1
|
Ding N, Wang P, Fang Y, Hu Y, Wang W, Wei J, Yu J, Cai F. Luteolin attenuates trimethyltin chloride-induced hippocampal neurotoxicity through SIRT3/NRF2/HO-1 activation. Neuropharmacology 2025; 274:110461. [PMID: 40246273 DOI: 10.1016/j.neuropharm.2025.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Trimethyltin chloride (TMT), a potent neurotoxicant, induces hippocampal damage associated with neuroinflammation and synaptic dysfunction, mimicking key features of neurodegenerative disorders. Luteolin (LUT), a natural flavonoid with anti-inflammatory and neuroprotective properties, has emerged as a promising therapeutic candidate. This study investigated the neuroprotective effects of LUT against TMT-induced hippocampal damage and explored the underlying mechanisms involving the SIRT3/NRF2/HO-1 signaling pathway. In a murine model, LUT treatment (20 mg/kg, 14 days) significantly alleviated TMT-induced behavioral deficits, seizures, and ultrastructural hippocampal damage. Mechanistically, LUT restored synaptic protein expression (PSD95, SYN1, SYP) and suppressed neuroinflammation by reducing pro-inflammatory cytokines (TNF-α, IL-1β, IL-18) and glial activation (GFAP, IBA1). In vitro studies using SIRT3 inhibition confirmed the pathway's centrality to LUT's effects. These results position LUT as a multi-target therapeutic candidate for hippocampal-related disorders, with dual efficacy in synaptic repair and anti-inflammatory modulation. Critically, this work bridges preclinical findings to clinical translation, suggesting LUT's applicability in neurotoxicant exposure scenarios or early neurodegenerative disease interventions. Further validation of bioavailability and safety profiles could accelerate its transition to clinical trials.
Collapse
Affiliation(s)
- Ning Ding
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Pengyu Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yu Fang
- Xianning Central Hospital, The First Affiliated Hospital of HubeiUniversity of Science and Technology, Xianning, 437100, China
| | - Yuanyuan Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Wei Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Jiping Wei
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Jun Yu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China; School of Public Health and Nursing, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Fei Cai
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| |
Collapse
|
2
|
Ma CS, Han B, Meng SC, Bai M, Yi WJ, Zhang LY, Duan MY, Wang YJ, He MT. Lycium barbarum glycopeptide attenuates intracerebral hemorrhage-induced inflammation and oxidative stress via activation of the Sirt3 signaling pathway. Int Immunopharmacol 2025; 154:114518. [PMID: 40157082 DOI: 10.1016/j.intimp.2025.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe neurological condition characterized by high morbidity and mortality rates, with no effective treatment currently available. Lycium barbarum glycopeptide (LbGP), derived from the further purification of Lycium barbarum polysaccharides (LBP), has demonstrated anti-inflammatory effects, suggesting its potential as a therapeutic agent for ICH. However, the role and mechanisms of LbGP in ICH remain unclear. This study aimed to investigate the effects of LbGP on ICH and its underlying mechanisms. METHODS A collagenase injection-induced mouse model of ICH was used to evaluate the therapeutic effects of LbGP. Mice were treated with varying doses of LbGP, and outcomes were assessed based on hemorrhage volume, neurological function, inflammation, and oxidative stress markers. Apoptosis was analyzed using TUNEL staining. Mechanistic studies focused on mitochondrial acetylation homeostasis and the expression of Sirt3, a mitochondrial deacetylase. Statistical analyses were performed using one-way ANOVA with Tukey's post hoc tests. RESULTS LbGP administration reduced hemorrhage volume and improved neurological function in a dose-dependent manner. It significantly decreased pro-inflammatory cytokines (IL-18, TNF-α, IL-1β) and oxidative stress markers (malondialdehyde and reactive oxygen species) while increasing superoxide dismutase activity and total antioxidant capacity. LbGP treatment also mitigated apoptosis and promoted mitochondrial acetylation homeostasis. Mechanistically, LbGP upregulated mitochondrial Sirt3 expression, and blocking Sirt3 disrupted mitochondrial acetylation homeostasis, resulting in increased inflammation and oxidative stress. CONCLUSIONS LbGP alleviates inflammation and oxidative stress in hemorrhagic brain injury by activating Sirt3 and maintaining mitochondrial acetylation homeostasis. These findings highlight the therapeutic potential of LbGP in treating ICH, providing a foundation for further clinical applications.
Collapse
Affiliation(s)
- Chang-Sheng Ma
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Department of Anesthesiology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Bo Han
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Shu-Chen Meng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Min Bai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Wen-Jing Yi
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Li-Ying Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Meng-Yuan Duan
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yi-Jun Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Mao-Tao He
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China.
| |
Collapse
|
3
|
Jia Z, Xu K, Li R, Yang S, Chen L, Zhang Q, Li S, Sun X. The critical role of Sirt1 in ischemic stroke. Front Pharmacol 2025; 16:1425560. [PMID: 40160465 PMCID: PMC11949987 DOI: 10.3389/fphar.2025.1425560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Ischemic stroke, the most prevalent form of stroke, is responsible for the highest disability rates globally and ranks as the primary cause of mortality worldwide. Sirt1, extensively investigated in neurodegenerative disorders, is the most well-known and earliest member of the sirtuins family. However, its mechanism of action during ischemic stroke remains ambiguous. The literature examination revealed the intricate involvement of Sirt1 in regulating both physiological and pathological mechanisms during ischemic stroke. Sirt1 demonstrates deacetylation effects on PGC-1α, HMGB1, FOXOs, and p53. It hinders the activation of NLRP3 inflammasome and NF-κB while also engaging with AMPK. It regulates inflammatory response, oxidative stress, mitochondrial dysfunction, autophagy, pro-death, and necrotic apoptosis. Therefore, the potential of Sirt1 as a therapeutic target for the management of ischemic stroke is promising.
Collapse
Affiliation(s)
- Ziyi Jia
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruobing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Yang
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Long Chen
- The Fourth Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qianwen Zhang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shulin Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Wang Y, Ge Y, Hua S, Shen C, Cai B, Zhao H. Aloe-Emodin Improves Mitophagy in Alzheimer's Disease via Activating the AMPK/PGC-1α/SIRT3 Signaling Pathway. CNS Neurosci Ther 2025; 31:e70346. [PMID: 40125832 PMCID: PMC11931456 DOI: 10.1111/cns.70346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/22/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Impaired mitophagy results in the accumulation of defective mitochondria that are unable to be cleared effectively in Alzheimer's disease (AD). Aloe-emodin (AE), a key component of the traditional Chinese medicine Rhubarb, exhibits neuroprotective effects against Alzheimer's disease, though the underlying mechanism remains unclear. Studying aloe-emodin's role in enhancing mitophagy is vital for improving cognitive function and reducing neuronal damage in Alzheimer's disease. METHODS The APP/PS1 double transgenic mice were adopted as models for AD to assess the effects of aloe-emodin upon cognitive function and its neuroprotective impact on hippocampal neurons. Additionally, we investigated the regulatory mechanisms of proteins within the aforementioned pathway, and the morphological characteristics of mitophagy-related proteins. An AD hippocampal neuron model was developed using Aβ25-35 to evaluate the mitochondrial function, the protein expression of such a pathway and the mitophagy. This approach aims to elucidate the effects and underlying mechanisms of aloe-emodin in relation to AD. RESULTS AE activates mitophagy in neurons, improves cognitive dysfunction, reduces hippocampal damage, and alleviates AD symptoms in model mice. AE activates the expression of AMPK, PGC-1α and SIRT3. Increased expression of SIRT3 in mitochondria promotes mitophagy and regulates the function of mitochondrial proteins. When mitochondrial autophagy is enhanced, the expression of Beclin1, LC3, P62, Parkin, and PINK1-related proteins changes. Further in vitro experiments showed that AE can enhance mitochondrial function in Alzheimer's disease cell models. The mitochondrial membrane potential, GSH, ROS and Ca2+ levels gradually recover, alleviating the pathological manifestations of AD. Knocking down SIRT3 leads to increased mitochondrial damage and a reduction in mitophagy in HT22 cells. CONCLUSION Experimental results show that AE can activate mitophagy through AMPK/PGC-1α/SIRT3 pathway, alleviate cognitive dysfunction in AD, and reduce damage to hippocampal neurons.
Collapse
Affiliation(s)
- Yulu Wang
- College of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Yunzhi Ge
- College of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Siyu Hua
- College of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Chenrui Shen
- College of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Biao Cai
- College of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
- Institute of Integrated Chinese and Western MedicineAnhui Academy of Chinese MedicineHefeiChina
- Key Laboratory of Xin'an MedicineAnhui University of Chinese Medicine, Ministry of EducationHefeiChina
- Anhui Province Key Laboratory of Chinese Medicinal FormulaHefeiChina
| | - Han Zhao
- College of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
- Institute of Integrated Chinese and Western MedicineAnhui Academy of Chinese MedicineHefeiChina
- Key Laboratory of Xin'an MedicineAnhui University of Chinese Medicine, Ministry of EducationHefeiChina
- Anhui Province Key Laboratory of Chinese Medicinal FormulaHefeiChina
| |
Collapse
|
5
|
Zheng N, Cao RL, Liu DY, Liu P, Zhao XY, Zhang SX, Huang M, Zheng ZH, Chen GL, Zou LB. OAB-14 alleviates mitochondrial impairment through the SIRT3-dependent mechanism in APP/PS1 transgenic mice and N2a/APP cells. Free Radic Biol Med 2025; 228:360-378. [PMID: 39793907 DOI: 10.1016/j.freeradbiomed.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Alzheimer's disease (AD) is a progressive degenerative disease that affects a growing number of elderly individuals worldwide. OAB-14, a novel chemical compound developed by our research group, has been approved by the China Food and Drug Administration (FDA) for clinical trials in patients with AD (approval no. YD-OAB-220210). Previous studies have shown that OAB-14 enhances cognitive function in APP/PS1 transgenic mice and ameliorates abnormal mitochondrial morphology in the hippocampus. Mitochondrial dysfunction is a major risk factor for the development of AD, and maintaining healthy mitochondrial morphology and function is essential for improving the pathological changes and symptoms of AD. However, the protective effects of OAB-14 on mitochondria in AD and the underlying mechanisms remain unclear. This study aimed to investigate the protective effects of OAB-14 on the mitochondria of APP/PS1 transgenic mice and N2a/APP cells. Treatment with OAB-14 restored impaired mitochondrial function, mitochondrial dynamics, mitophagy, and mitochondrial DNA (mtDNA) in APP/PS1 transgenic mice and N2a/APP cells. In APP/PS1 transgenic mice and N2a/APP cells, OAB-14-treated elevated the expression and activity of SIRT3, decreased mitochondrial acetylation, and reduced mitochondrial reactive oxygen species (mtROS) levels. OAB-14 also attenuated mitochondrial acetylation, improved mitochondrial dynamics and mitophagy, and mitigated mtDNA damage in a SIRT3-dependent manner. In addition, OAB-14 suppressed mitochondrial Aβ accumulation in the hippocampus of APP/PS1 transgenic mice. This study provides further clarification on the potential therapeutic mechanisms of OAB-14 in the treatment of AD and lays the groundwork for future drug applications.
Collapse
Affiliation(s)
- Na Zheng
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, PR China.
| | - Ruo-Lin Cao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Dan-Yang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, PR China.
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, PR China.
| | - Xin-Yu Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, PR China.
| | - Shu-Xin Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, PR China.
| | - Min Huang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, PR China.
| | - Zhong-Hui Zheng
- Shandong Xinhua Pharmaceutical Co., Ltd., Zibo, Shandong, 255086, PR China.
| | - Guo-Liang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, PR China.
| | - Li-Bo Zou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
6
|
Vahid ZF, Eskandani M, Dadashi H, Vandghanooni S, Rashidi MR. Recent advances in potential enzymes and their therapeutic inhibitors for the treatment of Alzheimer's disease. Heliyon 2024; 10:e40756. [PMID: 39717593 PMCID: PMC11664286 DOI: 10.1016/j.heliyon.2024.e40756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disease, is clinically characterized by loss of memory and learning ability among other neurological deficits. Amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles involve in AD etiology. Meanwhile, enzymes and their inhibitors have become the focus of research in AD treatment. In this review, the molecular mechanisms involved in the pathogenesis of AD were overviewed and various enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, monoamine oxidase (MAO), and receptor of advanced glycation end products (RAGE) were highlighted as potential targets for AD treatment. Several hybrid molecules with essential substructures derived from various chemotypes have demonstrated desired pharmacological activity. It is envisioned that the development of new drugs that inhibit enzymes involved in AD is a future trend in the management of the disease.
Collapse
Affiliation(s)
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
8
|
Dong YX, Li TH, Wang SS, Hu YH, Liu Y, Zhang F, Sun TS, Zhang CJ, Du QH, Li WH. Bu zhong Yiqi Decoction ameliorates mild cognitive impairment by improving mitochondrial oxidative stress damage via the SIRT3/MnSOD/OGG1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118237. [PMID: 38688355 DOI: 10.1016/j.jep.2024.118237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu-Zhong-Yi-Qi Decoction(BZYQD) is a traditional formula commonly used in China, known for its effects in tonifying Qi and raising Yang. It can relieve symptoms of cognitive impairment such as forgetfulness and lack of concentration caused by qi deficiency, which is common in aging and debilitating. However, much of the current research on BZYQD has been focused on its impact on the digestive system, leaving its molecular mechanisms in improving cognitive function largely unexplored. AIM OF THE STUDY Cognitive decline in the aging central nervous system is intrinsically linked to oxidative damage. This study aims to investigate the therapeutic mechanism of BZYQD in treating mild cognitive impairment caused by qi deficiency, particularly through repair of mitochondrial oxidative damage. MATERIALS AND METHODS A rat model of mild cognitive impairment (MCI) was established by administering reserpine subcutaneously for two weeks, followed by a two-week treatment with BZYQD/GBE. In vitro experiments were conducted to assess the effects of BZYQD on neuronal cells using a H2O2-induced oxidative damage model in PC12 cells. The open field test and the Morris water maze test evaluated the cognitive and learning memory abilities of the rats. HE staining and TEM were employed to observe morphological changes in the hippocampus and its mitochondria. Mitochondrial activity, ATP levels, and cellular viability were measured using assay kits. Protein expression in the SIRT3/MnSOD/OGG1 pathway was analyzed in tissues and cells through western blotting. Levels of 8-OH-dG in mitochondria extracted from tissues and cells were quantified using ELISA. Mitochondrial morphology in PC12 cells was visualized using Mito Red, and mitochondrial membrane potential was assessed using the JC-1 kit. RESULTS BZYQD treatment significantly improved cognitive decline caused by reserpine in rats, as well as enhanced mitochondrial morphology and function in the hippocampus. Our findings indicate that BZYQD mitigates mtDNA oxidative damage in rats by modulating the SIRT3/MnSOD/OGG1 pathway. In PC12 cells, BZYQD reduced oxidative damage to mitochondria and mtDNA in H2O2-induced conditions and was associated with changes in the SIRT3/MnSOD/OGG1 pathway. CONCLUSION BZYQD effectively counteracts reserpine-induced mild cognitive impairment and ameliorates mitochondrial oxidative stress damage through the SIRT3/MnSOD/OGG1 pathway.
Collapse
Affiliation(s)
- Yi-Xin Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Teng-Hui Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yan-Hong Hu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Liu
- Beijing jingmei Group General Hospital, Beijing, China
| | - Fan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tian-Shi Sun
- Sanya Traditional Chinese Medicine Hospital, Sanya, China
| | | | - Qing-Hong Du
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Institute of Tibetan Medicine, University of Tibetan Medicine, Lhasa, 850000, Tibet Autonomous Region, China
| | - Wei-Hong Li
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
9
|
Shi Y, Ye D, Cui K, Bai X, Fan M, Feng Y, Hu C, Xu Y, Huang J. Melatonin ameliorates retinal ganglion cell senescence and apoptosis in a SIRT1-dependent manner in an optic nerve injury model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167053. [PMID: 38325588 DOI: 10.1016/j.bbadis.2024.167053] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Melatonin is involved in exerting protective effects in aged-related and neurodegenerative diseases through a silent information regulator type 1 (SIRT1)-dependent pathway. However, little was known about the impact of melatonin on retinal ganglion cell (RGC) senescence and apoptosis following optic nerve crush (ONC). Thus, this study aimed to examine the effects of melatonin on RGC senescence and apoptosis after ONC and investigate the involvement of SIRT1 in this process. To study this, an ONC model was established. EX-527, an inhibitor of SIRT1, was injected intraperitoneally into mice. And melatonin was administrated abdominally into mice after ONC every day. Hematoxylin & eosin staining, retina flat-mounts and optical coherence tomography were used to evaluate the loss of retina cells/neurons. Pattern electroretinogram (p-ERG) was performed to evaluate the function of RGCs. Immunofluorescence and western blot were used to evaluate protein expression. SA-β-gal staining was employed to detect senescent cells. The results demonstrated that melatonin partially rescued the expression of SIRT1 in RGC 3 days after ONC. Additionally, melatonin administration partly rescued the decreased RGC number and ganglion cell complex thickness observed 14 days after ONC. Melatonin also suppressed ONC-induced senescence and apoptosis index. Furthermore, p-ERG showed that melatonin improved the amplitude of P50, N95 and N95/P50 following ONC. Importantly, the protective effects of melatonin were reversed when EX-527 was administered. In summary, this study revealed that melatonin attenuated RGC senescence and apoptosis through a SIRT1-dependent pathway after ONC. These findings provide valuable insights for the treatment of RGC senescence and apoptosis.
Collapse
Affiliation(s)
- Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Ophthalmology, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou 510120, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, CT 201942, United States
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
10
|
Azargoonjahromi A, Abutalebian F. Unraveling the therapeutic efficacy of resveratrol in Alzheimer's disease: an umbrella review of systematic evidence. Nutr Metab (Lond) 2024; 21:15. [PMID: 38504306 PMCID: PMC10953289 DOI: 10.1186/s12986-024-00792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
CONTEXT Resveratrol (RV), a natural compound found in grapes, berries, and peanuts, has been extensively studied for its potential in treating Alzheimer's disease (AD). RV has shown promise in inhibiting the formation of beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFTs), protecting against neuronal damage and oxidative stress, reducing inflammation, promoting neuroprotection, and improving the function of the blood-brain barrier (BBB). However, conflicting results have been reported, necessitating a comprehensive umbrella review of systematic reviews to provide an unbiased conclusion on the therapeutic effectiveness of RV in AD. OBJECTIVE The objective of this study was to systematically synthesize and evaluate systematic and meta-analysis reviews investigating the role of RV in AD using data from both human and animal studies. DATA SOURCES AND EXTRACTION Of the 34 systematic and meta-analysis reviews examining the association between RV and AD that were collected, six were included in this study based on specific selection criteria. To identify pertinent studies, a comprehensive search was conducted in English-language peer-reviewed journals without any restrictions on the publication date until October 15, 2023. The search was carried out across multiple databases, including Embase, MEDLINE (PubMed), Cochrane Library, Web of Science, and Google Scholar, utilizing appropriate terms relevant to the specific research field. The AMSTAR-2 and ROBIS tools were also used to evaluate the quality and risk of bias of the included systematic reviews, respectively. Two researchers independently extracted and analyzed the data, resolving any discrepancies through consensus. Of note, the study adhered to the PRIOR checklist. DATA ANALYSIS This umbrella review presented robust evidence supporting the positive impacts of RV in AD, irrespective of the specific mechanisms involved. It indeed indicated that all six systematic and meta-analysis reviews unanimously concluded that the consumption of RV can be effective in the treatment of AD. CONCLUSION RV exhibits promising potential for benefiting individuals with AD through various mechanisms. It has been observed to enhance cognitive function, reduce Aβ accumulation, provide neuroprotection, protect the BBB, support mitochondrial function, facilitate synaptic plasticity, stabilize tau proteins, mitigate oxidative stress, and reduce neuroinflammation commonly associated with AD.
Collapse
Affiliation(s)
| | - Fatemeh Abutalebian
- Department of Biotechnology and Medicine, Islamic Azad University of Tehran Central Branch, Tehran, Iran
| |
Collapse
|
11
|
Gammoh O, Ibrahim A, Yehya A, Alqudah A, Qnais E, Altaber S, Alrob OA, Aljabali AAA, Tambuwala MM. Exploring the Roles of Vitamins C and D and Etifoxine in Combination with Citalopram in Depression/Anxiety Model: A Focus on ICAM-1, SIRT1 and Nitric Oxide. Int J Mol Sci 2024; 25:1960. [PMID: 38396638 PMCID: PMC10889164 DOI: 10.3390/ijms25041960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The study of intercellular adhesion molecule-1 (ICAM-1) and SIRT1, a member of the sirtuin family with nitric oxide (NO), is emerging in depression and anxiety. As with all antidepressants, the efficacy is delayed and inconsistent. Ascorbic acid (AA) and vitamin D (D) showed antidepressant properties, while etifoxine (Etx), a GABAA agonist, alleviates anxiety symptoms. The present study aimed to investigate the potential augmentation of citalopram using AA, D and Etx and related the antidepressant effect to brain and serum ICAM-1, SIRT1 and NO in an animal model. BALB/c mice were divided into naive, control, citalopram, citalopram + etx, citalopram + AA, citalopram + D and citalopram + etx + AA + D for 7 days. On the 8th day, the mice were restrained for 8 h, followed by a forced swim test and marble burying test before scarification. Whole-brain and serum expression of ICAM-1, Sirt1 and NO were determined. Citalopram's antidepressant and sedative effects were potentiated by ascorbic acid, vitamin D and etifoxine alone and in combination (p < 0.05), as shown by the decreased floating time and rearing frequency. Brain NO increased significantly (p < 0.05) in depression and anxiety and was associated with an ICAM-1 increase versus naive (p < 0.05) and a Sirt1 decrease (p < 0.05) versus naive. Both ICAM-1 and Sirt1 were modulated by antidepressants through a non-NO-dependent pathway. Serum NO expression was unrelated to serum ICAM-1 and Sirt1. Brain ICAM-1, Sirt1 and NO are implicated in depression and are modulated by antidepressants.
Collapse
Affiliation(s)
- Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (A.Y.); (O.A.A.)
| | - Aseel Ibrahim
- Faculty of Sciences, Yarmouk University, Irbid 21163, Jordan;
| | - Ala Yehya
- Department of Clinical Pharmacy and Pharmacy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (A.Y.); (O.A.A.)
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan; (E.Q.); (S.A.)
| | - Sara Altaber
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan; (E.Q.); (S.A.)
| | - Osama Abo Alrob
- Department of Clinical Pharmacy and Pharmacy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (A.Y.); (O.A.A.)
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan;
| | - Murtaza M. Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK;
| |
Collapse
|
12
|
Li W, Zheng Y. MicroRNAs in Extracellular Vesicles of Alzheimer's Disease. Cells 2023; 12:1378. [PMID: 37408212 PMCID: PMC10216432 DOI: 10.3390/cells12101378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with dysfunction of memory, language and thinking. More than 55 million people were diagnosed with AD or other dementia around the world in 2020. The pathology of AD is still unclear and there are no applicable therapies for AD. MicroRNAs (miRNAs) play key roles in AD pathology and have great potential for the diagnosis and treatment of AD. Extracellular vesicles (EVs) widely exist in body fluids such as blood and cerebrospinal fluid (CSF) and contain miRNAs that are involved in cell-to-cell communication. We summarized the dysregulated miRNAs in EVs derived from the different body fluids of AD patients, as well as their potential function and application in AD. We also compared these dysregulated miRNAs in EVs to those in the brain tissues of AD patients aiming to provide a comprehensive view of miRNAs in AD. After careful comparisons, we found that miR-125b-5p and miR-132-3p were upregulated and downregulated in several different brain tissues of AD and EVs of AD, respectively, suggesting their value in AD diagnosis based on EV miRNAs. Furthermore, miR-9-5p was dysregulated in EVs and different brain tissues of AD patients and had also been tested as a potential therapy for AD in mice and human cell models, suggesting that miR-9-5p could be used to design new therapies for AD.
Collapse
Affiliation(s)
- Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yun Zheng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
13
|
Mishra Y, Kumar Kaundal R. Role of SIRT3 in mitochondrial biology and its therapeutic implications in neurodegenerative disorders. Drug Discov Today 2023; 28:103583. [PMID: 37028501 DOI: 10.1016/j.drudis.2023.103583] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
Sirtuin 3 (SIRT3), a mitochondrial deacetylase expressed preferentially in high-metabolic-demand tissues including the brain, requires NAD+ as a cofactor for catalytic activity. It regulates various processes such as energy homeostasis, redox balance, mitochondrial quality control, mitochondrial unfolded protein response (UPRmt), biogenesis, dynamics and mitophagy by altering protein acetylation status. Reduced SIRT3 expression or activity causes hyperacetylation of hundreds of mitochondrial proteins, which has been linked with neurological abnormalities, neuro-excitotoxicity and neuronal cell death. A body of evidence has suggested, SIRT3 activation as a potential therapeutic modality for age-related brain abnormalities and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India.
| |
Collapse
|
14
|
Therapeutic potential of natural molecules against Alzheimer's disease via SIRT1 modulation. Biomed Pharmacother 2023; 161:114474. [PMID: 36878051 DOI: 10.1016/j.biopha.2023.114474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly characterized by progressive cognitive dysfunction and memory impairment. Recent studies have shown that regulating silent information regulator 1 (SIRT1) expression has a significant neuroprotective effect, and SIRT1 may become a new therapeutic target for AD. Natural molecules are an important source of drug development for use in AD therapy and may regulate a wide range of biological events by regulating SIRT1 as well as other SIRT1-mediated signaling pathways. This review aims to summarize the correlation between SIRT1 and AD and to identify in vivo and in vitro studies investigating the anti-AD properties of natural molecules as modulators of SIRT1 and SIRT1-mediated signaling pathways. A literature search was conducted for studies published between January 2000 and October 2022 using various literature databases, including Web of Science, PubMed, Google Scholar, Science Direct, and EMBASE. Natural molecules, such as resveratrol, quercetin, icariin, bisdemethoxycurcumin, dihydromyricetin, salidroside, patchouli, sesamin, rhein, ligustilide, tetramethoxyflavanone, 1-theanine, schisandrin, curcumin, betaine, pterostilbene, ampelopsin, schisanhenol, and eriodictyol, have the potential to modulate SIRT1 and SIRT1 signaling pathways, thereby combating AD. The natural molecules modulating SIRT1 discussed in this review provide a potentially novel multi-mechanistic therapeutic strategy for AD. However, future clinical trials need to be conducted to further investigate their beneficial properties and to determine the safety and efficacy of SIRT1 natural activators against AD.
Collapse
|
15
|
Gammoh O, AlQudah A, Rob OAA, Hmedat A, Kifaieh A, Weshah F, Ennab W, Qnais E. Modulation of salivary ICAM-1 and SIRT1 by disease modifying drugs in undepressed relapsing-remitting multiple sclerosis patients. Mult Scler Relat Disord 2022; 68:104257. [PMID: 36308972 DOI: 10.1016/j.msard.2022.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The pathophysiology of Multiple Sclerosis (MS) is multifactorial where the correlation between inflammation and MS is evident. Adhesion molecules such as Intercellular adhesion molecule-1 (ICAM-1) are implicated in MS. SIRT1 is a member of surtins family that play a protective role in neurodegenerative and inflammatory diseases. Although previously studied in Relapsing-Remitting Multiple Sclerosis (RRMS) patients, however the salivary expression of ICAM-1 and SIRT1 have not been yet studied in patients receiving fingolimod or interferon-β. Therefore, the present research aimed to investigate the expression of salivary ICAM-1 and SIRT1 in RRMS patients treated with fingolimod or interferon-β compared to controls. METHODS RRMS patients attending the neurology department of AL-Bashir Hospital were recruited. Patients' demographics, clinical information, and psychiatric status were evaluated (depression, anxiety and stress). Afterward, matched controls were recruited, then unstimulated whole saliva was obtained from the participants. The salivary expression of ICAM-1 and SIRT1 was investigated using western blot and normalized with β-actin. RESULTS Data were analyzed from 53 participants: 26 on fingolimod, 14 on interferon-β, and 13 control. The interferon-β treated patients showed a significantly (p < 0.001) higher ICAM-1 expression and lower SIRT1 expression (p < 0.05) compared to the control. Levels of ICAM-1 and SIRT1 did not vary between fingolimod and control. CONCLUSION ICAM-1 and SIRT1 expression might be affected with fingolimod or INF- β treatment which should be investigated more in the future.
Collapse
Affiliation(s)
- Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan.
| | - Abdelrahim AlQudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, the Hashemite University, Zarqa 13133, Jordan
| | - Osama Abo Al Rob
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Ali Hmedat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Ahlam Kifaieh
- Department of Pharmacy Istishari Hospital, Amman, Jordan
| | - Feras Weshah
- Department of Neurology, Al-Bashir Hospital, Amman 11151, Jordan
| | - Wail Ennab
- Department of Neurology, Al-Bashir Hospital, Amman 11151, Jordan
| | - Esam Qnais
- Department of Biological Sciences, Faculty of Science, the Hashemite University, Zarqa 13133, Jordan
| |
Collapse
|
16
|
You M, Yuan P, Li L, Xu H. HIF-1 signalling pathway was identified as a potential new pathway for Icariin's treatment against Alzheimer's disease based on preclinical evidence and bioinformatics. Front Pharmacol 2022; 13:1066819. [PMID: 36532735 PMCID: PMC9751333 DOI: 10.3389/fphar.2022.1066819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 10/05/2023] Open
Abstract
Aim: Alzheimer's disease (AD) is a neurodegenerative condition that is characterized by the gradual loss of memory and cognitive function. Icariin, which is a natural chemical isolated from Epimedii herba, has been shown to protect against AD. This research examined the potential mechanisms of Icariin's treatment against AD via a comprehensive review of relevant preclinical studies coupled with network pharmacology. Methods: The PubMed, Web of Science, CNKI, WANFANG, and VIP databases were used to identify the relevant studies. The pharmacological characteristics of Icariin were determined using the SwissADME and TCMSP databases. The overlapping targets of Icariin and AD were then utilized to conduct disease oncology (DO) analysis to identify possible hub targets of Icariin in the treatment of AD. The hub targets were then used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the interactions of the targets and Icariin were assessed via molecular docking and molecular dynamics simulation (MDS). Results: According to the literature review, Icariin alleviates cognitive impairment by regulating the expression of Aβ1-42, Aβ1-40, BACE1, tau, hyperphosphorylated tau, and inflammatory mediators. DO analysis revealed 35 AD-related hub targets, and the HIF-1 signalling pathway was ranked first according to the KEGG pathway analysis. Icariin effectively docked with the 35 hub targets and HIF-1α, and the dynamic binding of the HIF-1-Icariin complex within 100 ns indicated that Icariin contributed to the stability of HIF-1α. Conclusion: In conclusion, our research used a literature review and network pharmacology methods to identify the HIF-1 signalling pathway as a potential pathway for Icariin's treatment against AD.
Collapse
Affiliation(s)
| | | | | | - Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|