants contribute to early onset complications of BAV disease.
Collapse
Affiliation(s)
- Sara Mansoorshahi
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, Nebraska
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hector Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center San Antonio, Texas
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Maria G Andreassi
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dongchuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Rodolfo Citro
- Cardio-Thoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Shaine A Morris
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
8
|
Zhang H. Bicuspid aortic valve repair-current techniques, outcomes, challenges, and future perspectives. Front Cardiovasc Med 2024; 10:1295146. [PMID: 38235290 PMCID: PMC10791802 DOI: 10.3389/fcvm.2023.1295146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Bicuspid aortic valve (BAV) is a common congenital heart condition that can lead to some valve-related complications, such as aortic stenosis and/or regurgitation, and is often associated with aortic root dilation. With the development and refinement of BAV repair techniques over the past three decades, surgical repair of BAV has emerged as an effective treatment option, offering symptomatic relief and improved outcomes. This review aims to summarize the current techniques, outcomes, and challenges of BAV repair, and to provide potential future perspectives in the field.
Collapse
Affiliation(s)
- Haiyu Zhang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Isselbacher EM, Preventza O, Hamilton Black J, Augoustides JG, Beck AW, Bolen MA, Braverman AC, Bray BE, Brown-Zimmerman MM, Chen EP, Collins TJ, DeAnda A, Fanola CL, Girardi LN, Hicks CW, Hui DS, Schuyler Jones W, Kalahasti V, Kim KM, Milewicz DM, Oderich GS, Ogbechie L, Promes SB, Ross EG, Schermerhorn ML, Singleton Times S, Tseng EE, Wang GJ, Woo YJ, Faxon DP, Upchurch GR, Aday AW, Azizzadeh A, Boisen M, Hawkins B, Kramer CM, Luc JGY, MacGillivray TE, Malaisrie SC, Osteen K, Patel HJ, Patel PJ, Popescu WM, Rodriguez E, Sorber R, Tsao PS, Santos Volgman A, Beckman JA, Otto CM, O'Gara PT, Armbruster A, Birtcher KK, de las Fuentes L, Deswal A, Dixon DL, Gorenek B, Haynes N, Hernandez AF, Joglar JA, Jones WS, Mark D, Mukherjee D, Palaniappan L, Piano MR, Rab T, Spatz ES, Tamis-Holland JE, Woo YJ. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Thorac Cardiovasc Surg 2023; 166:e182-e331. [PMID: 37389507 PMCID: PMC10784847 DOI: 10.1016/j.jtcvs.2023.04.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
AIM The "2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease" provides recommendations to guide clinicians in the diagnosis, genetic evaluation and family screening, medical therapy, endovascular and surgical treatment, and long-term surveillance of patients with aortic disease across its multiple clinical presentation subsets (ie, asymptomatic, stable symptomatic, and acute aortic syndromes). METHODS A comprehensive literature search was conducted from January 2021 to April 2021, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, CINHL Complete, and other selected databases relevant to this guideline. Additional relevant studies, published through June 2022 during the guideline writing process, were also considered by the writing committee, where appropriate. STRUCTURE Recommendations from previously published AHA/ACC guidelines on thoracic aortic disease, peripheral artery disease, and bicuspid aortic valve disease have been updated with new evidence to guide clinicians. In addition, new recommendations addressing comprehensive care for patients with aortic disease have been developed. There is added emphasis on the role of shared decision making, especially in the management of patients with aortic disease both before and during pregnancy. The is also an increased emphasis on the importance of institutional interventional volume and multidisciplinary aortic team expertise in the care of patients with aortic disease.
Collapse
|
10
|
Yang K, Cui S, Wang J, Xu T, Du H, Yue H, Ye H, Guo J, Zhang J, Li P, Guo Y, Pan C, Pang J, Wang J, Yu X, Zhang C, Liu Z, Chen Y, Xu F. Early Progression of Abdominal Aortic Aneurysm is Decelerated by Improved Endothelial Barrier Function via ALDH2-LIN28B-ELK3 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302231. [PMID: 37822152 PMCID: PMC10646281 DOI: 10.1002/advs.202302231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/25/2023] [Indexed: 10/13/2023]
Abstract
The involvement of endothelial barrier function in abdominal aortic aneurysm (AAA) and its upstream regulators remains unknown. Single-cell RNA sequencing shows that disrupted endothelial focal junction is an early (3 days) and persistent (28 days) event during Angiotensin II (Ang II)-induced AAA progression. Consistently, mRNA sequencing on human aortic dissection tissues confirmed downregulated expression of endothelial barrier-related genes. Aldehyde dehydrogenase 2 (ALDH2), a negative regulator of AAA, is found to be upregulated in the intimal media of AAA samples, leading to testing its role in early-stage AAA. ALDH2 knockdown/knockout specifically in endothelial cells (ECs) significantly increases expression of EC barrier markers related to focal adhesion and tight junction, restores endothelial barrier integrity, and suppresses early aortic dilation of AAA (7 and 14 days post-Ang II). Mechanically, ELK3 acts as an ALDH2 downstream regulator for endothelial barrier function preservation. At the molecular level, ALDH2 directly binds to LIN28B, a regulator of ELK3 mRNA stability, hindering LIN28B binding to ELK3 mRNA, thereby depressing ELK3 expression and impairing endothelial barrier function. Therefore, preserving vascular endothelial barrier integrity via ALDH2-specific knockdown in ECs holds therapeutic potential in the early management of AAAs.
Collapse
|
11
|
Tessler I, Albuisson J, Piñeiro-Sabarís R, Verstraeten A, Kamber Kaya HE, Siguero-Álvarez M, Goudot G, MacGrogan D, Luyckx I, Shpitzen S, Levin G, Kelman G, Reshef N, Mananet H, Holdcraft J, Muehlschlegel JD, Peloso GM, Oppenheim O, Cheng C, Mazzella JM, Andelfinger G, Mital S, Eriksson P, Billon C, Heydarpour M, Dietz HC, Jeunemaitre X, Leitersdorf E, Sprinzak D, Blacklow SC, Body SC, Carmi S, Loeys B, de la Pompa JL, Gilon D, Messas E, Durst R. Novel Association of the NOTCH Pathway Regulator MIB1 Gene With the Development of Bicuspid Aortic Valve. JAMA Cardiol 2023; 8:721-731. [PMID: 37405741 PMCID: PMC10323766 DOI: 10.1001/jamacardio.2023.1469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/21/2023] [Indexed: 07/06/2023]
Abstract
Importance Nonsyndromic bicuspid aortic valve (nsBAV) is the most common congenital heart valve malformation. BAV has a heritable component, yet only a few causative genes have been identified; understanding BAV genetics is a key point in developing personalized medicine. Objective To identify a new gene for nsBAV. Design, Setting, and Participants This was a comprehensive, multicenter, genetic association study based on candidate gene prioritization in a familial cohort followed by rare and common association studies in replication cohorts. Further validation was done using in vivo mice models. Study data were analyzed from October 2019 to October 2022. Three cohorts of patients with BAV were included in the study: (1) the discovery cohort was a large cohort of inherited cases from 29 pedigrees of French and Israeli origin; (2) the replication cohort 1 for rare variants included unrelated sporadic cases from various European ancestries; and (3) replication cohort 2 was a second validation cohort for common variants in unrelated sporadic cases from Europe and the US. Main Outcomes and Measures To identify a candidate gene for nsBAV through analysis of familial cases exome sequencing and gene prioritization tools. Replication cohort 1 was searched for rare and predicted deleterious variants and genetic association. Replication cohort 2 was used to investigate the association of common variants with BAV. Results A total of 938 patients with BAV were included in this study: 69 (7.4%) in the discovery cohort, 417 (44.5%) in replication cohort 1, and 452 (48.2%) in replication cohort 2. A novel human nsBAV gene, MINDBOMB1 homologue MIB1, was identified. MINDBOMB1 homologue (MIB1) is an E3-ubiquitin ligase essential for NOTCH-signal activation during heart development. In approximately 2% of nsBAV index cases from the discovery and replication 1 cohorts, rare MIB1 variants were detected, predicted to be damaging, and were significantly enriched compared with population-based controls (2% cases vs 0.9% controls; P = .03). In replication cohort 2, MIB1 risk haplotypes significantly associated with nsBAV were identified (permutation test, 1000 repeats; P = .02). Two genetically modified mice models carrying Mib1 variants identified in our cohort showed BAV on a NOTCH1-sensitized genetic background. Conclusions and Relevance This genetic association study identified the MIB1 gene as associated with nsBAV. This underscores the crucial role of the NOTCH pathway in the pathophysiology of BAV and its potential as a target for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Idit Tessler
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Juliette Albuisson
- Genetics Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, National Referral Center for Rare Vascular Diseases, VASCERN MSA European Reference Center, Paris, France
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer –UNICANCER, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon, France
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hatem Elif Kamber Kaya
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Marcos Siguero-Álvarez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillaume Goudot
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Ilse Luyckx
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Shoshana Shpitzen
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galina Levin
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Kelman
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- The Jerusalem Center for Personalized Computational Medicine, Jerusalem, Israel
| | - Noga Reshef
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- The Jerusalem Center for Personalized Computational Medicine, Jerusalem, Israel
| | - Hugo Mananet
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer –UNICANCER, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon, France
| | - Jake Holdcraft
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Olya Oppenheim
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Charles Cheng
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Jean-Michael Mazzella
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montreal, Montreal, Quebec, Canada
| | - Seema Mital
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| | - Clarisse Billon
- Genetics Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, National Referral Center for Rare Vascular Diseases, VASCERN MSA European Reference Center, Paris, France
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
| | - Mahyar Heydarpour
- Department of Medicine, Division of Endocrinology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harry C. Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xavier Jeunemaitre
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Eran Leitersdorf
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Simon C. Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Dan Gilon
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
| | - Emmanuel Messas
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Ronen Durst
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Di Rocco F, Rossi M, Verlut I, Szathmari A, Beuriat PA, Chatron N, Chauvel-Picard J, Mottolese C, Monin P, Vinchon M, Guernouche S, Collet C. Clinical interest of molecular study in cases of isolated midline craniosynostosis. Eur J Hum Genet 2023; 31:621-628. [PMID: 36732661 PMCID: PMC10250395 DOI: 10.1038/s41431-023-01295-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
In some cases of infants with apparently isolated single-suture synostosis, an underlying variant can be found. We aimed to determine the molecular substratum in isolated sagittal and metopic craniosynostosis. To this end, we included all infants who presented isolated midline synostosis (sagittal or metopic) and had undergone surgery at the craniosynostosis national reference center of Lyon University Hospital. All infants were examined by a multidisciplinary team including neurosurgeons, clinical geneticists and neuropsychologist. Among 101 infants tested, 13 carried a total of 13 variants; that is, 12.9% of the infants carried a variant in genes known to be involved in craniosynostosis. Seven infants carried SMAD6 variants, 2 in FGFR2, 1 in TWIST1, one in FREM1, one in ALX4 and one in TCF12. All variants were detected at the heterozygous level in genes associated with autosomal dominant craniosynostosis. Also, neurodevelopmental testing showed especially delayed acquisition of language in children with than without variants in SMAD6. In conclusion, a high percentage of young children with isolated midline craniosynostosis, especially in isolated trigonocephaly, carried SMAD6 variants. The interpretation of the pathogenicity of the genes must take into account incomplete penetrance, usually observed in craniosynostosis. Our results highlight the interest of molecular analysis in the context of isolated sagittal and/or metopic craniosynostosis to enhance an understanding of the pathophysiology of midline craniosynostosis.
Collapse
Affiliation(s)
- Federico Di Rocco
- Department of Pediatric Neurosurgery, French Referral Center for Craniosynostosis, Hôpital Femme Mère-Enfant Hospices Civils de Lyon, University of Lyon, INSERM 1033, Lyon, France
| | - Massimiliano Rossi
- Department of Genetics, Lyon University Hospitals, INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Lyon, France
| | - Isabelle Verlut
- Department of Pediatric Neurosurgery, French Referral Center for Craniosynostosis, Hôpital Femme Mère-Enfant Hospices Civils de Lyon, University of Lyon, INSERM 1033, Lyon, France
| | - Alexandru Szathmari
- Department of Pediatric Neurosurgery, French Referral Center for Craniosynostosis, Hôpital Femme Mère-Enfant Hospices Civils de Lyon, University of Lyon, INSERM 1033, Lyon, France
| | - Pierre Aurélien Beuriat
- Department of Pediatric Neurosurgery, French Referral Center for Craniosynostosis, Hôpital Femme Mère-Enfant Hospices Civils de Lyon, University of Lyon, INSERM 1033, Lyon, France
| | - Nicolas Chatron
- Department of Genetics, Lyon University Hospitals, INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Lyon, France
| | - Julie Chauvel-Picard
- Department of Pediatric Cranio-Maxillo-Facial Surgery, Hôpital Femme Mère Enfant, Université Claude Bernard Lyon 1, Lyon, France
| | - Carmine Mottolese
- Department of Pediatric Neurosurgery, French Referral Center for Craniosynostosis, Hôpital Femme Mère-Enfant Hospices Civils de Lyon, University of Lyon, INSERM 1033, Lyon, France
| | - Pauline Monin
- Department of Genetics, Lyon University Hospitals, INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Lyon, France
| | - Matthieu Vinchon
- Department of Pediatric Neurosurgery, French Referral Center for Craniosynostosis, Hôpital Femme Mère-Enfant Hospices Civils de Lyon, University of Lyon, INSERM 1033, Lyon, France
| | - Sofia Guernouche
- Department of Pediatric Neurosurgery, French Referral Center for Craniosynostosis, Hôpital Femme Mère-Enfant Hospices Civils de Lyon, University of Lyon, INSERM 1033, Lyon, France
| | - Corinne Collet
- Department of Genetics, Robert Debré Hospital, Inserm 1132, Université de Paris Cité, Paris, France.
| |
Collapse
|
13
|
Torres-Juan L, Rico Y, Fortuny E, Pons J, Ramos R, Santos-Simarro F, Asensio V, Martinez I, Heine-Suñer D. NOTCH1 Gene as a Novel Cause of Thoracic Aortic Aneurysm in Patients with Tricuspid Aortic Valve: Two Cases Reported. Int J Mol Sci 2023; 24:ijms24108644. [PMID: 37239988 DOI: 10.3390/ijms24108644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Thoracic aortic aneurysms (TAA) consist of abnormal dilation or the widening of a portion of the ascending aorta, due to weakness or destructuring of the walls of the vessel and are potentially lethal. The congenital bicuspid aortic valve (BAV) is considered a risk factor for the development of TAA because asymmetric blood flow through the bicuspid aortic valve detrimentally influences the wall of the ascending aorta. NOTCH1 mutations have been associated with non-syndromic TAAs as a consequence of BAV, but little is known regarding its haploinsufficiency and its relationship with connective tissue abnormalities. We report two cases in which there is clear evidence that alterations in the NOTCH1 gene are the cause of TAA in the absence of BAV. On the one hand, we describe a 117 Kb deletion that includes a large part of the NOTCH1 gene and no other coding genes, suggesting that haploinsufficiency can be considered a pathogenic mechanism for this gene associated with TAA. In addition, we describe two brothers who carry two variants, one in the NOTCH1 gene and another in the MIB1 gene, corroborating the involvement of different genes of the Notch pathway in aortic pathology.
Collapse
Affiliation(s)
- Laura Torres-Juan
- Molecular Diagnostics and Clinical Genetics Department (UDMGC), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
| | - Yolanda Rico
- Cardiology Department, Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
| | - Elena Fortuny
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
- Cardiology Department, Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
| | - Jaume Pons
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
- Cardiology Department, Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
| | - Rafael Ramos
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
- Pathology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Fernando Santos-Simarro
- Molecular Diagnostics and Clinical Genetics Department (UDMGC), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
| | - Víctor Asensio
- Molecular Diagnostics and Clinical Genetics Department (UDMGC), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
| | - Iciar Martinez
- Molecular Diagnostics and Clinical Genetics Department (UDMGC), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
| | - Damian Heine-Suñer
- Molecular Diagnostics and Clinical Genetics Department (UDMGC), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07010 Palma de Mallorca, Spain
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Aortic valve disease is a leading global cause of morbidity and mortality, posing an increasing burden on society. Advances in next-generation technologies and disease models over the last decade have further delineated the genetic and molecular factors that might be exploited in development of therapeutics for affected patients. This review describes several advances in the molecular and genetic understanding of AVD, focusing on bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). RECENT FINDINGS Genomic studies have identified a myriad of genes implicated in the development of BAV, including NOTCH1 , SMAD6 and ADAMTS19 , along with members of the GATA and ROBO gene families. Similarly, several genes associated with the initiation and progression of CAVD, including NOTCH1 , LPA , PALMD , IL6 and FADS1/2 , serve as the launching point for emerging clinical trials. SUMMARY These new insights into the genetic contributors of AVD have offered new avenues for translational disease investigation, bridging molecular discoveries to emergent pharmacotherapeutic options. Future studies aimed at uncovering new genetic associations and further defining implicated molecular pathways are fuelling the new wave of drug discovery.
Collapse
Affiliation(s)
- Ruth L. Ackah
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Pinnaro CT, Beck CB, Major HJ, Darbro BW. CRELD1 variants are associated with bicuspid aortic valve in Turner syndrome. Hum Genet 2023; 142:523-530. [PMID: 36929416 PMCID: PMC10060348 DOI: 10.1007/s00439-023-02538-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Turner syndrome (TS) is a chromosomal disorder caused by complete or partial loss of the second sex chromosome and exhibits phenotypic heterogeneity, even after accounting for mosaicism and karyotypic variation. Congenital heart defects (CHD) are found in up to 45 percent of girls with TS and span a phenotypic continuum of obstructive left-sided lesions, with bicuspid aortic valve (BAV) being the most common. Several recent studies have demonstrated a genome-wide impact of X chromosome haploinsufficiency, including global hypomethylation and altered RNA expression. The presence of such broad changes to the TS epigenome and transcriptome led others to hypothesize that X chromosome haploinsufficiency sensitizes the TS genome, and several studies have demonstrated that a second genetic hit can modify disease susceptibility in TS. The objective of this study was to determine whether genetic variants in known heart developmental pathways act synergistically in this setting to increase the risk for CHD, specifically BAV, in TS. We analyzed 208 whole exomes from girls and women with TS and performed gene-based variant enrichment analysis and rare-variant association testing to identify variants associated with BAV in TS. Notably, rare variants in CRELD1 were significantly enriched in individuals with TS who had BAV compared to those with structurally normal hearts. CRELD1 is a protein that functions as a regulator of calcineurin/NFAT signaling, and rare variants in CRELD1 have been associated with both syndromic and non-syndromic CHD. This observation supports the hypothesis that genetic modifiers outside the X chromosome that lie in known heart development pathways may influence CHD risk in TS.
Collapse
Affiliation(s)
- Catherina T Pinnaro
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA, 52242, USA
| | - Chloe B Beck
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa, IA, 52242, USA
| | - Heather J Major
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA, 52242, USA
| | - Benjamin W Darbro
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA, 52242, USA.
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa, IA, 52242, USA.
| |
Collapse
|
16
|
Mitchell SE, Martin RP, Terry P, Drant SE, Valle D, Dietz H, Sobreira N. Systemic artery to pulmonary artery aneurysm malformations associated with variants at MCF2L. Am J Med Genet A 2023; 191:1250-1260. [PMID: 36760094 DOI: 10.1002/ajmg.a.63141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/14/2023] [Indexed: 02/11/2023]
Abstract
Arteriovenous malformations (AVM) are characterized by abnormal vessels connecting arteries and veins resulting in a disruption of normal blood flow. Hereditary hemorrhagic telangiectasia (HHT) is the most common cause of pulmonary AVM characterized by a right to left shunt. Here we describe a distinct malformation where the flow of blood was from a systemic artery to the pulmonary artery (PA) resulting in a left to right shunt instead of the right to left shunt seen in individuals with HHT. This distinct malformation was identified in seven probands, one from a multiplex family containing 10 affected individuals from five generations. To identify the molecular basis of this distinct malformation, we performed exome sequencing (ES) on the seven probands and the affected paternal female cousin from the multiplex family. PhenoDB was used to prioritize candidate causative variants along with burden analysis. We describe the clinical and radiological details of the new systemic artery to PA malformation with or without pulmonary artery aneurysm (SA-PA(A)) and recommend distinct treatment techniques. Moreover, ES analysis revealed possible causative variants identified in three families with variants in a novel candidate disease gene, MCF2L. Further functional studies will be necessary to better understand the molecular mechanisms involved on SA-PA(A) malformation, however our findings suggest that MCF2L is a novel disease gene associated with SA-PA(A).
Collapse
Affiliation(s)
- S E Mitchell
- Russell H Morgan Department of Radiology, Interventional Section, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - R P Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - P Terry
- Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - S E Drant
- Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - D Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - H Dietz
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - N Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Huang T, Cheng J, Feng H, Zhou W, Qiu P, Zhou D, Yang D, Zhang J, Willer C, Chen YE, Mizrak D, Yang B. Bicuspid Aortic Valve-Associated Regulatory Regions Reveal GATA4 Regulation and Function During Human-Induced Pluripotent Stem Cell-Based Endothelial-Mesenchymal Transition-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:312-322. [PMID: 36519469 PMCID: PMC10038164 DOI: 10.1161/atvbaha.122.318566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The endothelial-mesenchymal transition (EndoMT) is a fundamental process for heart valve formation and defects in EndoMT cause aortic valve abnormalities. Our previous genome-wide association study identified multiple variants in a large chromosome 8 segment as significantly associated with bicuspid aortic valve (BAV). The objective of this study is to determine the biological effects of this large noncoding segment in human induced pluripotent stem cell (hiPSC)-based EndoMT. METHODS A large genomic segment enriched for BAV-associated variants was deleted in hiPSCs using 2-step CRISPR/Cas9 editing. To address the effects of the variants on GATA4 expression, we generated CRISPR repression hiPSC lines (CRISPRi) as well as hiPSCs from BAV patients. The resulting hiPSCs were differentiated to mesenchymal/myofibroblast-like cells through cardiovascular-lineage endothelial cells for molecular and cellular analysis. Single-cell RNA sequencing was also performed at different stages of EndoMT induction. RESULTS The large deletion impaired hiPSC-based EndoMT in multiple biallelic clones compared with their isogenic control. It also reduced GATA4 transcript and protein levels during EndoMT, sparing the other genes nearby the deletion segment. Single-cell trajectory analysis revealed the molecular reprogramming during EndoMT. Putative GATA-binding protein targets during EndoMT were uncovered, including genes implicated in endocardial cushion formation and EndoMT process. Differentiation of cells derived from BAV patients carrying the rs117430032 variant as well as CRISPRi repression of the rs117430032 locus resulted in lower GATA4 expression in a stage-specific manner. TWIST1 was identified as a potential regulator of GATA4 expression, showing specificity to the locus tagged by rs117430032. CONCLUSIONS BAV-associated distal regions regulate GATA4 expression during hiPSC-based EndoMT, which in turn promotes EndoMT progression, implicating its contribution to heart valve development.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaxi Cheng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ping Qiu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dong Zhou
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Dongshan Yang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Cristen Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Y. Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Verstraeten A, Fedoryshchenko I, Loeys B. The emerging role of endothelial cells in the pathogenesis of thoracic aortic aneurysm and dissection. Eur Heart J 2023; 44:1262-1264. [PMID: 36650899 PMCID: PMC10079389 DOI: 10.1093/eurheartj/ehac771] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Aline Verstraeten
- Cardiogenomics and Functional Genomics, Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Antwerp, Belgium
| | - Ivanna Fedoryshchenko
- Cardiogenomics and Functional Genomics, Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Antwerp, Belgium
| | - Bart Loeys
- Cardiogenomics and Functional Genomics, Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Antwerp, Belgium
| |
Collapse
|
19
|
Isselbacher EM, Preventza O, Hamilton Black J, Augoustides JG, Beck AW, Bolen MA, Braverman AC, Bray BE, Brown-Zimmerman MM, Chen EP, Collins TJ, DeAnda A, Fanola CL, Girardi LN, Hicks CW, Hui DS, Schuyler Jones W, Kalahasti V, Kim KM, Milewicz DM, Oderich GS, Ogbechie L, Promes SB, Gyang Ross E, Schermerhorn ML, Singleton Times S, Tseng EE, Wang GJ, Woo YJ. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2022; 146:e334-e482. [PMID: 36322642 PMCID: PMC9876736 DOI: 10.1161/cir.0000000000001106] [Citation(s) in RCA: 729] [Impact Index Per Article: 243.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AIM The "2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease" provides recommendations to guide clinicians in the diagnosis, genetic evaluation and family screening, medical therapy, endovascular and surgical treatment, and long-term surveillance of patients with aortic disease across its multiple clinical presentation subsets (ie, asymptomatic, stable symptomatic, and acute aortic syndromes). METHODS A comprehensive literature search was conducted from January 2021 to April 2021, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, CINHL Complete, and other selected databases relevant to this guideline. Additional relevant studies, published through June 2022 during the guideline writing process, were also considered by the writing committee, where appropriate. Structure: Recommendations from previously published AHA/ACC guidelines on thoracic aortic disease, peripheral artery disease, and bicuspid aortic valve disease have been updated with new evidence to guide clinicians. In addition, new recommendations addressing comprehensive care for patients with aortic disease have been developed. There is added emphasis on the role of shared decision making, especially in the management of patients with aortic disease both before and during pregnancy. The is also an increased emphasis on the importance of institutional interventional volume and multidisciplinary aortic team expertise in the care of patients with aortic disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bruce E Bray
- AHA/ACC Joint Committee on Clinical Data Standards liaison
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Y Joseph Woo
- AHA/ACC Joint Committee on Clinical Practice Guidelines liaison
| |
Collapse
|
20
|
Isselbacher EM, Preventza O, Hamilton Black Iii J, Augoustides JG, Beck AW, Bolen MA, Braverman AC, Bray BE, Brown-Zimmerman MM, Chen EP, Collins TJ, DeAnda A, Fanola CL, Girardi LN, Hicks CW, Hui DS, Jones WS, Kalahasti V, Kim KM, Milewicz DM, Oderich GS, Ogbechie L, Promes SB, Ross EG, Schermerhorn ML, Times SS, Tseng EE, Wang GJ, Woo YJ. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2022; 80:e223-e393. [PMID: 36334952 PMCID: PMC9860464 DOI: 10.1016/j.jacc.2022.08.004] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AIM The "2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease" provides recommendations to guide clinicians in the diagnosis, genetic evaluation and family screening, medical therapy, endovascular and surgical treatment, and long-term surveillance of patients with aortic disease across its multiple clinical presentation subsets (ie, asymptomatic, stable symptomatic, and acute aortic syndromes). METHODS A comprehensive literature search was conducted from January 2021 to April 2021, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, CINHL Complete, and other selected databases relevant to this guideline. Additional relevant studies, published through June 2022 during the guideline writing process, were also considered by the writing committee, where appropriate. STRUCTURE Recommendations from previously published AHA/ACC guidelines on thoracic aortic disease, peripheral artery disease, and bicuspid aortic valve disease have been updated with new evidence to guide clinicians. In addition, new recommendations addressing comprehensive care for patients with aortic disease have been developed. There is added emphasis on the role of shared decision making, especially in the management of patients with aortic disease both before and during pregnancy. The is also an increased emphasis on the importance of institutional interventional volume and multidisciplinary aortic team expertise in the care of patients with aortic disease.
Collapse
|
21
|
Poll SR, Martin R, Wohler E, Partan ES, Walek E, Salman S, Groepper D, Kratz L, Cernach M, Jesus-Garcia R, Haldeman-Englert C, Choi YJ, Morris CD, Cohen B, Hoover-Fong J, Valle D, Semenza GL, Sobreira NLM. Disruption of the HIF-1 pathway in individuals with Ollier disease and Maffucci syndrome. PLoS Genet 2022; 18:e1010504. [PMID: 36480544 PMCID: PMC9767349 DOI: 10.1371/journal.pgen.1010504] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/20/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
Ollier disease (OD) and Maffucci Syndrome (MS) are rare disorders characterized by multiple enchondromas, commonly causing bone deformities, limb length discrepancies, and pathological fractures. MS is distinguished from OD by the development of vascular anomalies. Both disorders are cancer predisposition syndromes with malignancies developing in ~50% of the individuals with OD or MS. Somatic gain-of-function variants in IDH1 and IDH2 have been described in the enchondromas, vascular anomalies and chondrosarcomas of approximately 80% of the individuals with OD and MS. To date, however, no investigation of germline causative variants for these diseases has been comprehensively performed. To search for germline causative variants, we performed whole exome sequencing or whole genome sequencing of blood or saliva DNA in 94 unrelated probands (68 trios). We found that 7 had rare germline missense variants in HIF1A, 6 had rare germline missense variants in VHL, and 3 had IDH1 variants including 2 with mosaic IDH1-p.Arg132His variant. A burden analysis using 94 probands assigned as cases and 2,054 unrelated individuals presenting no OD- or MS-related features as controls, found that variants in HIF1A, VHL, and IDH1 were all significantly enriched in cases compared to controls. To further investigate the role of HIF-1 pathway in the pathogenesis of OD and MS, we performed RNA sequencing of fibroblasts from 4 probands with OD or MS at normoxia and at hypoxia. When cultured in hypoxic conditions, both proband and control cells showed altered expression of a subset of HIF-1 regulated genes. However, the set of differentially expressed genes in proband fibroblasts included a significantly reduced number of HIF-1 regulated genes compared to controls. Our findings suggest that germline or early post-zygotic variants identified in HIF1A, VHL, and IDH1 in probands with OD and MS underlie the development of the phenotypic abnormalities in a subset of individuals with OD and MS, but extensive functional studies are needed to further confirm it.
Collapse
Affiliation(s)
- Sarah R. Poll
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Renan Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth S. Partan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth Walek
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shaima Salman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel Groepper
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Lisa Kratz
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mirlene Cernach
- Universidade Metropolitana de Santos, Santos, São Paulo, Brazil
| | - Reynaldo Jesus-Garcia
- Department of Orthopedics-Oncology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Chad Haldeman-Englert
- Mission Fullerton Genetics Center, Asheville, North Carolina, United States of America
| | - Yoon Jae Choi
- Department of Neurology, University of California, Irvine, California, United States of America
| | - Carol D. Morris
- Department of Orthopedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Bernard Cohen
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, Untied States of America
| | - Julie Hoover-Fong
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gregg L. Semenza
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nara L. M. Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
22
|
Luyckx I, Verstraeten A, Goumans MJ, Loeys B. SMAD6-deficiency in human genetic disorders. NPJ Genom Med 2022; 7:68. [DOI: 10.1038/s41525-022-00338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
AbstractSMAD6 encodes an intracellular inhibitor of the bone morphogenetic protein (BMP) signalling pathway. Until now, SMAD6-deficiency has been associated with three distinctive human congenital conditions, i.e., congenital heart diseases, including left ventricular obstruction and conotruncal defects, craniosynostosis and radioulnar synostosis. Intriguingly, a similar spectrum of heterozygous loss-of-function variants has been reported to cause these clinically distinct disorders without a genotype–phenotype correlation. Even identical nucleotide changes have been described in patients with either a cardiovascular phenotype, craniosynostosis or radioulnar synostosis. These findings suggest that the primary pathogenic variant alone cannot explain the resultant patient phenotype. In this review, we summarise clinical and (patho)genetic (dis)similarities between these three SMAD6-related conditions, compare published Madh6 mouse models, in which the importance and impact of the genetic background with respect to the observed phenotype is highlighted, and elaborate on the cellular key mechanisms orchestrated by SMAD6 in the development of these three discrete inherited disorders. In addition, we discuss future research needed to elucidate the pathogenetic mechanisms underlying these diseases in order to improve their molecular diagnosis, advance therapeutic strategies and facilitate counselling of patients and their families.
Collapse
|
23
|
Caengprasath N, Buasong A, Ittiwut C, Khongphatthanayothin A, Porntaveetus T, Shotelersuk V. Severe coarctation of the aorta, developmental delay, and multiple dysmorphic features in a child with SMAD6 and SMARCA4 variants. Eur J Med Genet 2022; 65:104601. [PMID: 36049609 DOI: 10.1016/j.ejmg.2022.104601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023]
Abstract
Pathogenic variants in SMARCA4 cause Coffin-Siris syndrome (CSS) while those in SMAD6 lead to aortic valve disease and other dysmorphisms. We identified a 6-year-old Thai boy with features of CSS alongside unusual manifestations including, very severe coarctation of the aorta (CoA) requiring coarctectomy in the neonatal period and bilateral radioulnar synostoses. Trio exome sequencing revealed that the patient harbored two de novo variants, a missense c.2475G > T, p.(Trp825Cys) in SMARCA4 and a nonsense c.652C > T, p.(Gln218Ter) in SMAD6. Both of which have never been previously reported. The clinical presentations in our patient are a result of the combinational features of each genetic variant: the SMARCA4 p.(Trp825Cys) variant leads to facial features of Coffin Siris syndrome and Dandy-Walker malformation, while the SMAD6 p.(Gln218Ter) variant underlies radioulnar synostosis. Interestingly, the severity of CoA in the proband is beyond the phenotypic spectra of each genetic variant and may be a result of the synergistic effects of both variants. Here, we report a child with variants in SMARCA4 or SMAD6 with combined features of each plus a severe CoA, possibly due to an additive effect of each variant.
Collapse
Affiliation(s)
- Natarin Caengprasath
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Aayalida Buasong
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Apichai Khongphatthanayothin
- Center of Excellence in Arrhythmia Research, Department of Medicine, Chulalongkorn University and Bangkok General Hospital, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
24
|
Soto-Navarrete MT, Pozo-Vilumbrales B, López-Unzu MÁ, Rueda-Martínez C, Fernández MC, Durán AC, Pavón-Morón FJ, Rodríguez-Capitán J, Fernández B. Experimental evidence of the genetic hypothesis on the etiology of bicuspid aortic valve aortopathy in the hamster model. Front Cardiovasc Med 2022; 9:928362. [PMID: 36003906 PMCID: PMC9393263 DOI: 10.3389/fcvm.2022.928362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Bicuspid aortopathy occurs in approximately 50% of patients with bicuspid aortic valve (BAV), the most prevalent congenital cardiac malformation. Although different molecular players and etiological factors (genetic and hemodynamic) have been suggested to be involved in aortopathy predisposition and progression, clear etiophysiopathological mechanisms of disease are still missing. The isogenic (genetically uniform) hamster (T) strain shows 40% incidence of BAV, but aortic dilatations have not been detected in this model. We have performed comparative anatomical, histological and molecular analyses of the ascending aorta of animals with tricuspid aortic valve (TAV) and BAV from the T strain (TTAV and TBAV, respectively) and with TAV from a control strain (HTAV). Aortic diameter, smooth muscle apoptosis, elastic waviness, and Tgf-β and Fbn-2 expression were significantly increased in T strain animals, regardless of the valve morphology. Strain and aortic valve morphology did not affect Mmp-9 expression, whereas Mmp-2 transcripts were reduced in BAV animals. eNOS protein amount decreased in both TBAV and TTAV compared to HTAV animals. Thus, histomorphological and molecular alterations of the ascending aorta appear in a genetically uniform spontaneous hamster model irrespective of the aortic valve morphology. This is a direct experimental evidence supporting the genetic association between BAV and aortic dilatation. This model may represent a population of patients with predisposition to BAV aortopathy, in which increased expression of Tgf-β and Fbn-2 alters elastic lamellae structure and induces cell apoptosis mediated by eNOS. Patients either with TAV or BAV with the same genetic defect may show the same risk to develop bicuspid aortopathy.
Collapse
Affiliation(s)
- María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigaciones Biomédicas de Málaga y Plataforma en Nanomedicina, Universidad de Málaga, Málaga, Spain
| | - Bárbara Pozo-Vilumbrales
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigaciones Biomédicas de Málaga y Plataforma en Nanomedicina, Universidad de Málaga, Málaga, Spain
| | - Miguel Ángel López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigaciones Biomédicas de Málaga y Plataforma en Nanomedicina, Universidad de Málaga, Málaga, Spain
- Spanish National Centre for Cardiovascular Research, Madrid, Spain
| | - Carmen Rueda-Martínez
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - M. Carmen Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigaciones Biomédicas de Málaga y Plataforma en Nanomedicina, Universidad de Málaga, Málaga, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Medicina, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigaciones Biomédicas de Málaga y Plataforma en Nanomedicina, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón-Morón
- Instituto de Investigaciones Biomédicas de Málaga y Plataforma en Nanomedicina, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Málaga, Spain
- Unidad de Gestión Clínica del Corazón, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Jorge Rodríguez-Capitán
- Instituto de Investigaciones Biomédicas de Málaga y Plataforma en Nanomedicina, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Málaga, Spain
- Unidad de Gestión Clínica del Corazón, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- *Correspondence: Jorge Rodríguez-Capitán,
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigaciones Biomédicas de Málaga y Plataforma en Nanomedicina, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Málaga, Spain
| |
Collapse
|
25
|
Debiec RM, Hamby SE, Jones PD, Safwan K, Sosin M, Hetherington SL, Sprigings D, Sharman D, Lee K, Salahshouri P, Wheeldon N, Chukwuemeka A, Boutziouka V, Elamin M, Coolman S, Asiani M, Kharodia S, Skinner GJ, Samani NJ, Webb TR, Bolger AP. Contribution of NOTCH1 genetic variants to bicuspid aortic valve and other congenital lesions. Heart 2022; 108:1114-1120. [PMID: 35288444 PMCID: PMC9240330 DOI: 10.1136/heartjnl-2021-320428] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/18/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Bicuspid aortic valve (BAV) affects 1% of the general population. NOTCH1 was the first gene associated with BAV. The proportion of familial and sporadic BAV disease attributed to NOTCH1 mutations has not been estimated. AIM The aim of our study was to provide an estimate of familial and sporadic BAV disease attributable to NOTCH1 mutations. METHODS The population of our study consisted of participants of the University of Leicester Bicuspid aoRtic vAlVe gEnetic research-8 pedigrees with multiple affected family members and 381 sporadic patients. All subjects underwent NOTCH1 sequencing. A systematic literature search was performed in the NCBI PubMed database to identify publications reporting NOTCH1 sequencing in context of congenital heart disease. RESULTS NOTCH1 sequencing in 36 subjects from 8 pedigrees identified one variant c.873C>G/p.Tyr291* meeting the American College of Medical Genetics and Genomics criteria for pathogenicity. No pathogenic or likely pathogenic NOTCH1 variants were identified in 381 sporadic patients. Literature review identified 64 relevant publication reporting NOTCH1 sequencing in 528 pedigrees and 9449 sporadic subjects. After excluding families with syndromic disease pathogenic and likely pathogenic NOTCH1 variants were detected in 9/435 (2.1%; 95% CI: 0.7% to 3.4%) of pedigrees and between 0.05% (95% CI: 0.005% to 0.10%) and 0.08% (95% CI: 0.02% to 0.13%) of sporadic patients. Incomplete penetrance of definitely pathogenic NOTCH1 mutations was observed in almost half of reported pedigrees. CONCLUSIONS Pathogenic and likely pathogenic NOTCH1 genetic variants explain 2% of familial and <0.1% of sporadic BAV disease and are more likely to associate with tetralogy of Fallot and hypoplastic left heart.
Collapse
Affiliation(s)
- Radoslaw Marek Debiec
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, College of Medicine Biological Sciences and Psychology, Leicester, UK .,East Midlands Congenital Heart Centre, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Stephen E Hamby
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, College of Medicine Biological Sciences and Psychology, Leicester, UK
| | - Peter D Jones
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, College of Medicine Biological Sciences and Psychology, Leicester, UK
| | - Kassem Safwan
- Department of Cardiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Michael Sosin
- Department of Cardiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Simon Lee Hetherington
- Department of Cardiology, Kettering General Hospital NHS Foundation Trust, Kettering, UK
| | - David Sprigings
- Department fo Cardiology, Northampton General Hospital NHS Trust, Northampton, UK
| | - David Sharman
- Department fo Cardiology, Northampton General Hospital NHS Trust, Northampton, UK
| | - Kelvin Lee
- Lincolnshire Heart Centre, United Lincolnshire Hospitals NHS Trust, Lincoln, UK
| | - Pegah Salahshouri
- Department of Cardiology, West Suffolk NHS Foundation Trust, Bury Saint Edmunds, UK
| | - Nigel Wheeldon
- Cardiothoracic Centre, Northern General Hospital, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Andrew Chukwuemeka
- Departments of Cardiac Surgery and Cardiology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Vasiliki Boutziouka
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, College of Medicine Biological Sciences and Psychology, Leicester, UK
| | - Mohamed Elamin
- The Heart Centre, Royal Derby Hospital, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Sue Coolman
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, College of Medicine Biological Sciences and Psychology, Leicester, UK
| | - Manish Asiani
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, College of Medicine Biological Sciences and Psychology, Leicester, UK
| | - Shireen Kharodia
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, College of Medicine Biological Sciences and Psychology, Leicester, UK
| | - Gregory J Skinner
- East Midlands Congenital Heart Centre, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, College of Medicine Biological Sciences and Psychology, Leicester, UK
| | - Tom R Webb
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, College of Medicine Biological Sciences and Psychology, Leicester, UK
| | - Aidan P Bolger
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, College of Medicine Biological Sciences and Psychology, Leicester, UK,East Midlands Congenital Heart Centre, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
26
|
Update on the molecular landscape of thoracic aortic aneurysmal disease. Curr Opin Cardiol 2022; 37:201-211. [PMID: 35175228 DOI: 10.1097/hco.0000000000000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF THE REVIEW Thoracic aortic aneurysms and dissections (TAADs) are a major health problem in the Western population. This review summarises recent discoveries in the genetic landscape of TAAD disease, discusses current challenges in clinical practice, and describes the molecular road ahead in TAAD research. Disorders, in which aneurysmal disease is not observed in the thoracic aorta, are not discussed. RECENT FINDINGS Current gene discovery studies have pinpointed about 40 genes associated with TAAD risk, accounting for about 30% of the patients. Importantly, novel genes, and their subsequent functional characterisation, have expanded the knowledge on disease-related pathways providing crucial information on key elements in this disease, and it pinpoints new therapeutic targets. Moreover, current molecular evidence also suggests the existence of less monogenic nature of TAAD disease, in which the presentation of a diseased patient is most likely influenced by a multitude of genetic and environmental factors. SUMMARY CLINICAL PRACTICE/RELEVANCE Ongoing molecular genetic research continues to expand our understanding on the pathomechanisms underlying TAAD disease in order to improve molecular diagnosis, optimise risk stratification, advance therapeutic strategies and facilitate counselling of TAAD patients and their families.
Collapse
|
27
|
Theis JL, Niaz T, Sundsbak RS, Fogarty ZC, Bamlet WR, Hagler DJ, Olson TM. CELSR1 Risk Alleles in Familial Bicuspid Aortic Valve and Hypoplastic Left Heart Syndrome. Circ Genom Precis Med 2022; 15:e003523. [PMID: 35133174 DOI: 10.1161/circgen.121.003523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Whole-genome sequencing in families enables deciphering of congenital heart disease causes. A shared genetic basis for familial bicuspid aortic valve (BAV) and hypoplastic left heart syndrome (HLHS) was postulated. METHODS Whole-genome sequencing was performed in affected members of 6 multiplex BAV families, an HLHS cohort of 197 probands and 546 relatives, and 813 controls. Data were filtered for rare, predicted-damaging variants that cosegregated with familial BAV and disrupted genes associated with congenital heart disease in humans and mice. Candidate genes were further prioritized by rare variant burden testing in HLHS cases versus controls. Modifier variants in HLHS proband-parent trios were sought to account for the severe developmental phenotype. RESULTS In 5 BAV families, missense variants in 6 ontologically diverse genes for structural (SPTBN1, PAXIP1, and FBLN1) and signaling (CELSR1, PLXND1, and NOS3) proteins fulfilled filtering metrics. CELSR1, encoding cadherin epidermal growth factor laminin G seven-pass G-type receptor, was identified as a candidate gene in 2 families and was the only gene demonstrating rare variant enrichment in HLHS probands (P=0.003575). HLHS-associated CELSR1 variants included 16 missense, one splice site, and 3 noncoding variants predicted to disrupt canonical transcription factor binding sites, most of which were inherited from a parent without congenital heart disease. Filtering whole-genome sequencing data for rare, predicted-damaging variants inherited from the other parent revealed 2 cases of CELSR1 compound heterozygosity, one case of CELSR1-CELSR3 synergistic heterozygosity, and 4 cases of CELSR1-MYO15A digenic heterozygosity. CONCLUSIONS CELSR1 is a susceptibility gene for familial BAV and HLHS, further implicating planar cell polarity pathway perturbation in congenital heart disease.
Collapse
Affiliation(s)
- Jeanne L Theis
- Cardiovascular Genetics Research Laboratory (J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN
| | - Talha Niaz
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (T.N., D.J.H., T.M.O.), Mayo Clinic, Rochester, MN
| | - Rhianna S Sundsbak
- Cardiovascular Genetics Research Laboratory (J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN
| | - Zachary C Fogarty
- Division of Computational Biology, Department of Quantitative Health Sciences (Z.C.F.), Mayo Clinic, Rochester, MN
| | - William R Bamlet
- Division of Clinical Trials and Biostatistics, Department of Quantiative Health Sciences (W.R.B.), Mayo Clinic, Rochester, MN
| | - Donald J Hagler
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (T.N., D.J.H., T.M.O.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Medicine (D.J.H., T.M.O.), Mayo Clinic, Rochester, MN
| | - Timothy M Olson
- Cardiovascular Genetics Research Laboratory (J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (T.N., D.J.H., T.M.O.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Medicine (D.J.H., T.M.O.), Mayo Clinic, Rochester, MN
| |
Collapse
|
28
|
Abstract
Genetic testing plays an increasing diagnostic and prognostic role in the management of patients with heritable thoracic aortic disease (HTAD). The identification of a specific variant can establish or confirm the diagnosis of syndromic HTAD, dictate extensive evaluation of the arterial tree in HTAD with known distal vasculature involvement and justify closer follow-up and earlier surgical intervention in HTAD with high risk of dissection of minimal or normal aortic size. Evolving phenotype–genotype correlations lead us towards more precise and individualized management and treatment of patients with HTAD. In this review, we present the latest evidence regarding the role of genetics in patients with HTAD.
Collapse
|
29
|
Shen F, Yang Y, Li P, Zheng Y, Luo Z, Fu Y, Zhu G, Mei H, Chen S, Zhu Y. A genotype and phenotype analysis of SMAD6 mutant patients with radioulnar synostosis. Mol Genet Genomic Med 2021; 10:e1850. [PMID: 34953066 PMCID: PMC8801148 DOI: 10.1002/mgg3.1850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background SMAD6 variants have been reported in patients with radioulnar synostosis (RUS). This study aimed to investigate the genotypes and phenotypes for a large cohort of patients with RUS having mutant SMAD6. Methods Genomic DNA samples were isolated from 251 RUS sporadic patients (with their parents) and 27 RUS pedigrees. Sanger sequencing was performed for the SMAD6 coding regions. For positive probands, co‐segregation and parental‐origin analysis of SMAD6 variants and phenotypic re‐evaluation were performed for their family members. Results We identified 50 RUS probands with SMAD6 variants (13 co‐segregated with RUS in pedigrees and 37 in RUS‐sporadic patients). Based on the new and previous data, we identified SMAD6 mutated in 16/38 RUS pedigrees and 61/393 RUS sporadic patients, respectively. Overall, 93 SMAD6 mutant patients with RUS were identified, among which 29 patients had unilateral RUS, where the left side was more involved than the right side (left:right = 20:9). Female protective effects and non‐full penetrance were observed, in which only 6.90% mothers (vs. ~50% fathers) of SMAD6 mutant RUS probands had RUS. Pleiotropy was observed as a re‐evaluation of SMAD6 mutant families identified: (a) three families had axial skeletal malformations; (b) two families had polydactyly; and (c) eight families had other known malformations. Conclusion SMAD6 was mutated in 42.11% RUS pedigrees and 15.52% RUS sporadic patients. The RUS patients with SMAD6 variants exhibit both non‐full‐penetrance, variable expressivity, pleiotropy, female protective effects, and the left side is more susceptible than the right side.
Collapse
Affiliation(s)
- Fang Shen
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yongjia Yang
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Pengcheng Li
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China.,Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Beijing, China
| | - Yu Zheng
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Zhenqing Luo
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yuyan Fu
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Guanghui Zhu
- Department of orthopedics, Hunan Children's Hospital, Hengyang Meical School, University of South China, Changsha, China
| | - Haibo Mei
- Department of orthopedics, Hunan Children's Hospital, Hengyang Meical School, University of South China, Changsha, China
| | - Shanlin Chen
- Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Beijing, China
| | - Yimin Zhu
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China.,Emergency Research Institute of Hunan Province, Hunan People's Hospital, Changsha, China
| |
Collapse
|
30
|
Yang H, Zhu G, Zhou W, Luo M, Zhang Y, Zhang Y, Shu C, Zhou Z. A systematic study of mosaicism in heritable thoracic aortic aneurysm and dissection. Genomics 2021; 114:196-201. [PMID: 34921932 DOI: 10.1016/j.ygeno.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/04/2022]
Abstract
Mosaicisms are often overlooked in routine molecular diagnosis. Although not common, they are of great significance for accurate diagnosis and genetic counseling. In this study, we systematically evaluated the frequency of mosaicisms in both asymptomatic parents and affected patients with thoracic aortic aneurysm and dissection (TAAD). Next-generation sequencing (NGS) data from 1085 patients was reanalyzed with a more lenient allele frequency to detect potential mosaic variants. In addition, parental mosaicisms were investigated in 80 TAAD families. Finally, a total of six mosaic variants were detected in our cohort. Three of them were identified in symptomatic patients and three were in asymptomatic parents. Notably, a low-level mosaic variant in TGFB2 was detected combined with a causative FBN1 variant in patient AD2001, which might partially explain the clinical heterogeneity in his family. Our study hinted that it is necessary and feasible to implement mosaicism analysis in routine molecular diagnosis.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Guoyan Zhu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Weizhen Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yujing Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chang Shu
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| |
Collapse
|
31
|
Michelena HI, Corte AD, Evangelista A, Maleszewski JJ, Edwards WD, Roman MJ, Devereux RB, Fernández B, Asch FM, Barker AJ, Sierra-Galan LM, De Kerchove L, Fernandes SM, Fedak PWM, Girdauskas E, Delgado V, Abbara S, Lansac E, Prakash SK, Bissell MM, Popescu BA, Hope MD, Sitges M, Thourani VH, Pibarot P, Chandrasekaran K, Lancellotti P, Borger MA, Forrest JK, Webb J, Milewicz DM, Makkaar R, Leon MB, Sanders SP, Markl M, Ferrari VA, Roberts WC, Song JK, Blanke P, White CS, Siu S, Svensson LG, Braverman AC, Bavaria J, Sundt TM, El Khoury G, De Paulis R, Enriquez-Sarano M, Bax JJ, Otto CM, Schäfers HJ. International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes. Radiol Cardiothorac Imaging 2021; 3:e200496. [PMID: 34505060 DOI: 10.1148/ryct.2021200496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes. © 2021 Jointly between the RSNA, the European Association for Cardio-Thoracic Surgery, The Society of Thoracic Surgeons, and the American Association for Thoracic Surgery. The articles are identical except for minor stylistic and spelling differences in keeping with each journal's style. All rights reserved. Keywords: Bicuspid Aortic Valve, Aortopathy, Nomenclature, Classification.
Collapse
Affiliation(s)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Arturo Evangelista
- Department of Cardiology, Hospital Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) Ciber-CV, Barcelona, Spain
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - William D Edwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Borja Fernández
- Departamento de Biologia Animal, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Ciber-CV, Málaga, Spain
| | | | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Lilia M Sierra-Galan
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Laurent De Kerchove
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Susan M Fernandes
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Suhny Abbara
- Cardiothoracic Imaging Division, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emmanuel Lansac
- Department of Cardiac Surgery, Institute Mutualiste Montsouris, Paris, France
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute to Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Michael D Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERCV, ISCIII (CB16/11/00354), CERCA Programme, Barcelona, Spain
| | - Vinod H Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, GA, USA
| | - Phillippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute, Laval University Québec, Québec, Canada
| | | | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Michael A Borger
- University Clinic of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - John K Forrest
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, CT, USA
| | - John Webb
- St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Raj Makkaar
- Cedars Sinai Heart Institute, Los Angeles, CA, USA
| | - Martin B Leon
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephen P Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael Markl
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, CT, USA
| | - Victor A Ferrari
- Cardiovascular Medicine Division, University of Pennsylvania Medical Center and Penn Cardiovascular Institute, Philadelphia, PA, USA
| | - William C Roberts
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Texas A&M School of Medicine, Dallas Campus, Dallas, TX, USA
| | - Jae-Kwan Song
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Philipp Blanke
- Department of Radiology, St. Paul's Hospital, Vancouver, BC, Canada
| | - Charles S White
- Department of Radiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samuel Siu
- Schulich School of Medicine and Dentistry, London, ON, Canada
| | - Lars G Svensson
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alan C Braverman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Bavaria
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Gebrine El Khoury
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital and Unicamillus University Rome, Rome, Italy
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine M Otto
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
32
|
Curtis D. Analysis of 200,000 Exome-Sequenced UK Biobank Subjects Implicates Genes Involved in Increased and Decreased Risk of Hypertension. Pulse (Basel) 2021; 9:17-29. [PMID: 34722352 PMCID: PMC8527905 DOI: 10.1159/000517419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous analyses have identified common variants along with some specific genes and rare variants which are associated with risk of hypertension, but much remains to be discovered. METHODS AND RESULTS Exome-sequenced UK Biobank participants were phenotyped based on having a diagnosis of hypertension or taking anti-hypertensive medication to produce a sample of 66,123 cases and 134,504 controls. Variants with minor allele frequency (MAF) <0.01 were subjected to a gene-wise weighted burden analysis, with higher weights assigned to variants which are rarer and/or predicted to have more severe effects. Of 20,384 genes analysed, 2 genes were exome-wide significant, DNMT3A and FES. Also strongly implicated were GUCY1A1 and GUCY1B1, which code for the subunits of soluble guanylate cyclase. There was further support for the previously reported effects of variants in NPR1 and protective effects of variants in DBH. An inframe deletion in CACNA1D with MAF = 0.005, rs72556363, is associated with modestly increased risk of hypertension. Other biologically plausible genes highlighted consist of CSK, AGTR1, ZYX, and PREP. All variants implicated were rare, and cumulatively they are not predicted to make a large contribution to the population risk of hypertension. CONCLUSIONS This approach confirms and clarifies previously reported findings and also offers novel insights into biological processes influencing hypertension risk, potentially facilitating the development of improved therapeutic interventions. This research has been conducted using the UK Biobank Resource.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, University College London, London, United Kingdom
- Centre for Psychiatry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
33
|
Ma M, Li Z, Mohamed MA, Liu L, Wei X. Aortic root aortopathy in bicuspid aortic valve associated with high genetic risk. BMC Cardiovasc Disord 2021; 21:413. [PMID: 34461831 PMCID: PMC8404252 DOI: 10.1186/s12872-021-02215-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/19/2021] [Indexed: 01/16/2023] Open
Abstract
Background The bicuspid aortic valve (BAV) is prone to ascending aortic dilatation (AAD) involving both the tubular segment and the aortic root. The genetic factor was proposed as one of the most important mechanisms for AAD. We hypothesized that the rare genetic variants mainly contribute to the pathogenesis of aortic roots in affected individuals. Methods The diameter of aortic root or ascending aorta ≥ 40 mm was counted as AAD. The targeted next-generation sequencing of 13 BAV-associated genes were performed on a continuous cohort of 96 unrelated BAV patients. The rare variants with allele frequency < 0.05% were selected and analyzed. Variants frequency was compared against the Exome aggregation consortium database. The pathogenicity of the genetic variants was evaluated according to the American College of Medical Genetics and Genomics guidelines. Results A total of 27 rare nonsynonymous coding variants involving 9 genes were identified in 25 individuals. The burden analysis revealed that variants in GATA5, GATA6, and NOTCH1 were significantly associated with BAV. Eighty percent of the pathogenic variants were detected in root group. The detection rate of rare variants was higher in root dilatation group (71.4%) compared with normal aorta (29.0%) and tubular dilatation groups (29.6%) (P = 0.018). The rare variant was identified as the independent risk factor of root dilatation [P = 0.014, hazard ratio = 23.9, 95% confidence interval (1.9–302.9)]. Conclusions Our results presented a broad genetic spectrum in BAV patients. The rare variants of BAV genes contribute the most to the root phenotype among BAV patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02215-y.
Collapse
Affiliation(s)
- Mingjia Ma
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, People's Republic of China
| | - Zongzhe Li
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Wuhan, People's Republic of China
| | - Mohamed Abdulkadir Mohamed
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, People's Republic of China
| | - Ligang Liu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, People's Republic of China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan, 430030, People's Republic of China.
| |
Collapse
|
34
|
Kern CB. Excess Provisional Extracellular Matrix: A Common Factor in Bicuspid Aortic Valve Formation. J Cardiovasc Dev Dis 2021; 8:92. [PMID: 34436234 PMCID: PMC8396938 DOI: 10.3390/jcdd8080092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
A bicuspid aortic valve (BAV) is the most common cardiac malformation, found in 0.5% to 2% of the population. BAVs are present in approximately 50% of patients with severe aortic stenosis and are an independent risk factor for aortic aneurysms. Currently, there are no therapeutics to treat BAV, and the human mutations identified to date represent a relatively small number of BAV patients. However, the discovery of BAV in an increasing number of genetically modified mice is advancing our understanding of molecular pathways that contribute to BAV formation. In this study, we utilized the comparison of BAV phenotypic characteristics between murine models as a tool to advance our understanding of BAV formation. The collation of murine BAV data indicated that excess versican within the provisional extracellular matrix (P-ECM) is a common factor in BAV development. While the percentage of BAVs is low in many of the murine BAV models, the remaining mutant mice exhibit larger and more amorphous tricuspid AoVs, also with excess P-ECM compared to littermates. The identification of common molecular characteristics among murine BAV models may lead to BAV therapeutic targets and biomarkers of disease progression for this highly prevalent and heterogeneous cardiovascular malformation.
Collapse
Affiliation(s)
- Christine B Kern
- Department of Regenerative Medicine and Cell Biology, 171 Ashley Avenue, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
35
|
Abstract
Bicuspid aortic valve (BAV) is the most common valvular congenital heart disease, with a prevalence of 0.5 to 2% in the general population. Patients with BAV are at risk for developing cardiovascular complications, some of which are life-threatening. BAV has a wide spectrum of clinical presentations, ranging from silent malformation to severe and even fatal cardiac events. Despite the significant burden on both the patients and the health systems, data are limited regarding pathophysiology, risk factors, and genetics. Family studies indicate that BAV is highly heritable, with autosomal dominant inheritance, incomplete penetrance, variable expressivity, and male predominance. Owing to its complex genetic model, including high genetic heterogenicity, only a few genes were identified in association with BAV, while the majority of BAV genetics remains obscure. Here, we review the different forms of BAV and the current data regarding its genetics. Given the clear heritably of BAV with the potential high impact on clinical outcome, the clinical value and cost effectiveness of cascade screening are discussed.
Collapse
|
36
|
Michelena HI, Della Corte A, Evangelista A, Maleszewski JJ, Edwards WD, Roman MJ, Devereux RB, Fernández B, Asch FM, Barker AJ, Sierra-Galan LM, De Kerchove L, Fernandes SM, Fedak PWM, Girdauskas E, Delgado V, Abbara S, Lansac E, Prakash SK, Bissell MM, Popescu BA, Hope MD, Sitges M, Thourani VH, Pibarot P, Chandrasekaran K, Lancellotti P, Borger MA, Forrest JK, Webb J, Milewicz DM, Makkar R, Leon MB, Sanders SP, Markl M, Ferrari VA, Roberts WC, Song JK, Blanke P, White CS, Siu S, Svensson LG, Braverman AC, Bavaria J, Sundt TM, El Khoury G, De Paulis R, Enriquez-Sarano M, Bax JJ, Otto CM, Schäfers HJ. International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. J Thorac Cardiovasc Surg 2021; 162:e383-e414. [PMID: 34304896 DOI: 10.1016/j.jtcvs.2021.06.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.
Collapse
Affiliation(s)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Arturo Evangelista
- Department of Cardiology, Hospital Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) Ciber-CV, Barcelona, Spain
| | | | - William D Edwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medicine, New York, NY
| | | | - Borja Fernández
- Departamento de Biologia Animal, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Ciber-CV, Málaga, Spain
| | | | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Lilia M Sierra-Galan
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Laurent De Kerchove
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Susan M Fernandes
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Palo Alto, Calif; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suhny Abbara
- Cardiothoracic Imaging Division, Department of Radiology, UT Southwestern Medical Center, Dallas, Tex
| | - Emmanuel Lansac
- Department of Cardiac Surgery, Institute Mutualiste Montsouris, Paris, France
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute to Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Michael D Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERCV, ISCIII (CB16/11/00354), CERCA Programme, Barcelona, Spain
| | - Vinod H Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, Ga
| | - Phillippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute, Laval University Québec, Québec, Canada
| | | | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium; Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Michael A Borger
- University Clinic of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - John K Forrest
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, Conn
| | - John Webb
- St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex
| | - Raj Makkar
- Cedars Sinai Heart Institute, Los Angeles, Calif
| | - Martin B Leon
- Division of Cardiology, Columbia University Irving Medical Center/NY Presbyterian Hospital, New York, NY
| | - Stephen P Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Victor A Ferrari
- Cardiovascular Medicine Division, University of Pennsylvania Medical Center and Penn Cardiovascular Institute, Philadelphia, Pa
| | - William C Roberts
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Texas A& M School of Medicine, Dallas Campus, Dallas, Tex
| | - Jae-Kwan Song
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Philipp Blanke
- Department of Radiology, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Charles S White
- Department of Radiology, University of Maryland School of Medicine, Baltimore, Md
| | - Samuel Siu
- Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Lars G Svensson
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alan C Braverman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Mo
| | - Joseph Bavaria
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Mass
| | - Gebrine El Khoury
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital and Unicamillus University Rome, Rome, Italy
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
37
|
Michelena HI, Della Corte A, Evangelista A, Maleszewski JJ, Edwards WD, Roman MJ, Devereux RB, Fernández B, Asch FM, Barker AJ, Sierra-Galan LM, De Kerchove L, Fernandes SM, Fedak PWM, Girdauskas E, Delgado V, Abbara S, Lansac E, Prakash SK, Bissell MM, Popescu BA, Hope MD, Sitges M, Thourani VH, Pibarot P, Chandrasekaran K, Lancellotti P, Borger MA, Forrest JK, Webb J, Milewicz DM, Makkar R, Leon MB, Sanders SP, Markl M, Ferrari VA, Roberts WC, Song JK, Blanke P, White CS, Siu S, Svensson LG, Braverman AC, Bavaria J, Sundt TM, El Khoury G, De Paulis R, Enriquez-Sarano M, Bax JJ, Otto CM, Schäfers HJ. International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. Eur J Cardiothorac Surg 2021; 60:448-476. [PMID: 34293102 DOI: 10.1093/ejcts/ezab038] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.
Collapse
Affiliation(s)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Arturo Evangelista
- Department of Cardiology, Hospital Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) Ciber-CV, Barcelona, Spain
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - William D Edwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Ciber-CV, Málaga, Spain
| | | | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Lilia M Sierra-Galan
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Laurent De Kerchove
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Susan M Fernandes
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Suhny Abbara
- Cardiothoracic Imaging Division, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emmanuel Lansac
- Department of Cardiac Surgery, Institute Mutualiste Montsouris, Paris, France
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute to Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Michael D Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, IDIBAPS, CIBERCV, ISCIII (CB16/11/00354), CERCA Programme, Barcelona, Spain
| | - Vinod H Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, GA, USA
| | - Phillippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute, Laval University Québec, Québec, Canada
| | | | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Michael A Borger
- University Clinic of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - John K Forrest
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, CT, USA
| | - John Webb
- St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Raj Makkar
- Cedars Sinai Heart Institute, Los Angeles, CA, USA
| | - Martin B Leon
- Division of Cardiology, Columbia University Irving Medical Center/NY Presbyterian Hospital, New York, NY, USA
| | - Stephen P Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Victor A Ferrari
- Cardiovascular Medicine Division, University of Pennsylvania Medical Center and Penn Cardiovascular Institute, Philadelphia, PA, USA
| | - William C Roberts
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Texas A & M School of Medicine, Dallas Campus, Dallas, TX, USA
| | - Jae-Kwan Song
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Philipp Blanke
- Department of Radiology, St. Paul's Hospital, Vancouver, BC, Canada
| | - Charles S White
- Department of Radiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samuel Siu
- Schulich School of Medicine and Dentistry, London, ON, Canada
| | - Lars G Svensson
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alan C Braverman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Bavaria
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Gebrine El Khoury
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital and Unicamillus University Rome, Rome, Italy
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine M Otto
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
38
|
Michelena HI, Della Corte A, Evangelista A, Maleszewski JJ, Edwards WD, Roman MJ, Devereux RB, Fernández B, Asch FM, Barker AJ, Sierra-Galan LM, De Kerchove L, Fernandes SM, Fedak PWM, Girdauskas E, Delgado V, Abbara S, Lansac E, Prakash SK, Bissell MM, Popescu BA, Hope MD, Sitges M, Thourani VH, Pibarot P, Chandrasekaran K, Lancellotti P, Borger MA, Forrest JK, Webb J, Milewicz DM, Makkar R, Leon MB, Sanders SP, Markl M, Ferrari VA, Roberts WC, Song JK, Blanke P, White CS, Siu S, Svensson LG, Braverman AC, Bavaria J, Sundt TM, El Khoury G, De Paulis R, Enriquez-Sarano M, Bax JJ, Otto CM, Schäfers HJ. International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes. Ann Thorac Surg 2021; 112:e203-e235. [PMID: 34304860 DOI: 10.1016/j.athoracsur.2020.08.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/30/2020] [Indexed: 01/17/2023]
Abstract
This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.
Collapse
Affiliation(s)
- Hector I Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Arturo Evangelista
- Department of Cardiology, Hospital Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) Ciber-CV, Barcelona, Spain
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - William D Edwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medicine, New York, New York
| | | | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Ciber-CV, Málaga, Spain
| | | | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Lilia M Sierra-Galan
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Laurent De Kerchove
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Susan M Fernandes
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Palo Alto, California; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, California
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Suhny Abbara
- Cardiothoracic Imaging Division, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Emmanuel Lansac
- Department of Cardiac Surgery, Institute Mutualiste Montsouris, Paris, France
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute to Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Michael D Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, IDIBAPS, CIBERCV, ISCIII (CB16/11/00354), CERCA Programme, Barcelona, Spain
| | - Vinod H Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, Georgia
| | - Phillippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute, Laval University Québec, Québec, Canada
| | | | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium; Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Michael A Borger
- University Clinic of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - John K Forrest
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, Connecticut
| | - John Webb
- St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Raj Makkar
- Cedars Sinai Heart Institute, Los Angeles, California
| | - Martin B Leon
- Division of Cardiology, Columbia University Irving Medical Center/NY Presbyterian Hospital, New York, New York
| | - Stephen P Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Victor A Ferrari
- Cardiovascular Medicine Division, University of Pennsylvania Medical Center and Penn Cardiovascular Institute, Philadelphia, Pennsylvania
| | - William C Roberts
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Texas A & M School of Medicine, Dallas Campus, Dallas, Texas
| | - Jae-Kwan Song
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Philipp Blanke
- Department of Radiology, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Charles S White
- Department of Radiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Samuel Siu
- Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Lars G Svensson
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alan C Braverman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph Bavaria
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Gebrine El Khoury
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital and Unicamillus University Rome, Rome, Italy
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine M Otto
- Division of Cardiology, University of Washington, Seattle, Washington
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
39
|
Tessler I, Leshno M, Shmueli A, Shpitzen S, Ronen D, Gilon D. Cost-effectiveness analysis of screening for first-degree relatives of patients with bicuspid aortic valve. EUROPEAN HEART JOURNAL. QUALITY OF CARE & CLINICAL OUTCOMES 2021; 7:447-457. [PMID: 34227670 DOI: 10.1093/ehjqcco/qcab047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022]
Abstract
AIMS Bicuspid aortic valve (BAV) is the commonest congenital heart valve malformation, and is associated with life-threatening complications. Given the high heritability index of BAV, many experts recommend echocardiography screening for first-degree relatives (FDRs) of an index case. Here we aim to evaluate the cost-effectiveness of such cascade screening for BAV. METHODS Using a decision-analytic model, we performed a cost-effectiveness analysis of echocardiographic screening for FDRs of BAV index case. Data on BAV probabilities and complications among FDRs were derived from our institution's BAV familial cohort and from the literature on population-based BAV cohorts with long-term follow-up. Health gain was measured as quality-adjusted life years (QALYs). Cost inputs were based on list prices and literature data. One-way and probabilistic sensitivity analyses were performed to account for uncertainty in the model's variables. RESULTS Screening of FDRs was found to be the dominant strategy, being more effective and less costly than no screening, with savings of €644 and gains of 0.3 QALYs. Results were sensitive throughout the rang of the model's variables, including the full range of reported BAV rates among FDRs across the literature. A gradual decrease of the incremental effect was found with the increase in screening age. CONCLUSIONS This economic evaluation model found that echocardiographic screening of FDRs of BAV index case is not only clinically important but also cost-effective and cost-saving. Sensitivity analysis supported the model's robustness, suggesting its generalization.
Collapse
Affiliation(s)
- Idit Tessler
- Braun School of Public Health and Community Medicine, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.,Heart institute, Hadassah Medical Center, Jerusalem, Israel
| | - Moshe Leshno
- Faculty of Management and School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Shmueli
- Braun School of Public Health and Community Medicine, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Shoshana Shpitzen
- Heart institute, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Durst Ronen
- Heart institute, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Dan Gilon
- Heart institute, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
40
|
Van Gucht I, Meester JA, Bento JR, Bastiaansen M, Bastianen J, Luyckx I, Van Den Heuvel L, Neutel CH, Guns PJ, Vermont M, Fransen E, Perik MH, Velchev JD, Alaerts M, Schepers D, Peeters S, Pintelon I, Almesned A, Ferla MP, Taylor JC, Dallosso AR, Williams M, Evans J, Rosenfeld JA, Sluysmans T, Rodrigues D, Chikermane A, Bharmappanavara G, Vijayakumar K, Mottaghi Moghaddam Shahri H, Hashemi N, Torbati PN, Toosi MB, Al-Hassnan ZN, Vogt J, Revencu N, Maystadt I, Miller EM, Weaver KN, Begtrup A, Houlden H, Murphy D, Maroofian R, Pagnamenta AT, Van Laer L, Loeys BL, Verstraeten A, Verstraeten A. A human importin-β-related disorder: Syndromic thoracic aortic aneurysm caused by bi-allelic loss-of-function variants in IPO8. Am J Hum Genet 2021; 108:1115-1125. [PMID: 34010605 DOI: 10.1016/j.ajhg.2021.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Importin 8, encoded by IPO8, is a ubiquitously expressed member of the importin-β protein family that translocates cargo molecules such as proteins, RNAs, and ribonucleoprotein complexes into the nucleus in a RanGTP-dependent manner. Current knowledge of the cargoes of importin 8 is limited, but TGF-β signaling components such as SMAD1-4 have been suggested to be among them. Here, we report that bi-allelic loss-of-function variants in IPO8 cause a syndromic form of thoracic aortic aneurysm (TAA) with clinical overlap with Loeys-Dietz and Shprintzen-Goldberg syndromes. Seven individuals from six unrelated families showed a consistent phenotype with early-onset TAA, motor developmental delay, connective tissue findings, and craniofacial dysmorphic features. A C57BL/6N Ipo8 knockout mouse model recapitulates TAA development from 8-12 weeks onward in both sexes but most prominently shows ascending aorta dilatation with a propensity for dissection in males. Compliance assays suggest augmented passive stiffness of the ascending aorta in male Ipo8-/- mice throughout life. Immunohistological investigation of mutant aortic walls reveals elastic fiber disorganization and fragmentation along with a signature of increased TGF-β signaling, as evidenced by nuclear pSmad2 accumulation. RT-qPCR assays of the aortic wall in male Ipo8-/- mice demonstrate decreased Smad6/7 and increased Mmp2 and Ccn2 (Ctgf) expression, reinforcing a role for dysregulation of the TGF-β signaling pathway in TAA development. Because importin 8 is the most downstream TGF-β-related effector implicated in TAA pathogenesis so far, it offers opportunities for future mechanistic studies and represents a candidate drug target for TAA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem 2650, Belgium.
| |
Collapse
|
41
|
Junco-Vicente A, del Río-García Á, Martín M, Rodríguez I. Update in Biomolecular and Genetic Bases of Bicuspid Aortopathy. Int J Mol Sci 2021; 22:ijms22115694. [PMID: 34071740 PMCID: PMC8198265 DOI: 10.3390/ijms22115694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Bicuspid aortic valve (BAV) associated with aortopathy is the most common congenital heart disease in the general population. Far from being a simple harmless valve malformation, it can be a complex and heterogeneous disease and a source of chronic and acute pathology (early valvular disease, aneurysm, dissection). In the previous years, intense research has been carried out to find out and understand its mechanisms, but the pathophysiology of the disease is still not fully understood and many questions remain open. Recent studies have discovered several genetic mutations involved in the development of valvular and aortic malformations, but still cannot explain more than 5–10% of cases. Other studies have also focused on molecular alterations and cellular processes (TGF-β pathway, microRNAs, degradation of the extracellular matrix, metalloproteinases, etc.), being a field in constant search and development, looking for a therapeutic target to prevent the development of the disease. Increased knowledge about this multifaceted disorder, derived from both basic and clinical research, may influence the diagnosis, follow-up, prognosis, and therapies of affected patients in the near future. This review focuses on the latest and outstanding developments on the molecular and genetic investigations of the bicuspid aortopathy.
Collapse
Affiliation(s)
- Alejandro Junco-Vicente
- Cardiology Department, Heart Area, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
| | - Álvaro del Río-García
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - María Martín
- Cardiology Department, Heart Area, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- REDinREN from Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain
- Correspondence: (M.M.); (I.R.)
| | - Isabel Rodríguez
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- REDinREN from Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain
- Correspondence: (M.M.); (I.R.)
| |
Collapse
|
42
|
Burada F, Streata I, Ungureanu A, Ruican D, Nagy R, Serban-Sosoi S, Stambouli D, Dimos L, Popescu-Hobeanu G, Mihai I, Iliescu D. Prenatal diagnosis of a pure 15q distal trisomy derived from a maternal pericentric inversion: A case report. Exp Ther Med 2021; 21:304. [PMID: 33717247 PMCID: PMC7885063 DOI: 10.3892/etm.2021.9735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
Distal trisomy or duplication of 15q is a very rare chromosomal disorder; most of the previously reported cases were derived from unbalanced translocations involving chromosome 15 and another chromosome, whereas other mechanisms (e.g. duplication) have rarely been reported. We herein report a very rare prenatal case of a partial 15q trisomy, a 42.64-Mb duplication of 15q22.2-q26.3, arising from a maternal pericentric inversion of chromosome 15 (p11q22) that was not the result of an unbalanced translocation or duplication, and was not associated with concomitant partial monosomy. Fetal ultrasound revealed isolated thickened nuchal translucency at 12 weeks and multiple abnormalities in the second trimester, including early growth restriction, unilateral ventriculomegaly, narrow cavum septi pellucidi with hypoplasia of the corpus callosum, unilateral postaxial polydactyly, clenched hands and clubfoot with clawing of the toes, and a particular general dysplastic and hypotrophic aspect of the heart. The distinctive aspects of the present case may help to refine the phenotype associated with distal duplication 15q. To the best of our knowledge, this is the first report of a prenatal diagnosis with a 15q22.2-q26.3 duplication that did not result from an unbalanced translocation and did not have a concomitant monosomic component.
Collapse
Affiliation(s)
- Florin Burada
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Ioana Streata
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Anda Ungureanu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Pediatric Cardiology, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Dan Ruican
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Rodica Nagy
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Simona Serban-Sosoi
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | | | - Luiza Dimos
- Cytogenomic Medical Laboratory, 014453 Bucharest, Romania
| | - Gabriela Popescu-Hobeanu
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ioana Mihai
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Dominic Iliescu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
43
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
44
|
Abstract
Congenital heart disease is the most common congenital defect observed in newborns. Within the spectrum of congenital heart disease are left‐sided obstructive lesions (LSOLs), which include hypoplastic left heart syndrome, aortic stenosis, bicuspid aortic valve, coarctation of the aorta, and interrupted aortic arch. These defects can arise in isolation or as a component of a defined syndrome; however, nonsyndromic defects are often observed in multiple family members and associated with high sibling recurrence risk. This clear evidence for a heritable basis has driven a lengthy search for disease‐causing variants that has uncovered both rare and common variants in genes that, when perturbed in cardiac development, can result in LSOLs. Despite advancements in genetic sequencing platforms and broadening use of exome sequencing, the currently accepted LSOL‐associated genes explain only 10% to 20% of patients. Further, the combinatorial effects of common and rare variants as a cause of LSOLs are emerging. In this review, we highlight the genes and variants associated with the different LSOLs and discuss the strengths and weaknesses of the present genetic associations. Furthermore, we discuss the research avenues needed to bridge the gaps in our current understanding of the genetic basis of nonsyndromic congenital heart disease.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC
| | - Andrew P Landstrom
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
45
|
Mohamed SA, Taube ET, Thiele H, Noack F, Nebrich G, Mohamady K, Hanke T, Klein O. Evaluation of the Aortopathy in the Ascending Aorta: The Novelty of Using Matrix-Assisted Laser Desorption/Ionization Imaging. Proteomics Clin Appl 2021; 15:e2000047. [PMID: 33270371 DOI: 10.1002/prca.202000047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PURPOSE Histopathological evaluation presents conflicting reports regarding aortic abnormalities. The authors aim to present proof-of-concept study to explore the feasibility of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) in combination with histopathology for characterizing alterations in the aneurysmal ascending formalin-fixed paraffin-embedded (FFPE) aorta tissue. EXPERIMENTAL DESIGN The authors assess FFPE specimens from patients with a dilated aorta and bicuspid aortic valve (BAV), those with a standard tricuspid aortic valve (TAV), and those with Marfan syndrome (MFS) via histopathology and grade the conditions for elastic fiber fragmentation (EFF) and MALDI-IMS. The proteins using liquid chromatographic-mass spectrometry are identified and the results are confirmed by immunohistochemistry. RESULTS There is significant difference in terms of EFF between MFS and BAV, and TAV and BAV. Characteristic peptide signatures and m/z values in the EFF facilitate the characterization among the aortic specimens of BAV, MFS, and TAV. The m/z values from the aortic alpha smooth muscle actin and myosin heavy chains significantly increase in BAV compared with MFS and TAV. These findings are confirmed by immunohistochemistry. CONCLUSION The results represent a strategy that uses MALDI-IMS in combination with histopathology as promising approaches to characterize spatial alteration in the structure of the aneurysmal ascending aorta.
Collapse
Affiliation(s)
- Salah A Mohamed
- Department of Cardiac and Thoracic Vascular Surgery, UKSH-Campus Luebeck, Luebeck, 23538, Germany
| | - Eliane T Taube
- Charité-Universitaetsmedizin, Institute for Pathology, Berlin, 10117, Germany
| | - Herbert Thiele
- Fraunhofer Institute for Digital Medicine MEVIS, Luebeck, 23538, Germany
| | - Frank Noack
- Institute of Pathology Martin-Luther Hospital, Berlin, 14193, Germany
| | - Grit Nebrich
- Berlin Institute of Health Center for Regenerative Therapies & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Campus Virchow Klinikum (CVK), Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | | | | | - Oliver Klein
- Berlin Institute of Health Center for Regenerative Therapies & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Campus Virchow Klinikum (CVK), Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, 13353, Germany
| |
Collapse
|
46
|
Barallobre-Barreiro J, Loeys B, Mayr M, Rienks M, Verstraeten A, Kovacic JC. Extracellular Matrix in Vascular Disease, Part 2/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2189-2203. [PMID: 32354385 DOI: 10.1016/j.jacc.2020.03.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023]
Abstract
Medium-sized and large arteries consist of 3 layers: the tunica intima, tunica media, and tunica adventitia. The tunica media accounts for the bulk of the vessel wall and is the chief determinant of mechanical compliance. It is primarily composed of circumferentially arranged layers of vascular smooth muscle cells that are separated by concentrically arranged elastic lamellae; a form of extracellular matrix (ECM). The tunica media is separated from the tunica intima and tunica adventitia, the innermost and outermost layers, respectively, by the internal and external elastic laminae. This second part of a 4-part JACC Focus Seminar discusses the contributions of the ECM to vascular homeostasis and pathology. Advances in genetics and proteomics approaches have fostered significant progress in our understanding of vascular ECM. This review highlights the important role of the ECM in vascular disease and the prospect of translating these discoveries into clinical disease biomarkers and potential future therapies.
Collapse
Affiliation(s)
| | - Bart Loeys
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Marieke Rienks
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Aline Verstraeten
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
47
|
van Dorst DCH, de Wagenaar NP, van der Pluijm I, Roos-Hesselink JW, Essers J, Danser AHJ. Transforming Growth Factor-β and the Renin-Angiotensin System in Syndromic Thoracic Aortic Aneurysms: Implications for Treatment. Cardiovasc Drugs Ther 2020; 35:1233-1252. [PMID: 33283255 PMCID: PMC8578102 DOI: 10.1007/s10557-020-07116-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Thoracic aortic aneurysms (TAAs) are permanent pathological dilatations of the thoracic aorta, which can lead to life-threatening complications, such as aortic dissection and rupture. TAAs frequently occur in a syndromic form in individuals with an underlying genetic predisposition, such as Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). Increasing evidence supports an important role for transforming growth factor-β (TGF-β) and the renin-angiotensin system (RAS) in TAA pathology. Eventually, most patients with syndromic TAAs require surgical intervention, as the ability of present medical treatment to attenuate aneurysm growth is limited. Therefore, more effective medical treatment options are urgently needed. Numerous clinical trials investigated the therapeutic potential of angiotensin receptor blockers (ARBs) and β-blockers in patients suffering from syndromic TAAs. This review highlights the contribution of TGF-β signaling, RAS, and impaired mechanosensing abilities of aortic VSMCs in TAA formation. Furthermore, it critically discusses the most recent clinical evidence regarding the possible therapeutic benefit of ARBs and β-blockers in syndromic TAA patients and provides future research perspectives and therapeutic implications.
Collapse
Affiliation(s)
- Daan C H van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nathalie P de Wagenaar
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands. .,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Ahluwalia N, Gelb BD. A de novo pathogenic BMP2 variant-related phenotype with the novel finding of bicuspid aortic valve. Am J Med Genet A 2020; 185:575-578. [PMID: 33247540 DOI: 10.1002/ajmg.a.61992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022]
Abstract
A rare autosomal dominant syndrome with craniofacial dysmorphisms, skeletal abnormalities, short stature, and congenital heart defects has recently been described, associated with monoallelic truncating and frameshift bone morphogenetic protein 2 (BMP2) variants and deletions. We describe a patient harboring a novel de novo BMP2 nonsense variant, who exhibited craniofacial and skeletal features previously described for this trait and the novel findings of bicuspid aortic valve (BAV) and aortic root and ascending aortic aneurysm. This first instance of aortic valve involvement provides another potential cause of BAV and confirms the role of BMP2 in left ventricular outflow development.
Collapse
Affiliation(s)
- Neha Ahluwalia
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce D Gelb
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
49
|
Hautin R, Mirault T, Munte L, Achouh P, Khider L, Messas E, Goudot G. Aortic Dissection in an Undiagnosed Familial Form of Bicuspid Aortic Valve with a Short Raphe. ACTA ACUST UNITED AC 2020; 4:443-447. [PMID: 33117946 PMCID: PMC7581640 DOI: 10.1016/j.case.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BAV is associated with risk for dissection of the proximal aorta. Thorough BAV investigation is required for any aortic dissection. Familial forms of BAV are probably associated with an increased risk for aortopathy. Familial screening is desirable to organize follow-up of each patient with BAV.
Collapse
Affiliation(s)
- Ryan Hautin
- Vascular Medicine Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Tristan Mirault
- Vascular Medicine Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Laura Munte
- Cardiac Surgery Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Paul Achouh
- Cardiac Surgery Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Lina Khider
- Vascular Medicine Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Emmanuel Messas
- Vascular Medicine Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Guillaume Goudot
- Vascular Medicine Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
50
|
Recurrent germline mutations as genetic markers for aortic root dilatation in bicuspid aortic valve patients. Heart Vessels 2020; 36:530-540. [PMID: 33064175 DOI: 10.1007/s00380-020-01710-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Bicuspid aortic valve (BAV) is characterized by elevated risk of aortic dilatation and aneurysm. Although genetic susceptibility is suspected to influence on the development of BAV aortopathy, clinical application of genetic markers still needs validation in BAV entities with strictly defined phenotypic features. The 'root phenotype' represents a young, male predominant, and severely aortic regurgitant BAV population prone to aortic root dilatation. The present study launched a two-step genetic survey to evaluate the clinical significance of germline genetic markers in BAV patients. The whole-exome sequencing (WES) cohort consisted of 13 BAV patients with 'root phenotype' under the age of 40 years. We identified 28 different heterozygous missense mutations in 19 genes from the WES cohort, among which six variants (COL1A2 R882C, COL5A1 I1161F, ACVRL1 R218W, NOTCH1 P1227S, MYLK S243W, MYLK D717Y) were identified as pathogenic variants via unanimous agreement of in silico prediction tool analysis, and three variants (C1R I345L, TGFBR2 V216I, FBN2 G475V) were identified as recurrent variants. The panel of nine genetic markers was tested in an independent validation cohort of 154 BAV patients consecutively included from January to May 2018 in our institution. The validation cohort demonstrated 71.4% male predominance and the average age of 57 ± 13 years, among which 26.6% showed aortic root dilatation and 66.9% ascending aortic dilatation. Genetic markers were found in 32 patients, including 18 with C1R I345L, 11 with TGFBR2 V216I, 2 with FBN2 G475V, and 1 with both TGFBR2 V216I and MYLK D717Y. BAV patients carrying these genetic markers demonstrated younger age [(51 ± 12) vs. (58 ± 13) years, P = 0.014], more moderate to severe aortic regurgitation (56.2% vs. 33.6%, P = 0.019), elevated prevalence of mitral valve prolapse (9.4% vs. 0.8%, P = 0.028) and aortic root dilatation (62.5% vs. 17.2%, P < 0.001) but not ascending aortic dilatation than those without these markers. The early-onset 'root phenotype' entities displayed great value for BAV genetic surveys. As one of the promising complements of the current risk stratification system, recurrent germline mutations in TGFBR2, C1R, FBN2 genes could be identified and applied as genetic markers of elevated susceptibility for aortic root but not ascending aortic dilatation among BAV patients.
Collapse
|