1
|
Kim D, Jorge GL, Xu C, Su L, Cho SH, Ahsan N, Chen D, Zhou L, Gritsenko MA, Zhou M, Wan J, Pasa-Tolic L, Xu D, Bartley LE, Thelen JJ, Stacey G. Identifying Receptor Kinase Substrates Using an 8000 Peptide Kinase Client Library Enriched for Conserved Phosphorylation Sites. Mol Cell Proteomics 2025; 24:100926. [PMID: 39923935 PMCID: PMC11952801 DOI: 10.1016/j.mcpro.2025.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/14/2024] [Accepted: 12/03/2024] [Indexed: 02/11/2025] Open
Abstract
In eukaryotic organisms, protein kinases regulate diverse protein activities and signaling pathways through phosphorylation of specific protein substrates. Isolating and characterizing kinase substrates is vital for defining downstream signaling pathways. The kinase-client (KiC) assay is an in vitro synthetic peptide LC-MS/MS phosphorylation assay that has enabled identification of protein substrates (i.e., clients) for various protein kinases. For example, previous use of a 2100-member (2k) peptide library identified substrates for the extracellular ATP receptor-like kinase, P2K1. Many P2K1 clients were confirmed by additional in vitro and in planta studies, including integrin-linked kinase 4, for which we provide the evidence herein. In addition, we developed a new KiC peptide library containing 8000 (8k) peptides based on phosphorylation sites primarily from Arabidopsis thaliana datasets. The 8k peptides are enriched for sites with conservation in other angiosperm plants, with the paired goals of representing functionally conserved sites and usefulness for screening kinases from diverse plants. Screening the 8k library with the active P2K1 kinase domain identified 177 phosphopeptides, including calcineurin B-like protein and G protein alpha subunit 1, which functions in cellular calcium signaling. We confirmed that P2K1 directly phosphorylates calcineurin B-like protein and G protein alpha subunit 1 through in vitro kinase assays. This expanded 8k KiC assay will be a useful tool for identifying novel substrates across diverse plant protein kinases, ultimately facilitating the exploration of previously undiscovered signaling pathways.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Gabriel Lemes Jorge
- Division of Biochemistry and Interdisciplinary Plant Group, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Chunhui Xu
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Lingtao Su
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Sung-Hwan Cho
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma, USA; Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Dongqin Chen
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Lijuan Zhou
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Marina A Gritsenko
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jinrong Wan
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jay J Thelen
- Division of Biochemistry and Interdisciplinary Plant Group, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.
| | - Gary Stacey
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA; Division of Biochemistry and Interdisciplinary Plant Group, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
2
|
Jorge GL, Kim D, Xu C, Cho SH, Su L, Xu D, Bartley LE, Stacey G, Thelen JJ. Unveiling orphan receptor-like kinases in plants: novel client discovery using high-confidence library predictions in the Kinase-Client (KiC) assay. FRONTIERS IN PLANT SCIENCE 2024; 15:1372361. [PMID: 38633461 PMCID: PMC11021772 DOI: 10.3389/fpls.2024.1372361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Plants are remarkable in their ability to adapt to changing environments, with receptor-like kinases (RLKs) playing a pivotal role in perceiving and transmitting environmental cues into cellular responses. Despite extensive research on RLKs from the plant kingdom, the function and activity of many kinases, i.e., their substrates or "clients", remain uncharted. To validate a novel client prediction workflow and learn more about an important RLK, this study focuses on P2K1 (DORN1), which acts as a receptor for extracellular ATP (eATP), playing a crucial role in plant stress resistance and immunity. We designed a Kinase-Client (KiC) assay library of 225 synthetic peptides, incorporating previously identified P2K phosphorylated peptides and novel predictions from a deep-learning phosphorylation site prediction model (MUsite) and a trained hidden Markov model (HMM) based tool, HMMER. Screening the library against purified P2K1 cytosolic domain (CD), we identified 46 putative substrates, including 34 novel clients, 27 of which may be novel peptides, not previously identified experimentally. Gene Ontology (GO) analysis among phosphopeptide candidates revealed proteins associated with important biological processes in metabolism, structure development, and response to stress, as well as molecular functions of kinase activity, catalytic activity, and transferase activity. We offer selection criteria for efficient further in vivo experiments to confirm these discoveries. This approach not only expands our knowledge of P2K1's substrates and functions but also highlights effective prediction algorithms for identifying additional potential substrates. Overall, the results support use of the KiC assay as a valuable tool in unraveling the complexities of plant phosphorylation and provide a foundation for predicting the phosphorylation landscape of plant species based on peptide library results.
Collapse
Affiliation(s)
- Gabriel Lemes Jorge
- Division of Biochemistry, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Daewon Kim
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Chunhui Xu
- Institute for Data Science and Informatics, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Sung-Hwan Cho
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Lingtao Su
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Gary Stacey
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jay J. Thelen
- Division of Biochemistry, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Nickolov K, Gauthier A, Hashimoto K, Laitinen T, Väisänen E, Paasela T, Soliymani R, Kurusu T, Himanen K, Blokhina O, Fagerstedt KV, Jokipii-Lukkari S, Tuominen H, Häggman H, Wingsle G, Teeri TH, Kuchitsu K, Kärkönen A. Regulation of PaRBOH1-mediated ROS production in Norway spruce by Ca 2+ binding and phosphorylation. FRONTIERS IN PLANT SCIENCE 2022; 13:978586. [PMID: 36311083 PMCID: PMC9608432 DOI: 10.3389/fpls.2022.978586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Plant respiratory burst oxidase homologs (RBOHs) are plasma membrane-localized NADPH oxidases that generate superoxide anion radicals, which then dismutate to H2O2, into the apoplast using cytoplasmic NADPH as an electron donor. PaRBOH1 is the most highly expressed RBOH gene in developing xylem as well as in a lignin-forming cell culture of Norway spruce (Picea abies L. Karst.). Since no previous information about regulation of gymnosperm RBOHs exist, our aim was to resolve how PaRBOH1 is regulated with a focus on phosphorylation. The N-terminal part of PaRBOH1 was found to contain several putative phosphorylation sites and a four-times repeated motif with similarities to the Botrytis-induced kinase 1 target site in Arabidopsis AtRBOHD. Phosphorylation was indicated for six of the sites in in vitro kinase assays using 15 amino-acid-long peptides for each of the predicted phosphotarget site in the presence of protein extracts of developing xylem. Serine and threonine residues showing positive response in the peptide assays were individually mutated to alanine (kinase-inactive) or to aspartate (phosphomimic), and the wild type PaRBOH1 and the mutated constructs transfected to human kidney embryogenic (HEK293T) cells with a low endogenous level of extracellular ROS production. ROS-producing assays with HEK cells showed that Ca2+ and phosphorylation synergistically activate the enzyme and identified several serine and threonine residues that are likely to be phosphorylated including a novel phosphorylation site not characterized in other plant species. These were further investigated with a phosphoproteomic study. Results of Norway spruce, the first gymnosperm species studied in relation to RBOH regulation, show that regulation of RBOH activity is conserved among seed plants.
Collapse
Affiliation(s)
- Kaloian Nickolov
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Adrien Gauthier
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- UniLaSalle, Agro-Ecology, Hydrogeochemistry, Environments & Resources, UP 2018.C101 of the Ministry in Charge of Agriculture (AGHYLE) Research Unit CS UP 2018.C101, Mont-Saint-Aignan, France
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Teresa Laitinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Enni Väisänen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Tanja Paasela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Helsinki, Finland
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Dev. Biology, University of Helsinki, Biomedicum-Helsinki, Helsinki, Finland
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Kristiina Himanen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Olga Blokhina
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kurt V. Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Soile Jokipii-Lukkari
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Hannele Tuominen
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Gunnar Wingsle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Teemu H. Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Anna Kärkönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Helsinki, Finland
| |
Collapse
|
4
|
Jiang L, Wang D, Xu D. A Pretrained ELECTRA Model for Kinase-Specific Phosphorylation Site Prediction. Methods Mol Biol 2022; 2499:105-124. [PMID: 35696076 DOI: 10.1007/978-1-0716-2317-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phosphorylation plays a vital role in signal transduction and cell cycle. Identifying and understanding phosphorylation through machine-learning methods has a long history. However, existing methods only learn representations of a protein sequence segment from a labeled dataset itself, which could result in biased or incomplete features, especially for kinase-specific phosphorylation site prediction in which training data are typically sparse. To learn a comprehensive contextual representation of a protein sequence segment for kinase-specific phosphorylation site prediction, we pretrained our model from over 24 million unlabeled sequence fragments using ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately). The pretrained model was applied to kinase-specific site prediction of kinases CDK, PKA, CK2, MAPK, and PKC. The pretrained ELECTRA model achieves 9.02% improvement over BERT and 11.10% improvement over MusiteDeep in the area under the precision-recall curve on the benchmark data.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Genies L, Martin L, Kanno S, Chiarenza S, Carasco L, Camilleri V, Vavasseur A, Henner P, Leonhardt N. Disruption of AtHAK/KT/KUP9 enhances plant cesium accumulation under low potassium supply. PHYSIOLOGIA PLANTARUM 2021; 173:1230-1243. [PMID: 34342899 DOI: 10.1111/ppl.13518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Understanding the molecular mechanisms that underlie cesium (Cs+ ) transport in plants is important to limit the entry of its radioisotopes from contaminated areas into the food chain. The potentially toxic element Cs+ , which is not involved in any biological process, is chemically closed to the macronutrient potassium (K+ ). Among the multiple K+ carriers, the high-affinity K+ transporters family HAK/KT/KUP is thought to be relevant in mediating opportunistic Cs+ transport. Of the 13 KUP identified in A. thaliana, only HAK5, the major contributor to root K+ acquisition under low K+ supply, has been functionally demonstrated to be involved in Cs+ uptake in planta. In the present study, we showed that accumulation of Cs+ increased by up to 30% in two A. thaliana mutant lines lacking KUP9 and grown under low K+ supply. Since further experiments revealed that Cs+ release from contaminated plants to the external medium is proportionally lower in the two kup9 mutant alleles, we proposed that KUP9 disruption could impair Cs+ efflux. By contrast, K+ status in kup9 mutants is not affected, suggesting that KUP9 disruption does not alter substantially K+ transport in experimental conditions used. The putative primary role of KUP9 in plants is further discussed.
Collapse
Affiliation(s)
- Laure Genies
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
- Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Institute for Radiological Protection and Nuclear Safety (IRSN), Cadarache, France
| | - Ludovic Martin
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
| | - Satomi Kanno
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
| | - Serge Chiarenza
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
| | - Loïc Carasco
- Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Institute for Radiological Protection and Nuclear Safety (IRSN), Cadarache, France
| | - Virginie Camilleri
- Laboratory for Radionuclide Ecotoxicology (LECO), Institute for Radiological Protection and Nuclear Safety (IRSN), Cadarache, France
| | - Alain Vavasseur
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
| | - Pascale Henner
- Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Institute for Radiological Protection and Nuclear Safety (IRSN), Cadarache, France
| | - Nathalie Leonhardt
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
| |
Collapse
|
6
|
Abraham-Juárez MJ, Schrager-Lavelle A, Man J, Whipple C, Handakumbura P, Babbitt C, Bartlett M. Evolutionary Variation in MADS Box Dimerization Affects Floral Development and Protein Abundance in Maize. THE PLANT CELL 2020; 32:3408-3424. [PMID: 32873631 PMCID: PMC7610293 DOI: 10.1105/tpc.20.00300] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 05/19/2023]
Abstract
Interactions between MADS box transcription factors are critical in the regulation of floral development, and shifting MADS box protein-protein interactions are predicted to have influenced floral evolution. However, precisely how evolutionary variation in protein-protein interactions affects MADS box protein function remains unknown. To assess the impact of changing MADS box protein-protein interactions on transcription factor function, we turned to the grasses, where interactions between B-class MADS box proteins vary. We tested the functional consequences of this evolutionary variability using maize (Zea mays) as an experimental system. We found that differential B-class dimerization was associated with subtle, quantitative differences in stamen shape. In contrast, differential dimerization resulted in large-scale changes to downstream gene expression. Differential dimerization also affected B-class complex composition and abundance, independent of transcript levels. This indicates that differential B-class dimerization affects protein degradation, revealing an important consequence for evolutionary variability in MADS box interactions. Our results highlight complexity in the evolution of developmental gene networks: changing protein-protein interactions could affect not only the composition of transcription factor complexes but also their degradation and persistence in developing flowers. Our results also show how coding change in a pleiotropic master regulator could have small, quantitative effects on development.
Collapse
Affiliation(s)
- María Jazmín Abraham-Juárez
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
- CONACYT-Instituto Potosino de Investigación Científica y Tecnológica A.C., 78216 San Luis Potosi, Mexico
| | - Amanda Schrager-Lavelle
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
- Biology Department, Colorado Mesa University, Grand Junction, 81501 Colorado
| | - Jarrett Man
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
| | - Clinton Whipple
- Biology Department, Brigham Young University, Provo, 84602 Utah
| | - Pubudu Handakumbura
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
- Pacific Northwest National Laboratory, Richland, 99354 Washington
| | - Courtney Babbitt
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
| | - Madelaine Bartlett
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
| |
Collapse
|
7
|
Qiu WR, Xu A, Xu ZC, Zhang CH, Xiao X. Identifying Acetylation Protein by Fusing Its PseAAC and Functional Domain Annotation. Front Bioeng Biotechnol 2019; 7:311. [PMID: 31867311 PMCID: PMC6908504 DOI: 10.3389/fbioe.2019.00311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/22/2019] [Indexed: 11/13/2022] Open
Abstract
Acetylation is one of post-translational modification (PTM), which often reacts with acetic acid and brings an acetyl radical to an organic compound. It is helpful to identify acetylation protein correctly for understanding the mechanism of acetylation in biological systems. Although many acetylation sites have been identified by high throughput experimental studies via mass spectrometry, there still are lots of acetylation sites need to be discovered. Computational methods have showed their power for identifying acetylation sites with informatics techniques which usually reduce experiment cost and improve the effectiveness and efficiency. In fact, if there is an approach can distinguish the acetylated proteins from the non-acetylated ones, it is no doubt a very meaningful and effective method for this issue. Here, we proposed a novel computational method for identifying acetylation proteins by extracting features from the conservation information of sequence via gray system model and KNN scores based on the information of functional domain annotation and subcellular localization. The authors have performed the 5-fold cross-validation on three datasets along with much analysis of features and the Relief feature selection algorithm. The obtained accuracies are all satisfactory, as the mean performance, the accuracy is 77.10%, the Matthew's correlation coefficient is 0.5457, and the AUC value is 0.8389. These works might provide useful insights for the related experimental validation, and further studies of other PTM process. For the convenience of related researchers, the web-server named “iACetyP” was established and is accessible at http://www.jci-bioinfo.cn/iAcetyP.
Collapse
Affiliation(s)
- Wang-Ren Qiu
- School of Information and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ao Xu
- School of Information and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Zhao-Chun Xu
- School of Information and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Chun-Hua Zhang
- School of Information and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Xuan Xiao
- School of Information and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| |
Collapse
|
8
|
Cao M, Chen G, Yu J, Shi S. Computational prediction and analysis of species-specific fungi phosphorylation via feature optimization strategy. Brief Bioinform 2018; 21:595-608. [DOI: 10.1093/bib/bby122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 11/12/2022] Open
Abstract
Abstract
Protein phosphorylation is a reversible and ubiquitous post-translational modification that primarily occurs at serine, threonine and tyrosine residues and regulates a variety of biological processes. In this paper, we first briefly summarized the current progresses in computational prediction of eukaryotic protein phosphorylation sites, which mainly focused on animals and plants, especially on human, with a less extent on fungi. Since the number of identified fungi phosphorylation sites has greatly increased in a wide variety of organisms and their roles in pathological physiology still remain largely unknown, more attention has been paid on the identification of fungi-specific phosphorylation. Here, experimental fungi phosphorylation sites data were collected and most of the sites were classified into different types to be encoded with various features and trained via a two-step feature optimization method. A novel method for prediction of species-specific fungi phosphorylation-PreSSFP was developed, which can identify fungi phosphorylation in seven species for specific serine, threonine and tyrosine residues (http://computbiol.ncu.edu.cn/PreSSFP). Meanwhile, we critically evaluated the performance of PreSSFP and compared it with other existing tools. The satisfying results showed that PreSSFP is a robust predictor. Feature analyses exhibited that there have some significant differences among seven species. The species-specific prediction via two-step feature optimization method to mine important features for training could considerably improve the prediction performance. We anticipate that our study provides a new lead for future computational analysis of fungi phosphorylation.
Collapse
Affiliation(s)
- Man Cao
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
| | - Guodong Chen
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
| | - Jialin Yu
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
| | - Shaoping Shi
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Arsova B, Watt M, Usadel B. Monitoring of Plant Protein Post-translational Modifications Using Targeted Proteomics. FRONTIERS IN PLANT SCIENCE 2018; 9:1168. [PMID: 30174677 PMCID: PMC6107839 DOI: 10.3389/fpls.2018.01168] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/23/2018] [Indexed: 05/19/2023]
Abstract
Protein post-translational modifications (PTMs) are among the fastest and earliest of plant responses to changes in the environment, making the mechanisms and dynamics of PTMs an important area of plant science. One of the most studied PTMs is protein phosphorylation. This review summarizes the use of targeted proteomics for the elucidation of the biological functioning of plant PTMs, and focuses primarily on phosphorylation. Since phosphorylated peptides have a low abundance, usually complex enrichment protocols are required for their research. Initial identification is usually performed with discovery phosphoproteomics, using high sensitivity mass spectrometers, where as many phosphopeptides are measured as possible. Once a PTM site is identified, biological characterization can be addressed with targeted proteomics. In targeted proteomics, Selected/Multiple Reaction Monitoring (S/MRM) is traditionally coupled to simple, standard protein digestion protocols, often omitting the enrichment step, and relying on triple-quadruple mass spectrometer. The use of synthetic peptides as internal standards allows accurate identification, avoiding cross-reactivity typical for some antibody based approaches. Importantly, internal standards allow absolute peptide quantitation, reported down to 0.1 femtomoles, also useful for determination of phospho-site occupancy. S/MRM is advantageous in situations where monitoring and diagnostics of peptide PTM status is needed for many samples, as it has faster sample processing times, higher throughput than other approaches, and excellent quantitation and reproducibility. Furthermore, the number of publicly available data-bases with plant PTM discovery data is growing, facilitating selection of modified peptides and design of targeted proteomics workflows. Recent instrument developments result in faster scanning times, inclusion of ion-trap instruments leading to parallel reaction monitoring- which further facilitates S/MRM experimental design. Finally, recent combination of data independent and data dependent spectra acquisition means that in addition to anticipated targeted data, spectra can now be queried for unanticipated information. The potential for future applications in plant biology is outlined.
Collapse
Affiliation(s)
- Borjana Arsova
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michelle Watt
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Björn Usadel
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
- IBMG: Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Wang D, Zeng S, Xu C, Qiu W, Liang Y, Joshi T, Xu D. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction. Bioinformatics 2018; 33:3909-3916. [PMID: 29036382 DOI: 10.1093/bioinformatics/btx496] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/01/2017] [Indexed: 11/14/2022] Open
Abstract
Motivation Computational methods for phosphorylation site prediction play important roles in protein function studies and experimental design. Most existing methods are based on feature extraction, which may result in incomplete or biased features. Deep learning as the cutting-edge machine learning method has the ability to automatically discover complex representations of phosphorylation patterns from the raw sequences, and hence it provides a powerful tool for improvement of phosphorylation site prediction. Results We present MusiteDeep, the first deep-learning framework for predicting general and kinase-specific phosphorylation sites. MusiteDeep takes raw sequence data as input and uses convolutional neural networks with a novel two-dimensional attention mechanism. It achieves over a 50% relative improvement in the area under the precision-recall curve in general phosphorylation site prediction and obtains competitive results in kinase-specific prediction compared to other well-known tools on the benchmark data. Availability and implementation MusiteDeep is provided as an open-source tool available at https://github.com/duolinwang/MusiteDeep. Contact xudong@missouri.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Duolin Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.,Department of Electrical Engineering and Computer Science, Informatics Institute, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, Informatics Institute, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Chunhui Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Wangren Qiu
- Department of Electrical Engineering and Computer Science, Informatics Institute, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Computer Department, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Yanchun Liang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.,Department of Computer Science and Technology, Zhuhai College of Jilin University, Zhuhai 519041, China
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, Informatics Institute, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dong Xu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.,Department of Electrical Engineering and Computer Science, Informatics Institute, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Qiu WR, Xiao X, Xu ZC, Chou KC. iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget 2018; 7:51270-51283. [PMID: 27323404 PMCID: PMC5239474 DOI: 10.18632/oncotarget.9987] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022] Open
Abstract
Protein phosphorylation is a posttranslational modification (PTM or PTLM), where a phosphoryl group is added to the residue(s) of a protein molecule. The most commonly phosphorylated amino acids occur at serine (S), threonine (T), and tyrosine (Y). Protein phosphorylation plays a significant role in a wide range of cellular processes; meanwhile its dysregulation is also involved with many diseases. Therefore, from the angles of both basic research and drug development, we are facing a challenging problem: for an uncharacterized protein sequence containing many residues of S, T, or Y, which ones can be phosphorylated, and which ones cannot? To address this problem, we have developed a predictor called iPhos-PseEn by fusing four different pseudo component approaches (amino acids’ disorder scores, nearest neighbor scores, occurrence frequencies, and position weights) into an ensemble classifier via a voting system. Rigorous cross-validations indicated that the proposed predictor remarkably outperformed its existing counterparts. For the convenience of most experimental scientists, a user-friendly web-server for iPhos-PseEn has been established at http://www.jci-bioinfo.cn/iPhos-PseEn, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved.
Collapse
Affiliation(s)
- Wang-Ren Qiu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China.,Department of Computer Science and Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | - Xuan Xiao
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China.,Gordon Life Science Institute, Boston, MA, USA
| | - Zhao-Chun Xu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA, USA.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Deng W, Wang Y, Ma L, Zhang Y, Ullah S, Xue Y. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins. Brief Bioinform 2017; 18:647-658. [PMID: 27241573 DOI: 10.1093/bib/bbw041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/14/2022] Open
Abstract
Protein methylation is an essential posttranslational modification (PTM) mostly occurs at lysine and arginine residues, and regulates a variety of cellular processes. Owing to the rapid progresses in the large-scale identification of methylation sites, the available data set was dramatically expanded, and more attention has been paid on the identification of specific methylation types of modification residues. Here, we briefly summarized the current progresses in computational prediction of methylation sites, which provided an accurate, rapid and efficient approach in contrast with labor-intensive experiments. We collected 5421 methyllysines and methylarginines in 2592 proteins from the literature, and classified most of the sites into different types. Data analyses demonstrated that different types of methylated proteins were preferentially involved in different biological processes and pathways, whereas a unique sequence preference was observed for each type of methylation sites. Thus, we developed a predictor of GPS-MSP, which can predict mono-, di- and tri-methylation types for specific lysines, and mono-, symmetric di- and asymmetrical di-methylation types for specific arginines. We critically evaluated the performance of GPS-MSP, and compared it with other existing tools. The satisfying results exhibited that the classification of methylation sites into different types for training can considerably improve the prediction accuracy. Taken together, we anticipate that our study provides a new lead for future computational analysis of protein methylation, and the prediction of methylation types of covalently modified lysine and arginine residues can generate more useful information for further experimental manipulation.
Collapse
|
13
|
Park SY, Scranton MA, Stajich JE, Yee A, Walling LL. Chlorophyte aspartyl aminopeptidases: Ancient origins, expanded families, new locations, and secondary functions. PLoS One 2017; 12:e0185492. [PMID: 29023459 PMCID: PMC5638241 DOI: 10.1371/journal.pone.0185492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022] Open
Abstract
M18 aspartyl aminopeptidases (DAPs) are well characterized in microbes and animals with likely functions in peptide processing and vesicle trafficking. In contrast, there is a dearth of knowledge on plant aminopeptidases with a preference for proteins and peptides with N-terminal acidic residues. During evolution of the Plantae, there was an expansion and diversification of the M18 DAPs. After divergence of the ancestral green algae from red and glaucophyte algae, a duplication yielded the DAP1 and DAP2 lineages. Subsequently DAP1 genes were lost in chlorophyte algae. A duplication of DAP2-related genes occurred early in green plant evolution. DAP2 genes were retained in land plants and picoeukaryotic algae and lost in green algae. In contrast, DAP2-like genes persisted in picoeukaryotic and green algae, while this lineage was lost in land plants. Consistent with this evolutionary path, Arabidopsis thaliana has two DAP gene lineages (AtDAP1 and AtDAP2). Similar to animal and yeast DAPs, AtDAP1 is localized to the cytosol or vacuole; while AtDAP2 harbors an N-terminal transit peptide and is chloroplast localized. His6-DAP1 and His6-DAP2 expressed in Escherichia coli were enzymatically active and dodecameric with masses exceeding 600 kDa. His6-DAP1 and His6-DAP2 preferentially hydrolyzed Asp-p-nitroanilide and Glu-p-nitroanilide. AtDAPs are highly conserved metallopeptidases activated by MnCl2 and inhibited by ZnCl2 and divalent ion chelators. The protease inhibitor PMSF inhibited and DTT stimulated both His6-DAP1 and His6-DAP2 activities suggesting a role for thiols in the AtDAP catalytic mechanism. The enzymes had distinct pH and temperature optima, as well as distinct kinetic parameters. Both enzymes had high catalytic efficiencies (kcat/Km) exceeding 1.0 x 107 M-1 sec-1. Using established molecular chaperone assays, AtDAP1 and AtDAP2 prevented thermal denaturation. AtDAP1 also prevented protein aggregation and promoted protein refolding. Collectively, these data indicate that plant DAPs have a complex evolutionary history and have evolved new biochemical features that may enable their role in vivo.
Collapse
Affiliation(s)
- Sang-Youl Park
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Melissa A. Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Ashley Yee
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Yao Q, Xu D. Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB. Methods Mol Biol 2017; 1558:127-138. [PMID: 28150236 DOI: 10.1007/978-1-4939-6783-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein phosphorylation is one of the most pervasive protein post-translational modification events in plant cells. It is involved in many plant biological processes, such as plant growth, organ development, and plant immunology, by regulating or switching signaling and metabolic pathways. High-throughput experimental methods like mass spectrometry can easily characterize hundreds to thousands of phosphorylation events in a single experiment. With the increasing volume of the data sets, Plant Protein Phosphorylation DataBase (P3DB, http://p3db.org ) provides a comprehensive, systematic, and interactive online platform to deposit, query, analyze, and visualize these phosphorylation events in many plant species. It stores the protein phosphorylation sites in the context of identified mass spectra, phosphopeptides, and phosphoproteins contributed from various plant proteome studies. In addition, P3DB associates these plant phosphorylation sites to protein physicochemical information in the protein charts and tertiary structures, while various protein annotations from hierarchical kinase phosphatase families, protein domains, and gene ontology are also added into the database. P3DB not only provides rich information, but also interconnects and provides visualization of the data in networks, in systems biology context. Currently, P3DB includes the KiC (Kinase Client) assay network, the protein-protein interaction network, the kinase-substrate network, the phosphatase-substrate network, and the protein domain co-occurrence network. All of these are available to query for and visualize existing phosphorylation events. Although P3DB only hosts experimentally identified phosphorylation data, it provides a plant phosphorylation prediction model for any unknown queries on the fly. P3DB is an entry point to the plant phosphorylation community to deposit and visualize any customized data sets within this systems biology framework. Nowadays, P3DB has become one of the major bioinformatics platforms of protein phosphorylation in plant biology.
Collapse
Affiliation(s)
- Qiuming Yao
- Department of Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA.
| | - Dong Xu
- Department of Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA
| |
Collapse
|
15
|
Tokmakov AA, Kurotani A, Ikeda M, Terazawa Y, Shirouzu M, Stefanov V, Sakurai T, Yokoyama S. Content of intrinsic disorder influences the outcome of cell-free protein synthesis. Sci Rep 2015; 5:14079. [PMID: 26359642 PMCID: PMC4566126 DOI: 10.1038/srep14079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/14/2015] [Indexed: 01/04/2023] Open
Abstract
Cell-free protein synthesis is used to produce proteins with various structural traits. Recent bioinformatics analyses indicate that more than half of eukaryotic proteins possess long intrinsically disordered regions. However, no systematic study concerning the connection between intrinsic disorder and expression success of cell-free protein synthesis has been presented until now. To address this issue, we examined correlations of the experimentally observed cell-free protein expression yields with the contents of intrinsic disorder bioinformatically predicted in the expressed sequences. This analysis revealed strong relationships between intrinsic disorder and protein amenability to heterologous cell-free expression. On the one hand, elevated disorder content was associated with the increased ratio of soluble expression. On the other hand, overall propensity for detectable protein expression decreased with disorder content. We further demonstrated that these tendencies are rooted in some distinct features of intrinsically disordered regions, such as low hydrophobicity, elevated surface accessibility and high abundance of sequence motifs for proteolytic degradation, including sites of ubiquitination and PEST sequences. Our findings suggest that identification of intrinsically disordered regions in the expressed amino acid sequences can be of practical use for predicting expression success and optimizing cell-free protein synthesis.
Collapse
Affiliation(s)
- Alexander A Tokmakov
- Research Center for Environmental Genomics, Kobe University, Nada 657-8501, Japan.,RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan
| | - Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Mariko Ikeda
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Yumiko Terazawa
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Vasily Stefanov
- Department of Biochemistry, Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
| |
Collapse
|
16
|
Kurotani A, Sakurai T. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae. Int J Mol Sci 2015; 16:19812-35. [PMID: 26307970 PMCID: PMC4581327 DOI: 10.3390/ijms160819812] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/23/2022] Open
Abstract
Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.
Collapse
Affiliation(s)
- Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
17
|
Xu Y, Yao B, Shi K, Lu J, Jin Y, Qi B, Li H, Pan S, Chen L, Ma C. Phosphorylation of Serine422 increases the stability and transactivation activities of human Osterix. FEBS Lett 2015; 589:857-64. [PMID: 25728276 DOI: 10.1016/j.febslet.2015.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 11/19/2022]
Abstract
Osterix (Osx) is an essential regulator for osteoblast differentiation and bone formation. Although phosphorylation has been reported to be involved in the regulation of Osx activity, the precise underlying mechanisms remain to be elucidated. Here we identified S422 as a novel phosphorylation site of Osx and demonstrated that GSK-3β interacted and co-localized with Osx. GSK-3β increased the stability and transactivation activity of Osx through phosphorylation of the newly identified site. These findings expanded our understanding of the mechanisms of posttranslational regulation of Osx and the role of GSK-3β in the control of Osx transactivation activity.
Collapse
Affiliation(s)
- Yuexin Xu
- Department of Developmental Genetics, Nanjing Medical University, Hanzhong Road 140, Nanjing 210029, P.R. China
| | - Bing Yao
- Department of Developmental Genetics, Nanjing Medical University, Hanzhong Road 140, Nanjing 210029, P.R. China
| | - Kaikai Shi
- Department of Developmental Genetics, Nanjing Medical University, Hanzhong Road 140, Nanjing 210029, P.R. China
| | - Jianlei Lu
- Department of Developmental Genetics, Nanjing Medical University, Hanzhong Road 140, Nanjing 210029, P.R. China
| | - Yucui Jin
- Department of Developmental Genetics, Nanjing Medical University, Hanzhong Road 140, Nanjing 210029, P.R. China
| | - Bing Qi
- Department of Oral Pathology, Affiliated Hospital of Stomatology, Nanjing Medical University, Hanzhong Road 136, Nanjing 210029, P.R. China
| | - Hongwei Li
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Hanzhong Road 136, Nanjing 210029, P.R. China
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Li Chen
- Molecular Endocrinology Laboratory, Department of Endocrinology, Odense University Hospital, Winslowparken 25. Sal 1, DK-5000 Odense C, Denmark
| | - Changyan Ma
- Department of Developmental Genetics, Nanjing Medical University, Hanzhong Road 140, Nanjing 210029, P.R. China.
| |
Collapse
|
18
|
Silva-Sanchez C, Li H, Chen S. Recent advances and challenges in plant phosphoproteomics. Proteomics 2015; 15:1127-41. [PMID: 25429768 DOI: 10.1002/pmic.201400410] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Plants are sessile organisms that need to respond to environmental changes quickly and efficiently. They can accomplish this by triggering specialized signaling pathways often mediated by protein phosphorylation and dephosphorylation. Phosphorylation is a fast response that can switch on or off a myriad of biological pathways and processes. Proteomics and MS are the main tools employed in the study of protein phosphorylation. Advances in the technologies allow simultaneous identification and quantification of thousands of phosphopeptides and proteins that are essential to understanding the sophisticated biological systems and regulations. In this review, we summarize the advances in phosphopeptide enrichment and quantitation, MS for phosphorylation site mapping and new data acquisition methods, databases and informatics, interpretation of biological insights and crosstalk with other PTMs, as well as future directions and challenges in the field of phosphoproteomics.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
19
|
Abstract
Protein phosphorylation events on serine, threonine, and tyrosine residues are the most pervasive protein covalent bond modifications in plant signaling. Both low and high throughput studies reveal the importance of phosphorylation in plant molecular biology. Although becoming more and more common, the proteome-wide screening on phosphorylation by experiments remains time consuming and costly. Therefore, in silico prediction methods are proposed as a complementary analysis tool to enhance the phosphorylation site identification, develop biological hypothesis, or help experimental design. These methods build statistical models based on the experimental data, and they do not have some of the technical-specific bias, which may have advantage in proteome-wide analysis. More importantly computational methods are very fast and cheap to run, which makes large-scale phosphorylation identifications very practical for any types of biological study. Thus, the phosphorylation prediction tools become more and more popular. In this chapter, we will focus on plant specific phosphorylation site prediction tools, with essential illustration of technical details and application guidelines. We will use Musite, PhosPhAt and PlantPhos as the representative tools. We will present the results on the prediction of the Arabidopsis protein phosphorylation events to give users a general idea of the performance range of the three tools, together with their strengths and limitations. We believe these prediction tools will contribute more and more to the plant phosphorylation research community.
Collapse
Affiliation(s)
- Qiuming Yao
- Department of Computer Science and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | | | | |
Collapse
|
20
|
Kurotani A, Yamada Y, Shinozaki K, Kuroda Y, Sakurai T. Plant-PrAS: a database of physicochemical and structural properties and novel functional regions in plant proteomes. PLANT & CELL PHYSIOLOGY 2015; 56:e11. [PMID: 25435546 PMCID: PMC4301743 DOI: 10.1093/pcp/pcu176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/31/2014] [Indexed: 05/21/2023]
Abstract
Arabidopsis thaliana is an important model species for studies of plant gene functions. Research on Arabidopsis has resulted in the generation of high-quality genome sequences, annotations and related post-genomic studies. The amount of annotation, such as gene-coding regions and structures, is steadily growing in the field of plant research. In contrast to the genomics resource of animals and microorganisms, there are still some difficulties with characterization of some gene functions in plant genomics studies. The acquisition of information on protein structure can help elucidate the corresponding gene function because proteins encoded in the genome possess highly specific structures and functions. In this study, we calculated multiple physicochemical and secondary structural parameters of protein sequences, including length, hydrophobicity, the amount of secondary structure, the number of intrinsically disordered regions (IDRs) and the predicted presence of transmembrane helices and signal peptides, using a total of 208,333 protein sequences from the genomes of six representative plant species, Arabidopsis thaliana, Glycine max (soybean), Populus trichocarpa (poplar), Oryza sativa (rice), Physcomitrella patens (moss) and Cyanidioschyzon merolae (alga). Using the PASS tool and the Rosetta Stone method, we annotated the presence of novel functional regions in 1,732 protein sequences that included unannotated sequences from the Arabidopsis and rice proteomes. These results were organized into the Plant Protein Annotation Suite database (Plant-PrAS), which can be freely accessed online at http://plant-pras.riken.jp/.
Collapse
Affiliation(s)
- Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan Department of Biotechnology and Life Sciences, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588 Japan
| | - Yutaka Yamada
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Sciences, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588 Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
21
|
Dunker AK, Bondos SE, Huang F, Oldfield CJ. Intrinsically disordered proteins and multicellular organisms. Semin Cell Dev Biol 2014; 37:44-55. [PMID: 25307499 DOI: 10.1016/j.semcdb.2014.09.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
Abstract
Intrinsically disordered proteins (IDPs) and IDP regions lack stable tertiary structure yet carry out numerous biological functions, especially those associated with signaling, transcription regulation, DNA condensation, cell division, and cellular differentiation. Both post-translational modifications (PTMs) and alternative splicing (AS) expand the functional repertoire of IDPs. Here we propose that an "IDP-based developmental toolkit," which is comprised of IDP regions, PTMs, especially multiple PTMs, within these IDP regions, and AS events within segments of pre-mRNA that code for these same IDP regions, allows functional diversification and environmental responsiveness for molecules that direct the development of complex metazoans.
Collapse
Affiliation(s)
- A Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University Schools of Medicine and Informatics, Indianapolis, IN 46202, United States.
| | - Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, United States.
| | - Fei Huang
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University Schools of Medicine and Informatics, Indianapolis, IN 46202, United States.
| | - Christopher J Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University Schools of Medicine and Informatics, Indianapolis, IN 46202, United States.
| |
Collapse
|
22
|
Kurotani A, Tokmakov AA, Kuroda Y, Fukami Y, Shinozaki K, Sakurai T. Correlations between predicted protein disorder and post-translational modifications in plants. ACTA ACUST UNITED AC 2014; 30:1095-1103. [PMID: 24403539 PMCID: PMC3982157 DOI: 10.1093/bioinformatics/btt762] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/24/2013] [Indexed: 01/24/2023]
Abstract
MOTIVATION Protein structural research in plants lags behind that in animal and bacterial species. This lag concerns both the structural analysis of individual proteins and the proteome-wide characterization of structure-related properties. Until now, no systematic study concerning the relationships between protein disorder and multiple post-translational modifications (PTMs) in plants has been presented. RESULTS In this work, we calculated the global degree of intrinsic disorder in the complete proteomes of eight typical monocotyledonous and dicotyledonous plant species. We further predicted multiple sites for phosphorylation, glycosylation, acetylation and methylation and examined the correlations of protein disorder with the presence of the predicted PTM sites. It was found that phosphorylation, acetylation and O-glycosylation displayed a clear preference for occurrence in disordered regions of plant proteins. In contrast, methylation tended to avoid disordered sequence, whereas N-glycosylation did not show a universal structural preference in monocotyledonous and dicotyledonous plants. In addition, the analysis performed revealed significant differences between the integral characteristics of monocot and dicot proteomes. They included elevated disorder degree, increased rate of O-glycosylation and R-methylation, decreased rate of N-glycosylation, K-acetylation and K-methylation in monocotyledonous plant species, as compared with dicotyledonous species. Altogether, our study provides the most compelling evidence so far for the connection between protein disorder and multiple PTMs in plants. CONTACT tokmak@phoenix.kobe-u.ac.jp or tetsuya.sakurai@riken.jp Supplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan and Research Center for Environmental Genomics, Kobe University, 1-1 Rokko dai, Nada, Kobe 657-8501, Japan RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan and Research Center for Environmental Genomics, Kobe University, 1-1 Rokko dai, Nada, Kobe 657-8501, Japan
| | - Alexander A Tokmakov
- RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan and Research Center for Environmental Genomics, Kobe University, 1-1 Rokko dai, Nada, Kobe 657-8501, Japan
| | - Yutaka Kuroda
- RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan and Research Center for Environmental Genomics, Kobe University, 1-1 Rokko dai, Nada, Kobe 657-8501, Japan
| | - Yasuo Fukami
- RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan and Research Center for Environmental Genomics, Kobe University, 1-1 Rokko dai, Nada, Kobe 657-8501, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan and Research Center for Environmental Genomics, Kobe University, 1-1 Rokko dai, Nada, Kobe 657-8501, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan and Research Center for Environmental Genomics, Kobe University, 1-1 Rokko dai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
23
|
Carroll AW, Joshi HJ, Heazlewood JL. Managing the green proteomes for the next decade of plant research. FRONTIERS IN PLANT SCIENCE 2013; 4:501. [PMID: 24379820 PMCID: PMC3864100 DOI: 10.3389/fpls.2013.00501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 05/25/2023]
Affiliation(s)
- Andrew W. Carroll
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of CopenhagenCopenhagen, Denmark
| | - Hiren J. Joshi
- Physical Biosciences Division and Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Joshua L. Heazlewood
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
24
|
Yao Q, Ge H, Wu S, Zhang N, Chen W, Xu C, Gao J, Thelen JJ, Xu D. P³DB 3.0: From plant phosphorylation sites to protein networks. Nucleic Acids Res 2013; 42:D1206-13. [PMID: 24243849 PMCID: PMC3965113 DOI: 10.1093/nar/gkt1135] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the past few years, the Plant Protein Phosphorylation Database (P3DB, http://p3db.org) has become one of the most significant in vivo data resources for studying plant phosphoproteomics. We have substantially updated P3DB with respect to format, new datasets and analytic tools. In the P3DB 3.0, there are altogether 47 923 phosphosites in 16 477 phosphoproteins curated across nine plant organisms from 32 studies, which have met our multiple quality standards for acquisition of in vivo phosphorylation site data. Centralized by these phosphorylation data, multiple related data and annotations are provided, including protein–protein interaction (PPI), gene ontology, protein tertiary structures, orthologous sequences, kinase/phosphatase classification and Kinase Client Assay (KiC Assay) data—all of which provides context for the phosphorylation event. In addition, P3DB 3.0 incorporates multiple network viewers for the above features, such as PPI network, kinase-substrate network, phosphatase-substrate network, and domain co-occurrence network to help study phosphorylation from a systems point of view. Furthermore, the new P3DB reflects a community-based design through which users can share datasets and automate data depository processes for publication purposes. Each of these new features supports the goal of making P3DB a comprehensive, systematic and interactive platform for phosphoproteomics research.
Collapse
Affiliation(s)
- Qiuming Yao
- Department of Computer Science, University of Missouri, Columbia, MO 65211, USA, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, People's Republic of China, Department of Biology, Brandeis University, MA 02453, USA, Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA and Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sun X, Rikkerink EHA, Jones WT, Uversky VN. Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. THE PLANT CELL 2013; 25:38-55. [PMID: 23362206 PMCID: PMC3584547 DOI: 10.1105/tpc.112.106062] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 05/18/2023]
Abstract
Intrinsically disordered proteins (IDPs) are highly abundant in eukaryotic proteomes. Plant IDPs play critical roles in plant biology and often act as integrators of signals from multiple plant regulatory and environmental inputs. Binding promiscuity and plasticity allow IDPs to interact with multiple partners in protein interaction networks and provide important functional advantages in molecular recognition through transient protein-protein interactions. Short interaction-prone segments within IDPs, termed molecular recognition features, represent potential binding sites that can undergo disorder-to-order transition upon binding to their partners. In this review, we summarize the evidence for the importance of IDPs in plant biology and evaluate the functions associated with intrinsic disorder in five different types of plant protein families experimentally confirmed as IDPs. Functional studies of these proteins illustrate the broad impact of disorder on many areas of plant biology, including abiotic stress, transcriptional regulation, light perception, and development. Based on the roles of disorder in the protein-protein interactions, we propose various modes of action for plant IDPs that may provide insight for future experimental approaches aimed at understanding the molecular basis of protein function within important plant pathways.
Collapse
Affiliation(s)
- Xiaolin Sun
- The New Zealand Institute for Plant and Food Research, Palmerston North 4474, New Zealand.
| | | | | | | |
Collapse
|