1
|
Sharafifard F, Kazeminasab F, Ghanbari Rad M, Ghaedi K, Rosenkranz SK. The combined effects of high-intensity interval training and time-restricted feeding on the AKT/FOXO1/PEPCK pathway in diabetic rats. Sci Rep 2025; 15:13898. [PMID: 40263494 PMCID: PMC12015413 DOI: 10.1038/s41598-025-96703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
High-intensity interval training (HIIT) and time-restricted feeding (TRF) have shown promise for improving glucose regulation by increasing insulin sensitivity, enhancing glucose uptake, reducing glucose production. Therefore, this study investigates the combined effects of HIIT and TRF on the AKT/FOXO1/PEPCK signaling pathway in the liver tissue of type 2 diabetic rats. 42 male Wistar rats (4-5 weeks of age) were included in the study. The animals were randomly divided into two groups: (1) Standard diet (SD, non-Diabetic (Non-D, n = 7) (2) High-fat diet (HFD, n = 35) for 4 weeks. To induce diabetes, 35 mg/kg of streptozotocin (STZ) was injected intraperitoneally (IP). Animals with blood glucose levels of > 250 mg/dL were considered as diabetic. Diabetic rats were randomly divided into 5 groups (n = 7): (1) Diabetes-exercise (D-EX), (2) Diabetes-TRF (D-TRF), (3) Diabetes-combined TRF and exercise (D-TRF&EX), (4) Diabetes no treatment (D-NT), (5) Diabetes with metformin (D-MET). Interventions (HIIT and TRF) were performed for 10 weeks. Rats in the Non-D group did not exercise and did not receive metformin or TRF. Periodic Acid-Schiff (PAS) staining was used to histologically analyze the liver tissue. Levels of blood glucose, insulin resistance (IR), FOXO1 protein, PEPCK, and area under the curve (AUC) following the IPGTT test, were significantly decreased in treatment groups compared to the D-NT group (p < 0.05). The AKT protein levels (p < 0.01), glycogen content (p < 0.05), and insulin sensitivity (p < 0.001) increased in the treatment groups as compared with the D-NT group. Microscopic examination of the liver tissue in general showed a better tissue arrangement in both treatment groups than in the D-NT group. Combining HIIT and TRF may be effective for improving blood glucose regulation, insulin sensitivity, in type 2 diabetes, as compared to TRF or HIIT interventions alone.
Collapse
Affiliation(s)
- Fatemeh Sharafifard
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Fatemeh Kazeminasab
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Mahtab Ghanbari Rad
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
2
|
Martinez Bravo G, Paramasivam P, Bellissimo GF, Jacquez Q, Zheng H, Amorim F, Kovell L, Alvidrez RIM. High-Intensity Interval Training Decreases Circulating HMGB1 in Individuals with Insulin Resistance: Plasma Lipidomics Correlate with Associated Cardiometabolic Benefits. FRONT BIOSCI-LANDMRK 2025; 30:31396. [PMID: 40152388 DOI: 10.31083/fbl31396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Bodyweight high-intensity interval training (BW-HIIT) is an effective, time-efficient exercise method that reduces cardiovascular risk factors and improves muscle endurance without requiring external equipment. High mobility group box 1 (HMGB1) is a proinflammatory protein involved in insulin resistance. Previous studies revealed that HMGB1 knockout mice show improved insulin sensitivity and hyperglycemia. This study investigates whether BW-HIIT exercise can reduce proinflammatory markers, such as HMGB1, in individuals with insulin resistance. METHODS In total, 14 adults (2 male/12 female) aged 18 to 55 were subject to six weeks of BW-HIIT. Additionally, 10-week-old mice were subject to exercise conditioning (5 mice per group (all male)) for 4 weeks of treadmill exercise or sedentary. Human and mouse pre- and post-exercise serum/plasma samples were analyzed for lipidomics, hormonal, and cytokine multiplex assays. Cardiometabolic parameters were also performed on human subjects. RESULTS Post-exercise decreased systolic blood pressure (SBP), cholesterol, triglycerides, high-density lipoprotein (HDL), and cholesterol/HDL ratio in human patients with insulin resistance. Meanwhile, hormones such as amylin, glucagon, and insulin all increased post-BW-HIIT or treadmill exercise in both human and mouse models. Moreover, circulating HMBG1 levels were reduced in insulin-resistant individuals and mice after exercise. Furthermore, treadmill exercise by the animal model increased anti-inflammatory cytokines, including interleukin (IL)-10, IL-12p40, and IL-12p70, and reduced proinflammatory cytokines: eotaxin, IL-2, and macrophage inflammatory protein (MIP)-2 or CXCL2. CONCLUSIONS Six weeks of BW-HIIT exercise can improve cardiometabolic health, anti-inflammatory markers, hormones, and insulin sensitivity in human and mouse models undergoing exercise. Changes in circulating HMBG1 levels following BW-HIIT exercise make HMGB1 a suitable marker for cardiometabolic disease, potentiating its role beyond an alarmin. Further studies are needed to confirm these effects and to elucidate the underlying physiological mechanisms.
Collapse
Affiliation(s)
- Gabriela Martinez Bravo
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
- Biomedical Engineering Department, University of New Mexico, Albuquerque, NM 87131, USA
- Clinical and Translational Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Prabu Paramasivam
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
- Clinical and Translational Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Gabriella F Bellissimo
- Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Quiteria Jacquez
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
- Clinical and Translational Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Huayu Zheng
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Fabiano Amorim
- Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lara Kovell
- Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Roberto Ivan Mota Alvidrez
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
- Biomedical Engineering Department, University of New Mexico, Albuquerque, NM 87131, USA
- Clinical and Translational Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
- Cardiovascular and Metabolic Diseases (CVMD) Signature Program, University of New Mexico, Albuquerque, NM 87131, USA
- Autophagy, Inflammation, Metabolism CoBRE, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Cano-Montoya J, Bentes A, Pavez Y, Rubilar P, Lavoz C, Ehrenfeld P, Sandoval V, Martínez-Huenchullán S. Metabolic Response After a Single Maximal Exercise Session in Physically Inactive Young Adults (EASY Study): Relevancy of Adiponectin Isoforms. Biomolecules 2025; 15:314. [PMID: 40149850 PMCID: PMC11940768 DOI: 10.3390/biom15030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
The metabolic response to a maximal exercise test in physically inactive adults remains poorly understood, particularly regarding the role of adiponectin, an adipokine with insulin-sensitizing and anti-inflammatory properties. Adiponectin circulates in three isoforms-low (LMW), medium (MMW), and high-molecular-weight (HMW)-with differing bioactivities. While exercise is known to influence adiponectin levels, evidence is conflicting, and few studies have explored isoform-specific changes. This study aimed to evaluate the effects of a single maximal exercise session on circulating adiponectin isoforms and their associations with metabolic and kidney function markers in physically inactive young adults. In this quasi-experimental study, twenty-one physically inactive participants (mean age 24.6 ± 2.1 years, 85.7% women) completed a progressive cycle ergometer test. Circulating levels of LMW and MMW adiponectin, metabolic outcomes (e.g., cholesterol, triglycerides, fibroblast growth factor 21 (FGF21)), and kidney function markers (e.g., creatinine, proteinuria) were assessed before and after exercise using biochemical assays and Western blotting. Comparisons between pre- and post-exercise values were made with the Wilcoxon test. Exercise increased lipid metabolism markers (total cholesterol, triglycerides, HDL) and kidney stress indicators (albuminuria, proteinuria) (p < 0.05). LMW and MMW adiponectin levels showed no significant overall changes, but LMW adiponectin positively correlated with changes in total cholesterol and FGF21, while MMW adiponectin negatively correlated with creatinine and proteinuria (p < 0.05). HMW adiponectin was undetectable by our methods. A single maximal exercise session revealed isoform-specific associations between adiponectin and metabolic or kidney stress markers, emphasizing the complex role of adiponectin in exercise-induced metabolic responses. Future research should explore mechanisms underlying these differential associations to optimize exercise interventions for metabolic health improvement.
Collapse
Affiliation(s)
- Johnattan Cano-Montoya
- Carrera de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Valdivia 5090000, Chile;
| | - Amanda Bentes
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.B.); (P.E.)
| | - Yanara Pavez
- Carrera de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5090000, Chile; (Y.P.); (P.R.)
| | - Paola Rubilar
- Carrera de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5090000, Chile; (Y.P.); (P.R.)
| | - Carolina Lavoz
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.B.); (P.E.)
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Viviana Sandoval
- Carrera de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile
| | - Sergio Martínez-Huenchullán
- Carrera de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Valdivia 5090000, Chile;
| |
Collapse
|
4
|
Jahangiri M, Shahrbanian S, Gharakhanlou R. High intensity interval training alters gene expression linked to mitochondrial biogenesis and dynamics in high fat diet fed rats. Sci Rep 2025; 15:5442. [PMID: 39952980 PMCID: PMC11828894 DOI: 10.1038/s41598-025-86767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
A High-Fat Diet (HFD) leads to disruption of mitochondrial biogenesis and dynamics. Exercise training, especially High-Intensity Interval Training (HIIT) increases mitochondrial biogenesis and dynamics. The present study aimed to investigate the effect of a period of HIIT with and without HFD consumption on the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1-α), Mitofusins-2 (Mfn2), Optic atrophy-1 (Opa1), Dynamin-related protein-1 (Drp1) and mitochondrial Fission protein-1 (Fis1) genes as indicators of mitochondrial biogenesis and dynamics function in the soleus muscle of male Wistar rats. Twenty-four healthy male Wistar rats were randomly divided into four groups: (1) Control, (2) Control + HIIT, (3) HFD, and (4) HFD + HIIT. The HIIT training protocol lasted for 10 weeks with a frequency of 3 sessions per week. The Real-Time Quantitative Reverse Transcription PCR method was used to investigate the gene expression. One-way ANOVA and Fisher's post-hoc analyses were used to examine group differences. HFD consumption caused an increase in weight (P < 0.05), the expression of Drp1 and Fis1 genes (P < 0.001), and a decreased expression of Pgc1-α, Mfn2, and Opa1 genes (P < 0.001). HIIT training increased the expression of PGC1-α (P = 0.009), Mfn2 (P < 0.004), and Opa1 (P < 0.011) genes, while it decreased the expression of Drp1 (P = 0.003) and Fis1 genes (P = 0.027). These findings suggest that HIIT can counteract the negative effects of HFD on mitochondrial function by modulating gene expression related to mitochondrial biogenesis and dynamics.
Collapse
Affiliation(s)
- Mohammad Jahangiri
- Department of Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Shahnaz Shahrbanian
- Department of Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran.
| | - Reza Gharakhanlou
- Department of Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Gong D, Lei J, He X, Hao J, Zhang F, Huang X, Gu W, Yang X, Yu J. Keys to the switch of fat burning: stimuli that trigger the uncoupling protein 1 (UCP1) activation in adipose tissue. Lipids Health Dis 2024; 23:322. [PMID: 39342273 PMCID: PMC11439242 DOI: 10.1186/s12944-024-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
As one of the main pathogenic factors of cardiovascular and cerebrovascular diseases, the incidence of metabolic diseases such as adiposity and metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing annually. It is urgent and crucial to find more therapeutic targets to treat these diseases. Mainly expressed in brown adipocytes, mitochondrial uncoupling protein 1 (UCP1) is key to the thermogenesis of classical brown adipose tissue (BAT). Furthermore, white adipose tissue (WAT) is likely to express more UCP1 and subsequently acquire the ability to undergo thermogenesis under certain stimuli. Therefore, targeting and activating UCP1 to promote increased BAT thermogenesis and browning of WAT are helpful in treating metabolic diseases, such as adiposity and MASLD. In this case, the stimuli that activate UCP1 are emerging. Therefore, we summarize the thermogenic stimuli that have activated UCP1 in recent decades, among which cold exposure is one of the stimuli first discovered to activate BAT thermogenesis. As a convenient and efficient therapy with few side effects and good metabolic benefits, physical exercise can also activate the expression of UCP1 in adipose tissue. Notably, for the first time, we have summarized and demonstrated the stimuli of traditional Chinese medicines that can activate UCP1, such as acupuncture, Chinese herbal formulas, and Chinese medicinal herbs. Moreover, pharmacological agents, functional foods, food ingredients, and the gut microbiota are also commonly associated with regulating and activating UCP1. The identification and analysis of UCP1 stimuli can greatly facilitate our understanding of adipose tissue thermogenesis, including the browning of WAT. Thus, it is more conducive to further research and therapy for glucose and lipid metabolism disorders.
Collapse
Affiliation(s)
- Dihong Gong
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Juanhong Lei
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xudong He
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Junjie Hao
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Fan Zhang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xinya Huang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Wen Gu
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xingxin Yang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China.
| | - Jie Yu
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China.
| |
Collapse
|
6
|
Bravo GM, Paramasivam P, Bellissimo GF, Jacquez Q, Zheng H, Amorim F, Alvidrez RIM. High-Intensity Interval Training Decreases Circulating HMGB1 in Individuals with Insulin Resistance; Plasma Lipidomics Identifies Associated Cardiometabolic Benefits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608998. [PMID: 39229166 PMCID: PMC11370382 DOI: 10.1101/2024.08.21.608998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background: Exercise is a fundamental primary standard of care for cardiometabolic health. Body Weight (BW) High-Intensity Interval Training (HIIT) is an effective strategy for reducing cardiometabolic markers in individuals with insulin resistance and Type-2 diabetes (T2D). High-mobility group box 1 (HMGB1), a ubiquitous nuclear factor, plays an ample role beyond an alarmin in T2D development and progression. Our group has described this novel role previously, showing the beneficial effect of whole body HMGB1 silencing in decreasing hyperglycemia in diabetic mice. In the present study we tested the hypothesis that BW-HIIT as an effective exercise training modality will decrease cardiometabolic risk with a concomitant decrease in circulating HMGB1 more prominently in insulin resistant individuals compared to non-insulin resistant individuals contrasting to what we can evidence in a preclinical murine model of insulin resistance; Methods: Human and mouse pre- and post-exercise serum/plasma samples were analyzed for Lipidomics as well as Metabolic and Cytokine Multiplex assays. Standard of care, as well as cardiometabolic parameters, was also performed in human subjects; Results: insulin resistant individuals had the most positive effect, primarily with a decrease in the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). as an index of insulin resistance as well as decreased HMGB1 post-exercise. Lipidomic analysis illustrated the highly beneficial effect of exercise training using a modified HIIT program, showing an enhanced panel of circulating lipids post-exercise exclusively in insulin resistant individuals. Plasma multiplex revealed significant translational heterogeneity in our studies with distinct metabolic hormone responses to exercise conditioning with a decrease in inflammatory markers in insulin resistant individuals; Conclusions: The current study demonstrated that 6-week BW-HIIT training improves cardiometabolic, anti-inflammatory markers, metabolic hormones, and insulin sensitivity in humans, strongly associated with decreased circulating HMGB1. Overall, these experiments reinforce the potential of HMGB1 as a marker of changes in insulin resistance and the positive effect of exercise training on insulin resistance possibly preventing the development of T2D and associated complications.
Collapse
|
7
|
Enríquez-Schmidt J, Mautner Molina C, Kalazich Rosales M, Muñoz M, Ruiz-Uribe M, Fuentes Leal F, Monrroy Uarac M, Cárcamo Ibaceta C, Fazakerley DJ, Larance M, Ehrenfeld P, Martínez-Huenchullán S. Moderate-intensity constant or high-intensity interval training? Metabolic effects on candidates to undergo bariatric surgery. Nutr Metab Cardiovasc Dis 2024; 34:1681-1691. [PMID: 38553359 DOI: 10.1016/j.numecd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND & AIMS Bariatric surgery is highly effective against obesity. Pre-surgical exercise programs are recommended to prepare the candidate physically and metabolically for surgery-related rapid weight loss. However, the ideal exercise prescription in this population is unknown. This study aimed to compare the metabolic effects of moderate-intensity constant (MICT) vs. a high-intensity interval training (HIIT) program in candidates to undergo bariatric surgery. METHODS AND RESULTS Twenty-five candidates (22 women) to undergo sleeve gastrectomy aged from 18 to 60 years old were recruited. At baseline, we measured body composition, physical activity levels, grip strength, and aerobic capacity. Further, we assessed metabolic function through glycemia and insulinemia (both fasting and after oral glucose tolerance test (OGTT)), homeostatic model assessment for insulin resistance (HOMA-IR), lipid profile, glycated haemoglobin (HbA1c), transaminases, fibroblast growth factor 21 (FGF21), growth differentiation factor 15 (GDF15), apelin, and adiponectin. Afterward, participants were randomized into MICT (n = 14) or HIIT (n = 11). Both training programs consisted of 10 sessions (2-3 times/week, 30 min per session) distributed during 4 weeks before the surgery. After this, all outcomes were measured again at the end of the training programs and 1 month after the surgery (follow-up). A mixed effect with Tukey's post-hoc analysis was performed to compare values at baseline vs. post-training vs. postsurgical follow-up. Both training programs increased aerobic capacity after training (p < 0.05), but only after MICT these changes were kept at follow-up (p < 0.05). However, only MICT decreased fat mass and increased total muscle mass and physical activity levels (p < 0.05). Metabolically, MICT decreased insulinemia after OGTT (p < 0.05), whereas HIIT increased adiponectin after training and GDF15 at follow-up (both p < 0.05). CONCLUSIONS Both MICT and HIIT conferred benefits in candidates to undergo bariatric surgery, however, several of those effects were program-specific, suggesting that exercise intensity should be considered when preparing these patients. Future studies should explore the potential benefits of prescribing MICT or HIIT in a customized fashion depending on a pretraining screening, along with possible summatory effects by combining these two exercise programs (MICT + HIIT). CLINICAL TRIAL REGISTRATION International Traditional Medicine Clinical Trial Registry, N° ISRCTN42273422.
Collapse
Affiliation(s)
- Javier Enríquez-Schmidt
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Exercise Physiology Laboratory, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Camila Mautner Molina
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; School of Physical Therapy, Universidad San Sebastián, Valdivia 5090000, Chile
| | | | | | - Matias Ruiz-Uribe
- Cardiorespiratory and Metabolic Function Laboratory - Neyün, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | | | - Manuel Monrroy Uarac
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Exercise Physiology Laboratory, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Cárcamo Ibaceta
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; Surgery Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB5, United Kingdom
| | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Pamela Ehrenfeld
- Cellular Pathology Laboratory, Anatomy, Histology, and Pathology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Sergio Martínez-Huenchullán
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; School of Physical Therapy, Universidad San Sebastián, Valdivia 5090000, Chile; Cardiorespiratory and Metabolic Function Laboratory - Neyün, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile.
| |
Collapse
|
8
|
Nirmala FS, Lee H, Kim YI, Hahm JH, Seo HD, Kim M, Jung CH, Ahn J. Exercise-induced signaling activation by Chrysanthemum zawadskii and its active compound, linarin, ameliorates age-related sarcopenia through Sestrin 1 regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155695. [PMID: 38728922 DOI: 10.1016/j.phymed.2024.155695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Exercise is an effective strategy to prevent sarcopenia, but high physical inactivity in the elderly requires alternative therapeutic approaches. Exercise mimetics are therapeutic compounds that simulate the beneficial effects of exercise on skeletal muscles. However, the toxicity and adverse effects of exercise mimetics raise serious concerns. PURPOSE We aimed to search novel plant-based alternatives to activate exercise induced-signaling. METHODS We used open databases and luciferase assays to identify plant-derived alternatives to activate exercise-induced signaling and compared its efficacy to mild intensity continuous training (MICT) in aged C57BL/6 mice. The nineteen-month-old mice were either fed an experimental diet supplemented with the isolated alternative or subjected to MICT for up to 21 mo of age. RESULTS Our analysis revealed that Chrysanthemum zawadskii Herbich var latillobum (Maxim.) Kitamura (CZH), a medicinal plant rich in linarin, is a novel activator of peroxisome proliferator-activated receptor δ (PPARδ) and estrogen-related receptor γ (ERRγ), key regulators of exercise-induced positive effects on muscles. CZH supplementation ameliorated the loss of muscle function and mass, and increased PPARδ and ERRγ expression in mouse muscles. CZH also improved mitochondrial functions and proteostasis in aged mice, similar to MICT. Furthermore, CZH and linarin induced the activation of Sestrin 1, a key mediator of exercise benefits, in muscle. Silencing Sestrin 1 negated the increase in myogenesis and mitochondrial respiration by CZH and linarin in primary myoblasts from old mice. CONCLUSION Our findings suggest the potential of CZH as a novel plant-derived alternative to activate exercise-induced signaling for preventing sarcopenia in sedentary older adults. This could offer a safer therapeutic option for sarcopenia treatment.
Collapse
Affiliation(s)
- Farida S Nirmala
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea; Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Hyunjung Lee
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Young-In Kim
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Jeong-Hoon Hahm
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Hyo-Deok Seo
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Minjung Kim
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, South Korea
| | - Chang Hwa Jung
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea; Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Jiyun Ahn
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea; Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea.
| |
Collapse
|
9
|
Ruíz-Uribe M, Enríquez-Schmidt J, Monrroy-Uarac M, Mautner-Molina C, Kalazich-Rosales M, Muñoz M, Fuentes-Leal F, Cárcamo-Ibaceta C, Fazakerley DJ, Larance M, Ehrenfeld P, Martínez-Huenchullán S. Moderate-Intensity Constant and High-Intensity Interval Training Confer Differential Metabolic Benefits in Skeletal Muscle, White Adipose Tissue, and Liver of Candidates to Undergo Bariatric Surgery. J Clin Med 2024; 13:3273. [PMID: 38892984 PMCID: PMC11172953 DOI: 10.3390/jcm13113273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: Bariatric surgery candidates require presurgical physical training, therefore, we compared the metabolic effects of a constant moderate-intensity training program (MICT) vs. a high-intensity interval training (HIIT) in this population. Methods: Seventeen participants performed MICT (n = 9, intensity of 50% of heart rate reserve (HRR) and/or 4-5/10 subjective sensation of effort (SSE)) or HIIT (n = 8, 6 cycles of 2.5 min at 80% of the HRR and/or 7-8/10 of SSE, interspersed by 6 cycles of active rest at 20% of the FCR) for 10 sessions for 4 weeks. After training, tissue samples (skeletal muscle, adipose tissue, and liver) were extracted, and protein levels of adiponectin, GLUT4, PGC1α, phospho-AMPK/AMPK, collagen 1 and TGFβ1 were measured. Results: Participants who performed MICT showed higher protein levels of PGC-1α in skeletal muscle samples (1.1 ± 0.27 vs. 0.7 ± 0.4-fold change, p < 0.05). In the liver samples of the people who performed HIIT, lower protein levels of phospho-AMPK/AMPK (1.0 ± 0.37 vs. 0.52 ± 0.22-fold change), PGC-1α (1.0 ± 0.18 vs. 0.69 ± 0.15-fold change), and collagen 1 (1.0 ± 0.26 vs. 0.59 ± 0.28-fold change) were observed (all p < 0.05). In subcutaneous adipose tissue, higher adiponectin levels were found only after HIIT training (1.1 ± 0.48 vs. 1.9 ± 0.69-fold change, p < 0.05). Conclusions: Our results show that both MICT and HIIT confer metabolic benefits in candidates undergoing bariatric surgery; however, most of these benefits have a program-specific fashion. Future studies should aim to elucidate the mechanisms behind these differences.
Collapse
Affiliation(s)
- Matías Ruíz-Uribe
- Cardiorespiratory and Metabolic Function Laboratory–Neyün, Valdivia 5090000, Chile;
| | - Javier Enríquez-Schmidt
- Exercise Physiology Laboratory, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; (J.E.-S.); (M.M.-U.)
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Manuel Monrroy-Uarac
- Exercise Physiology Laboratory, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; (J.E.-S.); (M.M.-U.)
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Camila Mautner-Molina
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; (C.M.-M.); (M.K.-R.); (M.M.); (F.F.-L.); (C.C.-I.)
| | - Mariana Kalazich-Rosales
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; (C.M.-M.); (M.K.-R.); (M.M.); (F.F.-L.); (C.C.-I.)
| | - Maximiliano Muñoz
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; (C.M.-M.); (M.K.-R.); (M.M.); (F.F.-L.); (C.C.-I.)
| | - Francisca Fuentes-Leal
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; (C.M.-M.); (M.K.-R.); (M.M.); (F.F.-L.); (C.C.-I.)
| | - Carlos Cárcamo-Ibaceta
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; (C.M.-M.); (M.K.-R.); (M.M.); (F.F.-L.); (C.C.-I.)
- Surgery Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Daniel J. Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Pamela Ehrenfeld
- Cellular Pathology Laboratory, Anatomy, Histology, and Pathology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Sergio Martínez-Huenchullán
- Cardiorespiratory and Metabolic Function Laboratory–Neyün, Valdivia 5090000, Chile;
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- School of Physical Therapy, Universidad San Sebastián, Valdivia 5090000, Chile
| |
Collapse
|
10
|
Eisinger K, Girke P, Buechler C, Krautbauer S. Adipose tissue depot specific expression and regulation of fibrosis-related genes and proteins in experimental obesity. Mamm Genome 2024; 35:13-30. [PMID: 37884762 PMCID: PMC10884164 DOI: 10.1007/s00335-023-10022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Transforming growth factor beta (Tgfb) is a well-studied pro-fibrotic cytokine, which upregulates cellular communication network factor 2 (Ccn2), collagen, and actin alpha 2, smooth muscle (Acta2) expression. Obesity induces adipose tissue fibrosis, which contributes to metabolic diseases. This work aimed to analyze the expression of Tgfb, Ccn2, collagen1a1 (Col1a1), Acta2 and BMP and activin membrane-bound inhibitor (Bambi), which is a negative regulator of Tgfb signaling, in different adipose tissue depots of mice fed a standard chow, mice fed a high fat diet (HFD) and ob/ob mice. Principally, these genes were low expressed in brown adipose tissues and this difference was less evident for the ob/ob mice. Ccn2 and Bambi protein as well as mRNA expression, and collagen1a1 mRNA were not induced in the adipose tissues upon HFD feeding whereas Tgfb and Acta2 mRNA increased in the white fat depots. Immunoblot analysis showed that Acta2 protein was higher in subcutaneous and perirenal fat of these mice. In the ob/ob mice, Ccn2 mRNA and Ccn2 protein were upregulated in the fat depots. Here, Tgfb, Acta2 and Col1a1 mRNA levels and serum Tgfb protein were increased. Acta2 protein was, however, not higher in subcutaneous and perirenal fat of these mice. Col6a1 mRNA was shown before to be higher in obese fat tissues. Current analysis proved the Col6a1 protein was induced in subcutaneous fat of HFD fed mice. Notably, Col6a1 was reduced in perirenal fat of ob/ob mice in comparison to the respective controls. 3T3-L1 cells express Ccn2 and Bambi protein, whose levels were not changed by fatty acids, leptin, lipopolysaccharide, tumor necrosis factor and interleukin-6. All of these factors led to higher Tgfb in 3T3-L1 adipocyte media but did not increase its mRNA levels. Free fatty acids induced necrosis whereas apoptosis did not occur in any of the in vitro incubations excluding cell death as a main reason for higher Tgfb in cell media. In summary, Tgfb mRNA is consistently induced in white fat tissues in obesity but this is not paralleled by a clear increase of its target genes. Moreover, discrepancies between mRNA and protein expression of Acta2 were observed. Adipocytes seemingly do not contribute to higher Tgfb mRNA levels in obesity. These cells release more Tgfb protein when challenged with obesity-related metabolites connecting metabolic dysfunction and fibrosis.
Collapse
Affiliation(s)
- Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Philipp Girke
- Department of Genetics, University of Regensburg, 93040, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| |
Collapse
|
11
|
Tincknell JB, Kugler BA, Spicuzza H, Berger N, Yan H, You T, Zou K. High-intensity interval training attenuates impairment in regulatory protein machinery of mitochondrial quality control in skeletal muscle of diet-induced obese mice. Appl Physiol Nutr Metab 2024; 49:236-249. [PMID: 37852013 DOI: 10.1139/apnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Mitochondrial quality control processes are essential in governing mitochondrial integrity and function. The purpose of the study was to examine the effects of 10 weeks of high-intensity interval training (HIIT) on the regulatory protein machinery of skeletal muscle mitochondrial quality control and whole-body glucose homeostasis in diet-induced obese mice. Male C57BL/6 mice were assigned to low-fat diet (LFD) or high-fat diet (HFD) group. After 10 weeks, HFD-fed mice were divided into sedentary and HIIT (HFD + HIIT) groups for another 10 weeks (n = 9/group). Graded exercise test, glucose and insulin tolerance tests, mitochondrial respiration, and protein markers of mitochondrial quality control processes were determined. HFD-fed mice exhibited lower ADP-stimulated mitochondrial respiration (p < 0.05). However, 10 weeks of HIIT prevented this impairment (p < 0.05). Importantly, the ratio of Drp1(Ser616) over Drp1(Ser637) phosphorylation, an indicator of mitochondrial fission, was significantly higher in HFD-fed mice (p < 0.05), but such increase was attenuated in HFD-HIIT compared to HFD (-35.7%, p < 0.05). Regarding autophagy, skeletal muscle p62 content was lower in the HFD group than the LFD group (-35.1%, p < 0.05); however, such reduction was disappeared in the HFD + HIIT group. In addition, LC3B II/I ratio was higher in the HFD group than the LFD group (15.5%, p < 0.05) but was ameliorated in the HFD + HIIT group (-29.9%, p < 0.05). Overall, our study demonstrated that 10 weeks of HIIT was effective in improving skeletal muscle mitochondrial respiration and the regulatory protein machinery of mitochondrial quality control in diet-induced obese mice through the alterations of mitochondrial fission protein Drp1 phosphorylations and p62/LC3B-mediated regulatory machinery of autophagy.
Collapse
Affiliation(s)
- James B Tincknell
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Benjamin A Kugler
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Haley Spicuzza
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Nicolas Berger
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Huimin Yan
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Tongjian You
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kai Zou
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
12
|
Bódis K, Breuer S, Crepzia-Pevzner A, Zaharia OP, Schön M, Saatmann N, Altenhofen D, Springer C, Szendroedi J, Wagner R, Al-Hasani H, Roden M, Pesta D, Chadt A. Impact of physical fitness and exercise training on subcutaneous adipose tissue beiging markers in humans with and without diabetes and a high-fat diet-fed mouse model. Diabetes Obes Metab 2024; 26:339-350. [PMID: 37869933 DOI: 10.1111/dom.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023]
Abstract
AIMS Exercise training induces white adipose tissue (WAT) beiging and improves glucose homeostasis and mitochondrial function in rodents. This could be relevant for type 2 diabetes in humans, but the effect of physical fitness on beiging of subcutaneous WAT (scWAT) remains unclear. This translational study investigates if beiging of scWAT associates with physical fitness in healthy humans and recent-onset type 2 diabetes and if a voluntary running wheel intervention is sufficient to induce beiging in mice. MATERIALS AND METHODS Gene expression levels of established beiging markers were measured in scWAT biopsies of humans with (n = 28) or without type 2 diabetes (n = 28), stratified by spiroergometry into low (L-FIT; n = 14 each) and high physical fitness (H-FIT; n = 14 each). High-fat diet-fed FVB/N mice underwent voluntary wheel running, treadmill training or no training (n = 8 each group). Following the training intervention, mitochondrial respiration and content of scWAT were assessed by high-resolution respirometry and citrate synthase activity, respectively. RESULTS Secreted CD137 antigen (Tnfrsf9/Cd137) expression was three-fold higher in glucose-tolerant H-FIT than in L-FIT, but not different between H-FIT and L-FIT with type 2 diabetes. In mice, both training modalities increased Cd137 expression and enhanced mitochondrial content without changing respiration in scWAT. Treadmill but not voluntary wheel running led to improved whole-body insulin sensitivity. CONCLUSIONS Higher physical fitness and different exercise interventions associated with higher gene expression levels of the beiging marker CD137 in healthy humans and mice on a high-fat diet. Humans with recent-onset type 2 diabetes show an impaired adipose tissue-specific response to physical activity.
Collapse
Affiliation(s)
- Kálmán Bódis
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Saida Breuer
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Assja Crepzia-Pevzner
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Nina Saatmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Delsi Altenhofen
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Christian Springer
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Robert Wagner
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Faculty of Medicine and University Hospital, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Zhou H, Chen C, Hu H, Jiang B, Yin Y, Zhang K, Shen M, Wu S, Wang Z. High-intensity interval training improves fatty infiltration in the rotator cuff through the β3 adrenergic receptor in mice. Bone Joint Res 2023; 12:455-466. [PMID: 37524338 PMCID: PMC10390263 DOI: 10.1302/2046-3758.128.bjr-2022-0309.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Aims Rotator cuff muscle atrophy and fatty infiltration affect the clinical outcomes of rotator cuff tear patients. However, there is no effective treatment for fatty infiltration at this time. High-intensity interval training (HIIT) helps to activate beige adipose tissue. The goal of this study was to test the role of HIIT in improving muscle quality in a rotator cuff tear model via the β3 adrenergic receptor (β3AR). Methods Three-month-old C57BL/6 J mice underwent a unilateral rotator cuff injury procedure. Mice were forced to run on a treadmill with the HIIT programme during the first to sixth weeks or seventh to 12th weeks after tendon tear surgery. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice ten minutes before each exercise through intraperitoneal injection. Supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat were harvested at the end of the 12th week after tendon tear and analyzed biomechanically, histologically, and biochemically. Results Histological analysis of supraspinatus muscle showed that HIIT improved muscle atrophy, fatty infiltration, and contractile force compared to the no exercise group. In the HIIT groups, supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat showed increased expression of tyrosine hydroxylase and uncoupling protein 1, and upregulated the β3AR thermogenesis pathway. However, the effect of HIIT was not present in mice injected with SR59230A, suggesting that HIIT affected muscles via β3AR. Conclusion HIIT improved supraspinatus muscle quality and function after rotator cuff tears by activating systemic sympathetic nerve fibre near adipocytes and β3AR.
Collapse
Affiliation(s)
- Hecheng Zhou
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya Medical School of Central South University, Changsha, China
| | - Chuanshun Chen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya Medical School of Central South University, Changsha, China
| | - Hai Hu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Binbin Jiang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuesong Yin
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya Medical School of Central South University, Changsha, China
| | - Kexiang Zhang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minren Shen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Tincknell JB, Kugler B, Spicuzza H, Yan H, You T, Zou K. High-Intensity Interval Training Attenuates Impairment in Regulatory Protein Machinery of Mitochondrial Quality Control in Skeletal Muscle of Diet-Induced Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546902. [PMID: 37425824 PMCID: PMC10326985 DOI: 10.1101/2023.06.28.546902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mitochondrial quality control processes are essential in governing mitochondrial integrity and function. The purpose of the study was to examine the effects of 10 weeks of HIIT on the regulatory protein machinery of skeletal muscle mitochondrial quality control and whole-body glucose homeostasis in diet-induced obese mice. Male C57BL/6 mice were randomly assigned to a low-fat diet (LFD) or high-fat diet (HFD) group. After 10 weeks, HFD-fed mice were divided into sedentary and HIIT (HFD+HIIT) groups and remained on HFD for another 10 weeks (n=9/group). Graded exercise test, glucose and insulin tolerance tests, mitochondrial respiration and regulatory protein markers of mitochondrial quality control processes were determined by immunoblots. Ten weeks of HIIT enhanced ADP-stimulated mitochondrial respiration in diet-induced obese mice (P < 0.05) but did not improve whole-body insulin sensitivity. Importantly, the ratio of Drp1(Ser 616 ) over Drp1(Ser 637 ) phosphorylation, an indicator of mitochondrial fission, was attenuated in HFD-HIIT compared to HFD (-35.7%, P < 0.05). Regarding autophagy, skeletal muscle p62 content was lower in HFD group than LFD group (-35.1%, P < 0.05), however, such reduction was disappeared in HFD+HIIT group. In addition, LC3B II/I ratio was higher in HFD than LFD group (15.5%, P < 0.05) but was ameliorated in HFD+HIIT group (-29.9%, P < 0.05). Overall, our study demonstrated that 10 weeks of HIIT was effective in improving skeletal muscle mitochondrial respiration and the regulatory protein machinery of mitochondrial quality control in diet-induced obese mice through the alterations of mitochondrial fission protein Drp1 activity and p62/LC3B-mediated regulatory machinery of autophagy.
Collapse
|
15
|
Zhou H, Wang Z, Chen C, Hu H, Jiang B, Yin Y, Zhang K, Shen M, Wu S. Effect of High-Intensity Interval Training on Fatty Infiltration After Delayed Rotator Cuff Repair in a Mouse Model. Orthop J Sports Med 2023; 11:23259671231170192. [PMID: 37223073 PMCID: PMC10201644 DOI: 10.1177/23259671231170192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 05/25/2023] Open
Abstract
Background Fatty infiltration (FI) of the rotator cuff muscles is correlated with shoulder function and retear rates after rotator cuff repair. High-intensity interval training (HIIT) induces beige adipose tissue to express more uncoupling protein 1 (UCP1) to consume lipids. The beta-3 adrenergic receptor (β3AR) is located on adipocyte membrane and induces thermogenesis. Purpose To test the role of HIIT in improving muscle quality and contractility in a delayed rotator cuff repair mouse model via β3AR. Study Design Controlled laboratory study. Methods Three-month-old C57BL/6J mice underwent a unilateral supraspinatus (SS) tendon transection with a 6-week delayed tendon repair. Mice ran on a treadmill with the HIIT program for 6 weeks after tendon transection or after delayed repair. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice 10 minutes before each exercise through intraperitoneal injection. The SS, interscapular brown adipose tissue (iBAT), and subcutaneous inguinal white adipose tissue (ingWAT) were harvested at the end of the 12th week after tendon transection and were analyzed by histology and Western blotting. Tests were performed to assess muscle contractility of the SS. Results Histologic analysis of SS showed that HIIT prevented and reversed muscle atrophy and FI. The contractile tests showed higher contractility of the SS in the HIIT groups than in the no-exercise group. In the HIIT groups, SS, iBAT, and ingWAT all showed increased expression of tyrosine hydroxylase, UCP1, and upregulated β3AR thermogenesis pathway. However, SR59230A inhibited HIIT, suggesting that the effect of HIIT depends on β3AR. Conclusion HIIT improved SS quality and function after delayed rotator cuff repair through a β3AR-dependent mechanism. Clinical Relevance HIIT may serve as a new rehabilitation method for patients with rotator cuff muscle atrophy and FI after rotator cuff repair to improve postoperative clinical outcomes.
Collapse
Affiliation(s)
- Hecheng Zhou
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chuanshun Chen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Hai Hu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Binbin Jiang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yuesong Yin
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Kexiang Zhang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Minren Shen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Song Wu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
16
|
Zheng L, Qin R, Rao Z, Xiao W. High-intensity interval training induces renal injury and fibrosis in type 2 diabetic mice. Life Sci 2023; 324:121740. [PMID: 37120014 DOI: 10.1016/j.lfs.2023.121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
AIMS Previous studies showed that high-intensity interval training (HIIT) improved fasting blood glucose and insulin resistance in type 2 diabetes mellitus (T2DM) mice. However, the effect of HIIT on the kidneys of mice with T2DM has not been examined. This study aimed to investigate the impact of HIIT on the kidneys of T2DM mice. MATERIALS AND METHODS T2DM mice were induced with a high-fat diet (HFD) and one-time 100 mg/kg streptozotocin intraperitoneal injection, and then T2DM mice were treated with 8 weeks of HIIT. Renal function and glycogen deposition were observed by serum creatinine levels and PAS staining, respectively. Sirius red staining, hematoxylin-eosin staining, and Oil red O staining were used to detect fibrosis and lipid deposition. Western blotting was performed to detect the protein levels. KEY FINDINGS HIIT significantly ameliorated the body composition, fasting blood glucose, and serum insulin of the T2DM mice. HIIT also improved glucose tolerance, insulin tolerance, and renal lipid deposition of T2DM mice. However, we found that HIIT increased serum creatinine and glycogen accumulation in the kidneys of T2DM mice. Western blot analysis showed that the PI3K/AKT/mTOR signaling pathway was activated after HIIT. The expression of fibrosis-related proteins (TGF-β1, CTGF, collagen-III, α-SMA) increased, while the expression of klotho (sklotho) and MMP13 decreased in the kidneys of HIIT mice. SIGNIFICANCE This study concluded that HIIT induced renal injury and fibrosis, although it also improved glucose homeostasis in T2DM mice. The current study reminds us that patients with T2DM should be cautious when participating in HIIT.
Collapse
Affiliation(s)
- Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; Shanghai Key Lab of Human Performance, Shanghai University of sport, Shanghai 200438, China
| | - Ruiting Qin
- College of Physical Education, Shanghai University, Shanghai 200444, China
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China; Exercise Biological Center, China Institute of Sport Science, Beijing, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of sport, Shanghai 200438, China.
| |
Collapse
|
17
|
Lavier J, Bouzourène K, Millet GP, Mazzolai L, Pellegrin M. Physical Performance and Skeletal Muscle Transcriptional Adaptations Are Not Impacted by Exercise Training Frequency in Mice with Lower Extremity Peripheral Artery Disease. Metabolites 2023; 13:metabo13040562. [PMID: 37110220 PMCID: PMC10143072 DOI: 10.3390/metabo13040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Exercise training is an important therapeutic strategy for lower extremity peripheral artery disease (PAD). However, the effects of different exercise frequency on physiological adaptations remain unknown. Thus, this study compared the effects of a 7-week moderate-intensity aerobic training performed either three or five times/week on skeletal muscle gene expression and physical performance in mice with PAD. Hypercholesterolemic male ApoE-deficient mice were subjected to unilateral iliac artery ligation and randomly assigned to sedentary or exercise training regimens either three or five times/week. Physical performance was assessed using a treadmill test to exhaustion. Expression of genes related to glucose and lipid metabolism, mitochondrial biogenesis, muscle fiber-type, angiogenesis, and inflammation was analyzed in non-ischemic and ischemic gastrocnemius muscles by real-time polymerase chain reaction. Physical performance was improved to the same extent in both exercise groups. For gene expression patterns, no statistical differences were observed between three or five times/week exercised mice, both in the non-ischemic and ischemic muscles. Our data show that exercising three to five times a week induces similar beneficial effects on performance. Those results are associated with muscular adaptations that remain identical between the two frequencies.
Collapse
Affiliation(s)
- Jessica Lavier
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Karima Bouzourène
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Lucia Mazzolai
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Maxime Pellegrin
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Martínez-Huenchullán SF, Fox SL, Tam CS, Maharjan BR, Olaya-Agudo LF, Ehrenfeld P, Williams PF, Mclennan SV, Twigg SM. Constant-moderate versus high-intensity interval training on heart adiponectin levels in high-fat fed mice: a preventive and treatment approach. Arch Physiol Biochem 2023; 129:41-45. [PMID: 32715774 DOI: 10.1080/13813455.2020.1797098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Research has described that adiponectin plays a key role in cardiomyocytes metabolism, however, the effects of exercise during obesity on cardiac adiponectin levels is unclear. OBJECTIVE To investigate the effects of constant-moderate endurance (END) and high-intensity interval training (HIIT), on heart adiponectin levels in mice. MATERIAL AND METHODS Two experiments were conducted: (1) preventive (EX1): 10 week-old male mice were fed standard (CHOW) or high-fat diet (HFD;45% fat) and simultaneously trained with END and HIIT for 10 weeks; (2) Treatment (EX2): after 10 weeks of dietary intervention, another cohort of 10 week-old mice were trained by both programmes for 10 weeks. RESULTS In EX1, END and HIIT decreased low-molecular weight adiponectin (∼0.5-fold; p < 0.05) and increased GLUT4 levels (∼2-fold; p < .05). In EX2, HFD significantly decreased high-molecular weight adiponectin (∼0.7-fold; p < .05), and END reversed this change.Discussion and conclusion: HFD and exercise influence heart adiponectin isoforms and therefore might impact cardiomyocyte metabolism.
Collapse
Affiliation(s)
- Sergio F Martínez-Huenchullán
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Sarah L Fox
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Charmaine S Tam
- Northern Clinical School and Centre for Translational Data Science, University of Sydney, Sydney, Australia
| | - Babu Raja Maharjan
- Department of Biochemistry, School of Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Luisa F Olaya-Agudo
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology. Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Valdivia, Chile
| | - Paul F Williams
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Susan V Mclennan
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- New South Wales Health Pathology, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
19
|
Castaño C, Meza-Ramos A, Batlle M, Guasch E, Novials A, Párrizas M. Treatment with EV-miRNAs Alleviates Obesity-Associated Metabolic Dysfunction in Mice. Int J Mol Sci 2022; 23:ijms232314920. [PMID: 36499248 PMCID: PMC9736074 DOI: 10.3390/ijms232314920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022] Open
Abstract
Most cells release extracellular vesicles (EVs) that can be detected circulating in blood. We and others have shown that the microRNA contents of these vesicles induce transcriptomic changes in acceptor cells, contributing to the adjustment of metabolic homeostasis in response to environmental demands. Here, we explore the potential for modulating obesity- and exercise-derived EV-microRNAs to treat the metabolic dysfunction associated with obesity in mice. Treatment with EV-miRNAs alleviated glucose intolerance and insulin resistance in obese mice to an extent similar to that of high-intensity interval training, although only exercise improved cardiorespiratory fitness and decreased body weight. Mechanistically, EV-miRNAs decreased fatty acid and cholesterol biosynthesis pathways in the liver, reducing hepatic steatosis and increasing insulin sensitivity, resulting in decreased glycemia and triglyceridemia. Our data suggest that manipulation of EV-miRNAs may be a viable strategy to alleviate metabolic dysfunction in obese and diabetic patients who are unable to exercise, although actual physical activity is needed to improve cardiorespiratory fitness.
Collapse
Affiliation(s)
- Carlos Castaño
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
| | - Aline Meza-Ramos
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Montserrat Batlle
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 08036 Barcelona, Spain
| | - Eduard Guasch
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 08036 Barcelona, Spain
- Cardiovascular Institute, Hospital Clinic, 08036 Barcelona, Spain
| | - Anna Novials
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
- Correspondence: (A.N.); (M.P.)
| | - Marcelina Párrizas
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
- Correspondence: (A.N.); (M.P.)
| |
Collapse
|
20
|
Gómez-Barroso M, Vargas-Vargas MA, Peña-Montes DJ, Cortés-Rojo C, Saavedra-Molina A, Sánchez-Duarte E, Rodríguez-Orozco AR, Montoya-Pérez R. Comparative Effect of Three Different Exercise Intensities in Combination with Diazoxide on Contraction Capacity and Oxidative Stress of Skeletal Muscle in Obese Rats. BIOLOGY 2022; 11:1367. [PMID: 36138845 PMCID: PMC9495795 DOI: 10.3390/biology11091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Obesity is a chronic disease that impairs skeletal muscle function, affects the ability to contract, and promotes the development of fatigue. For this reason, the study of treatments that seek to reduce the harmful effects of obesity on muscle tissue has been deepened. Diazoxide treatment and various exercise protocols have been proposed to protect skeletal muscle against oxidative stress and its effects. However, the intensity and duration of exercise combined with diazoxide that would obtain the best results for improving skeletal muscle function in obese rats is unknown. To this end, this study evaluated the effects of three different exercise intensities combined with diazoxide on contraction capacity, resistance to fatigue, markers of oxidative stress, lipid peroxidation, ROS, and glutathione redox status of skeletal muscle. The results showed that treatments with diazoxide and exercise at different intensities improved muscle contraction capacity by reducing oxidative stress during obesity, with the best results being obtained with low-intensity exercise in combination with diazoxide. Therefore, these results suggest that diazoxide and low-intensity exercise improve muscle function during obesity by decreasing oxidative stress with the same efficiency as a moderate-intensity exercise protocol.
Collapse
Affiliation(s)
- Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Manuel A. Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Elizabeth Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato, Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, León 37150, Mexico
| | - Alain R. Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chavez”, Universidad Michoacana de San Nicolás de Hidalgo Av. Dr. Rafael Carrillo S/N Esq. Dr. Salvador González Herrejon, Bosque Cuauhtémoc, Morelia 58020, Mexico
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| |
Collapse
|
21
|
Feng X, Xiao J, Bai L. Role of adiponectin in osteoarthritis. Front Cell Dev Biol 2022; 10:992764. [PMID: 36158216 PMCID: PMC9492855 DOI: 10.3389/fcell.2022.992764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis (OA) is a widespread and most common joint disease which leads to social cost increasing accompany with aging population. Surgery is often the final treatment option. The major progression of OA includes cartilage degradation caused by chondrocytes metabolism imbalance. So, the molecular mechanisms of action in chondrocytes may provide insights into treatment methods for OA. Adiponectin is an adipokine with many biological functions in the cell metabolism. Numerous studies have illustrated that adiponectin has diverse biological effects, such as inhibition of cell apoptosis. It regulates various functions in different organs, including muscle, adipose tissue, brain, and bone, and regulates skeletal homeostasis. However, the relationship between adiponectin and cell death in the progression of OA needs further investigation. We elaborate the structure and function and the effect of adiponectin and state the correlation and intersection between adiponectin, autophagy, inflammation, and OA. From the perspective of oxidative stress, apoptosis, pyroptosis, and autophagy, we discuss the possible association between adiponectin, chondrocyte metabolism, and inflammatory factor efforts in OA. What’s more, we summarize the possible treatment methods, including the use of adiponectin as a drug target, and highlight the potential future mechanistic research. In this review, we summarize the molecular pathways and mechanisms of action of adiponectin in chondrocyte inflammation and death and the pathogenesis of OA. We also review the research on adiponectin as a target for treating OA. These studies provide a novel perspective to explore more effective treatment options considering the complex interrelationship between inflammation and metabolism in OA.
Collapse
Affiliation(s)
- Xinyuan Feng
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jiaying Xiao
- Department of Internal Medicine Integrated Ward 2, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
- *Correspondence: Lunhao Bai,
| |
Collapse
|
22
|
Wang Y, Xiang Y, Wang R, Li X, Wang J, Yu S, Zhang Y. Sulforaphane enhances Nrf2-mediated antioxidant responses of skeletal muscle induced by exhaustive exercise in HIIT mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Heden TD, Chen C, Leland G, Mashek MM, Najt CP, Shang L, Chow LS, Mashek DG. Isolated and combined impact of dietary olive oil and exercise on markers of health and energy metabolism in female mice. J Nutr Biochem 2022; 107:109040. [PMID: 35533899 PMCID: PMC9626252 DOI: 10.1016/j.jnutbio.2022.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Abstract
An olive oil (OO) rich diet or high-intensity interval training (HIIT) independently improve markers of health and energy metabolism, but it is unknown if combining OO and HIIT synergize to improve these markers. This study characterized the isolated and combined impact of OO and HIIT on markers of health and energy metabolism in various tissues in C57BL/6J female mice. Nine-week-old mice were divided into four groups for a 12-week diet and/or exercise intervention including: (1) Control Diet without HIIT (CD), (2) Control Diet with HIIT (CD+HIIT), (3) OO diet (10% kcal from olive oil) without HIIT, and (4) OO diet with HIIT (OO+HIIT). Neither dietary OO or HIIT altered body weight, glucose tolerance, or serum lipids. HIIT, regardless of diet, increased aerobic capacity and HDL cholesterol levels. In liver and heart tissue, OO resulted in similar adaptations as HIIT including increased mitochondrial content and fatty acid oxidation but combining OO with HIIT did not augment these effects. In skeletal muscle, HIIT increased mitochondrial content in type II fibers similarly between diets. An RNA sequencing analysis on type I fibers revealed OO reduced muscle regeneration and lipid metabolism gene abundance, whereas HIIT increased the abundance of these genes, independent of diet. HIIT training, independent of diet, induced subcutaneous white adipose tissue (sWAT) hypertrophy, whereas OO induced gonadal white adipose tissue (gWAT) hypertrophy, an effect that was augmented with HIIT. These data highlight the pleiotropic effects of OO and HIIT, although their combination does not synergize to further improve most markers of health and energy metabolism.
Collapse
Affiliation(s)
- Timothy D Heden
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Chen Chen
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Grace Leland
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Mara M Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Charles P Najt
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Linshan Shang
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Lisa S Chow
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Minneapolis, MN
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN; Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Minneapolis, MN.
| |
Collapse
|
24
|
Wang D, Zhang X, Li Y, Jia L, Zhai L, Wei W, Zhang L, Jiang H, Bai Y. Exercise-Induced Browning of White Adipose Tissue and Improving Skeletal Muscle Insulin Sensitivity in Obese/Non-obese Growing Mice: Do Not Neglect Exosomal miR-27a. Front Nutr 2022; 9:940673. [PMID: 35782940 PMCID: PMC9248804 DOI: 10.3389/fnut.2022.940673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise is considered as a favorable measure to prevent and treat childhood obesity. However, the underlying mechanisms of exercise-induced beneficial effects and the difference between obese and non-obese individuals are largely unclear. Recently, miR-27a is recognized as a central upstream regulator of proliferator-activated receptor γ (PPAR-γ) in contributing to various physiological and pathological processes. This study aims to explore the possible cause of exercise affecting white adipose tissue (WAT) browning and reversing skeletal muscle insulin resistance in obese/non-obese immature bodies. For simulating the process of childhood obesity, juvenile mice were fed with a basal diet or high-fat diet (HFD) and took 1 or 2 h swimming exercise simultaneously for 10 weeks. The obese animal model was induced by the HFD. We found that exercise hindered HFD-induced body fat development in growing mice. Exercise modified glucolipid metabolism parameters differently in the obese/non-obese groups, and the changes of the 2 h exercise mice were not consistent with the 1 h exercise mice. The level of serum exosomal miR-27a in the non-exercise obese group was increased obviously, which was reduced in the exercise obese groups. Results from bioinformatics analysis and dual-luciferase reporter assay showed that miR-27a targeted PPAR-γ. Exercise stimulated WAT browning; however, the response of obese WAT lagged behind normal WAT. In the HFD-fed mice, 2 h exercise activated the IRS-1/Akt/GLUT-4 signaling pathway in the skeletal muscles. In summary, our findings confirmed that exercise-induced beneficial effects are associated with exercise duration, and the response of obese and non-obese bodies is different. Exosomal miR-27a might be a crucial node for the process of exercise-induced browning of WAT and improving skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
- The Second People’s Hospital of Jiashan, Jiaxing, China
| | - Xihuan Zhang
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
- Xinzhou District Center for Disease Control and Prevention, Wuhan, China
| | - Yibai Li
- The First Division of Clinical Medicine, China Medical University, Shenyang, China
| | - Lihong Jia
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
| | - Lingling Zhai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
| | - Wei Wei
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
| | - Li Zhang
- Department of Dermatology, First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Hongkun Jiang
- Department of Pediatrics, First Hospital of China Medical University, Shenyang, China
| | - Yinglong Bai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
- *Correspondence: Yinglong Bai,
| |
Collapse
|
25
|
Su H, Wen T, Liu D, Shao J, Zhao L, Gao Q. Effect of 32-Weeks High-Intensity Interval Training and Resistance Training on Delaying Sarcopenia: Focus on Endogenous Apoptosis. Front Physiol 2022; 13:811369. [PMID: 35574455 PMCID: PMC9095960 DOI: 10.3389/fphys.2022.811369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia caused by aging is an important factor leading to a decline in the quality of life of older people. Apoptosis in muscle atrophy accelerates the process of muscle loss in older populations. The present study aimed to investigate the effects of 32 weeks of high-intensity interval training (HIIT) and resistance training (RT) on the skeletal muscle-related indices and provide a theoretical basis for regulating the mitochondrial-mediated pathway to delay sarcopenia. We randomly selected 10 from eight-month-old male SD rats (N = 130) as the baseline group; after 1 week of adaptive feeding, the rats were sacrificed. The remaining rats were randomly assigned to one of three groups: control group (C, N = 40, natural aging for 32 weeks), HIIT group (H, N = 40, performed six loops of 3 min at 90% and 3 min at 50% VO2 max speed treadmill running, with 5 min at 70% VO2 max speed at the beginning and the end of the training, 3 times a week for 32 weeks), and resistance group (R, n = 40, 46 min per day, 3 days per week, with a 30% maximum load on a treadmill with a slope of 35°, 15 m/min). The soleus muscles were collected for analysis at baseline and every 8 weeks. Aging resulted in decreased soleus muscle mass and Bcl-2 levels in the mitochondria, while the levels of reactive oxygen species (ROS) and Bax did not change. HIIT reversed the age-associated activation of pro-apoptotic processes, but RT did not. In addition, when rats were aged from 8 to 16 months, the level of Cyt-C did not change, the Caspase-9 levels and Caspase-3 levels decreased gradually in the soleus muscles, the rats of both the HIIT and RT groups had these indices decreased at 32 weeks. The results suggest that the age-associated loss of muscle mass was reversed by training, and the effect of RT was better than that of HIIT. Both the HIIT and RT rats showed a decrease in the apoptosis of skeletal muscle cells after 32 weeks of intervention. HIIT performed better for long-term intervention regarding the pro-apoptotic factors. This study warranted further research to delineate the underlying mechanism of effects of different exercise methods on the changes of aging skeletal muscle at in vivo level.
Collapse
Affiliation(s)
- Hao Su
- Department of Exercise Biochemistry, Beijing Sport University, Beijing, China
| | - Tianhao Wen
- Military Common Subject Teaching and Research Section, PLA Rocket Force University of Engineering, Xi’an, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Dongsen Liu
- Sport physical therapy and therapeutic exercise, sports health, Beijing Sport University, Beijing, China
| | - Jia Shao
- School of Sport Science, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Lei Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Qi Gao
- Sport physical therapy and therapeutic exercise, sports health, Beijing Sport University, Beijing, China
- *Correspondence: Qi Gao,
| |
Collapse
|
26
|
Porflitt-Rodríguez M, Guzmán-Arriagada V, Sandoval-Valderrama R, Tam CS, Pavicic F, Ehrenfeld P, Martínez-Huenchullán S. Effects of aerobic exercise on fibroblast growth factor 21 in overweight and obesity. A systematic review. Metabolism 2022; 129:155137. [PMID: 35038422 DOI: 10.1016/j.metabol.2022.155137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 21 (FGF21) has been suggested to improve metabolism during aerobic exercise in obesity. However, the variability of exercise interventions gives rise to discrepancies in the field. Therefore, we aimed to systematically review the available literature regarding the effects of aerobic exercise on FGF21 in the context of overweight and obesity. Our search included original articles published between 2009 and November 2021 found in PubMed, Science Direct, and Medline. Clinical and preclinical studies were included. Studies, where subjects or animals presented with other conditions (e.g., cancer, stroke), were excluded. From an initial 43 studies, 19 (clinical studies = 9; preclinical studies = 10) were eligible for inclusion in this review. The main findings were that acute exercise tended to increase circulatory levels of FGF21. In contrast, chronic exercise programs (≥4 weeks) had the opposite effect along with inducing mRNA and protein increases of FGF receptors and β-klotho in adipose tissue, liver, and skeletal muscle. In conclusion, both clinical and preclinical studies showed that aerobic exercise exerts changes in circulatory and tissue FGF21, along with its receptors and co-receptor. Future research is needed to elucidate the mechanisms, along with the physiological and clinical implications of these changes.
Collapse
Affiliation(s)
| | | | | | - Charmaine S Tam
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Francisca Pavicic
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Chile
| | - Sergio Martínez-Huenchullán
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Chile; Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Cardiorespiratory and Metabolic Function Laboratory - Neyün, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
27
|
da Costa JLF, Furino VDO, de Castro CA, Alves JM, Duarte ACGDO. Dietary Intervention Associated With Moderate-Intensity Continuous Training Leads to Changes in the Inflammatory Profile in Visceral Adipose Tissue but Not in Skeletal Muscle in Diet-Induced Obese Rats. Front Physiol 2022; 13:836484. [PMID: 35399283 PMCID: PMC8990936 DOI: 10.3389/fphys.2022.836484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to determine the concentrations of inflammatory markers in visceral adipose tissue (VAT) and skeletal muscle, and changes in body mass and adipocyte size in diet-induced obese rats after moderate-intensity continuous training (MICT) and/or dietary intervention. After 8 weeks of obesity induction through a high-fat diet (HFD) consumption, twenty diet-induced obese male Wistar rats were divided into four groups as follows: (i) control rats fed with HFD (HFD-SED), (ii) obese rats fed with HFD and submitted to MICT (HFD-MICT), (iii) obese rats that were submitted to a nutritional intervention by switching HFD to chow diet (CD-SED), and (iv) obese rats that were submitted to MICT and nutritional intervention (CD-MICT). All the animals in the training groups were submitted to MICT, with an intensity of 50–85% of Vmax, 60 min/day, 3 days/week for 8 weeks. Gastrocnemius muscle (GAST) and mesenteric adipose tissue (mWAT) were collected to quantify tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and IL-10 using ELISA. The body mass was recorded before and after the experimental protocols, and the adipocyte morphology was assessed using histological analysis. The results showed that HFD-SED had higher body mass, higher concentrations of inflammatory markers in mWAT, and higher increase in adipocyte size. The CD-SED and CD-MICT groups presented with reduced body mass, relative weight of mWAT, and adipocyte size. Moreover, the inflammatory markers in mWAT were reduced after dietary intervention (TNF-α), MICT (IL-10 and TNF-α), or both interventions combined (IL-6 and TNF-α). In contrast, there was no reduction in GAST-relative weight or concentrations of inflammatory markers for any treatment. Finally, we concluded that 8 weeks of dietary intervention alone and combined with MICT were effective in reducing some of the deleterious effects caused by obesity.
Collapse
Affiliation(s)
- Jean Lucas Fernandes da Costa
- Department of Physical Education and Human Motricity–DEFMH, Biological and Health Sciences Center–CCBS, Federal University of São Carlos–UFSCar, São Carlos, Brazil
- *Correspondence: Jean Lucas Fernandes da Costa,
| | - Vanessa de Oliveira Furino
- Department of Physical Education and Human Motricity–DEFMH, Biological and Health Sciences Center–CCBS, Federal University of São Carlos–UFSCar, São Carlos, Brazil
| | - Cynthia Aparecida de Castro
- Department of Morphology and Pathology-Biological and Health Sciences Center–CCBS, Federal University of São Carlos–UFSCar, São Carlos, Brazil
| | - João Manoel Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center of Research of Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Cláudia Garcia de Oliveira Duarte
- Department of Physical Education and Human Motricity–DEFMH, Biological and Health Sciences Center–CCBS, Federal University of São Carlos–UFSCar, São Carlos, Brazil
| |
Collapse
|
28
|
Vidal P, Baer LA, Félix-Soriano E, Yang FT, Branch DA, Baskin KK, Stanford KI. Distinct Effects of High-Fat and High-Phosphate Diet on Glucose Metabolism and the Response to Voluntary Exercise in Male Mice. Nutrients 2022; 14:nu14061201. [PMID: 35334860 PMCID: PMC8951123 DOI: 10.3390/nu14061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of metabolic diseases is rapidly increasing and a principal contributor to this is diet, including increased consumption of energy-rich foods and foods with added phosphates. Exercise is an effective therapeutic approach to combat metabolic disease. While exercise is effective to combat the detrimental effects of a high-fat diet on metabolic health, the effects of exercise on a high-phosphate diet have not been thoroughly investigated. Here, we investigated the effects of a high-fat or high-phosphate diet in the presence or absence of voluntary exercise on metabolic function in male mice. To do this, mice were fed a low-fat, normal-phosphate diet (LFPD), a high-phosphate diet (HPD) or a high-fat diet (HFD) for 6 weeks and then subdivided into either sedentary or exercised (housed with running wheels) for an additional 8 weeks. An HFD severely impaired metabolic function in mice, increasing total fat mass and worsening whole-body glucose tolerance, while HPD did not induce any notable effects on glucose metabolism. Exercise reverted most of the detrimental metabolic adaptations induced by HFD, decreasing total fat mass and restoring whole-body glucose tolerance and insulin sensitivity. Interestingly, voluntary exercise had a similar effect on LFPD and HPD mice. These data suggest that a high-phosphate diet does not significantly impair glucose metabolism in sedentary or voluntary exercised conditions.
Collapse
|
29
|
Huang Z, Tang J, Ji K. Exercise prevents HFD-induced insulin resistance risk: involvement of TNF-α level regulated by vagus nerve-related anti-inflammatory pathway in the spleen. Diabetol Metab Syndr 2021; 13:124. [PMID: 34717724 PMCID: PMC8556891 DOI: 10.1186/s13098-021-00712-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Regular physical exercise can improve insulin resistance in insulin target tissues. However, the mechanisms about the beneficial effect of exercise on insulin resistance are not yet fully resolved. This study was carried out to address whether insulin resistance improvement by exercise is involved in an anti-inflammatory pathway in the spleen in high-fat diet (HFD) feeding mice. METHODS Male C57Bl/6J mice with or without subdiaphragmatic vagotomy (sVNS) were subjected to medium-intensity treadmill exercise during HFD feeding. Glucose tolerance test and insulin tolerance test were detected, and spleen acetylcholine level, choline acetyltransferase activity (ChAT), protein kinase C (PKC) and tumor necrosis factor-alpha (TNF-α) were assayed. RESULTS We found that exercise significantly improves HFD-induced glucose intolerance and insulin resistance, along with an increase in acetylcholine level, ChAT activity, and PKC activity, and decrease in TNF-α level in the system and the spleen from HFD-fed mice. However, sVNS abolished the beneficial effect of exercise on glucose intolerance and insulin resistance, decreased acetylcholine level, ChAT activity, and PKC activity, and increase TNF-α level of the spleen in HFD-mice exercise intervention. CONCLUSIONS These data reveal that the prevention of HFD-associated insulin resistance by exercise intervention involves reducing splenic TNF-α level, which is mediated by cholinergic anti-inflammatory activity via influencing PKC activity, ChAT activity, and acetylcholine concentration in mice spleen.
Collapse
Affiliation(s)
- Zhengxi Huang
- Department of Physical Education, Wuhan College, No 333, Huangjiahu Road, Wuhan, 430212, Hubei Province, China
| | - Jialing Tang
- Department of Physical Education, Central South University, Changsha, 410083, Hunan Province, China.
| | - Kai Ji
- College of Physical Education, Wuhan Sports University, Wuhan, 430212, Hubei Province, China.
| |
Collapse
|
30
|
Martinez-Huenchullan SF, Shipsey I, Hatchwell L, Min D, Twigg SM, Larance M. Blockade of High-Fat Diet Proteomic Phenotypes Using Exercise as Prevention or Treatment. Mol Cell Proteomics 2020; 20:100027. [PMID: 33594989 PMCID: PMC7950115 DOI: 10.1074/mcp.tir120.002343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 11/06/2022] Open
Abstract
The increasing consumption of high-fat foods combined with a lack of exercise is a major contributor to the burden of obesity in humans. Aerobic exercise such as running is known to provide metabolic benefits, but how the overconsumption of a high-fat diet (HFD) and exercise interact is not well characterized at the molecular level. Here, we examined the plasma proteome in mice for the effects of aerobic exercise as both a treatment and as a preventative regimen for animals on either a HFD or a healthy control diet. This analysis detected large changes in the plasma proteome induced by the HFD, such as increased abundance of SERPINA7, ALDOB, and downregulation of SERPINA1E and complement factor D (CFD; adipsin). Some of these changes were significantly reverted using exercise as a preventative measure but not as a treatment regimen. To determine if either the intensity or duration of exercise influenced the outcome, we compared high-intensity interval training and endurance running. Endurance running slightly outperformed high-intensity interval training exercise, but overall, both provided similar reversion in abundance of plasma proteins modulated by the HFD, including SERPINA7, apolipoprotein E, SERPINA1E, and CFD. Finally, we compared the changes induced by overconsumption of a HFD with previous data from mice fed on an isocaloric high-saturated fatty acid or polyunsaturated fatty acid diet. This identified several common changes, including not only increased apolipoprotein C-II and apolipoprotein E but also highlighted changes specific for overconsumption of a HFD (fructose-bisphosphate aldolase B, SERPINA7, and CFD), saturated fatty acid-based diets (SERPINA1E), or polyunsaturated fatty acid-based diets (haptoglobin). Together, these data highlight the importance of early intervention with exercise to revert HFD-induced phenotypes and suggest some of the molecular mechanisms leading to the changes in the plasma proteome generated by HFD consumption. Web-based interactive visualizations are provided for this dataset (larancelab.com/hfd-exercise), which give insight into diet and exercise phenotypic interactions on the plasma proteome.
Collapse
Affiliation(s)
- Sergio F Martinez-Huenchullan
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia; Faculty of Medicine, School of Physical Therapy, Austral University of Chile, Valdivia, Chile
| | - Isaac Shipsey
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Luke Hatchwell
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Danqing Min
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia
| | - Stephen M Twigg
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, New South Wales, Australia.
| | - Mark Larance
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia.
| |
Collapse
|
31
|
Zhang Q, Shen F, Shen W, Xia J, Wang J, Zhao Y, Zhang Z, Sun Y, Qian M, Ding S. High-Intensity Interval Training Attenuates Ketogenic Diet-Induced Liver Fibrosis in Type 2 Diabetic Mice by Ameliorating TGF-β1/Smad Signaling. Diabetes Metab Syndr Obes 2020; 13:4209-4219. [PMID: 33192083 PMCID: PMC7656782 DOI: 10.2147/dmso.s275660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Ketogenic diet (KD) and high-intensity interval training (HIIT) have preclinical benefits for type 2 diabetes (Db). However, the health risks of long-term KD use in diabetes should be ascertained and prevented. We hypothesized that KD-induced liver fibrosis in type 2 diabetic mice could be ameliorated by HIIT. METHODS Streptozotocin-induced type 2 diabetic mice were divided into high-fat diet (HFD) control (Db+HFD+Sed), KD control (Db+KD+Sed), HFD coupled with HIIT (Db+HFD+HIIT), and KD coupled with HIIT (Db+KD+HIIT) groups (n=6, per group). Control mice were kept in sedentary (Sed), while HIIT group mice underwent 40-minute high-intensity interval training three alternate days per week. After 8-week intervention, the indicators of body weight and insulin resistance, oxidative stress markers, hepatic fibrosis, genetic and protein expression of related pathways were tested. RESULTS We found that fasting blood glucose level was reduced in the Db+HFD+HIIT, Db+KD+Sed, and Db+KD+HIIT groups. Insulin sensitivity was increased in diabetic mice of these groups, whereas ROS levels were decreased in mice that underwent HIIT. The immunohistochemical staining of liver, serum index, and hepatic parameters of diabetic mice in the KD group revealed liver fibrosis, which was significantly attenuated by HIIT. Besides, these effects of HIIT were the outcome of hepatic stellate cell's inactivation, reduced protein expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases, and the inhibition of TGF-β1/Smad signaling. CONCLUSION KD had a profound fibrotic effect on the liver of type 2 diabetic mice, whereas HIIT ameliorated this effect. KD did not show any apparent benefit as far as glucose tolerance and homeostasis were concerned. Concisely, our results demonstrated that KD should be coupled with HIIT for the prevention and preclinical mitigation of type 2 diabetes.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai200241, People’s Republic of China
- School of Physical Education & Health, East China Normal University, Shanghai200241, People’s Republic of China
| | - Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai200241, People’s Republic of China
- School of Physical Education & Health, East China Normal University, Shanghai200241, People’s Republic of China
| | - WenQing Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai200241, People’s Republic of China
- School of Physical Education & Health, East China Normal University, Shanghai200241, People’s Republic of China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai200241, People’s Republic of China
- School of Physical Education & Health, East China Normal University, Shanghai200241, People’s Republic of China
| | - Jing Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai200241, People’s Republic of China
- School of Physical Education & Health, East China Normal University, Shanghai200241, People’s Republic of China
| | - Yu Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai200241, People’s Republic of China
- Center for Physical Education, Xi’an Jiaotong University, Xi’an, Shaanxi710049, People’s Republic of China
| | - Zhe Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai200241, People’s Republic of China
- School of Physical Education & Health, East China Normal University, Shanghai200241, People’s Republic of China
| | - Yi Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai200241, People’s Republic of China
- School of Physical Education & Health, East China Normal University, Shanghai200241, People’s Republic of China
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai200241, People’s Republic of China
| | - ShuZhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai200241, People’s Republic of China
- School of Physical Education & Health, East China Normal University, Shanghai200241, People’s Republic of China
| |
Collapse
|
32
|
Cho J, Kim D, Kang H. Exercise Preconditioning Attenuates the Response to Experimental Colitis and Modifies Composition of Gut Microbiota in Wild-Type Mice. Life (Basel) 2020; 10:200. [PMID: 32937846 PMCID: PMC7555193 DOI: 10.3390/life10090200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/20/2022] Open
Abstract
This study investigated the suppressive effect of exercise preconditioning against colitis induced by high-fat diet (HF) plus dextran sulfate sodium (DSS) in wild-type mice. Male mice (C57BL/6) aged 6 weeks were assigned to standard chow (SC, n = 10) or HF (n = 10) or HF followed by DSS (HF+DSS, n = 10) or exercise preconditioning (EX) followed by HF+DSS (EX+HF+DSS, n = 10) for a total of 15 weeks. After 12 weeks of dietary treatments and/or exercise preconditioning, mice in the DSS groups were subjected to administration of 2 cycles of 5-day DSS (2% w/v) with a 7-day interval between cycles. HF resulted in colitis symptoms and histological changes, infiltration of immunity cells, decreased gut barrier proteins, increased pro-inflammatory and chemotactic cytokines and decreased anti-inflammatory cytokine such as adiponectin, which deteriorated after administration of DSS. Exercise preconditioning alleviated HF+DSS-induced colitis and caused significant modifications in gut microbiota: decreased Bacteroides vulgatus (p = 0.050) and increased Akkermansia muciniphila (p = 0.050). The current findings suggest that exercise preconditioning attenuates the severity of HF+DSS-induced colitis in C57BL/6 mice.
Collapse
Affiliation(s)
| | | | - Hyunsik Kang
- College of Sport Science, Sungkyunkwan University, Suwon 16419, Korea; (J.C.); (D.K.)
| |
Collapse
|
33
|
Zheng L, Rao Z, Guo Y, Chen P, Xiao W. High-Intensity Interval Training Restores Glycolipid Metabolism and Mitochondrial Function in Skeletal Muscle of Mice With Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:561. [PMID: 32922365 PMCID: PMC7456954 DOI: 10.3389/fendo.2020.00561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
High-intensity interval training has been reported to lower fasting blood glucose and improve insulin resistance of type 2 diabetes without clear underlying mechanisms. The purpose of this study was to investigate the effect of high-intensity interval training on the glycolipid metabolism and mitochondrial dynamics in skeletal muscle of high-fat diet (HFD) and one-time 100 mg/kg streptozocin intraperitoneal injection-induced type 2 diabetes mellitus (T2DM) mice. Our results confirmed that high-intensity interval training reduced the body weight, fat mass, fasting blood glucose, and serum insulin of the T2DM mice. High-intensity interval training also improved glucose tolerance and insulin tolerance of the T2DM mice. Moreover, we found that high-intensity interval training also decreased lipid accumulation and increased glycogen synthesis in skeletal muscle of the T2DM mice. Ultrastructural analysis of the mitochondria showed that mitochondrial morphology and quantity were improved after 8 weeks of high-intensity interval training. Western blot analysis showed that the expression of mitochondrial biosynthesis related proteins and mitochondrial dynamics related proteins in high-intensity interval trained mice in skeletal muscle were enhanced. Taken together, these data suggest high-intensity interval training improved fasting blood glucose and glucose homeostasis possibly by ameliorating glycolipid metabolism and mitochondrial dynamics in skeletal muscle of the T2DM mice.
Collapse
Affiliation(s)
- Lifang Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Yifan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Peijie Chen
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Weihua Xiao
| |
Collapse
|
34
|
Vidal P, Stanford KI. Exercise-Induced Adaptations to Adipose Tissue Thermogenesis. Front Endocrinol (Lausanne) 2020; 11:270. [PMID: 32411099 PMCID: PMC7201000 DOI: 10.3389/fendo.2020.00270] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise training results in beneficial adaptations to numerous tissues and offers protection against metabolic disorders including obesity and type 2 diabetes. Multiple studies have indicated that both white (WAT) and brown (BAT) adipose tissue may play an important role to mediate the beneficial effects of exercise. Studies from both rodents and humans have identified exercise-induced changes in WAT including increased mitochondrial activity and glucose uptake, an altered endocrine profile, and in rodents, a beiging of the WAT. Studies investigating the effects of exercise on BAT have resulted in conflicting data in terms of mitochondrial activity, glucose uptake, and thermogenic activity in rodents and humans, and remain an important area of investigation. This review discusses the exercise-induced adaptations to white and brown adipose tissue, distinguishing important differences between rodents and humans and highlighting the latest studies in the field and their implications.
Collapse
|
35
|
Martinez-Huenchullan SF, Tam CS, Ban LA, Ehrenfeld-Slater P, Mclennan SV, Twigg SM. Skeletal muscle adiponectin induction in obesity and exercise. Metabolism 2020; 102:154008. [PMID: 31706980 DOI: 10.1016/j.metabol.2019.154008] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Recent scientific efforts have focused on the detrimental effects that obesity has on the metabolic function of skeletal muscles and whether exercise can improve this dysfunction. In this regard, adiponectin, with important metabolic functions (e.g. insulin-sensitizer and anti-inflammatory), has been recently described as a myokine that acts in an autocrine/paracrine manner. Earlier studies reported that muscle adiponectin could be induced by pro-inflammatory mediators (e.g. lipopolysaccharide), cytokines, and high-fat diets, providing a protective mechanism of this tissue against metabolic insults. However, when metabolic insults such as high-fat diets are sustained this protective response becomes dysregulated, making the skeletal muscle susceptible to metabolic impairments. Recent studies have suggested that exercise could prevent or even reverse this process. Considering that most scientific knowledge on adiponectin dysregulation in obesity is from the study of adipose tissue, the present review summarizes and discusses the literature available to date regarding the effects of obesity on skeletal muscle adiponectin induction, along with the potential effects of different exercise prescriptions on this response in an obesity context.
Collapse
Affiliation(s)
- Sergio F Martinez-Huenchullan
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| | - Charmaine S Tam
- Northern Clinical School and Centre for Translational Data Science, University of Sydney, Sydney, Australia
| | - Linda A Ban
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Pamela Ehrenfeld-Slater
- Laboratory of Cellular Pathology. Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Chile
| | - Susan V Mclennan
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; New South Wales Health Pathology, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|