1
|
Liang W, Li Y, Lei S, Chen R, Shi H, Li F, Liao Z, Zhong C, She Y. Astragalus polysaccharide mediates lnc-GD2H to regulate proliferation and differentiation of C2C12 muscle cells under hypoxic condition. Tissue Cell 2025; 93:102731. [PMID: 39823705 DOI: 10.1016/j.tice.2025.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Astragalus polysaccharide (APS) is a bioactive component of Astragalus species that shows protective effects on C2C12 muscle cell proliferation and differentiation under hypoxic conditions. In this study, EdU staining, cell scratch testing, quantitative reverse-transcription polymerase chain reaction, Western blotting, immunofluorescence analysis, and lnc-GD2H silencing were used to investigated the protective effects and mechanisms of action of APS against CoCl2-induced hypoxic injury of muscle cells. Our results showed that APS promoted cell proliferation and increased the expression of lnc-GD2H, c-Myc, and Ki-67. In addition, APS protected against the effect of CoCl2 on differentiation and increased the levels of Myog and MyHC expression. Silencing lnc-GD2H attenuated the protective effects of APS outlined above. Considering that APS may mediate the regulation of proliferation and differentiation by lnc-GD2H in C2C12 cells, and alleviates hypoxic injury induced by CoCl2.
Collapse
Affiliation(s)
- Wannian Liang
- Department of Clinical Research, Shenzhen Guangming District People's Hospital, ShenZhen, Guangdong, China
| | - Yang Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Feimeng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhiyuan Liao
- Department of Interventional Radiology, Shenzhen Guangming District People's Hospital,ShenZhen, Guangdong, China
| | - Chao Zhong
- Department of Clinical Research, Shenzhen Guangming District People's Hospital, ShenZhen, Guangdong, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Nguyen MT, Ly QK, Ngo THP, Lee W. Calponin 3 Regulates Myoblast Proliferation and Differentiation Through Actin Cytoskeleton Remodeling and YAP1-Mediated Signaling in Myoblasts. Cells 2025; 14:142. [PMID: 39851570 PMCID: PMC11764405 DOI: 10.3390/cells14020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts. CNN3 knockdown led to a marked increase in filamentous actin, which promoted the nuclear localization of Yes-associated protein 1 (YAP1), a mechanosensitive transcriptional coactivator required for response to the mechanical cues that drive cell proliferation. Subsequently, CNN3 depletion enhanced myoblast proliferation by upregulating the expression of the YAP1 target genes related to cell cycle progression, such as cyclin B1, cyclin D1, and PCNA. According to a flow cytometry analysis, CNN3-deficient cells displayed higher S and G2/M phase fractions, which concurred with elevated proliferation rates. Furthermore, CNN3 knockdown impaired myogenic differentiation, as evidenced by reduced levels of MyoD, MyoG, and MyHC, key markers of myogenic commitment and maturation, and immunocytochemistry showed that myotube formation was diminished in CNN3-suppressed cells, which was supported by lower differentiation and fusion indices. These findings reveal that CNN3 is essential for myogenic differentiation, playing a key role in regulating actin remodeling and cellular localization of YAP1 to orchestrate the proliferation and differentiation in myogenic progenitor cells. This study highlights CNN3 as a critical regulator of skeletal myogenesis and suggests its therapeutic potential as a target for muscle atrophy and related disorders.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (T.H.P.N.)
| | - Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (T.H.P.N.)
| | - Thanh Huu Phan Ngo
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (T.H.P.N.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (T.H.P.N.)
- Section of Molecular and Cellular Medicine, Medical Institute of Dongguk University, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Rasmussen M, Jin JP. Mechanoregulation and function of calponin and transgelin. BIOPHYSICS REVIEWS 2024; 5:011302. [PMID: 38515654 PMCID: PMC10954348 DOI: 10.1063/5.0176784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
It is well known that chemical energy can be converted to mechanical force in biological systems by motor proteins such as myosin ATPase. It is also broadly observed that constant/static mechanical signals potently induce cellular responses. However, the mechanisms that cells sense and convert the mechanical force into biochemical signals are not well understood. Calponin and transgelin are a family of homologous proteins that participate in the regulation of actin-activated myosin motor activity. An isoform of calponin, calponin 2, has been shown to regulate cytoskeleton-based cell motility functions under mechanical signaling. The expression of the calponin 2 gene and the turnover of calponin 2 protein are both under mechanoregulation. The regulation and function of calponin 2 has physiological and pathological significance, as shown in platelet adhesion, inflammatory arthritis, arterial atherosclerosis, calcific aortic valve disease, post-surgical fibrotic peritoneal adhesion, chronic proteinuria, ovarian insufficiency, and tumor metastasis. The levels of calponin 2 vary in different cell types, reflecting adaptations to specific tissue environments and functional states. The present review focuses on the mechanoregulation of calponin and transgelin family proteins to explore how cells sense steady tension and convert the force signal to biochemical activities. Our objective is to present a current knowledge basis for further investigations to establish the function and mechanisms of calponin and transgelin in cellular mechanoregulation.
Collapse
Affiliation(s)
- Monica Rasmussen
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | - J.-P. Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA
| |
Collapse
|
4
|
Deng K, Liu Z, Li X, Ren C, Fan Y, Guo J, Li P, Deng M, Xue G, Yu X, Shi J, Zhang Y, Wang F. Ythdf2-mediated STK11 mRNA decay supports myogenesis by inhibiting the AMPK/mTOR pathway. Int J Biol Macromol 2024; 254:127614. [PMID: 37884231 DOI: 10.1016/j.ijbiomac.2023.127614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
An emerging research focus is the role of m6A modifications in mediating the post-transcriptional regulation of mRNA during mammalian development. Recent evidence suggests that m6A methyltransferases and demethylases play critical roles in skeletal muscle development. Ythdf2 is a m6A "reader" protein that mediates mRNA degradation in an m6A-dependent manner. However, the specific function of Ythdf2 in skeletal muscle development and the underlying mechanisms remain unclear. Here, we observed that Ythdf2 expression was significantly upregulated during myogenic differentiation, whereas Ythdf2 knockdown markedly inhibited myoblast proliferation and differentiation. Combined analysis of high-throughput sequencing, Co-IP, and RIP assay revealed that Ythdf2 could bind to m6A sites in STK11 mRNA and form an Ago2 silencing complex to promote its degradation, thereby regulating its expression and consequently, the AMPK/mTOR pathway. Furthermore, STK11 downregulation partially rescued Ythdf2 knockdown-induced impairment of proliferation and myogenic differentiation by inhibiting the AMPK/mTOR pathway. Collectively, our results indicate that Ythdf2 mediates the decay of STK11 mRNA, an AMPK activator, in an Ago2 system-dependent manner, thereby driving skeletal myogenesis by suppressing the AMPK/mTOR pathway. These findings further enhance our understanding of the molecular mechanisms underlying RNA methylation in the regulation of myogenesis and provide valuable insights for conducting in-depth studies on myogenesis.
Collapse
Affiliation(s)
- Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Liu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Li
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Caifang Ren
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang 212000, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinjing Guo
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Peizhen Li
- Jiangsu Provincial Animal Husbandry General Station, Nanjing 210095, China
| | - Mingtian Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Xue
- Haimen Goat Breeding Farm, Nantong 226100, China
| | - Xiaorong Yu
- Haimen Goat Breeding Farm, Nantong 226100, China
| | - Jianfei Shi
- Haimen Goat Breeding Farm, Nantong 226100, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
6
|
Hsieh TB, Jin JP. Evolution and function of calponin and transgelin. Front Cell Dev Biol 2023; 11:1206147. [PMID: 37363722 PMCID: PMC10285543 DOI: 10.3389/fcell.2023.1206147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Calponin and transgelin (originally named SM22) are homologous cytoskeleton proteins that regulate actin-activated myosin motor functions in smooth muscle contraction and non-muscle cell motility during adhesion, migration, proliferation, phagocytosis, wound healing, and inflammatory responses. They are abundant cytoskeleton proteins present in multiple cell types whereas their physiological functions remain to be fully established. This focused review summarizes the evolution of genes encoding calponin and transgelin and their isoforms and discusses the structural similarity and divergence in vertebrate and invertebrate species in the context of functions in regulating cell motility. As the first literature review focusing on the evolution of the calponin-transgelin family of proteins in relevance to their structure-function relationship, the goal is to outline a foundation of current knowledge for continued investigations to understand the biological functions of calponin and transgelin in various cell types during physiological and pathological processes.
Collapse
Affiliation(s)
- Tzu-Bou Hsieh
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - J.-P. Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
7
|
Zhang M, Li X, Cui X, Li R, Ma Z, Gao X. Selenomethionine promotes ANXA2 phosphorylation for proliferation and protein synthesis of myoblasts and skeletal muscle growth. J Nutr Biochem 2023; 115:109277. [PMID: 36739096 DOI: 10.1016/j.jnutbio.2023.109277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Selenomethionine (Se-Met) has many beneficial effects on higher animals and human, and can regulate cellular physiology through distinct signaling pathways. However, the role and molecular mechanism of Se-Met in skeletal muscle growth remains unclear. In this study, we observed the effects of Se-Met on C2C12 myoblasts and skeletal muscle growth of mice, and explored the corresponding molecular mechanism. Se-Met affected proliferation and protein synthesis of C2C12 myoblasts in a hormesis type of relationship, and had an optimal stimulatory effect at 50 µM concentration. Se-Met also affected mTOR, ANXA2, and PKCα phosphorylation in the same manner. ANXA2 knockdown blocked the stimulation of Se-Met on cell proliferation and protein synthesis and inhibition of Se-Met on autophagy of C2C12 myoblasts. Western blotting analysis showed that PI3K inhibition blocked the stimulation of Se-Met on mTOR phosphorylation. ANXA2 knockdown further blocked the stimulation of Se-Met on PI3K and mTOR phosphorylation. Point mutation experiment showed that ANXA2 mediated the stimulation of Se-Met on the PI3K-mTOR signaling through phosphorylation at Ser26. PKCα interacted with ANXA2, and PKCα knockdown blocked the stimulation of Se-Met on ANXA2 phosphorylation at Ser26. Se-Met addition (7.5mg/kg diet, 4 weeks) increased mouse carcass weight, promoted gastrocnemius skeletal muscle growth and ANXA2 and mTOR phosphorylation in this tissue. Collectively, our findings reveal that Se-Met can promote proliferation and protein synthesis of myoblasts and skeletal muscle growth through ANXA2 phosphorylation.
Collapse
Affiliation(s)
- Minghui Zhang
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xueying Li
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xu Cui
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Rui Li
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China
| | - Zonghua Ma
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China
| |
Collapse
|
8
|
Xing X, Liu M, Wang X, Guo Q, Wang H. Promoting effects of calponin 3 on the growth of diffuse large B‑cell lymphoma cells. Oncol Rep 2023; 49:46. [PMID: 36660952 PMCID: PMC9868891 DOI: 10.3892/or.2023.8483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Diffuse large B‑cell lymphoma (DLBCL) is one of the most common types of lymphoma. Calponin 3 (CNN3) is a thin filament‑associated protein previously known to regulate smooth muscle contraction. Recent evidence illustrates its involvement in carcinogenesis; however, its roles in DLBCL remain unknown. CNN3 was found to be highly expressed in DLBCL specimens according to the online Gene Expression Profiling Interactive Analysis data. The aim of the present study was to investigate the roles of CNN3 in the progression of DLBCL. In vitro, the ectopic expression of CNN3 promoted the proliferation and G1/S transition of DLBCL cells, while its silencing led to opposite alterations. A similar tumor‑promoting role of CNN3 was also demonstrated by injecting nude mice with DLBCL cells over‑ or underexpressing CNN3. The results of dual‑luciferase reporter and chromatin immunoprecipitation assays revealed that forkhead box O3 (FOXO3), a known tumor suppressor in DLBCL, bound to the CNN3 promoter at ‑1955/‑1948 and ‑1190/‑1183, and suppressed the transcription of CNN3. The alterations induced by FOXO3 were partly blocked by CNN3 overexpression. On the whole, the present study demonstrates that CNN3, whose transcriptional activity is negatively regulated by FOXO3, contributes to the malignant behavior of DLBCL cells. The findings of the present study may provide novel diagnostic or therapeutic insight for DLBCL in clinical practice.
Collapse
Affiliation(s)
- Xiaojing Xing
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China,Correspondence to: Dr Xiaojing Xing, Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), 44 Xiaoheyan Road, Shenyang, Liaoning 110042, P.R. China, E-mail:
| | - Meichen Liu
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China
| | - Xuguang Wang
- Department of Pathology, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Qianxue Guo
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China
| | - Hongyue Wang
- Department of Scientific Research and Academic, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
9
|
Nec-1 alleviated the deleterious effect of CoCl2 on C2C12 myoblast differentiation and fusion via the mTOR pathway. Tissue Cell 2022; 79:101910. [DOI: 10.1016/j.tice.2022.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
|
10
|
Sun M, Li Z, Xing Y, Mu X, Cao Y, Hao Y, Yang J, Li D. Effects of glucose availability on αS1-casein synthesis in bovine mammary epithelial cells. J Anim Sci 2022; 100:skac330. [PMID: 36222748 PMCID: PMC9694429 DOI: 10.1093/jas/skac330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/13/2022] [Indexed: 11/14/2022] Open
Abstract
Glucose has been demonstrated to affect milk protein synthesis in dairy cows. However, its potential mechanisms has not been thoroughly studied. The objective of this study was to investigate the effects of glucose availability on αS1-casein synthesis, glucose uptake, metabolism, and the expression of proteins involved in AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in bovine mammary epithelial cells (BMEC). BMEC were treated for 24 h with different concentrations of glucose (0, 7, 10.5, 14, 17.5, and 21 mM). The results showed that 10.5 and 14 mM glucose supply increased the expression of αS1-casein, glucose uptake, cellular ATP content, and the phosphorylation of mTOR and P70S6K, but repressed AMPK phosphorylation in BMEC. Compared with 10.5 and 14 mM glucose supply, 17.5 and 21 mM glucose decreased the expression of αS1-casein, P70S6K phosphorylation as well as the activity of hexokinase (HK) and pyruvate kinase (PK), but increased the activity of glucose-6-phosphate dehydrogenase (G6PD). These results indicate that 10.5 to 14 mM glucose supply is the proper range for αS1-casein synthesis, and the promotion effects may be related to the increase of glucose uptake, ATP content and the changes of key proteins' phosphorylation in AMPK/mTOR signaling pathway. However, the inhibition of the expression of αS1-casein by 17.5 and 21 mM glucose may be associated with the changes of key enzymes' activity involved in glucose metabolism.
Collapse
Affiliation(s)
- Mei Sun
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Zinan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Xiaojia Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Yue Cao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Yihong Hao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Jing Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Dabiao Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010000, China
- Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010000, China
| |
Collapse
|
11
|
Goswami MV, Tawalbeh SM, Canessa EH, Hathout Y. Temporal Proteomic Profiling During Differentiation of Normal and Dystrophin-Deficient Human Muscle Cells. J Neuromuscul Dis 2021; 8:S205-S222. [PMID: 34602497 DOI: 10.3233/jnd-210713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Myogenesis is a dynamic process involving temporal changes in the expression of many genes. Lack of dystrophin protein such as in Duchenne muscular dystrophy might alter the natural course of gene expression dynamics during myogenesis. OBJECTIVE To gain insight into the dynamic temporal changes in protein expression during differentiation of normal and dystrophin deficient myoblasts to myotubes. METHOD A super SILAC spike-in strategy in combination and LC-MS/MS was used for temporal proteome profiling of normal and dystrophin deficient myoblasts during differentiation. The acquired data was analyzed using Proteome Discoverer 2.2. and data clustering using R to define significant temporal changes in protein expression. RESULTS sFour major temporal protein clusters that showed sequential dynamic expression profiles during myogenesis of normal myoblasts were identified. Clusters 1 and 2, consisting mainly of proteins involved mRNA splicing and processing expression, were elevated at days 0 and 0.5 of differentiation then gradually decreased by day 7 of differentiation, then remained lower thereafter. Cluster 3 consisted of proteins involved contractile muscle and actomyosin organization. They increased in their expression reaching maximum at day 7 of differentiation then stabilized thereafter. Cluster 4 consisting of proteins involved in skeletal muscle development glucogenesis and extracellular remodeling had a lower expression during myoblast stage then gradually increased in their expression to reach a maximum at days 11-15 of differentiation. Lack of dystrophin expression in DMD muscle myoblast caused major alteration in temporal expression of proteins involved in cell adhesion, cytoskeleton, and organelle organization as well as the ubiquitination machinery. CONCLUSION Time series proteome profiling using super SILAC strategy is a powerful method to assess temporal changes in protein expression during myogenesis and to define the downstream consequences of lack of dystrophin on these temporal protein expressions. Key alterations were identified in dystrophin deficient myoblast differentiation compared to normal myoblasts. These alterations could be an attractive therapeutic target.
Collapse
Affiliation(s)
- Mansi V Goswami
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY, USA
| | - Shefa M Tawalbeh
- Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineerig Technology, Yarmouk University, Irbid, Jordan
| | - Emily H Canessa
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY, USA.,Department of Biomedical Engineering, Binghamton University, SUNY. Binghamton, NY, USA
| | - Yetrib Hathout
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY, USA
| |
Collapse
|