1
|
Qiu L, Xu H, Sui B, Jiang P, Wang J, Xu D, Liang F, Ma T, Wang H, Chen J. Elucidating the Functional Mechanism of PTK7 in Cancer Development through Spatial Assembly Analysis Using Super Resolution Imaging. Anal Chem 2024; 96:7669-7678. [PMID: 38708542 DOI: 10.1021/acs.analchem.4c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Protein tyrosine kinase-7 (PTK7) has been reported as a vital participant in the Wnt signaling pathway, influencing tumorigenesis and metastasis. However, their specific roles in the mechanisms underlying cancer development and progression remain elusive. Here, using direct stochastic optical reconstruction microscopy (dSTORM) with aptamer-probe labeling, we first revealed that a weakening clustering distribution of PTK7 on the basal membranes happened as cellular migration increased during cancer progression. This correspondence was further supported by a diminished aggregated state of PTK7 caused by direct enhancement of cell migration. By comparing the alterations in PTK7 distribution with activation or inhibition of specific Wnt signaling pathway, we speculated that PTK7 could modulate cell migration by participating in the interplay between canonical Wnt (in MCF7 cells) and noncanonical Wnt signals (in MDA-MB-231 cells). Furthermore, we discovered that the spatial distribution morphology of PTK7 was also subject to the hydrolysis ability and activation state of the related hydrolase Matrix metallopeptidase14 (MMP14). This function-related specific assembly of PTK7 reveals a clear relationship between PTK7 and cancer. Meanwhile, potential molecular interactions predicted by the apparent assembly morphology can promote a deep understanding of the functional mechanism of PTK7 in cancer progress.
Collapse
Affiliation(s)
- Luqi Qiu
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Haijiao Xu
- Research Center of Biomembranomics, State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Binglin Sui
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Pengwei Jiang
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Jiaqi Wang
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Dandan Xu
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Feng Liang
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Tao Ma
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Hongda Wang
- Research Center of Biomembranomics, State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Junling Chen
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| |
Collapse
|
2
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
3
|
Ge D, Chen J, Zhao Z, Sui B, Liang F, Wang H. Characterizing the function-related specific assembly pattern of matrix metalloproteinase-14 by dSTORM imaging. Talanta 2023; 260:124523. [PMID: 37105082 DOI: 10.1016/j.talanta.2023.124523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
As transmembrane proteolytic enzyme, matrix metalloproteinase-14 (MMP14) regulates cell migration and cancer metastasis, but how it works at the single molecule level is unclear. Molecular localization is closely related to its function, and revealing its spatial assemble details is thus helpful to understand bio-function. Here, we apply aptamer probe and dSTORM to characterize MMP14 distribution. With demonstrating labeling properties of the probe, we investigate the specific distributed pattern of MMP14 on various cell membranes with different migratory capacities, and find that MMP14 mostly aggregate in clustering state, which becomes more significant with enhancing its hydrolysis efficiency on high-migratory cells. Lots of MMP14 are revealed to be co-localized with its substrate PTK7, and this colocalization decreases with weakening cell migration, suggesting that MMP14 may coordinate cell migration by altering its spatial relationship with substrate proteins. This work will promote a deep understanding of the roles of MMP14 in cell migration and cancer metastasis.
Collapse
Affiliation(s)
- Dian Ge
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Junling Chen
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China.
| | - Zhiyong Zhao
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Binglin Sui
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China
| | - Feng Liang
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei, 430081, China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, 5625 Renmin Street, Changchun, Jilin, 130022, China.
| |
Collapse
|
4
|
Arslan FN, Eckert J, Schmidt T, Heisenberg CP. Holding it together: when cadherin meets cadherin. Biophys J 2021; 120:4182-4192. [PMID: 33794149 PMCID: PMC8516678 DOI: 10.1016/j.bpj.2021.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Intercellular adhesion is the key to multicellularity, and its malfunction plays an important role in various developmental and disease-related processes. Although it has been intensively studied by both biologists and physicists, a commonly accepted definition of cell-cell adhesion is still being debated. Cell-cell adhesion has been described at the molecular scale as a function of adhesion receptors controlling binding affinity, at the cellular scale as resistance to detachment forces or modulation of surface tension, and at the tissue scale as a regulator of cellular rearrangements and morphogenesis. In this review, we aim to summarize and discuss recent advances in the molecular, cellular, and theoretical description of cell-cell adhesion, ranging from biomimetic models to the complexity of cells and tissues in an organismal context. In particular, we will focus on cadherin-mediated cell-cell adhesion and the role of adhesion signaling and mechanosensation therein, two processes central for understanding the biological and physical basis of cell-cell adhesion.
Collapse
Affiliation(s)
- Feyza Nur Arslan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Julia Eckert
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, the Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
5
|
Chen J, Li H, Wu Q, Yan Q, Sun J, Liang F, Liu Y, Wang H. Organization of Protein Tyrosine Kinase-7 on Cell Membranes Characterized by Aptamer Probe-Based STORM Imaging. Anal Chem 2020; 93:936-945. [PMID: 33301288 DOI: 10.1021/acs.analchem.0c03630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein tyrosine kinase-7 (PTK7), as an important membrane receptor, regulates various cellular activities, including cell polarity, movement, migration, and invasion. Although lots of research studies focused on revealing its functions from the aspect of the expression of the gene and protein are present, the relationship between the spatial distribution at the single-molecule level and the function remains unclear. Through combining aptamer probe labeling and super-resolution imaging technology, after verifying the specificity and superiority of the aptamer probe, a more significant clustering distribution of PTK7 is found on the MCF10A cell basal membrane than on the apical membrane, which is thought to be related to their specific functions on different membranes. By exploring the relationship between the assembly of PTK7 and lipid rafts, actin cytoskeleton, and carbohydrate chains on the membrane, the unique distribution of PTK7 on disparate membranes is revealed to be probably because of the varied dominant position of these three factors. These findings present the detailed spatial information of PTK7 and the related potential organization mechanism on the cell membrane, which will facilitate a better understanding of the relationship between the molecular assembly and its function, as well as the overall structure of the cell membrane.
Collapse
Affiliation(s)
- Junling Chen
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qiang Wu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Qiuyan Yan
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Jiayin Sun
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Feng Liang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
6
|
Lasitza‐Male T, Bartels K, Jungwirth J, Wiggers F, Rosenblum G, Hofmann H, Löw C. Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angew Chem Int Ed Engl 2020; 59:19121-19128. [PMID: 32744783 PMCID: PMC7590137 DOI: 10.1002/anie.202008226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/02/2023]
Abstract
Membrane proteins require lipid bilayers for function. While lipid compositions reach enormous complexities, high-resolution structures are usually obtained in artificial detergents. To understand whether and how lipids guide membrane protein function, we use single-molecule FRET to probe the dynamics of DtpA, a member of the proton-coupled oligopeptide transporter (POT) family, in various lipid environments. We show that detergents trap DtpA in a dynamic ensemble with cytoplasmic opening. Only reconstitutions in more native environments restore cooperativity, allowing an opening to the extracellular side and a sampling of all relevant states. Bilayer compositions tune the abundance of these states. A novel state with an extreme cytoplasmic opening is accessible in bilayers with anionic head groups. Hence, chemical diversity of membranes translates into structural diversity, with the current POT structures only sampling a portion of the full structural space.
Collapse
Affiliation(s)
- Tanya Lasitza‐Male
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Kim Bartels
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Jakub Jungwirth
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Felix Wiggers
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Gabriel Rosenblum
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Hagen Hofmann
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
- Department of Medical Biochemistry and BiophysicsKarolinska Institutet17177StockholmSweden
| |
Collapse
|
7
|
Lasitza‐Male T, Bartels K, Jungwirth J, Wiggers F, Rosenblum G, Hofmann H, Löw C. Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tanya Lasitza‐Male
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Kim Bartels
- Centre for Structural Systems Biology (CSSB) DESY and European Molecular Biology Laboratory Hamburg Notkestrasse 85 22607 Hamburg Germany
| | - Jakub Jungwirth
- Department of Chemical and Biological Physics Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Felix Wiggers
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Gabriel Rosenblum
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Hagen Hofmann
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB) DESY and European Molecular Biology Laboratory Hamburg Notkestrasse 85 22607 Hamburg Germany
- Department of Medical Biochemistry and Biophysics Karolinska Institutet 17177 Stockholm Sweden
| |
Collapse
|
8
|
Greig J, Bulgakova NA. Arf6 determines tissue architecture by stabilizing intercellular adhesion. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190682. [PMID: 32829688 DOI: 10.1098/rstb.2019.0682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Correct cell shape is indispensable for tissue architecture, with cell shape being determined by cortical actin and surface adhesion. The role of adhesion in remodelling tissue is to counteract the deformation of cells by force, resulting from actomyosin contractility, and to maintain tissue integrity. The dynamics of this adhesion are critical to the processes of cell shape formation and maintenance. Here, we show that the trafficking molecule Arf6 has a direct impact on cell elongation, by acting to stabilize E-cadherin-based adhesion complexes at the cell surface, in addition to its canonical role in endocytosis. We demonstrate that these functions of Arf6 are dependent on the molecule Flotillin1, which recruits Arf6 to the plasma membrane. Our data suggest that Arf6 and Flotillin1 operate in a pathway distinct from clathrin-mediated endocytosis. Altogether, we demonstrate that Arf6- and Flotillin1-dependent regulation of the dynamics of cell adhesion contribute to moulding tissue in vivo. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Joshua Greig
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Natalia A Bulgakova
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
9
|
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 2020; 61:636-654. [PMID: 31871065 PMCID: PMC7193971 DOI: 10.1194/jlr.tr119000427] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy. mailto:
| |
Collapse
|
10
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
11
|
Roberts SK, Hirsch M, McStea A, Zanetti-Domingues LC, Clarke DT, Claus J, Parker PJ, Wang L, Martin-Fernandez AML. Cluster Analysis of Endogenous HER2 and HER3 Receptors in SKBR3 Cells. Bio Protoc 2018; 8:e3096. [PMID: 34532543 DOI: 10.21769/bioprotoc.3096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 01/11/2023] Open
Abstract
The Human Epidermal Growth Factor Receptor (HER) family of receptor tyrosine kinases consists of four, single pass, transmembrane receptor homologs (HER1-4) that act to regulate many critical processes in normal and tumor cells. HER2 is overexpressed in many tumors, and the deregulated proliferation of cancerous cells is driven by cooperation with its preferred receptor partner, HER3. The assessment of the in-situ organization of tagged HER2 and HER3 using super-resolution microscopy reveals quantitative Single Molecule Localization Microscopy (SMLM) as an ideal bioanalytical tool to characterize receptor clusters. Clustering of receptors is an important regulatory mechanism to prime cells to respond to stimuli so, to understand these processes, it is necessary to measure parameters such as numbers of clusters, cluster radii and the number of localizations per cluster for different perturbations. Previously, Fluorescence Localization Imaging with Photobleaching (FLImP), another nanoscale, single-molecule technique, characterized the oligomerization state of HER1 [or Epidermal Growth Factor Receptors (EGFR)] in cell membranes. To achieve an unprecedented resolution (< 5 nm) for inter-molecular separations in EGFR oligomers using FLImP, very few receptors are tagged, and so this method is unsuitable for measurements of whole receptor populations in cancer cells where receptors are frequently upregulated. Here, in order to detect all receptors involved in cluster formation, we saturate endogenous HER2 and HER3 membrane receptors with ligands at a 1:1 dye to protein ratio, in the presence or absence of therapeutic drugs (lapatinib or bosutinib). This is performed in the commonly used breast cancer cell line model SKBR3 cells, where there are ~1.6 million HER2 receptors/cell and 10,000-40,000 HER3 receptors/cell. The basal state of these receptors is studied using HER2- or HER3-specific Affibodies, and likewise, the active state is probed using the natural HER3 ligand, Neuregulin-beta1 (NRGβ1). Stochastic Optical Reconstruction Microscopy (STORM), one form of SMLM, was used here to image cells, which were chemically fixed to minimize image blurring and provide data (x and y coordinates and standard deviation of the measured localizations) for cluster analysis. Further analysis can also determine proportions of receptor colocalizations. Our findings show that lapatinib-bound HER2, complexed with HER3 via a non-canonical kinase dimer structure, induces higher order oligomers. We hypothesized that nucleation of receptors creates signaling platforms that explain the counterintuitive, increase in cell proliferation upon ligand binding, in the presence of the HER2-inhibitor lapatinib.
Collapse
Affiliation(s)
- Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - Alexandra McStea
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - Jeroen Claus
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,School of Cancer and Pharmaceutical Sciences, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - And Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK.,School of Cancer and Pharmaceutical Sciences, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
12
|
Fried ES, Li YM, Gilchrist ML. Phase Composition Control in Microsphere-Supported Biomembrane Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3028-3039. [PMID: 28198634 PMCID: PMC5568755 DOI: 10.1021/acs.langmuir.6b04150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The popularization of studies in membrane protein lipid phase coexistence has prompted the development of new techniques to construct and study biomimetic systems with cholesterol-rich lipid microdomains. Here, microsphere-supported biomembranes with integrated α-helical peptides, referred to as proteolipobeads (PLBs), were used to model peptide/protein partitioning within DOPC/DPPC/cholesterol phase-separated membranes. Due to the appearance of compositional heterogeneity and impurities in the formation of model PLB assemblies, fluorescence-activated cell sorting (FACS) was used to characterize and sort PLB populations on the basis of disordered phase (Ld) content. In addition, spectral imaging was used to assess the partitioning of FITC-labeled α-helical peptide between fluorescently labeled Ld phase and unlabeled ordered phase (Lo) phase lipid microdomains. The apparent peptide partition coefficient, Kp,app, was measured to be 0.89 ± 0.06, indicating a slight preference of the peptide for the Lo phase. A biomimetic motif of the Lo phase concentration enhancement of the biotinyl-peptide ligand display in proteolipobeads was also observed. Finally, peptide mobility was measured by FRAP separately in each lipid phase, yielding diffusivities of 0.036 ± 0.005 and 0.014 ± 0.003 μm2/s in the Ld and Lo phases, respectively.
Collapse
Affiliation(s)
- Eric S. Fried
- Department of Chemical Engineering, The City College of the City University of New York, 140th Street and Convent Avenue, New York, NY 10031
| | - Yue-Ming Li
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - M. Lane Gilchrist
- Department of Chemical Engineering, The City College of the City University of New York, 140th Street and Convent Avenue, New York, NY 10031
- Department of Biomedical Engineering, The City College of the City University of New York, 140th Street and Convent Avenue, New York, NY 10031
| |
Collapse
|
13
|
Chen J, Gao J, Zhang M, Cai M, Xu H, Jiang J, Tian Z, Wang H. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging. Sci Rep 2016; 6:30247. [PMID: 27453176 PMCID: PMC4958959 DOI: 10.1038/srep30247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022] Open
Abstract
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.
Collapse
Affiliation(s)
- Junling Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Min Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Zhiyuan Tian
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| |
Collapse
|
14
|
Shan Y, Wang H. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem Soc Rev 2016; 44:3617-38. [PMID: 25893228 DOI: 10.1039/c4cs00508b] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.
Collapse
Affiliation(s)
- Yuping Shan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | | |
Collapse
|
15
|
Molecular clustering in the cell: from weak interactions to optimized functional architectures. Curr Opin Cell Biol 2016; 38:18-23. [PMID: 26829487 DOI: 10.1016/j.ceb.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/19/2023]
Abstract
Molecular components of the cell, such as lipids, proteins or RNA molecules, can associate through weak interactions and form clusters. A growing number of studies have shown that clustering of molecules is crucial for cell functions such as signal optimization and polarization. Clustering provides an intermediate level of organization between the molecular and cellular scales. Here we review recent studies focusing on how molecular clustering functions in different biological contexts, the potential importance of clustering for information processing, as well as the physical nature of cluster formation. We mainly refer to literature focusing on clusters within cell membranes, but also report findings on clusters in the cytosol, emphasizing their ubiquitous role.
Collapse
|
16
|
Walker MA, Kohl T, Lehnart SE, Greenstein JL, Lederer WJ, Winslow RL. On the Adjacency Matrix of RyR2 Cluster Structures. PLoS Comput Biol 2015; 11:e1004521. [PMID: 26545234 PMCID: PMC4636394 DOI: 10.1371/journal.pcbi.1004521] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/25/2015] [Indexed: 01/24/2023] Open
Abstract
In the heart, electrical stimulation of cardiac myocytes increases the open probability of sarcolemmal voltage-sensitive Ca2+ channels and flux of Ca2+ into the cells. This increases Ca2+ binding to ligand-gated channels known as ryanodine receptors (RyR2). Their openings cause cell-wide release of Ca2+, which in turn causes muscle contraction and the generation of the mechanical force required to pump blood. In resting myocytes, RyR2s can also open spontaneously giving rise to spatially-confined Ca2+ release events known as "sparks." RyR2s are organized in a lattice to form clusters in the junctional sarcoplasmic reticulum membrane. Our recent work has shown that the spatial arrangement of RyR2s within clusters strongly influences the frequency of Ca2+ sparks. We showed that the probability of a Ca2+ spark occurring when a single RyR2 in the cluster opens spontaneously can be predicted from the precise spatial arrangements of the RyR2s. Thus, "function" follows from "structure." This probability is related to the maximum eigenvalue (λ1) of the adjacency matrix of the RyR2 cluster lattice. In this work, we develop a theoretical framework for understanding this relationship. We present a stochastic contact network model of the Ca2+ spark initiation process. We show that λ1 determines a stability threshold for the formation of Ca2+ sparks in terms of the RyR2 gating transition rates. We recapitulate these results by applying the model to realistic RyR2 cluster structures informed by super-resolution stimulated emission depletion (STED) microscopy. Eigendecomposition of the linearized mean-field contact network model reveals functional subdomains within RyR2 clusters with distinct sensitivities to Ca2+. This work provides novel perspectives on the cardiac Ca2+ release process and a general method for inferring the functional properties of transmembrane receptor clusters from their structure.
Collapse
Affiliation(s)
- Mark A. Walker
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tobias Kohl
- Heart Research Center Göttingen, Clinic of Cardiology and Pulmonology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, Clinic of Cardiology and Pulmonology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research site Göttingen, Germany
| | - Joseph L. Greenstein
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - W. J. Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Raimond L. Winslow
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Lipid rafts are submicron proteolipid domains thought to be responsible for membrane trafficking and signaling. Their small size and transient nature put an understanding of their dynamics beyond the reach of existing techniques, leading to much contention as to their exact role. Here, we exploit the differences in light scattering from lipid bilayer phases to achieve dynamic imaging of nanoscopic lipid domains without any labels. Using phase-separated droplet interface bilayers we resolve the diffusion of domains as small as 50 nm in radius and observe nanodomain formation, destruction, and dynamic coalescence with a domain lifetime of 220±60 ms. Domain dynamics on this timescale suggests an important role in modulating membrane protein function.
Collapse
|
18
|
Ullrich A, Böhme MA, Schöneberg J, Depner H, Sigrist SJ, Noé F. Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone. PLoS Comput Biol 2015; 11:e1004407. [PMID: 26367029 PMCID: PMC4569342 DOI: 10.1371/journal.pcbi.1004407] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 06/15/2015] [Indexed: 01/10/2023] Open
Abstract
Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release.
Collapse
Affiliation(s)
- Alexander Ullrich
- Department of Mathematics, Freie Universität Berlin, Berlin, Germany
| | - Mathias A. Böhme
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Berlin, Berlin, Germany
| | | | - Harald Depner
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Berlin, Berlin, Germany
| | - Frank Noé
- Department of Mathematics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Colomb W, Sarkar SK. Extracting physics of life at the molecular level: A review of single-molecule data analyses. Phys Life Rev 2015; 13:107-37. [PMID: 25660417 DOI: 10.1016/j.plrev.2015.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/31/2022]
Abstract
Studying individual biomolecules at the single-molecule level has proved very insightful recently. Single-molecule experiments allow us to probe both the equilibrium and nonequilibrium properties as well as make quantitative connections with ensemble experiments and equilibrium thermodynamics. However, it is important to be careful about the analysis of single-molecule data because of the noise present and the lack of theoretical framework for processes far away from equilibrium. Biomolecular motion, whether it is free in solution, on a substrate, or under force, involves thermal fluctuations in varying degrees, which makes the motion noisy. In addition, the noise from the experimental setup makes it even more complex. The details of biologically relevant interactions, conformational dynamics, and activities are hidden in the noisy single-molecule data. As such, extracting biological insights from noisy data is still an active area of research. In this review, we will focus on analyzing both fluorescence-based and force-based single-molecule experiments and gaining biological insights at the single-molecule level. Inherently nonequilibrium nature of biological processes will be highlighted. Simulated trajectories of biomolecular diffusion will be used to compare and validate various analysis techniques.
Collapse
Affiliation(s)
- Warren Colomb
- Department of Physics, Colorado School of Mines, Golden, CO 80401, United States
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
20
|
Schöneberg J, Ullrich A, Noé F. Simulation tools for particle-based reaction-diffusion dynamics in continuous space. BMC BIOPHYSICS 2014; 7:11. [PMID: 25737778 PMCID: PMC4347613 DOI: 10.1186/s13628-014-0011-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/29/2014] [Indexed: 11/17/2022]
Abstract
Particle-based reaction-diffusion algorithms facilitate the modeling of the diffusional motion of individual molecules and the reactions between them in cellular environments. A physically realistic model, depending on the system at hand and the questions asked, would require different levels of modeling detail such as particle diffusion, geometrical confinement, particle volume exclusion or particle-particle interaction potentials. Higher levels of detail usually correspond to increased number of parameters and higher computational cost. Certain systems however, require these investments to be modeled adequately. Here we present a review on the current field of particle-based reaction-diffusion software packages operating on continuous space. Four nested levels of modeling detail are identified that capture incrementing amount of detail. Their applicability to different biological questions is discussed, arching from straight diffusion simulations to sophisticated and expensive models that bridge towards coarse grained molecular dynamics.
Collapse
Affiliation(s)
- Johannes Schöneberg
- Department of Mathematics, Computer Science and Bioinformatics, Free University Berlin, Arnimallee 6 14195, Berlin, Germany
| | - Alexander Ullrich
- Department of Mathematics, Computer Science and Bioinformatics, Free University Berlin, Arnimallee 6 14195, Berlin, Germany
| | - Frank Noé
- Department of Mathematics, Computer Science and Bioinformatics, Free University Berlin, Arnimallee 6 14195, Berlin, Germany
| |
Collapse
|
21
|
Leabu M, Niculite CM. Porosome: a membrane microdomain acting as the universal secretory portal in exocytosis. Discoveries (Craiova) 2014; 2:e29. [PMID: 32309556 PMCID: PMC6919544 DOI: 10.15190/d.2014.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022] Open
Abstract
Most, if not all, cells in the organism, at least in some period of their lifetime, secrete materials that are produced within the cell. Cell secretion is a phenomenon requiring membrane fusion at a specialized plasma membrane structure called the 'porosome,' which allows the material stored within secretory vesicles to be delivered to the cell's exterior environment. This is achieved when the secretory vesicles fuse at the base of the porosome complex, establishing a fusion pore or fluid continuity between the vesicle interior and the cell's exterior. Besides cell secretion, membrane fusion is necessary for intracellular membrane traffic and vesicular transport from one endomembrane bound structure to another. In addition to cell secretion, membrane fusion is necessary for intracellular membrane trafficking and vesicle transport from one intracellular membrane to another. We suggest that the debate about whether to use the term 'porosome' or 'fusion pore' to describe this process is unnecessary, since both of these terms are useful in describing aspects of the last event of cell secretion, namely exocytosis. In this review, we will summarize the information related to the discovery of the porosome, a universal secretory portal for exocytosis, and discuss porosome molecular organization and function. Finally, we will develop the notion that the porosome is a specialized plasma membrane microdomain.
Collapse
Affiliation(s)
- Mircea Leabu
- University of Medicine and Pharmacy "Carol Davila", and "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Cristina Mariana Niculite
- University of Medicine and Pharmacy "Carol Davila", and "Victor Babes" National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
22
|
Bayer EM, Mongrand S, Tilsner J. Specialized membrane domains of plasmodesmata, plant intercellular nanopores. FRONTIERS IN PLANT SCIENCE 2014; 5:507. [PMID: 25324854 PMCID: PMC4179711 DOI: 10.3389/fpls.2014.00507] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/09/2014] [Indexed: 05/05/2023]
Affiliation(s)
- Emmanuelle M. Bayer
- Laboratory of Membrane Biogenesis, University of BordeauxBordeaux, France
- *Correspondence: ;
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis, University of BordeauxBordeaux, France
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St AndrewsFife, UK
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- *Correspondence: ;
| |
Collapse
|