1
|
Deng X, Zhang S, Zhao R, Liu W, Huang W, Chen X, Gao X, Huang Y, Zhang D. The role of the RING finger protein 213 gene in Moyamoya disease. Fluids Barriers CNS 2025; 22:39. [PMID: 40247333 PMCID: PMC12004738 DOI: 10.1186/s12987-025-00649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/29/2025] [Indexed: 04/19/2025] Open
Abstract
Moyamoya Disease (MMD) represents a chronic and progressive cerebrovascular disorder characterized by the gradual occlusion of the terminal portions of the bilateral internal carotid arteries and their major branches, accompanied by the formation of abnormal vascular networks at the base of the skull. In adolescents, particularly in pediatric populations, MMD is a significant cause of stroke, posing a severe challenge to human health and imposing a heavy burden on healthcare systems. Ring Finger Protein 213 (RNF213), as the primary susceptibility gene for MMD, plays a crucial regulatory role in the initiation, progression, and prognosis of the disease. Despite extensive research on the role of RNF213 in the pathogenesis of MMD, the underlying molecular mechanisms remain incompletely understood and represent a pressing scientific challenge requiring further exploration. This review aims to synthesize the latest research findings and systematically elucidate the multifaceted roles of RNF213 in MMD, including genetic susceptibility, immune-inflammatory responses, blood-brain barrier(BBB) disruption, and angiogenesis. By integrating these findings, this study seeks to provide new insights and theoretical support for a comprehensive and in-depth understanding of the pathophysiological processes of MMD. This research not only contributes to further unraveling the complex pathogenesis of MMD but also lays a solid theoretical foundation for the development of targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Shaosen Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Runsheng Zhao
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weihong Huang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Xuanlin Chen
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Xiang Gao
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Schweitzer F, Letoha T, Osterhaus A, Prajeeth CK. Impact of Tick-Borne Orthoflaviviruses Infection on Compact Human Brain Endothelial Barrier. Int J Mol Sci 2025; 26:2342. [PMID: 40076965 PMCID: PMC11901142 DOI: 10.3390/ijms26052342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Tick-borne encephalitis remains a significant burden on human health in the endemic areas in Central Europe and Eastern Asia. The causative agent, tick-borne encephalitis virus (TBEV), is a neurotropic virus belonging to the genus of Orthoflavivirus. After TBEV enters the central nervous system (CNS), it mainly targets neurons, causing encephalitis and leading to life-long disabilities, coma and, in rare cases, death. The neuroinvasive mechanisms of orthoflaviviruses are poorly understood. Here we investigate the mechanism of TBEV neuroinvasion, hypothesizing that TBEV influences blood-brain barrier (BBB) properties and uses transcellular routes to cross the endothelial barrier and enter the CNS. To test this hypothesis, we employed an in vitro transwell system consisting of endothelial cell monolayers cultured on insert membranes and studied the barrier properties following inoculation to tick-borne orthoflaviviruses. It was shown that TBEV and closely related but naturally attenuated Langat virus (LGTV) crossed the intact endothelial cell monolayer without altering its barrier properties. Interestingly, transendothelial migration of TBEV was significantly affected when two cellular surface antigens, the laminin-binding protein and vimentin, were blocked with specific antibodies. Taken together, these results indicate that orthoflaviviruses use non-destructive transcellular routes through endothelial cells to establish infection within the CNS.
Collapse
Affiliation(s)
- Felix Schweitzer
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, 30559 Hannover, Germany; (F.S.); (A.O.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | | | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, 30559 Hannover, Germany; (F.S.); (A.O.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, 30559 Hannover, Germany; (F.S.); (A.O.)
| |
Collapse
|
3
|
Kim EH, Baek SM, Park HJ, Bian Y, Chung HY, Bae ON. Polystyrene nanoplastics promote the blood-brain barrier dysfunction through autophagy pathway and excessive erythrophagocytosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117471. [PMID: 39657384 DOI: 10.1016/j.ecoenv.2024.117471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
There is increasing concern regarding the risks posed by plastics to human health. Nano-sized plastics enter the body through various exposure routes. Although nano-sized particles circulate through the bloodstream and access the blood-brain barrier (BBB), the harmful impacts of nano-sized plastics on BBB function including endothelial cells are not well known. In this study, polystyrene nanoplastics (PS-NP) resulted in hyperpermeability and damaged tight junction proteins in brain endothelial cells. We identified that PS-NP increased intracellular iron levels by inhibiting the autophagy pathway in brain endothelial cells. Our study showed that dysregulated autophagy pathways led to increased BBB permeability induced by PS-NP treatment. In addition, PS-NP caused excessive erythrophagocytosis in brain endothelial cells via damaged red blood cells. PS-NP-treated RBCs (NP-RBC) induced the BBB dysfunction and increased intracellular iron levels and ferroptosis in brain endothelial cells. We provide novel insights into the potential risks of nano-sized plastics in BBB function by interaction between cells as well as direct exposure. Our study will help to understand the cardiovascular toxicity of nano-sized plastics.
Collapse
Affiliation(s)
- Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Seung Mi Baek
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Han Jin Park
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Han Young Chung
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
4
|
Al Rihani SB, Elfakhri KH, Ebrahim HY, Al-Ghraiybah NF, Alkhalifa AE, El Sayed KA, Kaddoumi A. The Usnic Acid Analogue 4-FPBUA Enhances the Blood-Brain Barrier Function and Induces Autophagy in Alzheimer's Disease Mouse Models. ACS Chem Neurosci 2024; 15:3152-3167. [PMID: 39145537 DOI: 10.1021/acschemneuro.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Preclinical and clinical studies have indicated that compromised blood-brain barrier (BBB) function contributes to Alzheimer's disease (AD) pathology. BBB breakdown ranged from mild disruption of tight junctions (TJs) with increased BBB permeability to chronic integrity loss, affecting transport across the BBB, reducing brain perfusion, and triggering inflammatory responses. We recently developed a high-throughput screening (HTS) assay to identify hit compounds that enhance the function of a cell-based BBB model. The HTS screen identified (S,E)-2-acetyl-6-[3-(4'-fluorobiphenyl-4-yl)acryloyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo-[b,d]furan-1(9bH)-one (4-FPBUA), a semisynthetic analogue of naturally occurring usnic acid, which protected the in vitro model against Aβ toxicity. Usnic acid is a lichen-derived secondary metabolite with a unique dibenzofuran skeleton that is commonly found in lichenized fungi of the genera Usnea. In this study, we aimed to evaluate the effect of 4-FPBUA in vitro on the cell-based BBB model function and its in vivo ability to rectify BBB function and reduce brain Aβ in two AD mouse models, namely, 5xFAD and TgSwDI. Our findings demonstrated that 4-FPBUA enhanced cell-based BBB function, increased Aβ transport across the monolayer, and reversed BBB breakdown in vivo by enhancing autophagy as an mTOR inhibitor. Induced autophagy was associated with a significant reduction in Aβ accumulation and related pathologies and improved memory function. These results underscore the potential of 4-FPBUA as a candidate for further preclinical exploration to better understand its mechanisms of action and to optimize dosing strategies. Continued research may also elucidate additional pathways through which 4-FPBUA contributed to the amelioration of BBB dysfunction in AD. Collectively, our findings supported the development of 4-FPBUA as a therapeutic agent against AD.
Collapse
Affiliation(s)
- Sweilem B Al Rihani
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| | - Khaled H Elfakhri
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Hassan Y Ebrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Nour F Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| | - Amer E Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
5
|
Ma J, Zhao Y, Cui Y, Lin H. Hypoxia Postconditioning Attenuates Hypoxia-Induced Inflammation and Endothelial Barrier Dysfunction. J Surg Res 2024; 301:413-422. [PMID: 39042975 DOI: 10.1016/j.jss.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION In recent years, a number of studies have demonstrated that hypoxia reoxygenation (HR) induced by ischemia postconditioning (IPC) reduces endothelial barrier dysfunction and inflammation in various models. When HR occurs, the P38 mitogen-activated protein kinase (P38 MAPK) breaks down the endothelial barrier. But no study has clearly clarified the effect of hypoxia postconditioning (HPC) on P38 MAPK in human dermal microvascular endothelial cells. Therefore, we investigated the function of HPC on P38 MAPK during HR in vitro. METHODS Human dermal microvascular endothelial cells were cultured in a hypoxic incubator for 8 h. Then cells were reperfused for 12 h (reoxygenation) or postconditioned by 5 min of reoxygenation and 5 min of re-hypoxia 3 times followed by 11.5 h reoxygenation. SB203580 was used as an inhibitor of P38 MAPK. Cell counting kit-8 assay kits were employed to detect cell activity. The corresponding levels of IL-6, IL-8 and IL-1β were examined via Enzyme-Linked ImmunoSorbent Assay. The endothelial barrier was evaluated using fluorescein isothiocyanate-dextran leakage assay. Western blot was used to detect claudin-5, phosphorylation of P38 MAPK (P-P38 MAPK) and P38 MAPK expression. Claudin-5 localization was studied by immunofluorescence. RESULTS HR induced endothelial barrier hyperpermeability, elevated inflammation levels, and increased the P-P38 MAPK. But HPC reduced cell injury and maintained the integrity of the endothelial barrier while inhibiting P-P38 MAPK and increasing expression of claudin-5. HPC redistributed claudin-5 in a continuous and linear pattern on the cell membrane. CONCLUSIONS HPC protects against HR induced downregulation and redistribution of claudin-5 by inhibiting P-P38 MAPK.
Collapse
Affiliation(s)
- Jiaxing Ma
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yinhua Zhao
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yue Cui
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huang Lin
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Kiper K, Mild B, Chen J, Yuan C, Wells EM, Zheng W, Freeman JL. Cerebral Vascular Toxicity after Developmental Exposure to Arsenic (As) and Lead (Pb) Mixtures. TOXICS 2024; 12:624. [PMID: 39330552 PMCID: PMC11435665 DOI: 10.3390/toxics12090624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024]
Abstract
Arsenic (As) and lead (Pb) are environmental pollutants found in common sites linked to similar adverse health effects. This study determined driving factors of neurotoxicity on the developing cerebral vasculature with As and Pb mixture exposures. Cerebral vascular toxicity was evaluated at mixture concentrations of As and Pb representing human exposures levels (10 or 100 parts per billion; ppb; µg/L) in developing zebrafish by assessing behavior, morphology, and gene expression. In the visual motor response assay, hyperactivity was observed in all three outcomes in dark phases in larvae with exposure (1-120 h post fertilization, hpf) to 10 ppb As, 10 ppb Pb, or 10 ppb mix treatment. Time spent moving exhibited hyperactivity in dark phases for 100 ppb As and 100 ppb mix treatment groups only. A decreased brain length and ratio of brain length to total length in the 10 ppb mix group was measured with no alterations in other treatment groups or other endpoints (i.e., total larval length, head length, or head width). Alternatively, measurements of cerebral vasculature in the midbrain and cerebellum uncovered decreased total vascularization at 72 hpf in all treatment groups in the mesencephalon and in all treatment groups, except the 100 ppb Pb and 10 ppb As groups, in the cerebellum. In addition, decreased sprouting and branching occurred in the mesencephalon, while only decreased branching was measured in the cerebellum. The 10 ppb Pb group showed several cerebral vasculature modifications that were aligned with a specific gene expression alteration pattern different from other treatment groups. Additionally, the 100 ppb As group drove gene alterations, along with several other endpoints, for changes observed in the 100 ppb mix treatment group. Perturbations assessed in this study displayed non-linear concentration-responses, which are important to consider in environmental health outcomes for As and Pb neurotoxicity.
Collapse
Affiliation(s)
- Keturah Kiper
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Breeann Mild
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jenny Chen
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ellen M. Wells
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
7
|
Castillo-Velasquez C, Matamala E, Becerra D, Orio P, Brauchi SE. Optical recordings of organellar membrane potentials and the components of membrane conductance in lysosomes. J Physiol 2024; 602:1637-1654. [PMID: 38625711 DOI: 10.1113/jp283825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.
Collapse
Affiliation(s)
- Cristian Castillo-Velasquez
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Ella Matamala
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Diego Becerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastian E Brauchi
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| |
Collapse
|
8
|
Shao J, Lang Y, Ding M, Yin X, Cui L. Transcription Factor EB: A Promising Therapeutic Target for Ischemic Stroke. Curr Neuropharmacol 2024; 22:170-190. [PMID: 37491856 PMCID: PMC10788889 DOI: 10.2174/1570159x21666230724095558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 07/27/2023] Open
Abstract
Transcription factor EB (TFEB) is an important endogenous defensive protein that responds to ischemic stimuli. Acute ischemic stroke is a growing concern due to its high morbidity and mortality. Most survivors suffer from disabilities such as numbness or weakness in an arm or leg, facial droop, difficulty speaking or understanding speech, confusion, impaired balance or coordination, or loss of vision. Although TFEB plays a neuroprotective role, its potential effect on ischemic stroke remains unclear. This article describes the basic structure, regulation of transcriptional activity, and biological roles of TFEB relevant to ischemic stroke. Additionally, we explore the effects of TFEB on the various pathological processes underlying ischemic stroke and current therapeutic approaches. The information compiled here may inform clinical and basic studies on TFEB, which may be an effective therapeutic drug target for ischemic stroke.
Collapse
Affiliation(s)
- Jie Shao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Manqiu Ding
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
9
|
Hirose Y, Oda Y, Yoshino K, Yano F, Kimura M, Kimura H, Iyo M, Shirayama Y. Reduction of claudin-5 and aquaporin-4 in the rat hippocampal CA-1 and CA-3 regions of a learned helplessness model of depression. Pharmacol Biochem Behav 2024; 234:173676. [PMID: 37992974 DOI: 10.1016/j.pbb.2023.173676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Although findings from both animal and clinical research indicate that the blood-brain barrier (BBB) contributes to the pathogenesis of various psychiatric disorders (including depression), the underlying mechanisms are unknown. We investigated the levels of the tight-junction proteins claudin-5 and aquaporin-4 (AQP-4) in astrocytes of learned helplessness (LH) rats (an animal model of depression) and non-LH rats (a model of resilience). METHODS We administered inescapable mild electric shock to rats and then identified the LH and non-LH rats by a post-shock test. The expressions of claudin-5 and AQP-4 in several brain regions of the LH and non-LH rats were then evaluated by a western blot analysis. RESULTS The levels of both claudin-5 and AQP-4 in the CA-1 and CA-3 hippocampal areas of the LH group were significantly lower than those of the control group, whereas those of the non-LH rats were not significantly different from those of the control and LH rats. CONCLUSIONS These results suggest that LH rats but not non-LH rats experienced down-regulations of claudin-5 and AQP-4 in the CA-1 and CA-3. It is possible that a region-specific modulation of claudin-5 and AQP-4 is involved in the mechanisms of vulnerability but not resilience in depression.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan.
| | - Kouhei Yoshino
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Fumiaki Yano
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Makoto Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan; Department of Psychiatry, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba 290-0111, Japan
| |
Collapse
|
10
|
Noh B, Blasco‐Conesa MP, Rahman SM, Monga S, Ritzel R, Guzman G, Lai Y, Ganesh BP, Urayama A, McCullough LD, Moruno‐Manchon JF. Iron overload induces cerebral endothelial senescence in aged mice and in primary culture in a sex-dependent manner. Aging Cell 2023; 22:e13977. [PMID: 37675802 PMCID: PMC10652299 DOI: 10.1111/acel.13977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
Iron imbalance in the brain negatively affects brain function. With aging, iron levels increase in the brain and contribute to brain damage and neurological disorders. Changes in the cerebral vasculature with aging may enhance iron entry into the brain parenchyma, leading to iron overload and its deleterious consequences. Endothelial senescence has emerged as an important contributor to age-related changes in the cerebral vasculature. Evidence indicates that iron overload may induce senescence in cultured cell lines. Importantly, cells derived from female human and mice generally show enhanced senescence-associated phenotype, compared with males. Thus, we hypothesize that cerebral endothelial cells (CEC) derived from aged female mice are more susceptible to iron-induced senescence, compared with CEC from aged males. We found that aged female mice, but not males, showed cognitive deficits when chronically treated with ferric citrate (FC), and their brains and the brain vasculature showed senescence-associated phenotype. We also found that primary culture of CEC derived from aged female mice, but not male-derived CEC, exhibited senescence-associated phenotype when treated with FC. We identified that the transmembrane receptor Robo4 was downregulated in the brain vasculature and in cultured primary CEC derived from aged female mice, compared with those from male mice. We discovered that Robo4 downregulation contributed to enhanced vulnerability to FC-induced senescence. Thus, our study identifies Robo4 downregulation as a driver of senescence induced by iron overload in primary culture of CEC and a potential risk factor of brain vasculature impairment and brain dysfunction.
Collapse
Affiliation(s)
- Brian Noh
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Maria Pilar Blasco‐Conesa
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Syed Mushfiqur Rahman
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Sheelu Monga
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Rodney Ritzel
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Gary Guzman
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Yun‐Ju Lai
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
- Solomont School of NursingZuckerberg College of Health SciencesUniversity of Massachusetts LowellLowellMassachusettsUSA
| | - Bhanu Priya Ganesh
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Akihiko Urayama
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Louise D. McCullough
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Jose Felix Moruno‐Manchon
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
11
|
Walther J, Kirsch EM, Hellwig L, Schmerbeck SS, Holloway PM, Buchan AM, Mergenthaler P. Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl Stroke Res 2023; 14:643-666. [PMID: 36219377 PMCID: PMC10444697 DOI: 10.1007/s12975-022-01090-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
The concept of the ischemic penumbra was originally defined as the area around a necrotic stroke core and seen as the tissue at imminent risk of further damage. Today, the penumbra is generally considered as time-sensitive hypoperfused brain tissue with decreased oxygen and glucose availability, salvageable tissue as treated by intervention, and the potential target for neuroprotection in focal stroke. The original concept entailed electrical failure and potassium release but one short of neuronal cell death and was based on experimental stroke models, later confirmed in clinical imaging studies. However, even though the basic mechanisms have translated well, conferring brain protection, and improving neurological outcome after stroke based on the pathophysiological mechanisms in the penumbra has yet to be achieved. Recent findings shape the modern understanding of the penumbra revealing a plethora of molecular and cellular pathophysiological mechanisms. We now propose a new model of the penumbra, one which we hope will lay the foundation for future translational success. We focus on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts. We discuss the relation of mitochondrial function in different cell types to bioenergetics and apoptotic cell death mechanisms, autophagy, and neuroinflammation, to glucose metabolism in what is a dynamic ischemic penumbra.
Collapse
Affiliation(s)
- Jakob Walther
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Marie Kirsch
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lina Hellwig
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah S Schmerbeck
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul M Holloway
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alastair M Buchan
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
12
|
Wang J, He Y, Zhou D. The role of ubiquitination in microbial infection induced endothelial dysfunction: potential therapeutic targets for sepsis. Expert Opin Ther Targets 2023; 27:827-839. [PMID: 37688775 DOI: 10.1080/14728222.2023.2257888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION The ubiquitin system is an evolutionarily conserved and universal means of protein modification that regulates many essential cellular processes. Endothelial dysfunction plays a critical role in the pathophysiology of sepsis and organ failure. However, the mechanisms underlying the ubiquitination-mediated regulation on endothelial dysfunction are not fully understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of diverse ubiquitination events in endothelial cells, discussing the fundamental role of ubiquitination mediated regulations involving in endothelial dysfunction to provide potential therapeutic targets for sepsis. EXPERT OPINION The central event underlying sepsis syndrome is the overwhelming host inflammatory response to the pathogen infection, leading to endothelial dysfunction. As the key components of the ubiquitin system, E3 ligases are at the center stage of the battle between host and microbial pathogens. Such a variety of ubiquitination regulates a multitude of cellular regulatory processes, including signal transduction, autophagy, inflammasome activation, redox reaction and immune response and so forth. In this review, we discuss the many mechanisms of ubiquitination-mediated regulation with a focus on those that modulate endothelial function to provide potential therapeutic targets for the management of sepsis.
Collapse
Affiliation(s)
- Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
13
|
Huang S, Zhang J, Li Y, Xu Y, Jia H, An L, Wang X, Yang Y. Downregulation of Claudin5 promotes malignant progression and radioresistance through Beclin1-mediated autophagy in esophageal squamous cell carcinoma. J Transl Med 2023; 21:379. [PMID: 37303041 DOI: 10.1186/s12967-023-04248-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a highly prevalent and aggressive cancer with poor treatment outcomes. Despite the critical role of tight junction proteins in tumorigenesis, the involvement of Claudin5 in ESCC remains poorly understood. Thus, this study aimed to investigate the role of Claudin5 in ESCC malignant progression and radioresistance, as well as the underlying regulatory mechanisms. METHODS The expression of Claudin5 was evaluated in esophageal cancer tissue using both public databases and 123 clinical samples. CCK-8, transwell invasion, wound healing and clonogenic survival assays were used to examine the proliferation, invasion, migration and radiosensitivity of ESCC cells in vitro. Xenograft and animal lung metastasis experiments were conducted to examine the impact of Claudin5 on tumor growth and lung metastasis in vivo. The effect of Claudin5 on autophagy was detected via transmission electron microscopy, western blotting and autophagy flux. Immunohistochemical staining was used to detect Claudin5 expression in ESCC patient samples. The statistical difference was assessed with Student t test or one-way ANOVA. The correlation between Claudin5 expression and radiotherapy response rate was performed by the Chi-square test. The significance of Kaplan-Meier curves was evaluated by the Logrank test. RESULTS Claudin5 expression was downregulated in ESCC tissues. Downregulation of Claudin5 promoted ESCC cell proliferation, invasion, and migration both in vitro and in vivo. Downregulation of Claudin5 decreased the radiosensitivity of ESCC cells. Moreover, downregulation of Claudin5 promoted autophagy and the expression of Beclin1. Beclin1 knockdown reversed the effect of Claudin5 downregulation on autophagy induction and the promotion of ESCC cell malignant progression and radioresistance. Additionally, low expression of Claudin5 in ESCC cancer tissues was associated with poor radiotherapy response and prognosis. CONCLUSIONS In summary, these findings suggest that downregulation of Claudin5 promotes ESCC malignant progression and radioresistance via Beclin1-autophagy activation and may serve as a promising biomarker for predicting radiotherapy response and patient outcome in ESCC.
Collapse
Affiliation(s)
- Shan Huang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, China.
| | - Jiayi Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, China
| | - Yi Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, China
| | - Yaqiong Xu
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, China
| | - Hui Jia
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, China
| | - Lei An
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, China
| | - Xiaotan Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, China
| | - Yuting Yang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, China
| |
Collapse
|
14
|
Huang X, Liang F, Huang B, Luo H, Shi J, Wang L, Peng J, Chen Y. On-chip real-time impedance monitoring of hiPSC-derived and artificial basement membrane-supported endothelium. Biosens Bioelectron 2023; 235:115324. [PMID: 37201240 DOI: 10.1016/j.bios.2023.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023]
Abstract
Recent advances have shown the high sensibility of electrochemical impedance spectroscopy in real-time monitoring of cell barriers on a chip. Here, we applied this method to the investigation of human induced pluripotent stem cell (hiPSC) derived and artificial basement membrane (ABM) supported endothelial barrier. The ABM was obtained by self-assembling type IV collagen and laminin with a monolayer of crosslinked gelatin nanofibers. The hiPSCs were differentiated into brain microvascular endothelial cells (BMECs) and then plated on the ABM. After incubation for two days, the ABM-BMEC assembly was placed as a tissue insert into a microfluidic device for culture and real-time impedance monitoring over days. We found a significantly enhanced stability of the BMEC barrier in a serum-free and bromodeoxyuridine (BrdU) containing culture medium compared to the conventional culture due to the restricted cell proliferation. We also found that the BMEC barrier was sensitive to stimuli such as thrombin and that the change of the barrier impedance was mainly due to the change of the cell layer resistance. We can thus advocate this method to investigate the integrity of the cell barrier and the barrier-based assays.
Collapse
Affiliation(s)
- Xiaochen Huang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Feng Liang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Boxin Huang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Haoyue Luo
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Jian Shi
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Juan Peng
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France.
| | - Yong Chen
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France.
| |
Collapse
|
15
|
Dibble M, Di Cio' S, Luo P, Balkwill F, Gautrot JE. The impact of pericytes on the stability of microvascular networks in response to nanoparticles. Sci Rep 2023; 13:5729. [PMID: 37029151 PMCID: PMC10082022 DOI: 10.1038/s41598-023-31352-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 03/10/2023] [Indexed: 04/09/2023] Open
Abstract
Recapitulating the normal physiology of the microvasculature is pivotal in the development of more complex in-vitro models and organ-on-chip designs. Pericytes are an important component of the vasculature, promoting vessel stability, inhibiting vascular permeability and maintaining the vascular hierarchical architecture. The use of such co-culture for the testing of therapeutics and nanoparticle safety is increasingly considered for the validation of therapeutic strategies. This report presents the use of a microfluidic model for such applications. Interactions between endothelial cells and pericytes are first explored. We identify basal conditions required to form stable and reproducible endothelial networks. We then investigate interactions between endothelial cells and pericytes via direct co-culture. In our system, pericytes prevented vessel hyperplasia and maintained vessel length in prolonged culture (> 10 days). In addition, these vessels displayed barrier function and expression of junction markers associated with vessel maturation, including VE-cadherin, β-catenin and ZO-1. Furthermore, pericytes maintained vessel integrity following stress (nutrient starvation) and prevented vessel regression, in contrast to the striking dissociation of networks in endothelial monocultures. This response was also observed when endothelial/pericyte co-cultures were exposed to high concentrations of moderately toxic cationic nanoparticles used for gene delivery. This study highlights the importance of pericytes in protecting vascular networks from stress and external agents and their importance to the design of advanced in-vitro models, including for the testing of nanotoxicity, to better recapitulate physiological response and avoid false positives.
Collapse
Affiliation(s)
- Matthew Dibble
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Stefania Di Cio'
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Piaopiao Luo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Frances Balkwill
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
- Barts Cancer Institute, Queen Mary, University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Julien E Gautrot
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
16
|
Mani S, Dubey R, Lai IC, Babu MA, Tyagi S, Swargiary G, Mody D, Singh M, Agarwal S, Iqbal D, Kumar S, Hamed M, Sachdeva P, Almutary AG, Albadrani HM, Ojha S, Singh SK, Jha NK. Oxidative Stress and Natural Antioxidants: Back and Forth in the Neurological Mechanisms of Alzheimer's Disease. J Alzheimers Dis 2023; 96:877-912. [PMID: 37927255 DOI: 10.3233/jad-220700] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive degeneration of neuronal cells. With the increase in aged population, there is a prevalence of irreversible neurodegenerative changes, causing a significant mental, social, and economic burden globally. The factors contributing to AD are multidimensional, highly complex, and not completely understood. However, it is widely known that aging, neuroinflammation, and excessive production of reactive oxygen species (ROS), along with other free radicals, substantially contribute to oxidative stress and cell death, which are inextricably linked. While oxidative stress is undeniably important in AD, limiting free radicals and ROS levels is an intriguing and potential strategy for deferring the process of neurodegeneration and alleviating associated symptoms. Therapeutic compounds from natural sources have recently become increasingly accepted and have been effectively studied for AD treatment. These phytocompounds are widely available and a multitude of holistic therapeutic efficiencies for treating AD owing to their antioxidant, anti-inflammatory, and biological activities. Some of these compounds also function by stimulating cholinergic neurotransmission, facilitating the suppression of beta-site amyloid precursor protein-cleaving enzyme 1, α-synuclein, and monoamine oxidase proteins, and deterring the occurrence of AD. Additionally, various phenolic, flavonoid, and terpenoid phytocompounds have been extensively described as potential palliative agents for AD progression. Preclinical studies have shown their involvement in modulating the cellular redox balance and minimizing ROS formation, displaying them as antioxidant agents with neuroprotective abilities. This review emphasizes the mechanistic role of natural products in the treatment of AD and discusses the various pathological hypotheses proposed for AD.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Chun Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Deepansh Mody
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Manisha Singh
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Kingdom of Saudi Arabia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| |
Collapse
|
17
|
McCloskey MC, Kasap P, Ahmad SD, Su SH, Chen K, Mansouri M, Ramesh N, Nishihara H, Belyaev Y, Abhyankar VV, Begolo S, Singer BH, Webb KF, Kurabayashi K, Flax J, Waugh RE, Engelhardt B, McGrath JL. The Modular µSiM: A Mass Produced, Rapidly Assembled, and Reconfigurable Platform for the Study of Barrier Tissue Models In Vitro. Adv Healthc Mater 2022; 11:e2200804. [PMID: 35899801 PMCID: PMC9580267 DOI: 10.1002/adhm.202200804] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Advanced in vitro tissue chip models can reduce and replace animal experimentation and may eventually support "on-chip" clinical trials. To realize this potential, however, tissue chip platforms must be both mass-produced and reconfigurable to allow for customized design. To address these unmet needs, an extension of the µSiM (microdevice featuring a silicon-nitride membrane) platform is introduced. The modular µSiM (m-µSiM) uses mass-produced components to enable rapid assembly and reconfiguration by laboratories without knowledge of microfabrication. The utility of the m-µSiM is demonstrated by establishing an hiPSC-derived blood-brain barrier (BBB) in bioengineering and nonengineering, brain barriers focused laboratories. In situ and sampling-based assays of small molecule diffusion are developed and validated as a measure of barrier function. BBB properties show excellent interlaboratory agreement and match expectations from literature, validating the m-µSiM as a platform for barrier models and demonstrating successful dissemination of components and protocols. The ability to quickly reconfigure the m-µSiM for coculture and immune cell transmigration studies through addition of accessories and/or quick exchange of components is then demonstrated. Because the development of modified components and accessories is easily achieved, custom designs of the m-µSiM shall be accessible to any laboratory desiring a barrier-style tissue chip platform.
Collapse
Affiliation(s)
- Molly C McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Pelin Kasap
- Theodor Kocher Institute, University of Bern, Bern, 3012, Switzerland
- Graduate School of Cellular and Biomedical Sciences (GCB), University of Bern, Bern, 3012, Switzerland
| | - S Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Shiuan-Haur Su
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaihua Chen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Natalie Ramesh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, Bern, 3012, Switzerland
| | - Yury Belyaev
- Microscopy Imaging Center, University of Bern, Bern, 3012, Switzerland
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | | | - Benjamin H Singer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin F Webb
- Optics & Photonics Research Group, Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Bern, 3012, Switzerland
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
18
|
Angrand L, Masson JD, Rubio-Casillas A, Nosten-Bertrand M, Crépeaux G. Inflammation and Autophagy: A Convergent Point between Autism Spectrum Disorder (ASD)-Related Genetic and Environmental Factors: Focus on Aluminum Adjuvants. TOXICS 2022; 10:toxics10090518. [PMID: 36136483 PMCID: PMC9502677 DOI: 10.3390/toxics10090518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 05/10/2023]
Abstract
Autism spectrum disorder (ASD), schizophrenia, and bipolar disorder are genetically complex and heterogeneous neurodevelopmental disorders (NDDs) resulting from genetic factors and gene-environment (GxE) interactions for which onset occurs in early brain development. Recent progress highlights the link between ASD and (i) immunogenetics, neurodevelopment, and inflammation, and (ii) impairments of autophagy, a crucial neurodevelopmental process involved in synaptic pruning. Among various environmental factors causing risk for ASD, aluminum (Al)-containing vaccines injected during critical periods have received special attention and triggered relevant scientific questions. The aim of this review is to discuss the current knowledge on the role of early inflammation, immune and autophagy dysfunction in ASD as well as preclinical studies which question Al adjuvant impacts on brain and immune maturation. We highlight the most recent breakthroughs and the lack of epidemiological, pharmacokinetic and pharmacodynamic data constituting a "scientific gap". We propose additional research, such as genetic studies that could contribute to identify populations at genetic risk, improving diagnosis, and potentially the development of new therapeutic tools.
Collapse
Affiliation(s)
- Loïc Angrand
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Jean-Daniel Masson
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico;
- Autlán Regional Hospital, Health Secretariat, Autlán 48900, Jalisco, Mexico
| | - Marika Nosten-Bertrand
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Guillemette Crépeaux
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
19
|
Sakai Y, Taguchi M, Morikawa Y, Suenami K, Yanase E, Takayama T, Ikari A, Matsunaga T. Lowering of brain endothelial cell barrier function by exposure to 4'-iodo-α-pyrrolidinononanophenone. Chem Biol Interact 2022; 364:110052. [PMID: 35872046 DOI: 10.1016/j.cbi.2022.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Overuse of pyrrolidinophenones (PPs) is known to cause damage to vascular and central nervous systems, but little is known about its effect on brain endothelial barrier function. In this study, we found that exposure to 4'-iodo-α-pyrrolidinononanophenone (I-α-PNP), one of the most potently cytotoxic PPs, at sublethal concentrations decreases trans-endothelial electrical resistance and increases paracellular permeability across a monolayer of human brain microvascular endothelial cells. Treatment with I-α-PNP also elevated the production of superoxide anion. Furthermore, the treatment reduced the expression and plasma membrane localization of a tight junction protein claudin-5 (CLDN5), which was almost restored by pretreatment with an antioxidant N-acetyl-l-cysteine. These results indicate that I-α-PNP treatment may down-regulate the plasma membrane-localized CLDN5 by elevating the production of reactive oxygen species (ROS). The treatment with I-α-PNP increased the nuclear translocation of Forkhead box protein O1 (FoxO1), an oxidative stress-responsive transcription factor, and pretreating with a FoxO1 inhibitor ameliorated the decrease in CLDN5 mRNA. In addition, I-α-PNP treatment up-regulated the expression and secretion of matrix metalloproteinase-2 (MMP2) and MMP9, and the addition of an MMP inhibitor reversed the degradation of CLDN5 by I-α-PNP. Moreover, I-α-PNP treatment facilitated the activation of 26S proteasome-based proteolytic activity and pretreatment with an inhibitor of 26S proteasome, but not autophagy, suppressed the CLDN5 degradation by I-α-PNP. Accordingly, it is suggested that the down-regulation of CLDN5 by exposure to I-α-PNP is ascribable to suppression of the gene transcription due to FoxO1 nuclear translocation through ROS production and to acceleration both of the MMPs (MMP2 and MMP9)- and 26S proteasome-based proteolysis.
Collapse
Affiliation(s)
- Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan.
| | - Maki Taguchi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1112, Japan
| | - Tomohiro Takayama
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| |
Collapse
|
20
|
Abstract
Macroautophagy is an evolutionarily conserved process that delivers diverse cellular contents to lysosomes for degradation. As our understanding of this pathway grows, so does our appreciation for its importance in disorders of the CNS. Once implicated primarily in neurodegenerative events owing to acute injury and ageing, macroautophagy is now also linked to disorders of neurodevelopment, indicating that it is essential for both the formation and maintenance of a healthy CNS. In parallel to understanding the significance of macroautophagy across contexts, we have gained a greater mechanistic insight into its physiological regulation and the breadth of cargoes it can degrade. Macroautophagy is a broadly used homeostatic process, giving rise to questions surrounding how defects in this single pathway could cause diseases with distinct clinical and pathological signatures. To address this complexity, we herein review macroautophagy in the mammalian CNS by examining three key features of the process and its relationship to disease: how it functions at a basal level in the discrete cell types of the brain and spinal cord; which cargoes are being degraded in physiological and pathological settings; and how the different stages of the macroautophagy pathway intersect with diseases of neurodevelopment and adult-onset neurodegeneration.
Collapse
Affiliation(s)
- Christopher J Griffey
- Doctoral Program in Neurobiology and Behaviour, Medical Scientist Training Program, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology, and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
Hua Y, Zhang J, Liu Q, Su J, Zhao Y, Zheng G, Yang Z, Zhuo D, Ma C, Fan G. The Induction of Endothelial Autophagy and Its Role in the Development of Atherosclerosis. Front Cardiovasc Med 2022; 9:831847. [PMID: 35402552 PMCID: PMC8983858 DOI: 10.3389/fcvm.2022.831847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Increasing attention is now being paid to the important role played by autophagic flux in maintaining normal blood vessel walls. Endothelial cell dysfunction initiates the development of atherosclerosis. In the endothelium, a variety of critical triggers ranging from shear stress to circulating blood lipids promote autophagy. Furthermore, emerging evidence links autophagy to a range of important physiological functions such as redox homeostasis, lipid metabolism, and the secretion of vasomodulatory substances that determine the life and death of endothelial cells. Thus, the promotion of autophagy in endothelial cells may have the potential for treating atherosclerosis. This paper reviews the role of endothelial cells in the pathogenesis of atherosclerosis and explores the molecular mechanisms involved in atherosclerosis development.
Collapse
Affiliation(s)
- Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhang
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianqian Liu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Su
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guobin Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Deng S, Hu Q, Chen X, Lei Q, Lu W. GM130 protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by regulating autophagy formation. Exp Gerontol 2022; 163:111772. [PMID: 35331826 DOI: 10.1016/j.exger.2022.111772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Blood-brain barrier (BBB) disruption following intracerebral hemorrhage (ICH) significantly contributes to neurological deficits. Tight junction (TJ) protein loss in brain endothelial cells leads to BBB disruption. We previously revealed the importance of the Golgi apparatus (GA) in maintaining TJ integrity in mouse brain endothelial (bEnd.3) cells, but the specific mechanisms remain unknown. Herein, we investigated the potential role of the GA in BBB damage and neurological dysfunction after ICH using bEnd.3 cells and hemin to mimic hemorrhage in vitro. We used a rat hemorrhage stroke model to evaluate the role of the GA in BBB disruption during ICH. GM130 levels decreased with ICH length in vivo and in vitro. TJ protein destruction further increased following GM130 silencing. GM130 overexpression alleviated TJ protein impairment and improved BBB integrity. bEnd.3 cells treated with an autophagy inhibitor showed reduced TJ protein damage following GM130 silencing. The intracerebroventricular injection of an autophagy inhibitor rescued GM130 silencing-induced BBB leakage. Thus, TJ proteins were destroyed by excessive autophagic pathway activation following ICH, whereas GM130 protected against TJ damage by maintaining proper autophagy. We suggest that GM130-regulated selective autophagy modulates BBB integrity and GM130 upregulation suppresses the autophagy-lysosome pathway, which might maintain BBB function. Therefore, GA protection is beneficial for ICH, and GM130 is a potential therapeutic target for its treatment.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qing Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
23
|
Yang Z, Huang C, Wen X, Liu W, Huang X, Li Y, Zang J, Weng Z, Lu D, Tsang CK, Li K, Xu A. Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion. Mol Ther 2022; 30:1275-1287. [PMID: 34763084 PMCID: PMC8899525 DOI: 10.1016/j.ymthe.2021.11.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Blood-brain barrier (BBB) damage can be a result of central nervous system (CNS) diseases and may be a cause of CNS deterioration. However, there are still many unknowns regarding effective and targeted therapies for maintaining BBB integrity during ischemia/reperfusion (I/R) injury. In this study, we demonstrate that the circular RNA of FoxO3 (circ-FoxO3) promotes autophagy via mTORC1 inhibition to attenuate BBB collapse under I/R. Upregulation of circ-FoxO3 and autophagic flux were detected in brain microvessel endothelial cells in patients with hemorrhagic transformation and in mice models with middle cerebral artery occlusion/reperfusion. In vivo and in vitro studies indicated that circ-FoxO3 alleviated BBB damage principally by autophagy activation. Mechanistically, we found that circ-FoxO3 inhibited mTORC1 activity mainly by sequestering mTOR and E2F1, thus promoting autophagy to clear cytotoxic aggregates for improving BBB integrity. These results demonstrate that circ-FoxO3 plays a novel role in protecting against BBB damage, and that circ-FoxO3 may be a promising therapeutic target for neurological disorders associated with BBB damage.
Collapse
Affiliation(s)
- Zhenguo Yang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China,Affiliated Hospital of Guangdong Medical University, 57 South Renmin Ave, Zhanjiang 524001, China
| | - Cheng Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China
| | - Xueyi Wen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China
| | - Wenlin Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China,Affiliated Hospital of Guangdong Medical University, 57 South Renmin Ave, Zhanjiang 524001, China
| | - Xiaoxiong Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China
| | - Yufeng Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China
| | - Zean Weng
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China
| | - Chi Kwan Tsang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China
| | - Keshen Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China.
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou 510632, China.
| |
Collapse
|
24
|
Roy V, Ross JP, Pépin R, Cortez Ghio S, Brodeur A, Touzel Deschênes L, Le-Bel G, Phillips DE, Milot G, Dion PA, Guérin S, Germain L, Berthod F, Auger FA, Rouleau GA, Dupré N, Gros-Louis F. Moyamoya Disease Susceptibility Gene RNF213 Regulates Endothelial Barrier Function. Stroke 2022; 53:1263-1275. [PMID: 34991336 DOI: 10.1161/strokeaha.120.032691] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Variants in the ring finger protein 213 (RNF213) gene are known to be associated with increased predisposition to cerebrovascular diseases development. Genomic studies have identified RNF213 as a major risk factor of Moyamoya disease in East Asian descendants. However, little is known about the RNF213 (ring finger protein 213) biological functions or its associated pathogenic mechanisms underlying Moyamoya disease. METHODS To investigate RNF213 loss-of-function effect in endothelial cell, stable RNF213-deficient human cerebral endothelial cells were generated using the CRISPR-Cas9 genome editing technology. RESULTS In vitro assays, using RNF213 knockout brain endothelial cells, showed clear morphological changes and increased blood-brain barrier permeability. Downregulation and delocalization of essential interendothelial junction proteins involved in the blood-brain barrier maintenance, such as PECAM-1 (platelet endothelial cell adhesion molecule-1), was also observed. Brain endothelial RNF213-deficient cells also showed an abnormal potential to transmigration of leukocytes and secreted high amounts of proinflammatory cytokines. CONCLUSIONS Taken together, these results indicate that RNF213 could be a key regulator of cerebral endothelium integrity, whose disruption could be an early pathological mechanism leading to Moyamoya disease. This study also further reinforces the importance of blood-brain barrier integrity in the development of Moyamoya disease and other RNF213-associated diseases.
Collapse
Affiliation(s)
- Vincent Roy
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Jay P Ross
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Rémy Pépin
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Sergio Cortez Ghio
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Alyssa Brodeur
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Lydia Touzel Deschênes
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Gaëtan Le-Bel
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Daniel E Phillips
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Geneviève Milot
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Patrick A Dion
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Sylvain Guérin
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Lucie Germain
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François Berthod
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François A Auger
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Guy A Rouleau
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Nicolas Dupré
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François Gros-Louis
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| |
Collapse
|
25
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|
26
|
Yu P, Li Y, Zhong G, Li W, Chen B, Zhang J. Claudin-5 Affects Endothelial Autophagy in Response to Early Hypoxia. Front Physiol 2021; 12:737474. [PMID: 34531766 PMCID: PMC8438321 DOI: 10.3389/fphys.2021.737474] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 02/03/2023] Open
Abstract
Hypoxic injury to cerebrovascular endothelial cells (ECs) after stroke leads to blood-brain barrier (BBB) dysfunction, which is commonly associated with disruptions of endothelial tight junctions (TJs) and increased permeability. Therefore, maintaining the structural integrity and proper function of the BBB is essential for the homeostasis and physiological function of the central nervous system (CNS). Our previous study revealed that autophagy functions on protecting the BBB by regulating the dynamics of Claudin-5, the essential TJ protein, under short-term starvation or hypoxia conditions. Here, we show that in zebrafish and in vitro cells, loss of membranous Claudin-5 conversely determine the occurrence of hypoxia-induced autophagy in cerebrovascular ECs. Absence of endothelial Claudin-5 could partly attenuate endothelial cell apoptosis caused by short-term hypoxic injury. Mechanism studies revealed that under hypoxic conditions, the existence of membranous Claudin-5 affects the stimulation of hypoxia inducible factor 1 subunit alpha (HIF-1a) and the inducible nitric oxide synthase (iNOS), which are responsible for the translocation of and endocytosis of caveole-packaged Claudin-5 into cytosol. Meanwhile, loss of Claudin-5 affects the generation of reactive oxygen species (ROS) and the downstream expression of BCL2/adenovirus E1B 19kDa protein interacting protein 3 (Bnip3). These together suppress the endothelial autophagy under hypoxia. This finding provides a theoretical basis for clarifying the mechanism of hypoxia-induced BBB injury and its potential protection mechanisms.
Collapse
Affiliation(s)
- Ping Yu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Yanyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Gaoliang Zhong
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Bing Chen
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
27
|
Do PT, Wu CC, Chiang YH, Hu CJ, Chen KY. Mesenchymal Stem/Stromal Cell Therapy in Blood-Brain Barrier Preservation Following Ischemia: Molecular Mechanisms and Prospects. Int J Mol Sci 2021; 22:ijms221810045. [PMID: 34576209 PMCID: PMC8468469 DOI: 10.3390/ijms221810045] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is the leading cause of mortality and long-term disability worldwide. Disruption of the blood-brain barrier (BBB) is a prominent pathophysiological mechanism, responsible for a series of subsequent inflammatory cascades that exacerbate the damage to brain tissue. However, the benefit of recanalization is limited in most patients because of the narrow therapeutic time window. Recently, mesenchymal stem cells (MSCs) have been assessed as excellent candidates for cell-based therapy in cerebral ischemia, including neuroinflammatory alleviation, angiogenesis and neurogenesis promotion through their paracrine actions. In addition, accumulating evidence on how MSC therapy preserves BBB integrity after stroke may open up novel therapeutic targets for treating cerebrovascular diseases. In this review, we focus on the molecular mechanisms of MSC-based therapy in the ischemia-induced prevention of BBB compromise. Currently, therapeutic effects of MSCs for stroke are primarily based on the fundamental pathogenesis of BBB breakdown, such as attenuating leukocyte infiltration, matrix metalloproteinase (MMP) regulation, antioxidant, anti-inflammation, stabilizing morphology and crosstalk between cellular components of the BBB. We also discuss prospective studies to improve the effectiveness of MSC therapy through enhanced migration into defined brain regions of stem cells. Targeted therapy is a promising new direction and is being prioritized for extensive research.
Collapse
Affiliation(s)
- Phuong Thao Do
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Pediatrics, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Chung-Che Wu
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan; (C.-C.W.); (Y.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan; (C.-C.W.); (Y.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Chaur-Jong Hu
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Neurology and Stroke Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Correspondence: (C.-J.H.); (K.-Y.C.); Tel.: +886-227361661 (ext. 3032) (C.-J.H.); +886-227361661 (ext. 7602) (K.-Y.C.)
| | - Kai-Yun Chen
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-J.H.); (K.-Y.C.); Tel.: +886-227361661 (ext. 3032) (C.-J.H.); +886-227361661 (ext. 7602) (K.-Y.C.)
| |
Collapse
|
28
|
cAMP Compartmentalization in Cerebrovascular Endothelial Cells: New Therapeutic Opportunities in Alzheimer's Disease. Cells 2021; 10:cells10081951. [PMID: 34440720 PMCID: PMC8392343 DOI: 10.3390/cells10081951] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
The vascular hypothesis used to explain the pathophysiology of Alzheimer’s disease (AD) suggests that a dysfunction of the cerebral microvasculature could be the beginning of alterations that ultimately leads to neuronal damage, and an abnormal increase of the blood–brain barrier (BBB) permeability plays a prominent role in this process. It is generally accepted that, in physiological conditions, cyclic AMP (cAMP) plays a key role in maintaining BBB permeability by regulating the formation of tight junctions between endothelial cells of the brain microvasculature. It is also known that intracellular cAMP signaling is highly compartmentalized into small nanodomains and localized cAMP changes are sufficient at modifying the permeability of the endothelial barrier. This spatial and temporal distribution is maintained by the enzymes involved in cAMP synthesis and degradation, by the location of its effectors, and by the existence of anchor proteins, as well as by buffers or different cytoplasm viscosities and intracellular structures limiting its diffusion. This review compiles current knowledge on the influence of cAMP compartmentalization on the endothelial barrier and, more specifically, on the BBB, laying the foundation for a new therapeutic approach in the treatment of AD.
Collapse
|
29
|
Impact of Different Durations of Fasting on Intestinal Autophagy and Serum Metabolome in Broiler Chicken. Animals (Basel) 2021; 11:ani11082183. [PMID: 34438641 PMCID: PMC8388447 DOI: 10.3390/ani11082183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Fasting is usually used before metabolizable energy assessment in poultry. Recently, fasting-induced autophagy has been of concern because of the beneficial function of autophagy. In this study, we found that the intestinal autophagy gene Atg7 has a good quadratic fitting with fasting duration. We found that the serum metabolism pathways involved in glycerophospholipid, phenylalanine, GnRH signaling pathways, glycosylphosphatidylinositol anchor biosynthesis, autophagy, and ferroptosis changed with fasting. Furthermore, we found a correlation between intestinal autophagy and serum metabolite PE (18:3(9Z,12Z,15Z)/P-18:0). Abstract Fasting-induced autophagy in the intestine is beneficial for body health. This study was designed to explore the relationship between the host metabolism and intestinal autophagy. Broilers were randomly assigned into 48 cages. At 0 (CT), 12 (FH12), 24 (FH24), 36 (FH36), 48(FH48), and 72 h (FH72) before 09:00 a.m. on day 25, eight cages of birds were randomly allotted to each fasting time point using completely random design, and their food was removed. At 09:00 a.m. on day 25, the blood and jejunum were sampled for serum metabolome and autophagy gene analyses, respectively. The results showed that the autophagy gene Atg7 has a good quadratic fit with fasting duration (R2 = 0.432, p < 0.001). Serum phosphatidylethanolamine (PE) and lyso-PE were decreased in the birds that were fasted for 24 h or longer. Conversely, the serum phosphatidylcholine (PC) and lyso-PC were increased in the birds that were fasted for 36 h or longer. Metabolism pathway analysis showed that the serum glycerophospholipid, phenylalanine, and GnRH signaling pathways were downregulated with the extended fasting duration. The serum metabolites involved in glycosylphosphatidylinositol anchor biosynthesis, autophagy, and ferroptosis were upregulated in all of the fasted groups. Correlation analysis showed that serum PE (18:3(9Z,12Z,15Z)/P-18:0) was a potential biomarker for intestinal autophagy. Our findings provide a potential biomarker related to intestinal autophagy.
Collapse
|
30
|
Chu W, Sun X, Zhu X, Zhao YC, Zhang J, Kong Q, Zhou L. Blockade of platelet glycoprotein receptor Ib ameliorates blood-brain barrier disruption following ischemic stroke via Epac pathway. Biomed Pharmacother 2021; 140:111698. [PMID: 34029954 DOI: 10.1016/j.biopha.2021.111698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022] Open
Abstract
Glycoprotein (GP) Ib is a platelet membrane receptor complex exposed to vascular injury, proposed as an effective target for stroke therapy. Previously, we have observed that the GPIb antagonist anfibatide (ANF) could mitigate blood-brain barrier (BBB) disruption following cerebral ischemia/reperfusion (CI/R) injury. The current study was designed to investigate whether the amelioration of the BBB by ANF is mediated via the Epac signaling pathway. A murine model of CI/R injury was induced following 90 min of transient middle cerebral artery occlusion (MCAO). ANF (4 μg/kg) was intravenously injected 1 h after reperfusion. Herein, ANF ameliorated BBB disruption, increased the expression of tight junction proteins, suppressed F-actin cytoskeleton rearrangement, decreased the permeability of the ischemic brain tissue, and relieved brain edema. ANF-treated mice had smaller infarct volumes and less severe neurological deficits than the MCAO mice. Moreover, the effects of ANF and Epac1 agonists were very similar in the MCAO mice. Epac activation with a cAMP analog, 8-CPT-2'-O-Me-cAMP, mitigated the breakdown of BBB function and CI/R injury. The Epac specific antagonist, ESI-09, worsened barrier damage and cerebral impairment, antagonizing the protective effects afforded by ANF. In addition, ANF upregulated the expression of Epac1 protein in the ischemic cerebral cortex. Collectively, our results indicate that the protective effect of ANF on the BBB after CI/R could be attributed to the activation of the Epac pathway.
Collapse
Affiliation(s)
- Wei Chu
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Xuemei Sun
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Xiaoxiao Zhu
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Yu Chen Zhao
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Jingcheng Zhang
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Qin Kong
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Lanlan Zhou
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| |
Collapse
|
31
|
Li Y, Suo L, Fu Z, Li G, Zhang J. Pivotal role of endothelial cell autophagy in sepsis. Life Sci 2021; 276:119413. [PMID: 33794256 DOI: 10.1016/j.lfs.2021.119413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is a fatal organ dysfunction resulting from a disordered host response to infection. Endothelial cells (ECs) are usually the primary targets of inflammatory mediators in sepsis; damage to ECs plays a pivotal part in vital organ failure. In recent studies, autophagy was suggested to play a critical role in the ECs injury although the mechanisms by which ECs are injured in sepsis are not well elucidated. Autophagy is a highly conserved catabolic process that includes sequestrating plasma contents and transporting cargo to lysosomes for recycling the vital substrates required for metabolism. This pathway also counteracts microbial invasion to balance and retain homeostasis, especially during sepsis. Increasing evidence indicates that autophagy is closely associated with endothelial function. The role of autophagy in sepsis may or may not be favorable depending upon conditions. In the present review, the current knowledge of autophagy in the process of sepsis and its influence on ECs was evaluated. In addition, the potential of targeting EC autophagy for clinical treatment of sepsis was discussed.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Liangyuan Suo
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shengjing Hospital of China Medical University, No. 44 Xiaoheyan Road, Shengyang, Liaoning 110042, PR China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Guoqing Li
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning 116001, PR China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
32
|
TFEB Biology and Agonists at a Glance. Cells 2021; 10:cells10020333. [PMID: 33562649 PMCID: PMC7914707 DOI: 10.3390/cells10020333] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a critical regulator of cellular survival, differentiation, development, and homeostasis, dysregulation of which is associated with diverse diseases including cancer and neurodegenerative diseases. Transcription factor EB (TFEB), a master transcriptional regulator of autophagy and lysosome, can enhance autophagic and lysosomal biogenesis and function. TFEB has attracted a lot of attention owing to its ability to induce the intracellular clearance of pathogenic factors in a variety of disease models, suggesting that novel therapeutic strategies could be based on the modulation of TFEB activity. Therefore, TFEB agonists are a promising strategy to ameliorate diseases implicated with autophagy dysfunction. Recently, several TFEB agonists have been identified and preclinical or clinical trials are applied. In this review, we present an overview of the latest research on TFEB biology and TFEB agonists.
Collapse
|
33
|
Yang Z, Lin P, Chen B, Zhang X, Xiao W, Wu S, Huang C, Feng D, Zhang W, Zhang J. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy 2020; 17:3048-3067. [PMID: 33280500 DOI: 10.1080/15548627.2020.1851897] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Blood-brain barrier (BBB) disruption is a key event in triggering secondary damage to the central nervous system (CNS) under stroke, and is frequently associated with abnormal macroautophagy/autophagy in brain microvascular endothelial cells (BMECs). However, the underlying mechanism of autophagy in maintaining BBB integrity remains unclear. Here we report that in BMECs of patients suffering stroke, CLDN5 (claudin 5) abnormally aggregates in the cytosol accompanied by autophagy activation. In vivo zebrafish and in vitro cell studies reveal that BBB breakdown is partially caused by CAV1 (caveolin 1)-mediated redistribution of membranous CLDN5 into the cytosol under hypoxia. Meanwhile, autophagy is activated and contributes mainly to the degradation of CAV1 and aggregated CLDN5 in the cytosol of BMECs, therefore alleviating BBB breakdown. Blockage of autophagy by genetic methods or chemicals aggravates cytosolic aggregation of CLDN5, resulting in severer BBB impairment. These data demonstrate that autophagy functions in the protection of BBB integrity by regulating CLDN5 redistribution and provide a potential therapeutic strategy for BBB disorder-related cerebrovascular disease.Abbreviations: BBB: blood-brain barrier; BECN1: beclin 1; BMEC: brain microvascular endothelial cell; CAV1: caveolin 1; CCA: common carotid artery; CLDN5: claudin 5; CNS: central nervous system; CQ: chloroquine; HIF1A: hypoxia inducible factor 1 subunit alpha; MCAO: middle cerebral artery occlusion-reperfusion; OCLN: occludin; ROS: reactive oxygen species; STED: stimulated emission depletion; TEER: trans-endothelial electrical resistance; TEM: transmission electron microscopy; TJ: tight junction; TJP1: tight junction protein 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Zhenguo Yang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Panpan Lin
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Bing Chen
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqi Zhang
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Shuilong Wu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Chunnian Huang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Du Feng
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenqing Zhang
- Laboratory of Developmental Biology and Regenerative Medicine, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
34
|
Chen C, Chao Y, Lin H, Chen C, Chen C, Yang J, Chan JYH, Juo SH. miR-195 reduces age-related blood-brain barrier leakage caused by thrombospondin-1-mediated selective autophagy. Aging Cell 2020; 19:e13236. [PMID: 33029941 PMCID: PMC7681043 DOI: 10.1111/acel.13236] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/16/2020] [Indexed: 12/30/2022] Open
Abstract
Blood–brain barrier (BBB) disruption contributes to neurodegenerative diseases. Loss of tight junction (TJ) proteins in cerebral endothelial cells (ECs) is a leading cause of BBB breakdown. We recently reported that miR‐195 provides vasoprotection, which urges us to explore the role of miR‐195 in BBB integrity. Here, we found cerebral miR‐195 levels decreased with age, and BBB leakage was significantly increased in miR‐195 knockout mice. Furthermore, exosomes from miR‐195‐enriched astrocytes increased endothelial TJ proteins and improved BBB integrity. To decipher how miR‐195 promoted BBB integrity, we first demonstrated that TJ proteins were metabolized via autophagic–lysosomal pathway and the autophagic adaptor p62 was necessary to promote TJ protein degradation in cerebral ECs. Next, proteomic analysis of exosomes revealed miR‐195‐suppressed thrombospondin‐1 (TSP1) as a major contributor to BBB disruption. Moreover, TSP1 was demonstrated to activate selective autophagy of TJ proteins by increasing the formation of claudin‐5‐p62 and ZO1‐p62 complexes in cerebral ECs while TSP1 impaired general autophagy. Delivering TSP1 antibody into the circulation showed dose‐dependent reduction of BBB leakage by 20%–40% in 25‐month‐old mice. Intravenous or intracerebroventricular injection of miR‐195 rescued TSP1‐induced BBB leakage. Dementia patients with BBB damage had higher levels of serum TSP1 compared to those without BBB damage (p = 0.0015), while the normal subjects had the lowest TSP1 (p < 0.0001). Taken together, the study implies that TSP1‐regulated selective autophagy facilitates the degradation of TJ proteins and weakens BBB integrity. An adequate level of miR‐195 can suppress the autophagy–lysosome pathway via a reduction of TSP1, which may be important for maintaining BBB function.
Collapse
Affiliation(s)
- Chien‐Yuan Chen
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Yung‐Mei Chao
- Institute for Translational Research in BiomedicineChang Gung Memorial HospitalKaohsiungTaiwan
| | - Hsiu‐Fen Lin
- Department of NeurologyKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of NeurologyCollege of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Chao‐Jung Chen
- Proteomics Core LaboratoryDepartment of Medical Research, China Medical University HospitalTaichungTaiwan
- Graduate Institute of Integrated MedicineChina Medical UniversityTaichungTaiwan
| | - Cheng‐Sheng Chen
- Department of PsychiatryKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of PsychiatryCollege of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Jenq‐Lin Yang
- Institute for Translational Research in BiomedicineChang Gung Memorial HospitalKaohsiungTaiwan
| | - Julie Y. H. Chan
- Institute for Translational Research in BiomedicineChang Gung Memorial HospitalKaohsiungTaiwan
| | - Suh‐Hang H. Juo
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Institute of New Drug DevelopmentChina Medical UniversityTaichungTaiwan
- Drug Development CenterChina Medical UniversityTaichungTaiwan
| |
Collapse
|
35
|
Natarajan V, Mah T, Peishi C, Tan SY, Chawla R, Arumugam TV, Ramasamy A, Mallilankaraman K. Oxygen Glucose Deprivation Induced Prosurvival Autophagy Is Insufficient to Rescue Endothelial Function. Front Physiol 2020; 11:533683. [PMID: 33041854 PMCID: PMC7526687 DOI: 10.3389/fphys.2020.533683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial dysfunction, referring to a disturbance in the vascular homeostasis, has been implicated in many disease conditions including ischemic/reperfusion injury and atherosclerosis. Endothelial mitochondria have been increasingly recognized as a regulator of calcium homeostasis which has implications in the execution of diverse cellular events and energy production. The mitochondrial calcium uniporter complex through which calcium enters the mitochondria is composed of several proteins, including the pore-forming subunit MCU and its regulators MCUR1, MICU1, and MICU2. Mitochondrial calcium overload leads to opening of MPTP (mitochondrial permeability transition pore) and results in apoptotic cell death. Whereas, blockage of calcium entry into the mitochondria results in reduced ATP production thereby activates AMPK-mediated pro-survival autophagy. Here, we investigated the expression of mitochondrial calcium uniporter complex components (MCU, MCUR1, MICU1, and MICU2), induction of autophagy and apoptotic cell death in endothelial cells in response to oxygen-glucose deprivation. Human pulmonary microvascular endothelial cells (HPMVECs) were subjected to oxygen-glucose deprivation (OGD) at 3-h timepoints up to 12 h. Interestingly, except MCUR1 which was significantly downregulated, all other components of the uniporter (MCU, MICU1, and MICU2) remained unchanged. MCUR1 downregulation has been shown to activate AMPK mediated pro-survival autophagy. Similarly, MCUR1 downregulation in response to OGD resulted in AMPK phosphorylation and LC3 processing indicating the activation of pro-survival autophagy. Despite the activation of autophagy, OGD induced Caspase-mediated apoptotic cell death. Blockade of autophagy did not reduce OGD-induced apoptotic cell death whereas serum starvation conferred enough cellular and functional protection. In conclusion, the autophagic flux induced by MCUR1 downregulation in response to OGD is insufficient in protecting endothelial cells from undergoing apoptotic cell death and requires enhancement of autophagic flux by additional means such as serum starvation.
Collapse
Affiliation(s)
- Venkateswaran Natarajan
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tania Mah
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chen Peishi
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shu Yi Tan
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ritu Chawla
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thiruma Valavan Arumugam
- Department of Physiology, Anatomy and Microbiology School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | | | - Karthik Mallilankaraman
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Center for Healthy Longevity, NUHS, Singapore, Singapore
| |
Collapse
|
36
|
Duarte Lobo D, Nobre RJ, Oliveira Miranda C, Pereira D, Castelhano J, Sereno J, Koeppen A, Castelo-Branco M, Pereira de Almeida L. The blood-brain barrier is disrupted in Machado-Joseph disease/spinocerebellar ataxia type 3: evidence from transgenic mice and human post-mortem samples. Acta Neuropathol Commun 2020; 8:152. [PMID: 32867861 PMCID: PMC7457506 DOI: 10.1186/s40478-020-00955-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
Blood-brain barrier (BBB) disruption is a common feature in neurodegenerative diseases. However, BBB integrity has not been assessed in spinocerebellar ataxias (SCAs) such as Machado-Joseph disease/SCA type 3 (MJD/SCA3), a genetic disorder, triggered by polyglutamine-expanded ataxin-3. To investigate that, BBB integrity was evaluated in a transgenic mouse model of MJD and in human post-mortem brain tissues. Firstly, we investigated the BBB permeability in MJD mice by: i) assessing the extravasation of the Evans blue (EB) dye and blood-borne proteins (e.g fibrinogen) in the cerebellum by immunofluorescence, and ii) in vivo Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI). The presence of ataxin-3 aggregates in brain blood vessels and the levels of tight junction (TJ)-associated proteins were also explored by immunofluorescence and western blotting. Human brain samples were used to confirm BBB permeability by evaluating fibrinogen extravasation, co-localization of ataxin-3 aggregates with brain blood vessels and neuroinflammation. In the cerebellum of the mouse model of MJD, there was a 5-fold increase in EB accumulation when compared to age-matched controls. Moreover, vascular permeability displayed a 13-fold increase demonstrated by DCE-MRI. These results were validated by the 2-fold increase in fibrinogen extravasation in transgenic animals comparing to controls. Interestingly, mutant ataxin-3 aggregates were detected in cerebellar blood vessels of transgenic mice, accompanied by alterations of TJ-associated proteins in cerebellar endothelial cells, namely a 29% decrease in claudin-5 oligomers and a 10-fold increase in an occludin cleavage fragment. These results were validated in post-mortem brain samples from MJD patients as we detected fibrinogen extravasation across BBB, the presence of ataxin-3 aggregates in blood vessels and associated microgliosis. Altogether, our results prove BBB impairment in MJD/SCA3. These findings contribute for a better understanding of the disease mechanisms and opens the opportunity to treat MJD with medicinal products that in normal conditions would not cross the BBB.
Collapse
|
37
|
Ma N, Zhou J. Functions of Endothelial Cilia in the Regulation of Vascular Barriers. Front Cell Dev Biol 2020; 8:626. [PMID: 32733899 PMCID: PMC7363763 DOI: 10.3389/fcell.2020.00626] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The vascular barrier between blood and tissues is a highly selective structure that is essential to maintain tissue homeostasis. Defects in the vascular barrier lead to a variety of cardiovascular diseases. The maintenance of vascular barriers is largely dependent on endothelial cells, but the precise mechanisms remain elusive. Recent studies reveal that primary cilia, microtubule-based structures that protrude from the surface of endothelial cells, play a critical role in the regulation of vascular barriers. Herein, we discuss recent advances on ciliary functions in the vascular barrier and suggest that ciliary signaling pathways might be targeted to modulate the vascular barrier.
Collapse
Affiliation(s)
- Nan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
38
|
Oxidative Stress-Mediated Blood-Brain Barrier (BBB) Disruption in Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/4356386] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB), as a crucial gate of brain-blood molecular exchange, is involved in the pathogenesis of multiple neurological diseases. Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the scavenger system. Since oxidative stress plays a significant role in the production and maintenance of the BBB, the cerebrovascular system is especially vulnerable to it. The pathways that initiate BBB dysfunction include, but are not limited to, mitochondrial dysfunction, excitotoxicity, iron metabolism, cytokines, pyroptosis, and necroptosis, all converging on the generation of ROS. Interestingly, ROS also provide common triggers that directly regulate BBB damage, parameters including tight junction (TJ) modifications, transporters, matrix metalloproteinase (MMP) activation, inflammatory responses, and autophagy. We will discuss the role of oxidative stress-mediated BBB disruption in neurological diseases, such as hemorrhagic stroke, ischemic stroke (IS), Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and cerebral small vessel disease (CSVD). This review will also discuss the latest clinical evidence of potential biomarkers and antioxidant drugs towards oxidative stress in neurological diseases. A deeper understanding of how oxidative stress damages BBB may open up more therapeutic options for the treatment of neurological diseases.
Collapse
|
39
|
Kim D, Hwang HY, Kwon HJ. Targeting Autophagy In Disease: Recent Advances In Drug Discovery. Expert Opin Drug Discov 2020; 15:1045-1064. [DOI: 10.1080/17460441.2020.1773429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dasol Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hui-Yun Hwang
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Kılıç F, Işık Ü, Demirdaş A, Doğuç DK, Bozkurt M. Serum zonulin and claudin-5 levels in patients with bipolar disorder. J Affect Disord 2020; 266:37-42. [PMID: 32056901 DOI: 10.1016/j.jad.2020.01.117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/04/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The etiology in bipolar disorder has not been fully understanding. There are limited data regarding the relationship between the permeability of intestinal and blood-brain barrier (BBB), and bipolar disorder etiology. Zonulin is regarded as a non-invasive biomarker for intestinal permeability. Claudin-5 is an important part of BBB permeability. In this study, we assumed that there may be a deterioration in serum zonulin and claudin-5 levels in patients with bipolar disorder and this may affect the severity of the disease. METHODS Forty-one bipolar disorder patients (21 patients in remission and 20 patients with manic episodes) and 41 healthy controls were included in this study. The patients were administered Young Mania Rating Scale (YMRS) and Hamilton Depression Rating Scale (HDRS) to determine the severity of manic and depressive symptoms, respectively. Venous blood samples were collected, and serum zonulin and claudin-5 levels were measured. RESULTS The mean serum zonulin and claudin-5 levels in patients were significantly higher than healthy controls. There is no difference zonulin and claudın-5 levels between patients with manic episodes and patients in remission. LIMITATION This study's small sample size limits the generalization of these outcomes to a larger population. Also, a major limitation of our study is lack of evaluations of gut microbiota in patients with bipolar disorder and controls. CONCLUSION In conclusion, the current research indicates that zonulin and claudin-5 are increased in patients with bipolar disorder and this finding may contribute to the role of intestinal permeability or BBB in the pathogenesis of bipolar disorder.
Collapse
Affiliation(s)
- Faruk Kılıç
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta 32260, Turkey.
| | - Ümit Işık
- Department of Child and Adolescent Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Arif Demirdaş
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta 32260, Turkey
| | - Duygu Kumbul Doğuç
- Department of Biochemistry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Mustafa Bozkurt
- Department of Biochemistry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| |
Collapse
|
41
|
Majolée J, Kovačević I, Hordijk PL. Ubiquitin-based modifications in endothelial cell-cell contact and inflammation. J Cell Sci 2019; 132:132/17/jcs227728. [PMID: 31488505 DOI: 10.1242/jcs.227728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell-cell contacts are essential for vascular integrity and physiology, protecting tissues and organs from edema and uncontrolled invasion of inflammatory cells. The vascular endothelial barrier is dynamic, but its integrity is preserved through a tight control at different levels. Inflammatory cytokines and G-protein-coupled receptor agonists, such as histamine, reduce endothelial integrity and increase vascular leakage. This is due to elevated myosin-based contractility, in conjunction with phosphorylation of proteins at cell-cell contacts. Conversely, reducing contractility stabilizes or even increases endothelial junctional integrity. Rho GTPases are key regulators of such cytoskeletal dynamics and endothelial cell-cell contacts. In addition to signaling-induced regulation, the expression of junctional proteins, such as occludin, claudins and vascular endothelial cadherin, also controls endothelial barrier function. There is increasing evidence that, in addition to protein phosphorylation, ubiquitylation (also known as ubiquitination) is an important and dynamic post-translational modification that regulates Rho GTPases, junctional proteins and, consequently, endothelial barrier function. In this Review, we discuss the emerging role of ubiquitylation and deubiquitylation events in endothelial integrity and inflammation. The picture that emerges is one of increasing complexity, which is both fascinating and promising given the clinical relevance of vascular integrity in the control of inflammation, and of tissue and organ damage.
Collapse
Affiliation(s)
- Jisca Majolée
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Igor Kovačević
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
42
|
Al Rihani SB, Darakjian LI, Kaddoumi A. Oleocanthal-Rich Extra-Virgin Olive Oil Restores the Blood-Brain Barrier Function through NLRP3 Inflammasome Inhibition Simultaneously with Autophagy Induction in TgSwDI Mice. ACS Chem Neurosci 2019; 10:3543-3554. [PMID: 31244050 DOI: 10.1021/acschemneuro.9b00175] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by multiple hallmarks including extracellular amyloid (Aβ) plaques, neurofibrillary tangles, dysfunctional blood-brain barrier (BBB), neuroinflammation, and impaired autophagy. Thus, novel strategies that target multiple disease pathways would be essential to prevent, halt, or treat the disease. A growing body of evidence including our studies supports a protective effect of oleocanthal (OC) and extra-virgin olive oil (EVOO) at early AD stages before the onset of pathology. In addition, we reported previously that OC and EVOO exhibited such effect by restoring the BBB function; however, the mechanism(s) by which OC and EVOO exert such an effect and whether this effect extends to a later stage of AD remain unknown. In this work, we sought first to test the effect of OC-rich EVOO consumption at an advanced stage of the disease in TgSwDI mice, an AD mouse model, starting at the age of 6 months for 3 months treatment, and then to elucidate the mechanism(s) by which OC-rich EVOO exerts the observed beneficial effect. Overall findings demonstrated that OC-rich EVOO restored the BBB function and reduced AD-associated pathology by reducing neuroinflammation through inhibition of NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome and inducing autophagy through activation of AMP-activated protein kinase (AMPK)/Unc-51-like autophagy activating kinase 1 (ULK1) pathway. Thus, diet supplementation with OC-rich EVOO could provide beneficial effect to slow or halt the progression of AD.
Collapse
Affiliation(s)
- Sweilem B. Al Rihani
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama 36849, United States
| | - Lucy I. Darakjian
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|