1
|
Lin W, Liao L, Ling L, Zou W, Shi P, Wang S, Yang P, Yang J. Joint effects of rice straw-derived biochar and microcystin-LR on splenic histopathological injuries, inflammation, and innate immune responses in male zebrafish. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110370. [PMID: 40288619 DOI: 10.1016/j.fsi.2025.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Microcystin-LR (MC-LR), a toxin produced by cyanobacterial blooms, poses a significant threat to aquatic animals and humans. Biochar (BC), known for its high adsorption capacity, is increasingly being utilized to remove hazardous pollutants from aquatic environment. In the present study, we conducted a full factorial experiment to investigate the potential immunotoxicity in male zebrafish (Danio rerio) exposed to environmentally relevant levels of MC-LR (0, 1, 5, 25 μg/L) and rice straw-derived BC (0, 100 μg/L) for 30 d. The findings revealed that subchronic MC-LR exposure caused concentration-dependent splenic histopathological injuries, characterized by an augmentation of melano-macrophage centers, edematous mitochondria, and vacuolation. While the presence of BC mitigated the inflammatory response and mitochondrial damage in the combined groups. Furthermore, in contrast to the group solely exposed to 25 μg/L MC-LR, decreased levels of interleukin 1β (IL1β), tumor necrosis factor α (TNFα), and interleukin 6 (IL6) as well as significant downregulation of inflammation and immune-related genes (tlr4a, myd88, p38a, tnfα) were noticed in the corresponding co-exposure group, which confirmed that BC can reduce MC-LR-induced inflammatory response. Concurrently, a significant increase in complement C3 (C3) content, along with higher splenic c3b expression levels, was observed in the MC-LR-co-BC group in relative to the group exposed solely to MC-LR, suggesting that BC alleviated MC-LR-induced innate immune inhibition. Our results also demonstrated that BC can decrease MC-LR contents in both water and spleen, thereby alleviating MC-LR-induced inflammation and innate immune inhibition via the MyD88-dependent toll-like receptor (TLR/MyD88) signaling pathway in male zebrafish. Our results underscore the potential of BC to mitigate the deleterious impacts of MC-LR on aquatic organisms in blooms-contaminated water.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, China
| | - Ling Liao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, China
| | - Ling Ling
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, China
| | - Wansheng Zou
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, China
| | - Pengling Shi
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, China
| | - Suqin Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, China; College of Agricultural and Forestry Science and Technology, Hunan Applied Technology University, Changde, 415000, China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, China.
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China.
| |
Collapse
|
2
|
Bai Y, Song Y, Li M, Ou J, Hu H, Xu N, Cao M, Wang S, Chen L, Cheng G, Li Z, Liu G, Wang J, Zhang W, Yang C. Dissection of molecular mechanisms of liver injury induced by microcystin-leucine arginine via single-cell RNA-sequencing. J Environ Sci (China) 2024; 145:164-179. [PMID: 38844317 DOI: 10.1016/j.jes.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 07/28/2024]
Abstract
The occurrence of poisoning incidents caused by cyanobacterial blooms has aroused wide public concern. Microcystin-leucine arginine (MC-LR) is a well-established toxin produced by cyanobacterial blooms, which is widely distributed in eutrophic waters. MC-LR is not only hazardous to the water environment but also exerts multiple toxic effects including liver toxicity in both humans and animals. However, the underlying mechanisms of MC-LR-induced liver toxicity are unclear. Herein, we used advanced single-cell RNA sequencing technology to characterize MC-LR-induced liver injury in mice. We established the first single-cell atlas of mouse livers in response to MC-LR. Our results showed that the differentially expressed genes and pathways in diverse cell types of liver tissues of mice treated with MC-LR are highly heterogeneous. Deep analysis showed that MC-LR induced an increase in a subpopulation of hepatocytes that highly express Gstm3, which potentially contributed to hepatocyte apoptosis in response to MC-LR. Moreover, MC-LR increased the proportion and multiple subtypes of Kupffer cells with M1 phenotypes and highly expressed proinflammatory genes. Furthermore, the MC-LR increased several subtypes of CD8+ T cells with highly expressed multiple cytokines and chemokines. Overall, apart from directly inducing hepatocytes apoptosis, MC-LR activated proinflammatory Kupffer cell and CD8+ T cells, and their interaction may constitute a hostile microenvironment that contributes to liver injury. Our findings not only present novel insight into underlying molecular mechanisms but also provide a valuable resource and foundation for additional discovery of MC-LR-induced liver toxicity.
Collapse
Affiliation(s)
- Yunmeng Bai
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China; Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China
| | - Miaoran Li
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinhuan Ou
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Hong Hu
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Nan Xu
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Min Cao
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Siyu Wang
- Faculty of Brain Sciences, University College London, WC1E 6BT, UK
| | - Lin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhijie Li
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jigang Wang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China; Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Zhang
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Chuanbin Yang
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
3
|
Rasal KD, Kumar PV, Risha S, Asgolkar P, Harshavarthini M, Acharya A, Shinde S, Dhere S, Rasal A, Sonwane A, Brahmane M, Sundaray JK, Nagpure N. Genetic improvement and genomic resources of important cyprinid species: status and future perspectives for sustainable production. Front Genet 2024; 15:1398084. [PMID: 39364006 PMCID: PMC11446788 DOI: 10.3389/fgene.2024.1398084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Cyprinid species are the most cultured aquatic species around the world in terms of quantity and total value. They account for 25% of global aquaculture production and significantly contribute to fulfilling the demand for fish food. The aquaculture of these species is facing severe concerns in terms of seed quality, rising feed costs, disease outbreaks, introgression of exotic species, environmental impacts, and anthropogenic activities. Numerous researchers have explored biological issues and potential methods to enhance cyprinid aquaculture. Selective breeding is extensively employed in cyprinid species to enhance specific traits like growth and disease resistance. In this context, we have discussed the efforts made to improve important cyprinid aquaculture practices through genetic and genomic approaches. The recent advances in DNA sequencing technologies and genomic tools have revolutionized the understanding of biological research. The generation of a complete genome and other genomic resources in cyprinid species has significantly strengthened molecular-level investigations into disease resistance, growth, reproduction, and adaptation to changing environments. We conducted a comprehensive review of genomic research in important cyprinid species, encompassing genome, transcriptome, proteome, metagenome, epigenome, etc. This review reveals that considerable data has been generated for cyprinid species. However, the seamless integration of this valuable data into genetic selection programs has yet to be achieved. In the upcoming years, genomic techniques, gene transfer, genome editing tools are expected to bring a paradigm shift in sustainable cyprinid aquaculture production. The comprehensive information presented here will offer insights for the cyprinid aquaculture research community.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Shasti Risha
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Prachi Asgolkar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - M Harshavarthini
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siba Shinde
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siyag Dhere
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Avinash Rasal
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Arvind Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manoj Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Jitendra K Sundaray
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Naresh Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Li X, Lin Y, Li W, Cheng Y, Zhang J, Qiu J, Fu Y. Comparative Analysis of mRNA, microRNA of Transcriptome, and Proteomics on CIK Cells Responses to GCRV and Aeromonas hydrophila. Int J Mol Sci 2024; 25:6438. [PMID: 38928143 PMCID: PMC11204273 DOI: 10.3390/ijms25126438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Grass Carp Reovirus (GCRV) and Aeromonas hydrophila (Ah) are the causative agents of haemorrhagic disease in grass carp. This study aimed to investigate the molecular mechanisms and immune responses at the miRNA, mRNA, and protein levels in grass carp kidney cells (CIK) infected by Grass Carp Reovirus (GCRV, NV) and Aeromonas hydrophilus (Bacteria, NB) to gain insight into their pathogenesis. Within 48 h of infection with Grass Carp Reovirus (GCRV), 99 differentially expressed microRNA (DEMs), 2132 differentially expressed genes (DEGs), and 627 differentially expressed proteins (DEPs) were identified by sequencing; a total of 92 DEMs, 3162 DEGs, and 712 DEPs were identified within 48 h of infection with Aeromonas hydrophila. It is worth noting that most of the DEGs in the NV group were primarily involved in cellular processes, while most of the DEGs in the NB group were associated with metabolic pathways based on KEGG enrichment analysis. This study revealed that the mechanism of a grass carp haemorrhage caused by GCRV infection differs from that caused by the Aeromonas hydrophila infection. An important miRNA-mRNA-protein regulatory network was established based on comprehensive transcriptome and proteome analysis. Furthermore, 14 DEGs and 6 DEMs were randomly selected for the verification of RNA/small RNA-seq data by RT-qPCR. Our study not only contributes to the understanding of the pathogenesis of grass carp CIK cells infected with GCRV and Aeromonas hydrophila, but also serves as a significant reference value for other aquatic animal haemorrhagic diseases.
Collapse
Affiliation(s)
- Xike Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Lin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjuan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuejuan Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Junling Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Junqiang Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
5
|
Ma X, Xing Y, Chen X, Zhong S, Pengsakul T, Qiao Y. Integration of transcriptomic and metabolomic analyses reveal the molecular responses of the mud crab Scylla paramamosain to infection by an undescribed endoparasite Portunion sp. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108978. [PMID: 37544464 DOI: 10.1016/j.fsi.2023.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Portunion is a rare endoparasitic isopod genus, recently observed inhabiting the hemocoel of the commercially important mud crab, Scylla paramamosain. For better understanding of the host-parasite interaction between S. paramamosain and Portunion sp., the metabolomic and transcriptomic changes in the hemolymph of the S. paramamosain were analyzed. We detected a total of 143 and 126 differentially accumulated metabolites in the positive and negative modes, respectively. Pathways related to amino acids and vitamin synthesis, such as Aminoacyl-tRNA biosynthesis, Tyrosine metabolism, Cysteine and methionine metabolism, Vitamin B6 metabolism, and Biotin metabolism were significantly enriched. Based on the transcriptomic data, a total of 942 differentially expressed genes were identified, of which 25 and 36 were significantly related to the immune system and metabolic pathways, respectively. Based on the metabolomic and transcriptomic data, 90 correlated metabolite-gene pairs were selected to build a regulatory network. Common significantly enriched pathways, including Starch and sucrose metabolism, Metabolism of xenobiotics by cytochrome P450, Aminoacyl-tRNA biosynthesis, Nitrogen metabolism, and Galactose metabolism were detected. On the basis of our analysis, the endoparasite Portunion sp. places a heavy metabolic burden on the host, particularly with respect to fundamental resources, such as amino acids, vitamins, carbohydrates, and lipids. In summary, these data provide an overview of the global metabolic and transcriptomic changes of the S. paramamosain resulting from Portunion sp. infection.
Collapse
Affiliation(s)
- Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, PR China
| | - Yongze Xing
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, PR China
| | - Xuyang Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, PR China
| | - Shengping Zhong
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China.
| | - Theerakamol Pengsakul
- Health and Environmental Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, PR China.
| |
Collapse
|
6
|
Zhang Y, Li Z, Tian X, Xu P, Sun K, Ren N. Acute toxic effects of microcystin-LR on crayfish (Procambarus clarkii): Insights from antioxidant system, histopathology and intestinal flora. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56608-56619. [PMID: 36918491 DOI: 10.1007/s11356-023-26171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
To study the toxic effects of microcystin-LR (MC-LR) on crayfish, adult male Procambarus clarkii were exposed to different concentrations of MC-LR for 96 h. In the meantime, the accumulation characteristics of MC-LR and the alternations of antioxidant system, histopathology and intestinal flora of P. clarkii were investigated. The results demonstrated that the hepatopancreas, gills and intestines of P. clarkii could effectively accumulate MC-LR. Antioxidant-related genes such as Mn-sod, cat, gst, gpx, mt and hsp70 showed different expression trends in different organs to respond to MC-LR-induced oxidative stress. MC-LR led to histological changes in the hepatopancreas, gills and intestines, thus affecting their corresponding physiological functions. Additionally, the abundances of bacterial phyla including Firmicutes and Planctomycetes and genera including Dysgonomonas, Brevundimonas and Anaerorhabdus in the intestine were significantly changed after MC-LR exposure, and the disruption of intestinal flora might further cause abnormal intestinal microbial metabolism and genetics in P. clarkii. This study provides novel mechanistic insights into the toxic impacts of microcystins on aquatic crustaceans. HIGHLIGHTS: • MC-LR was significantly accumulated in the hepatopancreas, gills and intestines of P. clarkii. • MC-LR induced the differential expression of antioxidant-related genes of P. clarkii. • MC-LR caused histological alterations in the hepatopancreas, gills and intestines of P. clarkii. • MC-LR affected the intestinal microbial composition and function of P. clarkii.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Zheyu Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xing Tian
- Department of Engineering Management, Suzhou Institute of Construction & Communications, Suzhou, 215000, China
| | - Pianpian Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kai Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
7
|
Hao P, Han L, Quan Z, Jin X, Li Y, Wu Y, Zhang X, Wang W, Gao C, Wang L, Wang H, Zhang W, Chang Y, Ding J. Integrative mRNA-miRNA interaction analysis associated with the immune response of Strongylocentrotus intermedius to Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108577. [PMID: 36773712 DOI: 10.1016/j.fsi.2023.108577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Strongylocentrotus intermedius is one of the most economically valuable sea urchin species in China and has experienced mass mortality owing to outbreaks of bacterial diseases such as black mouth disease. This has caused serious economic losses to the sea urchin farming industry. To investigate the immune response mechanism of S. intermedius with different tube feet colors in response to Vibrio harveyi infection, we examined the different tube feet-colored S. intermedius under V. harveyi challenge and compared their transcriptome and microRNA (miRNA) profiles using RNA-Seq. We obtained 1813 differentially expressed genes (DEGs), 28 DE miRNAs, and 303 DE miRNA-DEG pairs in different tube feet-colored S. intermedius under V. harveyi challenge. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the most significant DEGs were associated with the Notch signaling and phagosome pathways. The target genes of immune-related miRNAs (miR-71, miR-184, miR-193) and genes (CALM1, SPSB4, DMBT, CSRP1) in S. intermedius were predicted and validated. This study provides insight into the molecular mechanisms that regulate genes involved in the immune response of S. intermedius infected with V. harveyi.
Collapse
Affiliation(s)
- Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Lingshu Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; Ningbo University, Ningbo, Zhejiang, 315832, PR China
| | - Zijiao Quan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Xin Jin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yanglei Wu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Wenpei Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Chuang Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Heng Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
8
|
Yang X, Zhu J, Hu C, Yang W, Zheng Z. Integration of Transcriptomics and Microbiomics Reveals the Responses of Bellamya aeruginosa to Toxic Cyanobacteria. Toxins (Basel) 2023; 15:toxins15020119. [PMID: 36828433 PMCID: PMC9958990 DOI: 10.3390/toxins15020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Frequent outbreaks of harmful cyanobacterial blooms and the cyanotoxins they produce not only seriously jeopardize the health of freshwater ecosystems but also directly affect the survival of aquatic organisms. In this study, the dynamic characteristics and response patterns of transcriptomes and gut microbiomes in gastropod Bellamya aeruginosa were investigated to explore the underlying response mechanisms to toxic cyanobacterial exposure. The results showed that toxic cyanobacteria exposure induced overall hepatopancreatic transcriptome changes. A total of 2128 differentially expressed genes were identified at different exposure stages, which were mainly related to antioxidation, immunity, and metabolism of energy substances. In the early phase (the first 7 days of exposure), the immune system may notably be the primary means of resistance to toxin stress, and it performs apoptosis to kill damaged cells. In the later phase (the last 7 days of exposure), oxidative stress and the degradation activities of exogenous substances play a dominant role, and nutrient substance metabolism provides energy to the body throughout the process. Microbiomic analysis showed that toxic cyanobacteria increased the diversity of gut microbiota, enhanced interactions between gut microbiota, and altered microbiota function. In addition, the changes in gut microbiota were correlated with the expression levels of antioxidant-, immune-, metabolic-related differentially expressed genes. These results provide a comprehensive understanding of gastropods and intestinal microbiota response to toxic cyanobacterial stress.
Collapse
|
9
|
Zhang J, Yu M, Zhang Z, Zhang M, Gao Y, Dong J, Zhou C, Li X. Integrating regular and transcriptomic analyses reveal resistance mechanisms in Corbicula fluminea (Müller, 1774) in response to toxic Microcystis aeruginosa exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114553. [PMID: 36680989 DOI: 10.1016/j.ecoenv.2023.114553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The frequent occurrence of cyanobacterial blooms (CYBs) caused by toxic Microcystis aeruginosa poses a great threat to aquatic organisms. Although freshwater benthic bivalves have proven to be capable of uptake high levels of microcystins (MCs) due to their filter-feeding habits, there is a paucity of information concerning their systemic resistance mechanisms to MCs. In this study, the resistance mechanisms in Corbicula fluminea (O. F. Müller, 1774) in response to the exposure of toxic M. aeruginosa were explored through transcriptional analysis combined with histopathological and biochemical phenotypic analysis. Toxic M. aeruginosa exposure caused dose-dependent histological damage in the hepatopancreas. The conjugation reaction catalyzed by glutathione S-transferases was vulnerable to being activated by high concentrations of M. aeruginosa (10 ×105 cells mL-1). Additionally, reactive oxygen species scavenging processes mediated by superoxide dismutase and catalase were active in the initial stage of toxic M. aeruginosa exposure. The results of the integrated biomarker response index suggested that the biotransformation and antioxidant defense system in C. fluminea could be continuously activated after acute exposure to the high concentration of toxic M. aeruginosa. The eggNOG and GO analysis of the differentially expressed genes (DEGs) indicated that DEGs were significantly enriched in transporter activity, oxidant detoxification and response to oxidative stress categories, which were consistent with the alterations of biochemical indices. Besides, DEGs were significantly annotated in a few KEGG pathways involved in biotransformation (oxidation, cooxidation and conjugation) and immunoreaction (lysosome and phagosome responses), which could be responsible for the tolerance of C. fluminea to toxic M. aeruginosa. These findings improve our understanding of potential resistance mechanisms of freshwater bivalves to MCs.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Miao Yu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zehao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Man Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yunni Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jing Dong
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chuanjiang Zhou
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
10
|
Zhang D, Huang L, Jia Y, Zhang S, Bi X, Dai W. Integrated analysis of mRNA and microRNA expression profiles in hepatopancreas of Litopenaeus vannamei under acute exposure to MC-LR. Front Genet 2023; 14:1088191. [PMID: 36741320 PMCID: PMC9892846 DOI: 10.3389/fgene.2023.1088191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Intensive shrimp farming is often threatened by microcystins Hepatopancreas is the primary target organ of MCs in shrimp. To investigate the response of hepatopancreas to acute MC-LR exposure, the expression profiles of RNA-seq and miRNA-seq in the hepatopancreas of L. vannamei were determined, and data integration analysis was performed at 72 h after MC-LR injection. The expression of 5 DEGs and three DEMs were detected by Quantitative PCR (qPCR). The results showed that the cumulative mortality rate of shrimp in MC-LR treatment group was 41.1%. A total of 1229 differentially expressed genes (844 up- and 385 down-regulated) and 86 differentially expressed miRNAs (40 up- and 46 down-regulated) were identified after MC-LR exposure. Functional analysis indicated that DEGs is mainly involved in the oxidative activity process in molecular functional categories, and proteasome was the most enriched KEGG pathway for mRNAs profile. According to the functional annotation of target genes of DEMs, protein binding was the most important term in the GO category, and protein processing in endoplasmic reticulum (ER) was the most enriched KEGG pathway. The regulatory network of miRNAs and DEGs involved in the pathway related to protein degradation in endoplasmic reticulum was constructed, and miR-181-5p regulated many genes in this pathway. The results of qPCR showed that there were significant differences in the expression of five DEGs and three DEMs, which might play an important role in the toxicity and hepatopancreas detoxification of MC-LR in shrimp. The results revealed that MC-LR exposure affected the degradation pathway of misfolded protein in ER of L. vannamei hepatopancreas, and miR-181-5p might play an important role in the effect of MC-LR on the degradation pathway of misfolded protein.
Collapse
Affiliation(s)
| | | | | | - Shulin Zhang
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China
| | | | | |
Collapse
|
11
|
Arman T, Baron JA, Lynch KD, White LA, Aldan J, Clarke JD. MCLR-elicited hepatic fibrosis and carcinogenic gene expression changes persist in rats with diet-induced nonalcoholic steatohepatitis through a 4-week recovery period. Toxicology 2021; 464:153021. [PMID: 34740672 PMCID: PMC8629135 DOI: 10.1016/j.tox.2021.153021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) causes liver extracellular matrix (ECM) remodeling and is a risk factor for fibrosis and hepatocellular carcinoma (HCC). Microcystin-LR (MCLR) is a hepatotoxin produced by fresh-water cyanobacteria that causes a NASH-like phenotype, liver fibrosis, and is also a risk factor for HCC. The focus of the current study was to investigate and compare hepatic recovery after cessation of MCLR exposure in healthy versus NASH animals. Male Sprague-Dawley rats were fed either a control or a high fat/high cholesterol (HFHC) diet for eight weeks. Animals received either vehicle or 30 μg/kg MCLR (i.p: 2 weeks, alternate days). Animals were euthanized at one of three time points: at the completion of the MCLR exposure period and after 2 and 4 weeks of recovery. Histological staining suggested that after four weeks of recovery the MCLR-exposed HFHC group had less steatosis and more fibrosis compared to the vehicle-exposed HFHC group and MCLR-exposed control group. RNA-Seq analysis revealed dysregulation of ECM genes after MCLR exposure in both control and HFHC groups that persisted only in the HFHC groups during recovery. After 4 weeks of recovery, MCLR hepatotoxicity in pre-existing NASH persistently dysregulated genes related to cellular differentiation and HCC. These data demonstrate impaired hepatic recovery and persistent carcinogenic changes after MCLR toxicity in pre-existing NASH.
Collapse
Affiliation(s)
- Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - J Allen Baron
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Laura A White
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, 99164, United States
| | - Johnny Aldan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States.
| |
Collapse
|
12
|
Lin W, Hung TC, Kurobe T, Wang Y, Yang P. Microcystin-Induced Immunotoxicity in Fishes: A Scoping Review. Toxins (Basel) 2021; 13:765. [PMID: 34822549 PMCID: PMC8623247 DOI: 10.3390/toxins13110765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanobacteria (blue-green algae) have been present on Earth for over 2 billion years, and can produce a variety of bioactive molecules, such as cyanotoxins. Microcystins (MCs), the most frequently detected cyanotoxins, pose a threat to the aquatic environment and to human health. The classic toxic mechanism of MCs is the inhibition of the protein phosphatases 1 and 2A (PP1 and PP2A). Immunity is known as one of the most important physiological functions in the neuroendocrine-immune network to prevent infections and maintain internal homoeostasis in fish. The present review aimed to summarize existing papers, elaborate on the MC-induced immunotoxicity in fish, and put forward some suggestions for future research. The immunomodulatory effects of MCs in fish depend on the exposure concentrations, doses, time, and routes of exposure. Previous field and laboratory studies provided strong evidence of the associations between MC-induced immunotoxicity and fish death. In our review, we summarized that the immunotoxicity of MCs is primarily characterized by the inhibition of PP1 and PP2A, oxidative stress, immune cell damage, and inflammation, as well as apoptosis. The advances in fish immunoreaction upon encountering MCs will benefit the monitoring and prediction of fish health, helping to achieve an ecotoxicological goal and to ensure the sustainability of species. Future studies concerning MC-induced immunotoxicity should focus on adaptive immunity, the hormesis phenomenon and the synergistic effects of aquatic microbial pathogens.
Collapse
Affiliation(s)
- Wang Lin
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
- Department of Fisheries Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Tomofumi Kurobe
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA;
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Pinhong Yang
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
| |
Collapse
|
13
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
14
|
De Novo Profiling of Long Non-Coding RNAs Involved in MC-LR-Induced Liver Injury in Whitefish: Discovery and Perspectives. Int J Mol Sci 2021; 22:ijms22020941. [PMID: 33477898 PMCID: PMC7833382 DOI: 10.3390/ijms22020941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin for which a substantial gap in knowledge persists regarding the underlying molecular mechanisms of liver toxicity and injury. Although long non-coding RNAs (lncRNAs) have been extensively studied in model organisms, our knowledge concerning the role of lncRNAs in liver injury is limited. Given that lncRNAs show low levels of sequence conservation, their role becomes even more unclear in non-model organisms without an annotated genome, like whitefish (Coregonus lavaretus). The objective of this study was to discover and profile aberrantly expressed polyadenylated lncRNAs that are involved in MC-LR-induced liver injury in whitefish. Using RNA sequencing (RNA-Seq) data, we de novo assembled a high-quality whitefish liver transcriptome. This enabled us to find 94 differentially expressed (DE) putative evolutionary conserved lncRNAs, such as MALAT1, HOTTIP, HOTAIR or HULC, and 4429 DE putative novel whitefish lncRNAs, which differed from annotated protein-coding transcripts (PCTs) in terms of minimum free energy, guanine-cytosine (GC) base-pair content and length. Additionally, we identified DE non-coding transcripts that might be 3′ autonomous untranslated regions (3′UTRs) of mRNAs. We found both evolutionary conserved lncRNAs as well as novel whitefish lncRNAs that could serve as biomarkers of liver injury.
Collapse
|
15
|
Zhang Y, Li Z, Kholodkevich S, Sharov A, Feng Y, Ren N, Sun K. Microcystin-LR-induced changes of hepatopancreatic transcriptome, intestinal microbiota, and histopathology of freshwater crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134549. [PMID: 31810700 DOI: 10.1016/j.scitotenv.2019.134549] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
As a hepatotoxin, microcystin-LR (MC-LR) poses a great threat to aquatic organisms. In this research, the hepatopancreatic transcriptome, intestinal microbiota, and histopathology of Procambarus clarkii (P. clarkii) in response to acute MC-LR exposure were studied. RNA-seq analysis of hepatopancreas identified 372 and 781 differentially expressed genes (DEGs) after treatment with 10 and 40 μg/L MC-LR, respectively. Among the DEGs, 23 genes were immune-related and 21 genes were redox-related. GO functional enrichment analysis revealed that MC-LR could impact nuclear-transcribed mRNA catabolic process, cobalamin- and heme-related processes, and sirohydrochlorin cobaltochelatase activity of P. clarkii. In addition, the only significantly enriched KEGG pathway induced by MC-LR was galactose metabolism pathway. Meanwhile, sequencing of the bacterial 16S rRNA gene demonstrated that MC-LR decreased bacterial richness and diversity, and altered the intestinal microbiota composition. At the phylum level, after 96 h, the abundance of Verrucomicrobia decreased after treatment with 10 and 40 μg/L MC-LR, while Firmicutes increased in the 40 μg/L MC-LR-treated group. At the genus level, the abundances of 15 genera were significantly altered after exposure to MC-LR. Our research demonstrated that MC-LR exposure caused histological alterations such as structural damage of hepatopancreas and intestines. This research provides an insight into the mechanisms associated with MC-LR toxicity in aquatic crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zheyu Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sergey Kholodkevich
- Institute of Earth Sciences, Saint-Petersburg State University, Saint-Petersburg 199034, Russia; Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia
| | - Andrey Sharov
- Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia; Papanin Institute for Biology of the Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| | - Yujie Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
16
|
Aberrant Expressional Profiling of Known MicroRNAs in the Liver of Silver Carp ( Hypophthalmichthys molitrix) Following Microcystin-LR Exposure Based on samllRNA Sequencing. Toxins (Basel) 2020; 12:toxins12010041. [PMID: 31936480 PMCID: PMC7020426 DOI: 10.3390/toxins12010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Microcystin-LR (MC-LR) poses a serious threat to human health due to its hepatotoxicity. However, the specific molecular mechanism of miRNAs in MC-LR-induced liver injury has not been determined. The aim of the present study was to determine whether miRNAs are regulated in MC-LR-induced liver toxicity by using high-throughput sequencing. Our research demonstrated that 53 miRNAs and 319 miRNAs were significantly changed after 24 h of treatment with MC-LR (50 and 200 μg/kg, respectively) compared with the control group. GO enrichment analysis revealed that these target genes were related to cellular, metabolic, and single-organism processes. Furthermore, KEGG pathway analysis demonstrated that the target genes of differentially expressed miRNAs in fish liver were primarily involved in the insulin signaling pathway, PPAR signaling pathway, Wnt signaling pathway, and transcriptional misregulation in cancer. Moreover, we hypothesized that 4 miRNAs (miR-16, miR-181a-3p, miR-451, and miR-223) might also participate in MC-LR-induced toxicity in multiple organs of the fish and play regulatory roles according to the qPCR analysis results. Taken together, our results may help to elucidate the biological function of miRNAs in MC-LR-induced toxicity.
Collapse
|
17
|
Lu X, Tian J, Wen H, Jiang M, Liu W, Wu F, Yu L, Zhong S. Microcystin-LR-regulated transcriptome dynamics in ZFL cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:222-232. [PMID: 31136897 DOI: 10.1016/j.aquatox.2019.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Microcystin-LR (MC-LR) is a highly toxic hepatotoxin that poses great hazards to aquatic organisms and even human health. The zebrafish liver cell line (ZFL) is a valuable model for investigating toxicity and metabolism of toxicants. However, the toxicity of MC-LR and its effects on gene transcription of ZFL cells remains to be characterized. In this study, we determined the toxicity of MC-LR for ZFL cells and investigated the effects of MC-LR on cellular transcriptome dynamics. The EC50 of MC-LR for ZFL cells was 80.123 μg/mL. The ZFL cells were exposed to 10 μg/mL MC-LR for 0, 1, 3, 6, 12 or 24 h, and RNA-sequencing was performed to analyze gene transcription. A total of 10,209 genes were found to be regulated by MC-LR. The numbers of up- and down-regulated genes at different time points ranged from 2179 to 3202 and from 1501 to 2597, respectively. Furthermore, 1543 genes underwent differential splicing (AS) upon MC-LR exposure, of which 620 were not identified as differentially expressed gene (DEG). The effects of MC-LR on cellular functions were highly time-dependent. MAPK (mitogen-activated protein kinase) and FoxO (forkhead box O) signaling pathways were the most prominent pathways activated by MC-LR. Steroid biosynthesis and terpenoid backbone biosynthesis were the most enriched for the down-regulated genes. A gene regulatory network was constructed from the expression profile datasets and the candidate master transcription factors were identified. Our results shed light on the molecular mechanisms of MC-LR cellular toxicity and the transcriptome landscapes of ZFL cells upon MC-LR toxicity.
Collapse
Affiliation(s)
- Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Wei Liu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Fan Wu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Lijuan Yu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Shan Zhong
- Department of Genetics, Wuhan University, Wuhan 430071, Hubei, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, Hubei, China.
| |
Collapse
|