1
|
Liu H, Wang K, Shang T, Cai Z, Lu C, Shen M, Yu S, Yao X, Shen Y, Chen X, Xu F, Sun H. Astragaloside IV Improves Muscle Atrophy by Modulating the Activity of UPS and ALP via Suppressing Oxidative Stress and Inflammation in Denervated Mice. Mol Neurobiol 2025; 62:4689-4704. [PMID: 39480556 DOI: 10.1007/s12035-024-04590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Peripheral nerve injury is common clinically and can lead to neuronal degeneration and atrophy and fibrosis of the target muscle. The molecular mechanisms of muscle atrophy induced by denervation are complex and not fully understood. Inflammation and oxidative stress play an important triggering role in denervated muscle atrophy. Astragaloside IV (ASIV), a monomeric compound purified from astragalus membranaceus, has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the effect of ASIV on denervated muscle atrophy and its molecular mechanism, so as to provide a new potential therapeutic target for the prevention and treatment of denervated muscle atrophy. In this study, an ICR mouse model of muscle atrophy was generated through sciatic nerve dissection. We found that ASIV significantly inhibited the reduction of tibialis anterior muscle mass and muscle fiber cross-sectional area in denervated mice, reducing ROS and oxidative stress-related protein levels. Furthermore, ASIV inhibits the increase in inflammation-associated proteins and infiltration of inflammatory cells, protecting the denervated microvessels in skeletal muscle. We also found that ASIV reduced the expression levels of MAFbx, MuRF1 and FoxO3a, while decreasing the expression levels of autophagy-related proteins, it inhibited the activation of ubiquitin-proteasome and autophagy-lysosome hydrolysis systems and the slow-to-fast myofiber shift. Our results show that ASIV inhibits oxidative stress and inflammatory responses in skeletal muscle due to denervation, inhibits mitophagy and proteolysis, improves microvascular circulation and reverses the transition of muscle fiber types; Therefore, the process of skeletal muscle atrophy caused by denervation can be effectively delayed.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Tongxin Shang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Zhigang Cai
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| | - Chunfeng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu Province, 226006, P. R. China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaofang Chen
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China.
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu Province, 226006, P. R. China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| |
Collapse
|
2
|
Ji Y, Jiang Q, Chen B, Chen X, Li A, Shen D, Shen Y, Liu H, Qian X, Yao X, Sun H. Endoplasmic reticulum stress and unfolded protein response: Roles in skeletal muscle atrophy. Biochem Pharmacol 2025; 234:116799. [PMID: 39952329 DOI: 10.1016/j.bcp.2025.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/18/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Skeletal muscle atrophy is commonly present in various pathological states, posing a huge burden on society and patients. Increased protein hydrolysis, decreased protein synthesis, inflammatory response, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are all important molecular mechanisms involved in the occurrence and development of skeletal muscle atrophy. The potential mechanisms of ERS and UPR in skeletal muscle atrophy are extremely complex and have not yet been fully elucidated. This article elucidates the molecular mechanisms of ERS and UPR, and discusses their effects on different types of muscle atrophy (muscle atrophy caused by disuse, cachexia, chronic kidney disease (CKD), diabetes mellitus (DM), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), aging, sarcopenia, obesity, and starvation), and explores the preventive and therapeutic strategies targeting ERS and UPR in skeletal muscle atrophy, including inhibitor therapy and drug therapy. This review aims to emphasize the importance of endoplasmic reticulum (ER) in maintaining skeletal muscle homeostasis, which helps us further understand the molecular mechanisms of skeletal muscle atrophy and provides new ideas and insights for the development of effective therapeutic drugs and preventive measures for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Quan Jiang
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province 215500, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Dingding Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
3
|
Wang YJ, Chen ZH, Shen YT, Wang KX, Han YM, Zhang C, Yang XM, Chen BQ. Stem cell therapy: A promising therapeutic approach for skeletal muscle atrophy. World J Stem Cells 2025; 17:98693. [DOI: 10.4252/wjsc.v17.i2.98693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/09/2024] [Accepted: 01/23/2025] [Indexed: 02/24/2025] Open
Abstract
Skeletal muscle atrophy results from disruptions in the growth and metabolism of striated muscle, leading to a reduction or loss of muscle fibers. This condition not only significantly impacts patients’ quality of life but also imposes substantial socioeconomic burdens. The complex molecular mechanisms driving skeletal muscle atrophy contribute to the absence of effective treatment options. Recent advances in stem cell therapy have positioned it as a promising approach for addressing this condition. This article reviews the molecular mechanisms of muscle atrophy and outlines current therapeutic strategies, focusing on mesenchymal stem cells, induced pluripotent stem cells, and their derivatives. Additionally, the challenges these stem cells face in clinical applications are discussed. A deeper understanding of the regenerative potential of various stem cells could pave the way for breakthroughs in the prevention and treatment of muscle atrophy.
Collapse
Affiliation(s)
- Ying-Jie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226000, Jiangsu Province, China
| | - Ze-Hao Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226000, Jiangsu Province, China
| | - Yun-Tian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226000, Jiangsu Province, China
| | - Ke-Xin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226000, Jiangsu Province, China
| | - Yi-Min Han
- Medical College, Nantong University, Nantong 226000, Jiangsu Province, China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226000, Jiangsu Province, China
| | - Xiao-Ming Yang
- Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong 226000, Jiangsu Province, China
- Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, China
| | - Bing-Qian Chen
- Department of Orthopaedics, Changshu Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| |
Collapse
|
4
|
Wang X, Tang X, Wang Y, Zhao S, Xu N, Wang H, Kuang M, Han S, Jiang Z, Zhang W. Plant-Derived Treatments for Different Types of Muscle Atrophy. Phytother Res 2025; 39:1107-1138. [PMID: 39743857 PMCID: PMC11832362 DOI: 10.1002/ptr.8420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/04/2025]
Abstract
With the development of medicine and chemistry, an increasing number of plant-derived medicines have been shown to exert beneficial therapeutic on the treatment of various physical and psychological diseases. In particular, by using physical chemistry methods, we are able to examine the chemical components of plants and the effects of these substances on the human body. Muscle atrophy (MA) is characterized by decreased muscle mass and function, is caused by multiple factors and severely affects the quality of life of patients. The multifactorial and complex pathogenesis of MA hinders drug research and disease treatment. However, phytotherapy has achieved significant results in the treatment of MA. We searched PubMed and the Web of Science for articles related to plant-derived substances and muscle atrophy. After applying exclusion and inclusion criteria, 166 and 79 articles met the inclusion criteria, respectively. A total of 173 articles were included in the study after excluding duplicates. The important role of phytoactives such as curcumin, resveratrol, and ginsenosides in the treatment of MA (e.g., maintaining a positive nitrogen balance in muscles and exerting anti-inflammatory and antioxidant effects) has been extensively studied. Unfortunately, MA dose not have to a single cause, and each cause has its own unique mechanism of injury. This review focuses on the therapeutic mechanisms of active plant components in MA and provides insights into the personalized treatment of MA.
Collapse
Affiliation(s)
- Xingpeng Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xiaofu Tang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yunhui Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shengyin Zhao
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Ning Xu
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Haoyu Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mingjie Kuang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shijie Han
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Zhensong Jiang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Wen Zhang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
5
|
Hao JQ, Zhuang ZX, Hu SY, Zhang YJ, Zhang JW, He FJ, Wang R, Zhuang W, Wang MJ. Exploring the impact of protein intake on the association between oxidative balance score and lean mass in adults aged 20-59: NHANES 2011-2018. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:137. [PMID: 39223682 PMCID: PMC11370309 DOI: 10.1186/s41043-024-00629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Previous studies have established a correlation between the pathogenesis of oxidative stress and sarcopenia. The Oxidative Balance Score (OBS) is an integrated measure that reflects the overall balance of antioxidants and pro-oxidants in dietary components and lifestyle. However, there are limited reports on the association between OBS and lean mass and the impact of protein intake on the association between OBS and lean mass. METHODS Using data from the National Health and Nutrition Examination Survey from 2011 to 2018, multivariate linear and logistic regression analyses were conducted to explore the associations between OBS and outcomes. The findings were then illustrated through fitted smoothing curves and threshold effect analyses. RESULTS This study included 2,441 participants, demonstrating that higher OBS is significantly associated with an increased ratio of appendicular lean mass to body mass index. Key inflection points at OBS 31 mark pronounced changes in these associations, with age and protein intake notably affecting the association. The effect of OBS on lean mass varies among populations with high and low protein intake. CONCLUSIONS Our findings suggest that OBS is significantly and positively associated with lean mass. A high protein intake of more than 84.5 g/day may enhance the role of OBS in influencing muscle health to improve muscle outcomes.
Collapse
Affiliation(s)
- Jia-Qi Hao
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zi-Xuan Zhuang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shu-Yue Hu
- Neonatology Department, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Jie Zhang
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia-Wan Zhang
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng-Jun He
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Zhuang
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mo-Jin Wang
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Qiao R, Guo J, Zhang C, Wang S, Fang J, Geng R, Kang SG, Huang K, Tong T. Diabetes-induced muscle wasting: molecular mechanisms and promising therapeutic targets. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39049742 DOI: 10.1080/10408398.2024.2382348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Diabetes has become a serious public health crisis, presenting significant challenges to individuals worldwide. As the largest organ in the human body, skeletal muscle is a significant target of this chronic disease, yet muscle wasting as a complication of diabetes is still not fully understood and effective treatment methods have yet to be developed. Here, we discuss the targets involved in inducing muscle wasting under diabetic conditions, both validated targets and emerging targets. Diabetes-induced skeletal muscle wasting is known to involve changes in various signaling molecules and pathways, such as protein degradation pathways, protein synthesis pathways, mitochondrial function, and oxidative stress inflammation. Recent studies have shown that some of these present potential as promising therapeutic targets, including the neuregulin 1/epidermal growth factor receptor family, advanced glycation end-products, irisin, ferroptosis, growth differentiation factor 15 and more. This study's investigation and discussion of such pathways and their potential applications provides a theoretical basis for the development of clinical treatments for diabetes-induced muscle wasting and a foundation for continued focus on this disease.
Collapse
Affiliation(s)
- Ruixue Qiao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Chengmei Zhang
- Guizhou Academy of Testing and Analysis, Guiyang, The People's Republic of China
| | - Sirui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, The People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, The People's Republic of China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, The People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, The People's Republic of China
| |
Collapse
|
7
|
Shen Y, Zhang C, Dai C, Zhang Y, Wang K, Gao Z, Chen X, Yang X, Sun H, Yao X, Xu L, Liu H. Nutritional Strategies for Muscle Atrophy: Current Evidence and Underlying Mechanisms. Mol Nutr Food Res 2024; 68:e2300347. [PMID: 38712453 DOI: 10.1002/mnfr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/28/2024] [Indexed: 05/08/2024]
Abstract
Skeletal muscle can undergo detrimental changes in various diseases, leading to muscle dysfunction and atrophy, thus severely affecting people's lives. Along with exercise, there is a growing interest in the potential of nutritional support against muscle atrophy. This review provides a brief overview of the molecular mechanisms driving skeletal muscle atrophy and summarizes recent advances in nutritional interventions for preventing and treating muscle atrophy. The nutritional supplements include amino acids and their derivatives (such as leucine, β-hydroxy, β-methylbutyrate, and creatine), various antioxidant supplements (like Coenzyme Q10 and mitoquinone, resveratrol, curcumin, quercetin, Omega 3 fatty acids), minerals (such as magnesium and selenium), and vitamins (such as vitamin B, vitamin C, vitamin D, and vitamin E), as well as probiotics and prebiotics (like Lactobacillus, Bifidobacterium, and 1-kestose). Furthermore, the study discusses the impact of a combined approach involving nutritional support and physical therapy to prevent muscle atrophy, suggests appropriate multi-nutritional and multi-modal interventions based on individual conditions to optimize treatment outcomes, and enhances the recovery of muscle function for patients. By understanding the molecular mechanisms behind skeletal muscle atrophy and implementing appropriate interventions, it is possible to enhance the recovery of muscle function and improve patients' quality of life.
Collapse
Grants
- 81901933 National Natural Science Foundation of China
- 82072160 National Natural Science Foundation of China
- 20KJA310012 Major Natural Science Research Projects in Universities of Jiangsu Province
- BK20202013 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- BK20201209 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- ZDB2020003 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- QingLan Project in Jiangsu Universities
- JC22022037 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- MS22022010 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- JC12022010 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- HS2022003 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Chaolun Dai
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, P. R. China, 226001
| | - Yijie Zhang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, P. R. China, 226001
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| |
Collapse
|
8
|
Chen Y, Li H, Yang Y, Feng L, Yang L, Zhao J, Xin X, Lv S, Fang X, Wen W, Cui Y, Cui H. Polygalasaponin F ameliorates middle cerebral artery occlusion-induced focal ischemia / reperfusion injury in rats through inhibiting TXNIP/NLRP3 signaling pathway. J Neuroimmunol 2024; 387:578281. [PMID: 38198981 DOI: 10.1016/j.jneuroim.2023.578281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Polygalasaponin F (PGSF), an oleanane triterpenoid saponin extracted from Polygala japonica, has been demonstrated with neuroprotective effect. However, the therapeutic effects and mechanisms of PGSF on focal ischemia remain unknown; METHODS: In this study, male Sprague Dawley (SD) rats aged 6-8 weeks were initially selected to establish a rat model of middle cerebral artery occlusion (MCAO) to evaluate the therapeutic effect of PGSF intervention and to investigate the impact of PGSF on the thioredoxin-interacting protein/NOD-, LRR-, and pyrin domain-containing protein 3 (TXNIP/NLRP3) inflammatory pathway. Secondly, brain neuron cells were isolated, and the cells received oxygen-glucose deprivation/reoxygenation (OGD/R) culture to establish the cell injury model in vitro. The mechanism of PGSF on the TXNIP/NLRP3 pathway was further validated; RESULTS: Our results showed that PGSF treatment reduced neurological scores, brain tissue water content and infarct volume and ameliorated the pathological changes in cerebral cortex in MCAO-induced focal ischemia rats. The TNF-α, IL-1β and IL-6 levels decreased in MCAO-induced focal ischemia rats after PGSF treatment. Moreover, PGSF down-regulated the protein expressions of TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18 in MCAO-induced focal ischemia rats. Meanwhile, PGSF treatment inhibited apoptosis, and reduced the levels of ROS, inflammatory cytokine and TXNIP/NLRP3 pathway-related proteins (TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18) in OGD/R-induced neuronal injury cells. Finally, PGSF treatment also disrupted the interaction between NLRP3 and TXNIP in vitro; CONCLUSIONS: Our study demonstrated the therapeutic effects of PGSF on MCAO-induced focal ischemia rats. Moreover, the neuroprotective mechanism of PGSF on focal ischemia was associated with the inhibition of TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yao Chen
- Nanjing University of Chinese Medicine, Nanjing 210000, China; Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Hanzhou Li
- Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yan Yang
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Lei Feng
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Ling Yang
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Jie Zhao
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Xiaochi Xin
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province, Cangzhou 061001, China
| | - Xixing Fang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Weibo Wen
- Nanjing University of Chinese Medicine, Nanjing 210000, China; Yunnan University of Traditional Chinese Medicine, Kunming 650000, China.
| | - Youxiang Cui
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130000, China.
| | - Huantian Cui
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China; Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266000, China.
| |
Collapse
|
9
|
Rodríguez MP, Cabello-Verrugio C. Soluble Factors Associated with Denervation-induced Skeletal Muscle Atrophy. Curr Protein Pept Sci 2024; 25:189-199. [PMID: 38018212 DOI: 10.2174/0113892037189827231018092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 11/30/2023]
Abstract
Skeletal muscle tissue has the critical function of mechanical support protecting the body. In addition, its functions are strongly influenced by the balanced synthesis and degradation processes of structural and regulatory proteins. The inhibition of protein synthesis and/or the activation of catabolism generally determines a pathological state or condition called muscle atrophy, a reduction in muscle mass that results in partial or total loss of function. It has been established that many pathophysiological conditions can cause a decrease in muscle mass. Skeletal muscle innervation involves stable and functional neural interactions with muscles via neuromuscular junctions and is essential for maintaining normal muscle structure and function. Loss of motor innervation induces rapid skeletal muscle fiber degeneration with activation of atrophy-related signaling and subsequent disassembly of sarcomeres, altering normal muscle function. After denervation, an inflammation stage is characterized by the increased expression of pro-inflammatory cytokines that determine muscle atrophy. In this review, we highlighted the impact of some soluble factors on the development of muscle atrophy by denervation.
Collapse
Affiliation(s)
- Marianny Portal Rodríguez
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
10
|
Chen X, Ji Y, Liu R, Zhu X, Wang K, Yang X, Liu B, Gao Z, Huang Y, Shen Y, Liu H, Sun H. Mitochondrial dysfunction: roles in skeletal muscle atrophy. J Transl Med 2023; 21:503. [PMID: 37495991 PMCID: PMC10373380 DOI: 10.1186/s12967-023-04369-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xucheng Zhu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Nantong, Jiangsu, 226600, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Zhang H, Qi G, Wang K, Yang J, Shen Y, Yang X, Chen X, Yao X, Gu X, Qi L, Zhou C, Sun H. Oxidative stress: roles in skeletal muscle atrophy. Biochem Pharmacol 2023:115664. [PMID: 37331636 DOI: 10.1016/j.bcp.2023.115664] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Oxidative stress, inflammation, mitochondrial dysfunction, reduced protein synthesis, and increased proteolysis are all critical factors in the process of muscle atrophy. In particular, oxidative stress is the key factor that triggers skeletal muscle atrophy. It is activated in the early stages of muscle atrophy and can be regulated by various factors. The mechanisms of oxidative stress in the development of muscle atrophy have not been completely elucidated. This review provides an overview of the sources of oxidative stress in skeletal muscle and the correlation of oxidative stress with inflammation, mitochondrial dysfunction, autophagy, protein synthesis, proteolysis, and muscle regeneration in muscle atrophy. Additionally, the role of oxidative stress in skeletal muscle atrophy caused by several pathological conditions, including denervation, unloading, chronic inflammatory diseases (diabetes mellitus, chronic kidney disease, chronic heart failure, and chronic obstructive pulmonary disease), sarcopenia, hereditary neuromuscular diseases (spinal muscular atrophy, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy), and cancer cachexia, have been discussed. Finally, this review proposes the alleviation oxidative stress using antioxidants, Chinese herbal extracts, stem cell and extracellular vesicles as a promising therapeutic strategy for muscle atrophy. This review will aid in the development of novel therapeutic strategies and drugs for muscle atrophy.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Guangdong Qi
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, PR China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jiawen Yang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China.
| | - Chun Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
12
|
Huang M, Yan Y, Deng Z, Zhou L, She M, Yang Y, Zhang M, Wang D. Saikosaponin A and D attenuate skeletal muscle atrophy in chronic kidney disease by reducing oxidative stress through activation of PI3K/AKT/Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154766. [PMID: 37002971 DOI: 10.1016/j.phymed.2023.154766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Skeletal muscle atrophy in chronic kidney disease (CKD) leads to a decline in quality of life and increased risk of morbidity and mortality. We have obtained evidence that oxidative stress is essential in the progression of CKD-related muscle atrophy. Whether Saikosaponin A and D, two emerging antioxidants extracted from Bupleurum chinense DC, alleviate muscle atrophy remains to be further studied. The purpose of this study was to investigate the effects and mechanisms of these two components on CKD complicated with muscle atrophy. METHODS In this research, muscle dystrophy model was established using 5/6 nephrectomized mice in vivo and in vitro with Dexamethasone (Dex)-managed C2C12 myotubes. RESULTS The results of RNA-sequencing showed that exposure to Dex affected the antioxidant activity, catalytic activity and enzyme regulator activity of C2C12 cells. According to KEGG analysis, the largest numbers of differentially expressed genes detected were enriched in the PI3K/AKT pathway. In vivo, Saikosaponin A and D remain renal function, cross-section size, fiber-type composition and anti-inflammatory ability. These two components suppressed the expression of MuRF-1 and enhanced the expression of MyoD and Dystrophin. In addition, Saikosaponin A and D maintained redox balance by increasing the activities of antioxidant enzymes while inhibiting the excessive accumulation of reactive oxygen species. Furthermore, Saikosaponin A and D stimulated PI3K/AKT and its downstream Nrf2 pathway in CKD mice. The effects of Saikosaponin A and D on increasing the inner diameter of C2C12 myotube, reducing oxidative stress and enhancing expression of p-AKT, p-mTOR, p70S6K, Nrf2 and HO-1 proteins were observed in vitro. Importantly, we verified that these protective effects could be significantly reversed by inhibiting PI3K and knocking out Nrf2. CONCLUSIONS In summary, Saikosaponin A and D improve CKD-induced muscle atrophy by reducing oxidative stress through the PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Minna Huang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Yan Yan
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Zihao Deng
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510000, China
| | - Lingli Zhou
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510000, China
| | - Meiling She
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang,524000, China
| | - Meng Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
13
|
Wang K, Liu Q, Tang M, Qi G, Qiu C, Huang Y, Yu W, Wang W, Sun H, Ni X, Shen Y, Fang X. Chronic kidney disease-induced muscle atrophy: Molecular mechanisms and promising therapies. Biochem Pharmacol 2023; 208:115407. [PMID: 36596414 DOI: 10.1016/j.bcp.2022.115407] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Chronic kidney disease (CKD) is a high-risk chronic catabolic disease due to its high morbidity and mortality. CKD is accompanied by many complications, leading to a poor quality of life, and serious complications may even threaten the life of CKD patients. Muscle atrophy is a common complication of CKD. Muscle atrophy and sarcopenia in CKD patients have complex pathways that are related to multiple mechanisms and related factors. This review not only discusses the mechanisms by which inflammation, oxidative stress, mitochondrial dysfunction promote CKD-induced muscle atrophy but also explores other CKD-related complications, such as metabolic acidosis, vitamin D deficiency, anorexia, and excess angiotensin II, as well as other related factors that play a role in CKD muscle atrophy, such as insulin resistance, hormones, hemodialysis, uremic toxins, intestinal flora imbalance, and miRNA. We highlight potential treatments and drugs that can effectively treat CKD-induced muscle atrophy in terms of complication treatment, nutritional supplementation, physical exercise, and drug intervention, thereby helping to improve the prognosis and quality of life of CKD patients.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Nephrology, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Qingyuan Liu
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province 224500, PR China
| | - Mingyu Tang
- Xinglin College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Guangdong Qi
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province 224500, PR China
| | - Chong Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China; Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xuejun Ni
- Department of Ultrasound Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xingxing Fang
- Department of Nephrology, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
14
|
QIU JIAYING, CHANG YAN, LIANG WENPENG, LIN MENGSI, XU HUI, XU WANQING, ZHU QINGWEN, ZHANG HAIBO, ZHANG ZHENYU. Pharmacological effects of denervated muscle atrophy due to metabolic imbalance in different periods. BIOCELL 2023; 47:2351-2359. [DOI: 10.32604/biocell.2023.031043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2024]
|
15
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
16
|
Li F, Mao Q, Wang J, Zhang X, Lv X, Wu B, Yan T, Jia Y. Salidroside inhibited cerebral ischemia/reperfusion-induced oxidative stress and apoptosis via Nrf2/Trx1 signaling pathway. Metab Brain Dis 2022; 37:2965-2978. [PMID: 35976554 DOI: 10.1007/s11011-022-01061-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
Cerebral ischemia reperfusion injury (CIRI) is still a serious problem threatening human health. Salidroside (SAL) is a natural phenylpropanoid glycoside compound with antioxidant, anti-inflammatory, and anti-ischemic properties. This study investigated the protective mechanism of SAL on middle cerebral artery occlusion (MCAO)- and oxygen-glucose deprivation/reoxygenation (OGD/R) model-induced CIRI via regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/thioredoxin 1 (Trx1) axis. The results indicated that SAL (50 mg/kg or 100 mg/kg, intraperitoneal injection) not only effectively alleviated infarction rate, improved histopathological changes, relieved apoptosis by strengthening the suppression of cleaved caspase-3 and Bax/Bcl-2 proteins and decreased malondialdehyde (MDA) formation, but also increased superoxide dismutase (SOD) and catalase (CAT) activities and upregulated the expressions of Nrf2 and Trx1 on MCAO-induced CIRI rats. SAL also efficiently inhibited apoptosis and decreased oxidative stress in OGD/R-stimulated PC12 cells. Furthermore, blocking the Nrf2/Trx1 pathway using tretinoin, an Nrf2 inhibitor, significantly reversed the protective effect of SAL on OGD/R-induced oxidative stress. Moreover, SAL reduced the expression of apoptosis signal-regulating kinase-1 (ASK1) and mitogen-activated protein kinase (MAPK) family proteins. These results demonstrated that SAL inhibited oxidative stress through Nrf2/Trx1 signaling pathway, and subsequently reduced CIRI-induced apoptosis by inhibiting ASK1/MAPK.
Collapse
Affiliation(s)
- Fuyuan Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qianqian Mao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinyu Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Xiaoying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinyan Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China.
| |
Collapse
|
17
|
Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022; 12:metabo12111149. [DOI: 10.3390/metabo12111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.
Collapse
|
18
|
Yan Y, Li M, Lin J, Ji Y, Wang K, Yan D, Shen Y, Wang W, Huang Z, Jiang H, Sun H, Qi L. Adenosine monophosphate activated protein kinase contributes to skeletal muscle health through the control of mitochondrial function. Front Pharmacol 2022; 13:947387. [PMID: 36339617 PMCID: PMC9632297 DOI: 10.3389/fphar.2022.947387] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle is one of the largest organs in the body and the largest protein repository. Mitochondria are the main energy-producing organelles in cells and play an important role in skeletal muscle health and function. They participate in several biological processes related to skeletal muscle metabolism, growth, and regeneration. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor and regulator of systemic energy balance. AMPK is involved in the control of energy metabolism by regulating many downstream targets. In this review, we propose that AMPK directly controls several facets of mitochondrial function, which in turn controls skeletal muscle metabolism and health. This review is divided into four parts. First, we summarize the properties of AMPK signal transduction and its upstream activators. Second, we discuss the role of mitochondria in myogenesis, muscle atrophy, regeneration post-injury of skeletal muscle cells. Third, we elaborate the effects of AMPK on mitochondrial biogenesis, fusion, fission and mitochondrial autophagy, and discuss how AMPK regulates the metabolism of skeletal muscle by regulating mitochondrial function. Finally, we discuss the effects of AMPK activators on muscle disease status. This review thus represents a foundation for understanding this biological process of mitochondrial dynamics regulated by AMPK in the metabolism of skeletal muscle. A better understanding of the role of AMPK on mitochondrial dynamic is essential to improve mitochondrial function, and hence promote skeletal muscle health and function.
Collapse
Affiliation(s)
- Yan Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Jie Lin
- Department of Infectious Disease, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Dajun Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| |
Collapse
|
19
|
Schröder S, Wang M, Sima D, Schröder J, Zhu X, Zheng X, Liu L, Li T, Wang Q, Friedemann T, Liu T, Pan W. Slower progression of amyotrophic lateral sclerosis with external application of a Chinese herbal plaster–The randomized, placebo-controlled triple-blinded ALS-CHEPLA trial. Front Neurol 2022; 13:990802. [PMID: 36324375 PMCID: PMC9620479 DOI: 10.3389/fneur.2022.990802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by gradually increasing damage to the upper and lower motor neurons. However, definitive and efficacious treatment for ALS is not available, and oral intake in ALS patients with bulbar involvement is complicated due to swallowing difficulties. Hypothesis/purpose This study investigated whether the external plaster application of the herbal composition Ji-Wu-Li efficiently slows ALS progression because prior studies obtained promising evidence with oral herbal applications. Study design The randomized, triple-blinded study compared the efficacy, safety, and tolerability of the application of Ji-Wu-Li plaster (JWLP) with placebo plaster (PLAP). Methods In total, 120 patients with definite ALS, clinically probable ALS, or clinically probable laboratory-supported ALS were randomized in a 1:1 ratio to receive JWLP or PLAP. Patients were treated and observed for 20 weeks. The primary outcome was the ALSFRS-R score, while the secondary outcomes were the ALS-SSIT score and weight loss. Results The mean±SD decrease in the ALSFRS-R over 20 weeks differed by 0.84 points in a group comparison (JWLP, −4.44 ± 1.15; PLAP, −5.28 ± 1.98; p = 0.005). The mean increase in the ALS-SSIT over 20 weeks differed by 2.7 points in a group comparison (JWLP, 5.361.15; PLAP, 8.06 ± 1.72; p < 0.001). The mean weight loss over 20 weeks differed by 1.65 kg in a group comparison (JWLP, −3.98 ± 2.61; PLAP, −5.63 ± 3.17; p = 0.002). Local allergic dermatitis suspected as causal to the intervention occurred in 10 of 60 participants in the JWLP group and 9 of 60 participants in the PLAP group. Systemic adverse events were mild, temporary, and considered unrelated to the intervention. Conclusion The JWLP showed clinical efficacy in the progression of ALS, as measured by the ALSFRS-R, ALS-SSIT, and weight loss in a randomized, placebo-controlled trial. Because skin reactions occurred in both groups, the covering material needs improvement. All of the Ji Wu Li herbal ingredients regulate multiple mechanisms of neurodegeneration in ALS. Hence, JWLP may offer a promising and safe add-on therapy for ALS, particularly in patients with bulbar involvement, but a confirmative long-term multicentre study is required.
Collapse
Affiliation(s)
- Sven Schröder
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mingzhe Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dandan Sima
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Joana Schröder
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuying Zhu
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuanlu Zheng
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Liu
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Neurology, Qinghai Hospital of Traditional Chinese Medicine, Xining, Qinghai, China
| | - Tingying Li
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiudong Wang
- Department of Integrative Neurology, Pudong Traditional Chinese Medicine Hospital, Shanghai, China
| | - Thomas Friedemann
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Thomas Friedemann
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Te Liu
| | - Weidong Pan
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Weidong Pan
| |
Collapse
|
20
|
Inflammation: Roles in Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 11:antiox11091686. [PMID: 36139760 PMCID: PMC9495679 DOI: 10.3390/antiox11091686] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Various diseases can cause skeletal muscle atrophy, usually accompanied by inflammation, mitochondrial dysfunction, apoptosis, decreased protein synthesis, and enhanced proteolysis. The underlying mechanism of inflammation in skeletal muscle atrophy is extremely complex and has not been fully elucidated, thus hindering the development of effective therapeutic drugs and preventive measures for skeletal muscle atrophy. In this review, we elaborate on protein degradation pathways, including the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), the calpain and caspase pathways, the insulin growth factor 1/Akt protein synthesis pathway, myostatin, and muscle satellite cells, in the process of muscle atrophy. Under an inflammatory environment, various pro-inflammatory cytokines directly act on nuclear factor-κB, p38MAPK, and JAK/STAT pathways through the corresponding receptors, and then are involved in muscle atrophy. Inflammation can also indirectly trigger skeletal muscle atrophy by changing the metabolic state of other tissues or cells. This paper explores the changes in the hypothalamic-pituitary-adrenal axis and fat metabolism under inflammatory conditions as well as their effects on skeletal muscle. Moreover, this paper also reviews various signaling pathways related to muscle atrophy under inflammatory conditions, such as cachexia, sepsis, type 2 diabetes mellitus, obesity, chronic obstructive pulmonary disease, chronic kidney disease, and nerve injury. Finally, this paper summarizes anti-amyotrophic drugs and their therapeutic targets for inflammation in recent years. Overall, inflammation is a key factor causing skeletal muscle atrophy, and anti-inflammation might be an effective strategy for the treatment of skeletal muscle atrophy. Various inflammatory factors and their downstream pathways are considered promising targets for the treatment and prevention of skeletal muscle atrophy.
Collapse
|
21
|
Xiang Y, You Z, Huang X, Dai J, Zhang J, Nie S, Xu L, Jiang J, Xu J. Oxidative stress-induced premature senescence and aggravated denervated skeletal muscular atrophy by regulating progerin-p53 interaction. Skelet Muscle 2022; 12:19. [PMID: 35906707 PMCID: PMC9335985 DOI: 10.1186/s13395-022-00302-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Progerin elevates atrophic gene expression and helps modify the nuclear membrane to cause severe muscle pathology, which is similar to muscle weakness in the elderly, to alter the development and function of the skeletal muscles. Stress-induced premature senescence (SIPS), a state of cell growth arrest owing to such stimuli as oxidation, can be caused by progerin. However, evidence for whether SIPS-induced progerin accumulation is connected to denervation-induced muscle atrophy is not sufficient. Methods Flow cytometry and a reactive oxygen species (ROS) as well as inducible nitric oxide synthase (iNOS) inhibitors were used to assess the effect of oxidation on protein (p53), progerin, and nuclear progerin–p53 interaction in the denervated muscles of models of mice suffering from sciatic injury. Loss-of-function approach with the targeted deletion of p53 was used to assess connection among SIPS, denervated muscle atrophy, and fibrogenesis. Results The augmentation of ROS and iNOS-derived NO in the denervated muscles of models of mice suffering from sciatic injury upregulates p53 and progerin. The abnormal accumulation of progerin in the nuclear membrane as well as the activation of nuclear progerin–p53 interaction triggered premature senescence in the denervated muscle cells of mice. The p53-dependent SIPS in denervated muscles contributes to their atrophy and fibrogenesis. Conclusion Oxidative stress-triggered premature senescence via nuclear progerin–p53 interaction that promotes denervated skeletal muscular atrophy and fibrogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00302-y.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China
| | - Zongqi You
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China
| | - Xinying Huang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China.,Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China
| | - Junpeng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shuqi Nie
- Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China. .,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China.
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China. .,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China. .,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
22
|
Zhang L, Li M, Wang W, Yu W, Liu H, Wang K, Chang M, Deng C, Ji Y, Shen Y, Qi L, Sun H. Celecoxib alleviates denervation-induced muscle atrophy by suppressing inflammation and oxidative stress and improving microcirculation. Biochem Pharmacol 2022; 203:115186. [PMID: 35882305 DOI: 10.1016/j.bcp.2022.115186] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
The molecular mechanism underlying denervation-induced muscle atrophy is complex and incompletely understood. Our previous results suggested that inflammation may play an important role in the early stages of muscle atrophy. Celecoxib is reported to exert anti-inflammatory effects. Here, we explored the effect of celecoxib on denervation-induced muscle atrophy and sought to identify the mechanism involved. We found that celecoxib treatment significantly increased the wet weight ratio and CSA of the tibialisanteriormuscle. Additionally, celecoxib downregulated the levels of COX-2, inflammatory factors and reduced inflammatory cell infiltration. GO and KEGG pathway enrichment analysis indicated that after 3 days of celecoxib treatment in vivo, the differentially expressed genes (DEGs) were mainly associated with the regulation of immune responses related to complement activation; after 14 days, the DEGs were mainly involved in the regulation of oxidative stress and inflammation-related responses. Celecoxib administration reduced the levels of ROS and oxidative stress-related proteins. Furthermore, we found that celecoxib treatment inhibited the denervation-induced up-regulation of the ubiquitin-proteasome and autophagy-lysosomal systems related proteins; decreased mitophagy in target muscles; and increased levels of MHC. Finally, celecoxib also attenuated microvascular damage in denervated skeletal muscle. Combined, our findings demonstrated that celecoxib inhibits inflammation and oxidative stress in denervated skeletal muscle, thereby suppressing mitophagy and proteolysis, improving blood flow in target muscles, and, ultimately, alleviating denervation-induced muscle atrophy. Our results confirmed that inflammatory responses play a key role in denervation-induced muscle atrophy and highlight a novel strategy for the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Ming Li
- Department of Laboratory Medicine, Department of Endocrinology, Binhai County People's Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, Jiangsu Province 224500, P. R. China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China; Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, P. R. China
| | - Weiran Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Haian, Nantong, Jiangsu Province 226600, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Chunyan Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China.
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, P. R. China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China.
| |
Collapse
|
23
|
ROS-activated CXCR2 + neutrophils recruited by CXCL1 delay denervated skeletal muscle atrophy and undergo P53-mediated apoptosis. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1011-1023. [PMID: 35864308 PMCID: PMC9356135 DOI: 10.1038/s12276-022-00805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Neutrophils are the earliest master inflammatory regulator cells recruited to target tissues after direct infection or injury. Although inflammatory factors are present in muscle that has been indirectly disturbed by peripheral nerve injury, whether neutrophils are present and play a role in the associated inflammatory process remains unclear. Here, intravital imaging analysis using spinning-disk confocal intravital microscopy was employed to dynamically identify neutrophils in denervated muscle. Slice digital scanning and 3D-view reconstruction analyses demonstrated that neutrophils escape from vessels and migrate into denervated muscle tissue. Analyses using reactive oxygen species (ROS) inhibitors and flow cytometry demonstrated that enhanced ROS activate neutrophils after denervation. Transcriptome analysis revealed that the vast majority of neutrophils in denervated muscle were of the CXCR2 subtype and were recruited by CXCL1. Most of these cells gradually disappeared within 1 week via P53-mediated apoptosis. Experiments using specific blockers confirmed that neutrophils slow the process of denervated muscle atrophy. Collectively, these results indicate that activated neutrophils are recruited via chemotaxis to muscle tissue that has been indirectly damaged by denervation, where they function in delaying atrophy. Live animal imaging experiments reveal how rapid recruitment of a subset of immune cells helps prevent muscle wasting after peripheral nerve injury. Such injuries take considerable time to heal, and there are no therapies that reliably prevent wasting of muscle lacking nervous innervation. Researchers led by JunJian Jiang and Jianguang Xu at Fudan University, Shanghai, China, have used intravital microscopy to record the cellular and molecular events that follow nerve damage in live mice. They observed heightened production of chemicals that summon immune cells known as neutrophils to the site of the injury. Even though the surrounding muscle cells were initially undamaged in this animal model, the recruited neutrophils delayed subsequent muscle wasting. This neutrophil recruitment was transient, but therapies that elicit a more sustained response could provide durable protection against muscle wasting.
Collapse
|
24
|
Shen Y, Li M, Wang K, Qi G, Liu H, Wang W, Ji Y, Chang M, Deng C, Xu F, Shen M, Sun H. Diabetic Muscular Atrophy: Molecular Mechanisms and Promising Therapies. Front Endocrinol (Lausanne) 2022; 13:917113. [PMID: 35846289 PMCID: PMC9279556 DOI: 10.3389/fendo.2022.917113] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus (DM) is a typical chronic disease that can be divided into 2 types, dependent on insulin deficiency or insulin resistance. Incidences of diabetic complications gradually increase as the disease progresses. Studies in diabetes complications have mostly focused on kidney and cardiovascular diseases, as well as neuropathy. However, DM can also cause skeletal muscle atrophy. Diabetic muscular atrophy is an unrecognized diabetic complication that can lead to quadriplegia in severe cases, seriously impacting patients' quality of life. In this review, we first identify the main molecular mechanisms of muscle atrophy from the aspects of protein degradation and synthesis signaling pathways. Then, we discuss the molecular regulatory mechanisms of diabetic muscular atrophy, and outline potential drugs and treatments in terms of insulin resistance, insulin deficiency, inflammation, oxidative stress, glucocorticoids, and other factors. It is worth noting that inflammation and oxidative stress are closely related to insulin resistance and insulin deficiency in diabetic muscular atrophy. Regulating inflammation and oxidative stress may represent another very important way to treat diabetic muscular atrophy, in addition to controlling insulin signaling. Understanding the molecular regulatory mechanism of diabetic muscular atrophy could help to reveal new treatment strategies.
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Department of Endocrinology, Binhai County People’s Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Guangdong Qi
- Department of Laboratory Medicine, Department of Endocrinology, Binhai County People’s Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chunyan Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- Nanjing Institute of Tissue Engineering and Regenerative Medicine Technology, Nanjing, China
| |
Collapse
|
25
|
Hildebrandt W, Keck J, Schmich S, Bonaterra GA, Wilhelm B, Schwarzbach H, Eva A, Bertoune M, Slater EP, Fendrich V, Kinscherf R. Inflammation and Wasting of Skeletal Muscles in Kras-p53-Mutant Mice with Intraepithelial Neoplasia and Pancreatic Cancer-When Does Cachexia Start? Cells 2022; 11:1607. [PMID: 35626644 PMCID: PMC9139525 DOI: 10.3390/cells11101607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle wasting critically impairs the survival and quality of life in patients with pancreatic ductal adenocarcinoma (PDAC). To identify the local factors initiating muscle wasting, we studied inflammation, fiber cross-sectional area (CSA), composition, amino acid metabolism and capillarization, as well as the integrity of neuromuscular junctions (NMJ, pre-/postsynaptic co-staining) and mitochondria (electron microscopy) in the hindlimb muscle of LSL-KrasG12D/+; LSL-TrP53R172H/+; Pdx1-Cre mice with intraepithelial-neoplasia (PanIN) 1-3 and PDAC, compared to wild-type mice (WT). Significant decreases in fiber CSA occurred with PDAC but not with PanIN 1-3, compared to WT: These were found in the gastrocnemius (type 2x: −20.0%) and soleus (type 2a: −21.0%, type 1: −14.2%) muscle with accentuation in the male soleus (type 2a: −24.8%, type 1: −17.4%) and female gastrocnemius muscle (−29.6%). Significantly higher densities of endomysial CD68+ and cyclooxygenase-2+ (COX2+) cells were detected in mice with PDAC, compared to WT mice. Surprisingly, CD68+ and COX2+ cell densities were also higher in mice with PanIN 1-3 in both muscles. Significant positive correlations existed between muscular and hepatic CD68+ or COX2+ cell densities. Moreover, in the gastrocnemius muscle, suppressor-of-cytokine-3 (SOCS3) expressions was upregulated >2.7-fold with PanIN 1A-3 and PDAC. The intracellular pools of proteinogenic amino acids and glutathione significantly increased with PanIN 1A-3 compared to WT. Capillarization, NMJ, and mitochondrial ultrastructure remained unchanged with PanIN or PDAC. In conclusion, the onset of fiber atrophy coincides with the manifestation of PDAC and high-grade local (and hepatic) inflammatory infiltration without compromised microcirculation, innervation or mitochondria. Surprisingly, muscular and hepatic inflammation, SOCS3 upregulation and (proteolytic) increases in free amino acids and glutathione were already detectable in mice with precancerous PanINs. Studies of initial local triggers and defense mechanisms regarding cachexia are warranted for targeted anti-inflammatory prevention.
Collapse
Affiliation(s)
- Wulf Hildebrandt
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Jan Keck
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
- Department of General, Visceral and Pedriatic Surgery, University Clinics, Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Simon Schmich
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Gabriel A. Bonaterra
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Beate Wilhelm
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Hans Schwarzbach
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Anna Eva
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Mirjam Bertoune
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Emily P. Slater
- Department of Visceral, Thoracic and Vascular Surgery, University Clinics of Giessen and Marburg, Baldinger Str., 35043 Marburg, Germany; (E.P.S.); (V.F.)
| | - Volker Fendrich
- Department of Visceral, Thoracic and Vascular Surgery, University Clinics of Giessen and Marburg, Baldinger Str., 35043 Marburg, Germany; (E.P.S.); (V.F.)
- Center for Endocrine Surgery, Schön Klinik Hamburg-Eilbek, Dehnhaide 120, 22081 Hamburg, Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| |
Collapse
|
26
|
Lu Y, Deng B, Xu L, Liu H, Song Y, Lin F. Effects of Rhodiola Rosea Supplementation on Exercise and Sport: A Systematic Review. Front Nutr 2022; 9:856287. [PMID: 35464040 PMCID: PMC9021834 DOI: 10.3389/fnut.2022.856287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 01/18/2023] Open
Abstract
Rhodiola rosea (Golden Root Extract; RR) is an herbaceous perennial, which is native to high altitude areas, such as East Asia, Central Asia, Siberia, and North America. It has been studied for its positive pharmacological effects on health. However, only a handful of studies have evaluated the effects of RR as an exercise supplement for sport and physical activity. The aim of this study was to evaluate whether Rhodiola can be used as a supplement to improve human exercise ability. Studies were reviewed in accordance with the PRISMA guidelines and conducted between August and November, 2021. Databases searched included Cochrane, Embase, Web of Science, PubMed and East View Universal Database. Related terms were combined with keywords and MeSH subject headings using the corresponding Boolean operators: Rhodiola rosea, arctic root, roseroot, golden root, hongjingtian, and sports and exercise. A total of 10 papers were reviewed. Most of the studies reported that RR supplementation has a positive effect on athletic ability and sports performance, and no obvious adverse reactions were reported. Subjects taking RR showed a reduction in pain and muscle damage after exercise training, improved skeletal muscle damage, enhanced antioxidant capacity thereby reducing oxidative stress, reduced RPE scores, and improved athletic explosive power, but did not reduce the rating of perceived exertion (RPE) scores. RR appears to act as a safe and effective supplementation for sport and exercise.
Collapse
Affiliation(s)
- Yao Lu
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bin Deng
- Department of Cardiology, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Luhua Xu
- Department of Cardiology, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hanjiao Liu
- Department of Nursing, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yinzhi Song
- Department of Cardiology, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Fengxia Lin
- Department of Cardiology, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Fengxia Lin
| |
Collapse
|
27
|
Bannow LI, Bonaterra GA, Bertoune M, Maus S, Schulz R, Weissmann N, Kraut S, Kinscherf R, Hildebrandt W. Effect of chronic intermittent hypoxia (CIH) on neuromuscular junctions and mitochondria in slow- and fast-twitch skeletal muscles of mice—the role of iNOS. Skelet Muscle 2022; 12:6. [PMID: 35151349 PMCID: PMC8841105 DOI: 10.1186/s13395-022-00288-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/10/2022] [Indexed: 01/17/2023] Open
Abstract
Background Obstructive sleep apnea (OSA) imposes vascular and metabolic risks through chronic intermittent hypoxia (CIH) and impairs skeletal muscle performance. As studies addressing limb muscles are rare, the reasons for the lower exercise capacity are unknown. We hypothesize that CIH-related morphological alterations in neuromuscular junctions (NMJ) and mitochondrial integrity might be the cause of functional disorders in skeletal muscles. Methods Mice were kept under 6 weeks of CIH (alternating 7% and 21% O2 fractions every 30 s, 8 h/day, 5 days/week) compared to normoxia (NOX). Analyses included neuromuscular junctions (NMJ) postsynaptic morphology and integrity, fiber cross-sectional area (CSA) and composition (ATPase), mitochondrial ultrastructure (transmission-electron-microscopy), and relevant transcripts (RT-qPCR). Besides wildtype (WT), we included inducible nitric oxide synthase knockout mice (iNOS−/−) to evaluate whether iNOS is protective or risk-mediating. Results In WT soleus muscle, CIH vs. NOX reduced NMJ size (− 37.0%, p < 0.001) and length (− 25.0%, p < 0.05) together with fiber CSA of type IIa fibers (− 14%, p < 0.05) and increased centronucleated fiber fraction (p < 0.001). Moreover, CIH vs. NOX increased the fraction of damaged mitochondria (1.8-fold, p < 0.001). Compared to WT, iNOS−/− similarly decreased NMJ area and length with NOX (− 55%, p < 0.001 and − 33%, p < 0.05, respectively) or with CIH (− 37%, p < 0.05 and − 29%, p < 0.05), however, prompted no fiber atrophy. Moreover, increased fractions of damaged (2.1-fold, p < 0.001) or swollen (> 6-fold, p < 0.001) mitochondria were observed with iNOS−/− vs. WT under NOX and similarly under CIH. Both, CIH- and iNOS−/− massively upregulated suppressor-of-cytokine-signaling-3 (SOCS3) > 10-fold without changes in IL6 mRNA expression. Furthermore, inflammatory markers like CD68 (macrophages) and IL1β were significantly lower in CIH vs. NOX. None of these morphological alterations with CIH- or iNOS−/− were detected in the gastrocnemius muscle. Notably, iNOS expression was undetectable in WT muscle, unlike the liver, where it was massively decreased with CIH. Conclusion CIH leads to NMJ and mitochondrial damage associated with fiber atrophy/centronucleation selectively in slow-twitch muscle of WT. This effect is largely mimicked by iNOS−/− at NOX (except for atrophy). Both conditions involve massive SOCS3 upregulation likely through denervation without Il6 upregulation but accompanied by a decrease of macrophage density especially next to denervated endplates. In the absence of muscular iNOS expression in WT, this damage may arise from extramuscular, e.g., motoneuronal iNOS deficiency (through CIH or knockout) awaiting functional evaluation. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00288-7.
Collapse
|
28
|
Liu SH, Chen YC, Tzeng HP, Chiang MT. Fish oil enriched ω-3 fatty acids ameliorates protein synthesis/degradation imbalance, inflammation, and wasting in muscles of diet-induced obese rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Aby K, Antony R, Eichholz M, Srinivasan R, Li Y. Enhanced pro-BDNF-p75NTR pathway activity in denervated skeletal muscle. Life Sci 2021; 286:120067. [PMID: 34678261 PMCID: PMC8595791 DOI: 10.1016/j.lfs.2021.120067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022]
Abstract
AIMS Brain derived neurotrophic factor (BDNF) and the related receptors TrkB and p75NTR are expressed in skeletal muscle, yet their functions remain to be fully understood. Skeletal muscle denervation, which occurs in spinal injury, peripheral neuropathies, and aging, negatively affects muscle mass and function. In this study, we wanted to understand the role of BDNF, TrkB, and p75NTR in denervation-induced adverse effects on skeletal muscle. MAIN METHODS Mice with unilateral sciatic denervation were used. Protein levels of pro- and mature BDNF, TrkB, p75NTR, activations of their downstream signaling pathways, and inflammation in the control and denervated muscle were measured with Western blot and tissue staining. Treatment with a p75NTR inhibitor and BDNF skeletal muscle specific knockout in mice were used to examine the role of p75NTR and pro-BDNF. KEY FINDINGS In denervated muscle, pro-BDNF and p75NTR were significantly upregulated, and JNK and NF-kB, two major downstream signaling pathways of p75NTR, were activated, along with muscle atrophy and inflammation. Inhibition of p75NTR using LM11A-31 significantly reduced JNK activation and inflammatory cytokines in the denervated muscle. Moreover, skeletal muscle specific knockout of BDNF reduced pro-BDNF level, JNK activation and inflammation in the denervated muscle. SIGNIFICANCE These results reveal for the first time that the upregulation of pro-BDNF and activation of p75NTR pathway are involved in denervation-induced inflammation in skeletal muscle. The results suggest that inhibition of pro-BDNF-p75NTR pathway can be a new target to treat skeletal muscle inflammation.
Collapse
Affiliation(s)
- Katherine Aby
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Ryan Antony
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Mary Eichholz
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Rekha Srinivasan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Yifan Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| |
Collapse
|
30
|
Xiang Y, Dai J, Xu L, Li X, Jiang J, Xu J. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury. Life Sci 2021; 287:120117. [PMID: 34740577 DOI: 10.1016/j.lfs.2021.120117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Denervated skeletal muscular atrophy is primarily characterized by loss of muscle strength and mass and an unideal functional recovery of the muscle after extended denervation. This review emphasizes the interaction between the immune system and the denervated skeletal muscle. Immune cells such as neutrophils, macrophages and T-cells are activated and migrate to denervated muscle, where they release a high concentration of cytokines and chemokines. The migration of these immune cells, the transformation of different functional immune cell subtypes, and the cytokine network in the immune microenvironment may be involved in the regulatory process of muscle atrophy or repair. However, the exact mechanisms of the interaction between these immune cells and immune molecules in skeletal muscles are unclear. In this paper, the immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury is reviewed.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Xiaokang Li
- Natl Res Inst Child Hlth & Dev, Div Transplantat Immunol, Tokyo, Japan
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
31
|
Anwar H, Rasul A, Iqbal J, Ahmad N, Imran A, Malik SA, Ijaz F, Akram R, Maqbool J, Sajid F, Sun T, Hussain G, Manzoor MF. Dietary biomolecules as promising regenerative agents for peripheral nerve injury: An emerging nutraceutical-based therapeutic approach. J Food Biochem 2021; 45:e13989. [PMID: 34719796 DOI: 10.1111/jfbc.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
Peripheral nerve damage is a debilitating condition that can result in partial or complete functional loss as a result of axonal degeneration, as well as lifelong dependence. Many therapies have been imbued with a plethora of positive features while posing little risks. It is worth noting that these biomolecules work by activating several intrinsic pathways that are known to be important in peripheral nerve regeneration. Although the underlying mechanism is used for accurate and speedy functional recovery, none of them are without side effects. As a result, it is believed that effective therapy is currently lacking. The dietary biomolecules-based intervention, among other ways, is appealing, safe, and effective. Upregulation of transcription factors, neurotrophic factors, and growth factors such as NGF, GDNF, BDNF, and CTNF may occur as a result of these substances' dietary intake. Upregulation of the signaling pathways ERK, JNK, p38, and PKA has also been seen, which aids in axonal regeneration. Although several mechanistic approaches to understanding their involvement have been suggested, more work is needed to reveal the amazing properties of these biomolecules. We have discussed in this article that how different dietary biomolecules can help with functional recovery and regeneration after an injury. PRACTICAL APPLICATIONS: Based on the information known to date, we may conclude that treatment techniques for peripheral nerve injury have downsides, such as complications, donor shortages, adverse effects, unaffordability, and a lack of precision in efficacy. These difficulties cast doubt on their efficacy and raise severe concerns about the prescription. In this situation, the need for safe and effective therapeutic techniques is unavoidable, and dietary biomolecules appear to be a safe, cost-efficient, and effective way to promote nerve regeneration following an injury. The information on these biomolecules has been summarized here. Upregulation of transcription factors, neurotrophic factors, and growth factors, such as NGF, GDNF, BDNF, and CTNF, as well as the ERK, JNK, p38, and PKA, signaling pathways, may stimulate axonal regeneration.
Collapse
Affiliation(s)
- Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Nazir Ahmad
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shoaib Ahmad Malik
- Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Fazeela Ijaz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
32
|
Sun H, Sun J, Li M, Qian L, Zhang L, Huang Z, Shen Y, Law BYK, Liu L, Gu X. Transcriptome Analysis of Immune Receptor Activation and Energy Metabolism Reduction as the Underlying Mechanisms in Interleukin-6-Induced Skeletal Muscle Atrophy. Front Immunol 2021; 12:730070. [PMID: 34552592 PMCID: PMC8450567 DOI: 10.3389/fimmu.2021.730070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
Background Inflammation may trigger skeletal muscle atrophy induced by cancer cachexia. As a pro-inflammatory factor, interleukin-6 may cause skeletal muscle atrophy, but the underlying molecular mechanisms have not been explored. Methods In this experimental study, we used adult male ICR mice, weighing 25 ± 2 g, and the continuous infusion of interleukin-6 into the tibialis anterior muscle to construct a skeletal muscle atrophy model (experimental group). A control group received a saline infusion. RNA-sequencing was used to analyze the differentially expressed genes in tissue samples after one and three days. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analysis were applied to define the function of these genes, and protein-protein interaction analysis was performed to identify potential transcription factors. Fluorescence microscopy was used to determine the muscle fiber cross-sectional area after 14 days. Results Continuous infusion of interleukin-6 for 14 days caused significant muscle atrophy. RNA-sequencing found 359 differentially expressed genes in the 1- and 3-day tissue samples and 1748 differentially expressed genes only in the 3-day samples. Functional analysis showed that the differentially expressed genes found in both the 1- and 3-day samples were associated with immune receptor activation, whereas the differentially expressed genes found only in the 3-day sample were associated with reduced energy metabolism. The expression of multiple genes in the oxidative phosphorylation and tricarboxylic acid cycle pathways was down-regulated. Furthermore, differentially expressed transcription factors were identified, and their interaction with interleukin-6 and the differentially expressed genes was predicted, which indicated that STAT3, NF-κB, TP53 and MyoG may play an important role in the process of interleukin-6-induced muscle atrophy. Conclusions This study found that interleukin-6 caused skeletal muscle atrophy through immune receptor activation and a reduction of the energy metabolism. Several transcription factors downstream of IL-6 have the potential to become new regulators of skeletal muscle atrophy. This study not only enriches the molecular regulation mechanism of muscle atrophy, but also provides a potential target for targeted therapy of muscle atrophy.
Collapse
Affiliation(s)
- Hualin Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau, SAR China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, National Medical Products Administration Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, National Medical Products Administration Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Lei Qian
- Department of Laboratory Medicine, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, National Medical Products Administration Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, National Medical Products Administration Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Emergency, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, National Medical Products Administration Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau, SAR China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau, SAR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, National Medical Products Administration Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, China
| |
Collapse
|
33
|
You B, Dun Y, Fu S, Qi D, Zhang W, Liu Y, Qiu L, Xie M, Liu S. The Treatment of Rhodiola Mimics Exercise to Resist High-Fat Diet-Induced Muscle Dysfunction via Sirtuin1-Dependent Mechanisms. Front Pharmacol 2021; 12:646489. [PMID: 33935745 PMCID: PMC8082455 DOI: 10.3389/fphar.2021.646489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/22/2021] [Indexed: 01/22/2023] Open
Abstract
Muscle dysfunction is a complication of high-fat diet (HFD)-induced obesity that could be prevented by exercise, but patients did not get enough therapeutic efficacy from exercise due to multiple reasons. To explore alternative or supplementary approaches to prevent or treat muscle dysfunction in individuals with obesity, we investigated the effects of Rhodiola on muscle dysfunction as exercise pills. SIRT1 might suppress atrogenes expression and improve mitochondrial quality control, which could be a therapeutic target stimulated by exercise and Rhodiola, but further mechanisms remain unclear. We verified the lipid metabolism disorders and skeletal muscle dysfunction in HFD feeding mice. Moreover, exercise and Rhodiola were used to intervene mice with a HFD. Our results showed that exercise and Rhodiola prevented muscle atrophy and dysfunction in obese mice and activating the SIRT1 pathway, while atrogenes were suppressed and mitochondrial quality control was improved. EX-527, SIRT1 inhibitor, was used to validate the essential role of SIRT1 in salidroside benefit. Results of cell culture experiment showed that salidroside alleviated high palmitate-induced atrophy and mitochondrial quality control impairments, but these improvements of salidroside were inhibited by EX-527 in C2C12 myotubes. Overall, Rhodiola mimics exercise that activates SIRT1 signaling leading to improvement of HFD-induced muscle dysfunction.
Collapse
Affiliation(s)
- Baiyang You
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China.,Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Siqian Fu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Dake Qi
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Wenliang Zhang
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Yuan Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Ling Qiu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Murong Xie
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
34
|
Cui Q, Yang H, Gu Y, Zong C, Chen X, Lin Y, Sun H, Shen Y, Zhu J. RNA sequencing (RNA-seq) analysis of gene expression provides new insights into hindlimb unloading-induced skeletal muscle atrophy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1595. [PMID: 33437794 PMCID: PMC7791259 DOI: 10.21037/atm-20-7400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Weightlessness-induced skeletal muscle atrophy, accompanied by complex biochemical and physiological changes, has potentially damaged consequences. However, there is still an insufficient effective strategy to treat skeletal muscle atrophy. Therefore, exploring the molecular mechanisms regulating skeletal muscle atrophy and effective protection is necessary. Methods RNA sequencing (RNA-seq) analysis was used to detect differentially expressed genes (DEGs) in the soleus muscle at 12, 24, 36 hours, three days, and seven days after hindlimb unloading in rats. Pearson correlation heatmaps and principal component analysis (PCA) were applied to analyze DEGs’ expression profiles. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for cluster analysis of DEGs. Ingenuity pathway analysis (IPA) was used to analyze specific biological processes further. Results At different time points (12, 24, 36 hours, three days, seven days) after hindlimb unloading, the expression levels of 712, 1,109, 1,433, 1,162, and 1,182 genes in rat soleus muscle were upregulated, respectively, whereas the expression levels of 1,186, 1,324, 1,632, 1,446, and 1,596 genes were downregulated, respectively. PCA revealed that rat soleus muscle showed three different transcriptional phases within seven days after hindlimb unloading. KEGG and GO annotation indicated that the first transcriptional phase primarily involved the activation of stress responses, including oxidative stress, and the inhibition of cell proliferation and angiogenesis; the second transcriptional phase primarily involved the activation of proteolytic systems and, to a certain degree, inflammatory responses; and the third transcriptional phase primarily involved extensive activation of the proteolytic system, significant inhibition of energy metabolism, and activation of the aging process and slow-to-fast muscle conversion. Conclusions Different physiological processes in rat skeletal muscles were activated sequentially after unloading. From these activated biological processes, the three transcriptional phases after skeletal muscle unloading can be successively defined as the stress response phase, the atrophic initiation phase, and the atrophic phase. Our study not only helps in the understanding of the molecular mechanisms underlying weightlessness-induced muscle atrophy but may also provide an important time window for the treatment and prevention of weightlessness-induced muscle atrophy.
Collapse
Affiliation(s)
- Qihao Cui
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Yang
- Department of Neurosurgery, People's Hospital of Binhai County, Yancheng, China
| | - Yuming Gu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenyu Zong
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
35
|
Pingel J, Pacolet A, Elfving B, Ledri LN. Intramuscular BoNT/A injections cause an inflammatory response in the muscle tissue of rats. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211039942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives The purpose of the present study was to investigate whether intramuscular BoNT/A injections cause an systemic inflammatory response and a local inflammatory response in the muscle tissue. Methods Thirty-two male Sprague Dawley rats treated with BoNT/A (i.m., 1IU) were divided in four groups, depending on the time of BoNT/A injection (2 days before, 1, 2, and 4 weeks before the experiment). Bio-Plex Pro Rat Cytokine 23-plex Multiplex Assay (Bio-Rad, USA). Results Systemic inflammation: 17 cytokines (IL1-α ( p = 0.005), IL-1β ( p = 0.01), IL-2 ( p = 0.04), IL-4 ( p = 0.03), IL-6 ( p = 0.03), IL-10 ( p = 0.02), IL12(p70) ( p = 0.03), IL-13 ( p = 0.04), IL-17 ( p = 0.03), GM-CSF ( p = 0.03), INF-γ ( p = 0.03), MIP-1α ( p = 0.03), MIP-3α ( p = 0.04), RANTES ( p = 0.001), TNF-α ( p = 0.04), vascular endothelial growth factor ( p = 0.03), and MCP-1 ( p = 0.02)) showed significantly higher expression levels 2 days after intramuscular BoNT/A injections compared to other time points (1, 2, and 4 weeks). Local inflammation: 12 cytokines (IL-1β ( p = 0.02), IL-6 ( p = 0.002), IL-10 ( p = 0.02), IL-13 ( p = 0.04), IL-17 ( p = 0.02), TNF-α ( p = 0.001), GM-CSF ( p = 0.01), M-CSF ( p = 0.04), MIP-1α ( p = 0.04), MIP-3α ( p = 0.002), RANTES ( p = 0.02), and MCP-1( p = 0.004)) showed higher expression levels 2 and/or 4 weeks after intramuscular BoNT/A injections compared to the other time points (2 days and 1 week). Conclusion Intramuscular BoNT/A injections result in a rapid systemic inflammatory response that only lasts a couple of days. At the same time, intramuscular BoNT/A injections cause an inflammatory response locally in the muscle with significantly higher cytokine levels 2 and/or 4 weeks after injections.
Collapse
Affiliation(s)
- Jessica Pingel
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Pacolet
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Litsa N Ledri
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Dai J, Xiang Y, Fu D, Xu L, Jiang J, Xu J. Ficus carica L. Attenuates Denervated Skeletal Muscle Atrophy via PPARα/NF-κB Pathway. Front Physiol 2020; 11:580223. [PMID: 33343385 PMCID: PMC7744683 DOI: 10.3389/fphys.2020.580223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/13/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment options for denervated skeletal muscle atrophy are limited, in part because the underlying molecular mechanisms are not well understood. Unlike previous transcriptomics studies conducted in rodent models of peripheral nerve injury, in the present study, we performed high-throughput sequencing with denervated atrophic biceps muscle and normal (non-denervated) sternocleidomastoid muscle samples obtained from four brachial plexus injury (BPI) patients. We also investigated whether Ficus carica L. (FCL.) extract can suppress denervated muscle atrophy in a mouse model, along with the mechanism of action. We identified 1471 genes that were differentially expressed between clinical specimens of atrophic and normal muscle, including 771 that were downregulated and 700 that were upregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the differentially expressed genes were mainly enriched in the GO terms “structural constituent of muscle,” “Z disc,” “M band,” and “striated muscle contraction,” as well as “Cell adhesion molecules,” “Glycolysis/Gluconeogenesis,” “Peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway,” and “P53 signaling pathway.” In experiments using mice, the reduction in wet weight and myofiber diameter in denervated muscle was improved by FCL. extract compared to saline administration, which was accompanied by downregulation of the proinflammatory cytokines interleukin (IL)-1β and IL-6. Moreover, although both denervated groups showed increased nuclear factor (NF)-κB activation and PPARα expression, the degree of NF-κB activation was lower while PPARα and inhibitor of NF-κB IκBα expression was higher in FCL. extract-treated mice. Thus, FCL. extract suppresses denervation-induced inflammation and attenuates muscle atrophy by enhancing PPARα expression and inhibiting NF-κB activation. These findings suggest that FCL. extract has therapeutic potential for preventing denervation-induced muscle atrophy caused by peripheral nerve injury or disease.
Collapse
Affiliation(s)
- Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Da Fu
- Central Laboratory, Shanghai Tenth People's Hospital, Shanghai, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Huang Z, Zhong L, Zhu J, Xu H, Ma W, Zhang L, Shen Y, Law BYK, Ding F, Gu X, Sun H. Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1681. [PMID: 33490193 PMCID: PMC7812230 DOI: 10.21037/atm-20-7269] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The molecular mechanisms underlying denervated skeletal muscle atrophy with concomitant muscle mass loss have not been fully elucidated. Therefore, this study aimed to attain a deeper understanding of the molecular mechanisms underlying denervated skeletal muscle atrophy as a critical step to developing targeted therapy and retarding the concomitant loss of skeletal muscle mass. Methods We employed microarray analysis to reveal the potential molecular mechanisms underlying denervated skeletal muscle atrophy. We used in vitro and in vivo atrophy models to explore the roles of the interleukin 6 (IL-6), Janus kinase (JAK), and signal transducers and activators of transcription 3 (STAT3) in muscle atrophy. Results In this study, microarray analysis of the differentially expressed genes demonstrated that inflammation-related cytokines were markedly triggered and IL-6/JAK/STAT3 signaling pathway was strongly activated during denervated skeletal muscle atrophy. The high level of IL-6 enhanced C2C12 myotube atrophy through the activation of JAK/STAT3, while inhibiting JAK/STAT3 pathway by ruxolitinib (a JAK1/2 inhibitor) or C188-9 (a STAT3 inhibitor) significantly attenuated C2C12 myotube atrophy induced by IL-6. Pharmacological blocking of IL-6 by tocilizumab (antibody against IL-6 receptor) and pharmacological/genetic inhibition of JAK/STAT3 pathway by ruxolitinib/C188-9 (JAK/STAT3 inhibitor) and STAT3 short hairpin RNA (shRNA) lentivirus in tibialis anterior muscles could suppress muscle atrophy and inhibit mitophagy, and was accompanied by the decreased expression of atrophic genes (MuRF1 and MAFbx) and autophagy-related genes (PINK1, BNIP3, Beclin 1, ATG7, and LC3B). Conclusions Taken together, the results suggest that IL-6/JAK/STAT3 pathway may be a principal mediator in denervated skeletal muscle atrophy, meaning targeted therapy against IL-6/JAK/STAT3 pathway might have potential as a therapeutic strategy for prevention of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lou Zhong
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
38
|
Shen Y, Zhang Q, Huang Z, Zhu J, Qiu J, Ma W, Yang X, Ding F, Sun H. Isoquercitrin Delays Denervated Soleus Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation. Front Physiol 2020; 11:988. [PMID: 32903465 PMCID: PMC7435639 DOI: 10.3389/fphys.2020.00988] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Although denervated muscle atrophy is common, the underlying molecular mechanism remains unelucidated. We have previously found that oxidative stress and inflammatory response may be early events that trigger denervated muscle atrophy. Isoquercitrin is a biologically active flavonoid with antioxidative and anti-inflammatory properties. The present study investigated the effect of isoquercitrin on denervated soleus muscle atrophy and its possible molecular mechanisms. We found that isoquercitrin was effective in alleviating soleus muscle mass loss following denervation in a dose-dependent manner. Isoquercitrin demonstrated the optimal protective effect at 20 mg/kg/d, which was the dose used in subsequent experiments. To further explore the protective effect of isoquercitrin on denervated soleus muscle atrophy, we analyzed muscle proteolysis via the ubiquitin-proteasome pathway, mitophagy, and muscle fiber type conversion. Isoquercitrin significantly inhibited the denervation-induced overexpression of two muscle-specific ubiquitin ligases—muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), and reduced the degradation of myosin heavy chains (MyHCs) in the target muscle. Following isoquercitrin treatment, mitochondrial vacuolation and autophagy were inhibited, as evidenced by reduced level of autophagy-related proteins (ATG7, BNIP3, LC3B, and PINK1); slow-to-fast fiber type conversion in the target muscle was delayed via triggering expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α); and the production of reactive oxygen species (ROS) in the target muscle was reduced, which might be associated with the upregulation of antioxidant factors (SOD1, SOD2, NRF2, NQO1, and HO1) and the downregulation of ROS production-related factors (Nox2, Nox4, and DUOX1). Furthermore, isoquercitrin treatment reduced the levels of inflammatory factors—interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)—in the target muscle and inactivated the JAK/STAT3 signaling pathway. Overall, isoquercitrin may alleviate soleus muscle atrophy and mitophagy and reverse the slow-to-fast fiber type conversion following denervation via inhibition of oxidative stress and inflammatory response. Our study findings enrich the knowledge regarding the molecular regulatory mechanisms of denervated muscle atrophy and provide a scientific basis for isoquercitrin as a protective drug for the prevention and treatment of denervated muscle atrophy.
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiayi Qiu
- School of Nursing, Nantong University, Nantong, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
39
|
Xu L, Zhou D, Li F, Ji L. Glutaminase 2 functions as a tumor suppressor gene in gastric cancer. Transl Cancer Res 2020; 9:4906-4913. [PMID: 35117852 PMCID: PMC8798858 DOI: 10.21037/tcr-20-2246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/04/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glutaminase 2 (GLS2) has been described as a tumor suppressor in hepatocellular carcinoma (HCC) and colon cancer. This study aimed to investigate the expression of GLS2 and its biological role in gastric cancer. METHODS The expression of GLS2 was determined by quantitative Real-time PCR (qRT-PCR). Proliferation assay was performed by Cell Counting Kit-8 assay. Cell apoptosis assay was performed by Annexin V-fluorescein isothiocyanate (FITC) Apoptosis Detection Kit. Migration capability analysis was performed by Transwell chamber assay. The protein GLS2 and caspase 3 was determined by western blotting. RESULTS Here, we demonstrated that GLS2 displayed a significant downregulation in gastric cancer tissues compared to adjacent non-cancer tissues, which suggested that the downregulation of GLS2 might possibly be associated with the development and progression of gastric cancer. We also found that GLS2 overexpression could significantly suppress gastric cancer cell proliferation and migration and enhance gastric cancer cell apoptosis via upregulating the expression of caspase 3. CONCLUSIONS These data taken together show that GLS2 functions as a tumor suppressor gene in gastric cancer. This study not only enriches the molecular mechanism of gastric cancer but also supplies a scientific basis for targeted treatment of gastric cancer.
Collapse
Affiliation(s)
- Liang Xu
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu Traditional Chinese Medicine Hospital, Changshu, China
| | - Dong Zhou
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu Traditional Chinese Medicine Hospital, Changshu, China
| | - Fang Li
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu Traditional Chinese Medicine Hospital, Changshu, China
| | - Lijiang Ji
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu Traditional Chinese Medicine Hospital, Changshu, China
| |
Collapse
|
40
|
Xie H, Shen CY, Jiang JG. The sources of salidroside and its targeting for multiple chronic diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
41
|
Qiu J, Zhu J, Zhang R, Liang W, Ma W, Zhang Q, Huang Z, Ding F, Sun H. miR-125b-5p targeting TRAF6 relieves skeletal muscle atrophy induced by fasting or denervation. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:456. [PMID: 31700892 DOI: 10.21037/atm.2019.08.39] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Skeletal muscle atrophy, characterized by accelerated protein degradation, occurs in such conditions as unloading, immobilization, fasting, and denervation. Effective treatments for skeletal muscle atrophy are not yet available. Considering that microRNAs (miRs) may play an important role in the regulation of muscle atrophy, in the present study, we aimed to examine the effect of miR-125b-5p-based therapeutic strategies on skeletal muscle atrophy, and to explore the underlying mechanisms. Methods Fasting-induced atrophic mouse C2C12 myotubes and denervated rat tibialis anterior (TA) muscles were used as in vitro and in vivo models of skeletal muscle atrophy, respectively. The morphological parameters of skeletal muscle were measured by immunostaining-based quantification. The interaction between miR-125b-5p and TRAF6 3'-UTR was detected by luciferase reporter analysis. The mRNA and protein expressions were determined by real-time qPCR and Western blot analysis respectively. The miR mimics/agomir and miR inhibitor/antagomir were transfected into C2C12 myotubes and TA muscles respectively to alter the expression of miR-125b-5p. Results The expression of miR-125b-5p was down-regulated in both atrophic C2C12 myotubes and denervated TA muscles. The interaction between miR-125b-5p and TRAF6 3'-UTR was identified. Overexpression of miR-125b-5p protected skeletal muscle samples from atrophy in vitro and in vivo by targeting TRAF6 through inactivation of several ubiquitin-proteasome system (UPS)- and autophagy-lysosome system (ALS)-related proteins. Conclusions Overexpression of miR-125b-5p may provide a promising therapeutic approach to treat muscle atrophy.
Collapse
Affiliation(s)
- Jiaying Qiu
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ru Zhang
- The Second Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fei Ding
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
42
|
Ma W, Zhang R, Huang Z, Zhang Q, Xie X, Yang X, Zhang Q, Liu H, Ding F, Zhu J, Sun H. PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:440. [PMID: 31700876 DOI: 10.21037/atm.2019.08.101] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Skeletal muscle atrophy involves and requires widespread changes in skeletal muscle gene expression and signaling pathway, resulting in excessive loss of muscle mass and strength, which is associated with poor prognosis and the decline of life quality in several diseases. However, the treatment of skeletal muscle atrophy remains an unresolved challenge to this day. The aim of the present study was to investigate the influence of pyrroloquinoline quinone (PQQ), a redox-active o-quinone found in various foods and mammalian tissues, on skeletal muscle atrophy, and to explore the underlying molecular mechanism. Methods After denervation, mice were injected intraperitoneally with saline plus PQQ (5 mg/kg/d) or saline only for 14 days. The level of inflammatory cytokines in tibialis anterior (TA) muscles was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), and the level of signaling proteins of Janus kinase 2/signal transduction and activator of transcription 3 (Jak2/STAT3), TGF-β1/Smad3, JNK/p38 MAPK, and nuclear factor κB (NF-κB) signaling pathway were detected by Western blot. The skeletal muscle atrophy was evaluated by muscle wet weight ratio and cross-sectional areas (CSAs) of myofibers. The mitophagy was observed through transmission electron microscopy (TEM) analysis, and muscle fiber type transition was analyzed through fast myosin skeletal heavy chain antibody staining. Results The proinflammatory cytokines IL-6, IL-1β and TNF-α were largely induced in TA muscles after sciatic nerve transection. PQQ can significantly reverse this phenomenon, as evidenced by the decreased levels of proinflammatory cytokines IL-6, IL-1β and TNF-α. Moreover, PQQ could significantly attenuate the signal activation of Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB in skeletal muscles after sciatic nerve transection. Furthermore, PQQ alleviated skeletal muscle atrophy, mitigated mitophagy and inhibited slow-to-fast muscle fiber type transition. Conclusions These results suggested that PQQ could attenuate denervation-induced skeletal muscle atrophy, mitophagy and fiber type transition through suppressing the Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ru Zhang
- Department of Imaging, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoying Xie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian 226600, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|