1
|
Khaliq H. Exploring the role of boron-containing compounds in biological systems: Potential applications and key challenges. J Trace Elem Med Biol 2025; 87:127594. [PMID: 39826267 DOI: 10.1016/j.jtemb.2025.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture. OBJECTIVES This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions. METHODS In this paper, the literature on boron action was reviewed, paying special attention to studies that examined the effects of boron on health and its therapeutic applications in multiple areas. RESULTS Boron exhibits broad therapeutic potential by affecting several pathways. However, excessive consumption can cause toxicity and negatively impact health. Current research only partially elucidates the mechanisms of boron's biological effects, so further studies are needed. CONCLUSION Understanding boron's interactions in biological systems is critical to optimizing its application in healthcare and ensuring safety. Future research will improve our knowledge of boron's biological effects and promote innovative therapeutic applications.
Collapse
Affiliation(s)
- Haseeb Khaliq
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Pakistan.
| |
Collapse
|
2
|
Yang J, Wei H, Lei P, Qin J, Tian H, Fan D, Zhang J, Qin Z, Huang X, Liu X. Effects of Exogenous Boron on Salt Stress Responses of Three Mangrove Species. PLANTS (BASEL, SWITZERLAND) 2024; 14:79. [PMID: 39795337 PMCID: PMC11722763 DOI: 10.3390/plants14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Salt stress is common but detrimental to plant growth, even in mangroves that live in saline areas. Boron (B) is an essential micronutrient that performs an important role in many functions in plants; however, its protective role under salt stress is poorly understood, especially in long-lived woody plants. In this study, we conducted an indoor experiment under simulated tidal conditions with four treatments (10‱ salinity, 40‱ salinity, 40‱ salinity + 100 μM B, and 40‱ salinity + 500 μM B) and three mangrove species (Avicennia marina, Aegiceras corniculatum, and Bruguiera gymnorrhiza) to investigate the effects of exogenous B on salt tolerance in plant growth, morphology, physiology, and leaf anatomy. The results showed that exogenous low-concentration B treatment (100 μM B) improved the performance of mangrove species under high salinity stress, especially in terms of physiology and leaf anatomy, while high-concentration B treatment (500 μM B) had adverse effects. Additionally, we found that the response to exogenous B varied among species in physiology and leaf anatomy, such as proline, malondialdehyde, activity of antioxidant enzymes, palisade tissue, and spongy tissue, which may be related to the salt tolerance of different species. This study may provide useful insights into the alleviation of salt stress by B in mangrove growth and development, which may facilitate mangrove cultivation and afforestation in a saline environment.
Collapse
Affiliation(s)
- Jingjun Yang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China;
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Haihang Wei
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Pifeng Lei
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Jie Qin
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Hongdeng Tian
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Donghan Fan
- Qinzhou Forestry Research Institute, Qinzhou 535012, China;
| | - Jihui Zhang
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Zhenkai Qin
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| | - Xiaoying Huang
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China;
| | - Xiu Liu
- Guangxi Forestry Research Institute, Nanning 530002, China; (H.W.); (J.Q.); (H.T.); (J.Z.); (Z.Q.)
| |
Collapse
|
3
|
Wu Z, Zhao X, Yong JWH, Sehar S, Adil MF, Riaz M, Verma KK, Li M, Huo J, Yang S, Song B. Slow-release boron fertilizer improves yield and nutritional profile of Beta vulgaris L. grown in Northeast China by increasing boron supply capacity. FRONTIERS IN PLANT SCIENCE 2024; 15:1441226. [PMID: 39737381 PMCID: PMC11683845 DOI: 10.3389/fpls.2024.1441226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/31/2024] [Indexed: 01/01/2025]
Abstract
The northeastern part of China is a traditional sugar beet cultivation area where the soils are classified generally as the black and albic soil types with low boron (B) availability. Boron fertilizer can increase soil B content and significantly improve crop yield and quality. At present, the effects of slow-release B fertilizer on beet root yield and quality remain unclear. Two sugar beet varieties KWS1197 and KWS0143 were selected as the research materials; and biologically evaluated with three dosage rates of 0, 15, and 30 kg ha-1 in two soil types. Results showed that slow-release B fertilizer (30 kg ha-1) improved sugar beet net photosynthetic rate (13.6%) and transpiration rate (9.8%), as well as enhanced dry matter accumulation and the transfer to underground parts (23.1%) for higher root yield (1.4 to 9.7% in black soil and 3.5-14.2% in albic soil). Specifically, boron fertilizer greatly increased root B accumulation, as evidenced by decreasing amino N and Na contents alongside increasing surose (Pol) content. Slow-release B fertilizer increased white sugar yield by 3.5 to 35.7% in black soil and 5.8 to 20.8% in albic soil. In conclusion, applying slow-release B fertilizer is an effective strategy to increase sugar beet yield and quality in northeast China, with a recommended application rate of 30 kg ha-1. These findings established a baseline for formulating effective and futristic fertilizer for sugar beet.
Collapse
Affiliation(s)
- Zhenzhen Wu
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| | - Xiaoyu Zhao
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Shafaque Sehar
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Meiyu Li
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| | - Jialu Huo
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| | - Songlin Yang
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| | - Baiquan Song
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| |
Collapse
|
4
|
Wang Z, Zhang Y, Wu Y, Lai D, Deng Y, Ju C, Sun L, Huang P, Wang C. CPK10 protein kinase regulates Arabidopsis tolerance to boron deficiency through phosphorylation and activation of BOR1 transporter. THE NEW PHYTOLOGIST 2024; 243:1795-1809. [PMID: 38622812 DOI: 10.1111/nph.19712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Boron (B) is crucial for plant growth and development. B deficiency can impair numerous physiological and metabolic processes, particularly in root development and pollen germination, seriously impeding crop growth and yield. However, the molecular mechanism underlying boron signal perception and signal transduction is rather limited. In this study, we discovered that CPK10, a calcium-dependent protein kinase in the CPK family, has the strongest interaction with the boron transporter BOR1. Mutations in CPK10 led to growth and root development defects under B-deficiency conditions, while constitutively active CPK10 enhanced plant tolerance to B deficiency. Furthermore, we found that CPK10 interacted with and phosphorylated BOR1 at the Ser689 residue. Through various biochemical analyses and complementation of B transport in yeast and plants, we revealed that Ser689 of BOR1 is important for its transport activity. In summary, these findings highlight the significance of the CPK10-BOR1 signaling pathway in maintaining B homeostasis in plants and provide targets for the genetic improvement of crop tolerance to B-deficiency stress.
Collapse
Affiliation(s)
- Zhangqing Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanting Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaru Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Duoduo Lai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lv Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Yan T, Shu X, Ning C, Li Y, Wang Z, Wang T, Zhuang W. Functions and Regulatory Mechanisms of bHLH Transcription Factors during the Responses to Biotic and Abiotic Stresses in Woody Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2315. [PMID: 39204751 PMCID: PMC11360703 DOI: 10.3390/plants13162315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Environmental stresses, including abiotic and biotic stresses, have complex and diverse effects on the growth and development of woody plants, which have become a matter of contention due to concerns about the outcomes of climate change on plant resources, genetic diversity, and world food safety. Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes and play an important role in biotic and abiotic stress responses of woody plants. In recent years, an increasing body of studies have been conducted on the bHLH TFs in woody plants, and the roles of bHLH TFs in response to various stresses are increasingly clear and precise. Therefore, it is necessary to conduct a systematic and comprehensive review of the progress of the research of woody plants. In this review, the structural characteristics, research history and roles in the plant growth process of bHLH TFs are summarized, the gene families of bHLH TFs in woody plants are summarized, and the roles of bHLH TFs in biotic and abiotic stresses in woody plants are highlighted. Numerous studies mentioned in this review have shown that bHLH transcription factors play a crucial role in the response of woody plants to biotic and abiotic stresses. This review serves as a reference for further studies about enhancing the stress resistance and breeding of woody plants. Also, the future possible research directions of bHLH TFs in response to various stresses in woody plants will be discussed.
Collapse
Affiliation(s)
- Tengyue Yan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Chuanli Ning
- Yantai Agricultural Technology Extension Center, Yantai 264001, China
| | - Yuhang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| |
Collapse
|
6
|
Lin J, Zheng X, Xia J, Xie R, Gao J, Ye R, Liang T, Qu M, Luo Y, Wang Y, Ke Y, Li C, Guo J, Lu J, Tang W, Li W, Chen S. Integrative analysis of the transcriptome and proteome reveals the molecular responses of tobacco to boron deficiency. BMC PLANT BIOLOGY 2024; 24:689. [PMID: 39030471 PMCID: PMC11264865 DOI: 10.1186/s12870-024-05391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Boron (B) is an essential micronutrient for plants. Inappropriate B supply detrimentally affects the productivity of numerous crops. Understanding of the molecular responses of plants to different B supply levels would be of significance in crop improvement and cultivation practices to deal with the problem. RESULTS We conducted a comprehensive analysis of the transcriptome and proteome of tobacco seedlings to investigate the expression changes of genes/proteins in response to different B supply levels, with a particular focus on B deficiency. The global gene and protein expression profiles revealed the potential mechanisms involved in the responses of tobacco to B deficiency, including up-regulation of the NIP5;1-BORs module, complex regulation of genes/proteins related to cell wall metabolism, and up-regulation of the antioxidant machinery. CONCLUSION Our results demonstrated that B deficiency caused severe morphological and physiological disorders in tobacco seedlings, and revealed dynamic expression changes of tobacco genes/proteins in response to different B supply levels, especially to B deficiency, thus offering valuable insights into the molecular responses of tobacco to B deficiency.
Collapse
Affiliation(s)
- Jinbin Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xiangli Zheng
- Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Jing Xia
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongrong Xie
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjuan Gao
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongrong Ye
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Tingmin Liang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengyu Qu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxin Luo
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yuemin Wang
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Yuqin Ke
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunying Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Jinping Guo
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Jianjun Lu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Weiqi Tang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China.
| | - Songbiao Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
7
|
Fang X, Yang D, Deng L, Zhang Y, Lin Z, Zhou J, Chen Z, Ma X, Guo M, Lu Z, Ma L. Phosphorus uptake, transport, and signaling in woody and model plants. FORESTRY RESEARCH 2024; 4:e017. [PMID: 39524430 PMCID: PMC11524236 DOI: 10.48130/forres-0024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 11/16/2024]
Abstract
Phosphorus (P), a critical macronutrient for plant growth and reproduction, is primarily acquired and translocated in the form of inorganic phosphate (Pi) by roots. Pi deficiency is widespread in many natural ecosystems, including forest plantations, due to its slow movement and easy fixation in soils. Plants have evolved complex and delicate regulation mechanisms on molecular and physiological levels to cope with Pi deficiency. Over the past two decades, extensive research has been performed to decipher the underlying molecular mechanisms that regulate the Pi starvation responses (PSR) in plants. This review highlights the prospects of Pi uptake, transport, and signaling in woody plants based on the backbone of model and crop plants. In addition, this review also highlights the interactions between phosphorus and other mineral nutrients such as Nitrogen (N) and Iron (Fe). Finally, this review discusses the challenges and potential future directions of Pi research in woody plants, including characterizing the woody-specific regulatory mechanisms of Pi signaling and evaluating the regulatory roles of Pi on woody-specific traits such as wood formation and ultimately generating high Phosphorus Use Efficiency (PUE) woody plants.
Collapse
Affiliation(s)
- Xingyan Fang
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Deming Yang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong Province, PR China
| | - Lichuan Deng
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Yaxin Zhang
- College of Landscape Architecture, Guangdong Eco-engineering Polytechinic, Guangzhou 510520, Guangdong Province, PR China
| | - Zhiyong Lin
- Fujian Academy of Forestry, Fuzhou 350012, Fujian Province, PR China
| | - Jingjing Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Zhichang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Xiangqing Ma
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Meina Guo
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaohua Lu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong Province, PR China
| | - Liuyin Ma
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| |
Collapse
|
8
|
Alebidi A, Abdel-Sattar M. Synergistic effect of seaweed extract and boric acid and/or calcium chloride on productivity and physico-chemical properties of Valencia orange. PeerJ 2024; 12:e17378. [PMID: 38726378 PMCID: PMC11080991 DOI: 10.7717/peerj.17378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Many citrus species and cultivars are grown successfully in tropical and subtropical countries, as well as in arid and semi-arid regions with low levels of organic matter and low cation exchange, resulting in lower nutrient uptake by the plant. The essential nutrients needed for citrus flowering and fruit set are limited in winter due to a reduction in transpiration rate, negatively effecting vegetative growth, flowering, yield, and fruit quality. The present investigation was carried out to assess the nutritional status, fruit yield parameters, and fruit quality of Valencia orange trees after foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations in the 2020/2021 and 2021/2022 seasons. The treatments were arranged in a split-plot design (three levels spraying seaweed extract × four levels spraying calcium chloride and boric acid and their combinations × four replicates × one tree/replicate). The results indicated that all of the characteristics measured, including leaf chlorophyll, leaf mineral contents, fruit yield parameters, fruit physical properties, and fruit chemical properties, were significantly affected by the foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations. Although all treatments increased the productivity and the physical and chemical properties of Valencia orange fruits compared to the control, a treatment of 10 g/L SW combined with 0.5 g/L boric acid and 1 g/L calcium chloride produced superior results. This ratio of SW, boric acid, and calcium chloride is therefore recommended to enhance productivity and improve the physico-chemical properties of Valencia orange for greater fruit yield.
Collapse
Affiliation(s)
- Abdullah Alebidi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Abdel-Sattar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Vera-Maldonado P, Aquea F, Reyes-Díaz M, Cárcamo-Fincheira P, Soto-Cerda B, Nunes-Nesi A, Inostroza-Blancheteau C. Role of boron and its interaction with other elements in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1332459. [PMID: 38410729 PMCID: PMC10895714 DOI: 10.3389/fpls.2024.1332459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
Boron (B) is an essential microelement for plants, and its deficiency can lead to impaired development and function. Around 50% of arable land in the world is acidic, and low pH in the soil solution decreases availability of several essential mineral elements, including B, magnesium (Mg), calcium (Ca), and potassium (K). Plants take up soil B in the form of boric acid (H3BO3) in acidic soil or tetrahydroxy borate [B(OH)4]- at neutral or alkaline pH. Boron can participate directly or indirectly in plant metabolism, including in the synthesis of the cell wall and plasma membrane, in carbohydrate and protein metabolism, and in the formation of ribonucleic acid (RNA). In addition, B interacts with other nutrients such as Ca, nitrogen (N), phosphorus (P), K, and zinc (Zn). In this review, we discuss the mechanisms of B uptake, absorption, and accumulation and its interactions with other elements, and how it contributes to the adaptation of plants to different environmental conditions. We also discuss potential B-mediated networks at the physiological and molecular levels involved in plant growth and development.
Collapse
Affiliation(s)
- Peter Vera-Maldonado
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Felipe Aquea
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Paz Cárcamo-Fincheira
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Braulio Soto-Cerda
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Claudio Inostroza-Blancheteau
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
10
|
Arévalo-Hernández CO, Arévalo-Gardini E, Correa V JA, Souza Júnior JO, Neves JCL. Soil characteristics and allometric models for biometric characteristics and nutrient amounts for high yielding "Bolaina" (Guazuma crinita) trees. Sci Rep 2024; 14:2444. [PMID: 38286795 PMCID: PMC10825134 DOI: 10.1038/s41598-024-52790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
The Peruvian amazon is very diverse in native forestry species, the Guazuma crinita "Bolaina" being one of the most planted species in the country; however, little or no information about soil requirements and nutrient demands is known. The objective of this work was to assess the general conditions of soil fertility, biomass and macro- and micronutrient amounts in high-productivity Guazuma crinita plantations. Fields of high yielding Bolaina of different ages (1-10 years) were sampled in two regions. Soil and plant samples were collected in each field and biometric measurements of fresh weight, diameter at breast height and height were performed. For soil and plant analysis, both macro- (N, P, K, Ca, Mg, S) and micronutrients (B, Cu, Fe, Mn, Zn) were determined. Finally, allometric equations were constructed for biometric and nutrient amounts. This study is the first to assess and model macro- and micronutrient amounts in the productive cycle in this species, which grows in fertile soils. In the case of biometric equations, the logarithmic and logistic models performed better. For nutrient amounts, this species followed a pattern of Ca > N > K > P > S > Mg for macronutrients and Fe > B > Mn > Zn > Cu for micronutrients. The best prediction models for nutrients were the square root and logistic models.
Collapse
Affiliation(s)
- C O Arévalo-Hernández
- Department of Soils, Instituto de Cultivos Tropicales (ICT), Tarapoto, Peru.
- Professional School of Agronomic Engineering, Universidad Nacional Autonoma de Alto Amazonas (UNAAA), Yurimaguas, Peru.
- Department of Soils, Universidade Federal de Viçosa (UFV), Viçosa, Brazil.
| | - E Arévalo-Gardini
- Department of Soils, Instituto de Cultivos Tropicales (ICT), Tarapoto, Peru
- Professional School of Agronomic Engineering, Universidad Nacional Autonoma de Alto Amazonas (UNAAA), Yurimaguas, Peru
| | - J A Correa V
- Department of Soils, Instituto de Cultivos Tropicales (ICT), Tarapoto, Peru
| | - J O Souza Júnior
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - J C L Neves
- Department of Soils, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| |
Collapse
|
11
|
Chen Z, Bai X, Zeng B, Fan C, Li X, Hu B. Physiological and molecular mechanisms of Acacia melanoxylon stem in response to boron deficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1268835. [PMID: 37964998 PMCID: PMC10641760 DOI: 10.3389/fpls.2023.1268835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Boron is an essential micronutrient for plant growth as it participates in cell wall integrity. The growth and development of Acacia melanoxylon stem can be adversely affected by a lack of boron. To explore the mechanism of boron deficiency in A. melanoxylon stem, the changes in morphological attributes, physiological, endogenous hormone levels, and the cell structure and component contents were examined. In addition, the molecular mechanism of shortened internodes resulting from boron deficiency was elucidated through transcriptome analysis. The results showed that boron deficiency resulted in decreased height, shortened internodes, and reduced root length and surface area, corresponding with decreased boron content in the roots, stems, and leaves of A. melanoxylon. In shortened internodes of stems, oxidative damage, and disordered hormone homeostasis were induced, the cell wall was thickened, hemicellulose and water-soluble pectin contents decreased, while the cellulose content increased under boron deficiency. Furthermore, plenty of genes associated with cell wall metabolism and structural components, including GAUTs, CESAs, IRXs, EXPs, TBLs, and XTHs were downregulated under boron deficiency. Alterations of gene expression in hormone signaling pathways comprising IAA, GA, CTK, ET, ABA, and JA were observed under boron deficiency. TFs, homologous to HD1s, NAC10, NAC73, MYB46s, MYB58, and ERF92s were found to interact with genes related to cell wall metabolism, and the structural components were identified. We established a regulatory mechanism network of boron deficiency-induced shortened internodes in A. melanoxylon based on the above results. This research provides a theoretical basis for understanding the response mechanism of woody plants to boron deficiency.
Collapse
Affiliation(s)
- Zhaoli Chen
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Xiaogang Bai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Bingshan Zeng
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Chunjie Fan
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Xiangyang Li
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Bing Hu
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Ismael M, Charras Q, Leschevin M, Herfurth D, Roulard R, Quéro A, Rusterucci C, Domon JM, Jungas C, Vermerris W, Rayon C. Seasonal Variation in Cell Wall Composition and Carbohydrate Metabolism in the Seagrass Posidonia oceanica Growing at Different Depths. PLANTS (BASEL, SWITZERLAND) 2023; 12:3155. [PMID: 37687400 PMCID: PMC10490095 DOI: 10.3390/plants12173155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Posidonia oceanica is a common seagrass in the Mediterranean Sea that is able to sequester large amounts of carbon. The carbon assimilated during photosynthesis can be partitioned into non-structural sugars and cell-wall polymers. In this study, we investigated the distribution of carbon in starch, soluble carbohydrates and cell-wall polymers in leaves and rhizomes of P. oceanica. Analyses were performed during summer and winter in meadows located south of the Frioul archipelago near Marseille, France. The leaves and rhizomes were isolated from plants collected in shallow (2 m) and deep water (26 m). Our results showed that P. oceanica stores more carbon as starch, sucrose and cellulose in summer and that this is more pronounced in rhizomes from deep-water plants. In winter, the reduction in photoassimilates was correlated with a lower cellulose content, compensated with a greater lignin content, except in rhizomes from deep-water plants. The syringyl-to-guaiacyl (S/G) ratio in the lignin was higher in leaves than in rhizomes and decreased in rhizomes in winter, indicating a change in the distribution or structure of the lignin. These combined data show that deep-water plants store more carbon during summer, while in winter the shallow- and deep-water plants displayed a different cell wall composition reflecting their environment.
Collapse
Affiliation(s)
- Marwa Ismael
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Quentin Charras
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France; (Q.C.); (C.J.)
| | - Maïté Leschevin
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
- Aix-Marseille University, CEA Cadarache, Zone Cité des Énergies BIAM, Bâtiment 1900, 13108 Saint-Paul-lez-Durance, France
| | - Damien Herfurth
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Romain Roulard
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Anthony Quéro
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Christine Rusterucci
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Jean-Marc Domon
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Colette Jungas
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France; (Q.C.); (C.J.)
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Catherine Rayon
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| |
Collapse
|
13
|
Mamani-Huarcaya BM, Navarro-Gochicoa MT, Herrera-Rodríguez MB, Camacho-Cristóbal JJ, Ceacero CJ, Fernández Cutire Ó, González-Fontes A, Rexach J. Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2322. [PMID: 37375947 DOI: 10.3390/plants12122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Boron (B) toxicity is an important stressor that negatively affects maize yield and the quality of the produce. The excessive B content in agricultural lands is a growing problem due to the increase in arid and semi-arid areas because of climate change. Recently, two Peruvian maize landraces, Sama and Pachía, were physiologically characterized based on their tolerance to B toxicity, the former being more tolerant to B excess than Pachía. However, many aspects regarding the molecular mechanisms of these two maize landraces against B toxicity are still unknown. In this study, a leaf proteomic analysis of Sama and Pachía was performed. Out of a total of 2793 proteins identified, only 303 proteins were differentially accumulated. Functional analysis indicated that many of these proteins are involved in transcription and translation processes, amino acid metabolism, photosynthesis, carbohydrate metabolism, protein degradation, and protein stabilization and folding. Compared to Sama, Pachía had a higher number of differentially expressed proteins related to protein degradation, and transcription and translation processes under B toxicity conditions, which might reflect the greater protein damage caused by B toxicity in Pachía. Our results suggest that the higher tolerance to B toxicity of Sama can be attributed to more stable photosynthesis, which can prevent damage caused by stromal over-reduction under this stress condition.
Collapse
Affiliation(s)
- Betty Maribel Mamani-Huarcaya
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
- Laboratorio de Biotecnología Vegetal, Escuela de Agronomía, Facultad Ciencias Agropecuarias, Universidad Nacional Jorge Basadre Grohmann, Tacna 23000, Peru
| | | | | | - Juan José Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Carlos Juan Ceacero
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Óscar Fernández Cutire
- Departamento de Agronomía, Facultad Ciencias Agropecuarias, Universidad Nacional Jorge Basadre Grohmann, Tacna 23000, Peru
| | - Agustín González-Fontes
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Jesús Rexach
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| |
Collapse
|
14
|
Pannico A, Modarelli GC, Stazi SR, Giaccone M, Romano R, Rouphael Y, Cirillo C. Foliar Nutrition Influences Yield, Nut Quality and Kernel Composition in Hazelnut cv Mortarella. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112219. [PMID: 37299198 DOI: 10.3390/plants12112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
In hazelnut, foliar nutrition is utilized globally to integrate microelement deficiencies and optimize their assimilation and effects on yield performances. Nevertheless, nut quality and kernel composition can be positively affected by foliar nutrition. Recently, several studies pointed out the need for increasing the sustainability of orchard nutrition by proposing the management of not only micronutrients, but also main components, such as nitrogen, through foliar spraying. In our study, different foliar fertilizers were used to understand the effectiveness of supporting hazelnut productivity and nut and kernel quality. Water was used as a control. Foliar fertilizations affected tree annual vegetative growth, improved kernel weight and decreased the incidence of blanks compared to the control. Differences in fat, protein, and carbohydrate concentration were also found among treatments, with increased fat concentrations and total polyphenols content in fertilized treatments. Foliar fertilization improved the oil composition of the kernels, though fatty acid composition responded differently to nutrients spray. Oleic acid concentration was promoted, while palmitic acid concentration was reduced in fertilized plants compared to control trees. Furthermore, CD and B trees were characterized by an increase in the ratio of unsaturated/saturated fatty acids compared to untreated trees. Finally, foliar spraying improved lipid stability compared to the control due to higher total polyphenol concentration.
Collapse
Affiliation(s)
- Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | | | - Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Giaccone
- Institute for Mediterranean Agricultural and Forest Systems, ISAFOM, National Research Council of Italy (CNR), Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
15
|
Mosa A, Hawamdeh OA, Rady M, Taha AA. Ecotoxicological monitoring of potentially toxic elements contamination in Eucalyptus forest plantation subjected to long-term irrigation with recycled wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121739. [PMID: 37121299 DOI: 10.1016/j.envpol.2023.121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 05/04/2023]
Abstract
Afforestation is an evergreen technology for restraining greenhouse gases (GHGs) emission and improving soil carbon sink in arid and semi-arid regions. Nonetheless, the long-term impact of woody forests irrigation using recycled wastewater resources remains inconclusive so far. For this purpose, the ecological risk benchmarks of potentially toxic elements (PTEs) were investigated on Eucalyptus forest plantation in order to gauge their bioavailability in the rhizospheric layer of Typic Torripsammentsoil and their accretion capacity in the biosphere. Water quality guidelines pointed to a moderate degree of restriction on use with elevated levels of PTEs. Notably, concentrations of As, B, Cd, Cr, Cu, Mn, Ni, V and Zn were above the permissible limits for irrigation. The geospatial mapping of PTEs concentration in soil pointed to elevated levels of most PTEs, particularly in the deforestated areas. Some of PTEs (Cd, Cu, Hg and Zn) showed values above the permissible limits. A spectrum of ecological risk indices showed considerable to high degree of contamination. Among PTEs, the water-soluble and exchangeable fractions showed high values of As, Cd and Hg (20.7, 17.2 and 11.0%, respectively). Sequential extraction showed variations among PTEs in their tendency to bind with different soil geochemical fractions: (i) carbonate (Cd, Zn and Cu), (ii) Fe-Mn oxides (Pb, Zn and Mn) and (iii) organic matter (B, Pb and Hg). Eight fungal species including Aspergillus flavus, Fusarium solani, Cephalosporimsp., Penicilliumsp., Rhizoctonia solani, Aspergillus niger, Botrytissp. and Verticilliumsp. were dominated in soil. Meanwhile, Agrobacteriumsp., phosphate solubilizing bacteria, nitrogen fixing bacteria and Escherichia coli were the dominant bacterial strains. Values of bioaccumulation index varied among PTEs, wherein B (5.15), Ni (1.98), Mn (1.62) and Cd (1.02) exhibited higher phytoextraction potentials. Other PTEs, however, exhibited values below 1.0 confirming their low phytoextraction potentials. Findings of this investigation, therefore, provide insights into biochemical signals of PTEs contamination in woody forest plantations and the urgent need to contextualize the large-scale utilization of recycled wastewater resources in such vulnerable areas.
Collapse
Affiliation(s)
- Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt.
| | - Olfat A Hawamdeh
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt; Chemistry Department, Faculty of Agriculture and Science, Jerash Private University, 26150, Jerash, Jordan
| | - Mohamed Rady
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Ahmed A Taha
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
16
|
Rong Y, Liao L, Li S, Wei W, Bi X, Sun G, He S, Wang Z. Comparative Transcriptomic and Physiological Analyses Reveal Key Factors for Interstocks to Improve Grafted Seedling Growth in Tangor. Int J Mol Sci 2023; 24:6533. [PMID: 37047507 PMCID: PMC10095262 DOI: 10.3390/ijms24076533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Interstock is an important agronomic technique for regulating plant growth and fruit quality, and overcoming the incompatibility between rootstocks and scions; however, the underlying mechanisms remain largely unknown. In this study, the effects and regulatory mechanisms of tangor grafting, with and without interstocks, on the growth and development of scions were analyzed by combining morphology, physiology, anatomy and transcriptomics. Morphological and physiological analyses showed that interstocks ('Aiyuan 38' and 'Daya') significantly improved the growth of seedlings, effectively enhanced the foliar accumulation of chlorophyll and carotenoids, and increased the thickness of leaf tissues. Using 'Aiyuan 38' as the interstock, photosynthetic efficiency and starch content of citrus seedlings improved. Transcriptomics showed that genes related to photosynthesis and photosynthetic antenna proteins were upregulated in interstock-treated seedlings, with significant upregulation of photosystem PSI- and PSII-related genes. In addition, multiple key genes may be involved in plant hormone signaling, starch and sucrose metabolism, and transcriptional regulation. Taken together, these findings provide novel insights into the role of interstocks in regulating and contributing to the growth and development of grafted seedlings, and will further define and deploy candidate genes to explore the mechanisms of rootstock-interstock-scion interactions.
Collapse
Affiliation(s)
- Yi Rong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Sichen Li
- Citrus Research Institute, Southwest University, Chongqing 400715, China
| | - Wen Wei
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyi Bi
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Siya He
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
17
|
Liu J, Chen T, Wang CL, Liu X. Transcriptome Analysis in Pyrus betulaefolia Roots in Response to Short-Term Boron Deficiency. Genes (Basel) 2023; 14:genes14040817. [PMID: 37107575 PMCID: PMC10137548 DOI: 10.3390/genes14040817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Boron (B) deficiency stress is frequently observed in pear orchards and causes a considerable loss of productivity and fruit quality. Pyrus betulaefolia is one of the most important rootstocks that has been widely used in pear production. The present study confirmed that the boron form of different tissues showed various changes, and the free boron content was significantly decreased under the short-term B deficiency condition. Moreover, the ABA and JA content also significantly accumulated in the root after short-term B deficiency treatment. A comprehensive transcriptome analysis of 24 h B deficiency treatment P. betulaefolia root was performed in this study. Transcriptome results revealed a total of 1230 up-regulated and 642 down-regulated differentially expressed genes (DEGs), respectively. B deficiency significantly increased the expression of the key aquaporin gene NIP5-1. In addition, B deficiency also increased the expression of ABA (ZEP and NCED) and JA (LOX, AOS and OPR) synthesis genes. Several MYB, WRKY, bHLH and ERF transcription factors were induced by B deficiency stress, which may relate to the regulation of B uptake and plant hormone synthesis. Overall, these findings suggested that P. betulaefolia root had adaptive responses to short-term B deficiency stress by improved boron absorption ability and hormone (JA and ABA) synthesis. The transcriptome analysis provided further information for understanding the mechanism of the pear rootstock responses to B deficiency stress.
Collapse
|
18
|
Arredondo G, Bonomelli C. Effect of Three Boron Concentrations in Soil on Growth and Physiology in Sweet Cherry Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:1240. [PMID: 36986928 PMCID: PMC10057428 DOI: 10.3390/plants12061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Boron (B) is an essential element for plants. B availability depends on the physical and chemical characteristics of the soil and the quality of irrigation water. Under natural conditions, both toxic and deficit concentrations can occur and should be managed for crop production. However, the range between deficiency and toxicity is narrow. The objective of this study was to determine the response of cherry trees to deficient (0.04 mg kg-1), adequate (1.1 mg kg-1), and toxic (3.75 mg kg-1) B concentrations in the soil by measuring growth, biomass, photosynthetic parameters, visual symptoms, and morphological changes. Plants treated with a toxic dose had more spurs and shorter internodes than those treated with adequate and deficient doses. The white root weight (50.5 g) at low B concentrations had the most roots compared with the adequate (33.0 g) and toxic (22.0 g) concentrations. The stem weight and biomass partitioning were higher for white roots and stems at B-deficient and -adequate doses than at toxic doses. The net photosynthesis (Pn) and transpiration rate (E) were significantly higher in plants with adequate concentrations of B. Stomatal conductance (Gs) was higher in B-deficient plants. Morphological and visual differences were observed between treatments. The results showed that it is essential to adequately manage B in cherry crops to avoid the adverse effects of both low and toxic concentrations.
Collapse
Affiliation(s)
| | - Claudia Bonomelli
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
19
|
Zhang G, Zhang X, Yu S, Sun H. Novel insights on genes and pathways involved in Pinus elliottii response to resinosis. TREE PHYSIOLOGY 2023; 43:351-362. [PMID: 36209440 DOI: 10.1093/treephys/tpac118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Pinus elliottii, an important coniferous timber species, has recently become one of the most popular sources of resin in China. Resinosis is a common disease that may negatively affect pine tree growth and production. In this study, we used single-molecule real-time sequencing and Illumina RNA sequencing to generate an accurate transcriptome for P. elliottii. The transcriptome included 90,026 transcripts, 5160 long non-coding RNAs and 7710 transcription factors. We then analyzed RNA-sequencing, small RNA-sequencing and degradome data to identify genes, miRNAs and key miRNA-target pairs involved in response to resinosis in P. elliottii. We identified 1305 genes and 1151 miRNAs exhibiting significant differential expression in response to resinosis. According to the degradome sequencing analysis, 318 differentially expressed transcripts were targets of 14 differentially expressed miRNAs. Our study has provided resources for further functional characterization of genes and miRNAs involved in resinosis in P. elliottii, which should aid the future disease-resistance breeding of this species.
Collapse
Affiliation(s)
- Guoyun Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Haidian, Beijing 100091, China
| | - Xu Zhang
- Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Sujun Yu
- Fengshushan Forestry Farm, Jingdezhen, Jiangxi 333000, China
| | - Honggang Sun
- Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
20
|
Song X, Song B, Huo J, Liu H, Adil MF, Jia Q, Wu W, Kuerban A, Wang Y, Huang W. Effect of boron deficiency on the photosynthetic performance of sugar beet cultivars with contrasting boron efficiencies. FRONTIERS IN PLANT SCIENCE 2023; 13:1101171. [PMID: 36726677 PMCID: PMC9885099 DOI: 10.3389/fpls.2022.1101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Boron (B) deficiency severely affects the quality of sugar beet production, and the employment of nutrient-efficient varieties for cultivation is a crucial way to solve environmental and resource-based problems. However, the aspect of leaf photosynthetic performance among B-efficient sugar beet cultivars remains uncertain. The B deficient and B-sufficient treatments were conducted in the experiment using KWS1197 (B-efficient) and KWS0143 (B-inefficient) sugar beet cultivars as study materials. The objective of the present study was to determine the impacts of B deficiency on leaf phenotype, photosynthetic capacity, chloroplast structure, and photochemical efficiency of the contrasting B-efficiency sugar beet cultivars. The results indicated that the growth of sugar beet leaves were dramatically restricted, the net photosynthetic rate was significantly decreased, and the energy flux, quantum yield, and flux ratio of PSII reaction centers were adversely affected under B deficiency. Compared to the KWS0143 cultivar, the average leaf area ratio of the KWS1197 cultivar experienced less impact, and its leaf mass ratio (LMR) increased by 26.82% under B deficiency, whereas for the KWS0143 cultivar, the increase was only 2.50%. Meanwhile, the light energy capture and utilization capacity of PSII reaction centers and the proportion of absorbed light energy used for electron transfer were higher by 3.42% under B deficiency; KWS1197 cultivar managed to alleviate the photo-oxidative damage, which results from excessive absorbed energy (ABS/RC), by increasing the dissipated energy (DIo/RC). Therefore, in response to B deprivation, the KWS1197 cultivar demonstrated greater adaptability in terms of morphological indices and photosynthetic functions, which not only explains the improved performance but also renders the measured parameters as the key features for varietal selection, providing a theoretical basis for the utilization of efficient sugar beet cultivars in future.
Collapse
Affiliation(s)
- Xin Song
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Baiquan Song
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Jialu Huo
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Huajun Liu
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resources, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiue Jia
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wenyu Wu
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Abudukadier Kuerban
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Yan Wang
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wengong Huang
- Safety and Quality Institution of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
21
|
Bi X, Guo H, Li X, Jiang D, Dong H, Zhang Y, An M, Xia Z, Wang Z, Wu Y. Suppression of Cucumber Green Mottle Mosaic Virus Infection by Boron Application: From the Perspective of Nutrient Elements and Carbohydrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12270-12286. [PMID: 36126240 DOI: 10.1021/acs.jafc.2c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cucumber green mottle mosaic virus (CGMMV) infection causes "blood flesh" symptoms in watermelon fruits, which severely reduces yield and edibleness. However, the growth of watermelon fruits is strongly associated with boron (B), a trace element for improving fruit quality. In this study, B-gradient hydroponic experiments (B concentration: 0, 2.86, and 5.72 mg·L-1 H3BO3) and foliar-spray experiments (B concentration: 30 and 300 mg·L-1 H3BO3) were performed. We found that the B-supplement could inhibit CGMMV infection and especially relieve "blood flesh" symptoms in watermelon fruits. The nutrient element, soluble sugar, and cell wall polysaccharide contents and their metabolism- and transport-related gene expressions were determined in leaves and fruits of the watermelons in B-gradient hydroponic and foliar-spray experiments. We found that the accumulation and metabolism of nutrients and carbohydrates in cells were disrupted by CGMMV infection; however, the B-supplement could restore and maintain their homeostasis. Additionally, we uncovered that NIP5;1 and SWEET4, induced by B-application with CGMMV infection, could majorly contribute to the resistance to CGMMV infection by regulating nutrient elements and carbohydrate homeostasis. These results provided a novel insight into the molecular mechanism of B-mediated CGMMV suppression and an efficient method of B-application for the improvement of watermelon quality after CGMMV infection.
Collapse
Affiliation(s)
- Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang 110866, China
| | - Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang 110866, China
| | - Xiaodong Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang 110866, China
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, No. 58 Huanghe North Street, Shenyang 110034, China
| | - Dong Jiang
- Liaoning Province Green Agriculture Technology Center, No. 39 Changjiang North Street, Shenyang 110034, China
| | - Haonan Dong
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang 110866, China
| | - Yingying Zhang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang 110866, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang 110866, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang 110866, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang 110866, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang 110866, China
| |
Collapse
|
22
|
Acidic and Alkaline Conditions Affect the Growth of Tree Peony Plants via Altering Photosynthetic Characteristics, Limiting Nutrient Assimilation, and Impairing ROS Balance. Int J Mol Sci 2022; 23:ijms23095094. [PMID: 35563483 PMCID: PMC9099645 DOI: 10.3390/ijms23095094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to acidic and alkaline conditions were found to cause the excess accumulation of reactive oxygen species in tree peony, thereby causing damage and inhibiting plant growth and development. The activities of antioxidant enzymes were also found to be significantly up-regulated, especially under alkaline conditions; this explained why tree peony is better adapted to alkaline than to acidic conditions. Through pairwise comparisons, 144 differentially expressed genes (DEGs) associated with plant growth, photosynthesis, and stress were identified. The DEGs related to stress were up-regulated, whereas the remaining DEGs were almost all down-regulated after acid and alkaline treatments. The nutrient assimilation was greatly inhibited. Chlorophyll synthesis genes were suppressed, and chlorophyll content was reduced. The development and structures of stomata and chloroplasts and the transcription of related genes were also influenced. Among photosynthesis-related DEGs, electron transport chains were the most sensitive. The suppressed expression of photosynthesis genes and the reduced light-harvesting capacity, together with the impairment of chloroplasts and stomata, finally led to a sharp decrease in the net photosynthetic rate. Carbohydrate accumulation and plant biomass were also reduced. The present study provides a theoretical basis for the response mechanisms of tree peony to adverse pH conditions and enriches knowledge of plant adaptation to alkaline conditions.
Collapse
|
23
|
Wilder SL, Scott S, Waller S, Powell A, Benoit M, Guthrie JM, Schueller MJ, Awale P, McSteen P, Matthes MS, Ferrieri RA. Carbon-11 Radiotracing Reveals Physiological and Metabolic Responses of Maize Grown under Different Regimes of Boron Treatment. PLANTS (BASEL, SWITZERLAND) 2022; 11:241. [PMID: 35161222 PMCID: PMC8839955 DOI: 10.3390/plants11030241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
In agriculture, boron is known to play a critical role in healthy plant growth. To dissect the role of boron in maize metabolism, radioactive carbon-11 (t½ 20.4 min) was used to examine the physiological and metabolic responses of 3-week-old B73 maize plants to different levels of boron spanning 0 mM, 0.05 mM, and 0.5 mM boric acid (BA) treatments. Growth behavior, of both shoots and roots, was recorded and correlated to plant physiological responses. 11CO2 fixation, leaf export of [11C]-photosynthates, and their rate of transport increased systematically with increasing BA concentrations, while the fraction of [11C]-photosynthates delivered to the roots under 0 mM and 0.5 mM BA treatments was lower than under 0.05 mM BA treatment, likely due to changes in root growth. Additionally, solid-phase extraction coupled with gamma counting, radio-fluorescence thin layer chromatography, and radio-fluorescence high-performance liquid chromatography techniques applied to tissue extracts provided insight into the effects of BA treatment on 'new' carbon (as 11C) metabolism. Most notable was the strong influence reducing boron levels had on raising 11C partitioning into glutamine, aspartic acid, and asparagine. Altogether, the growth of maize under different regimes of boron affected 11CO2 fixation, its metabolism and allocation belowground, and altered root growth. Finally, inductively coupled plasma mass spectrometry provided insight into the effects of BA treatment on plant uptake of other essential nutrients. Here, levels of boron and zinc systematically increased in foliar tissues with increasing BA concentration. However, levels of magnesium, potassium, calcium, manganese, and iron remained unaffected by treatment. The rise in foliar zinc levels with increased BA concentration may contribute to improved 11CO2 fixation under these conditions.
Collapse
Affiliation(s)
- Stacy L. Wilder
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
| | - Stephanie Scott
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
| | - Spenser Waller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Avery Powell
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Mary Benoit
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - James M. Guthrie
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
| | - Michael J. Schueller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Prameela Awale
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (P.A.); (P.M.)
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (P.A.); (P.M.)
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Michaela S. Matthes
- Institute for Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany;
| | - Richard A. Ferrieri
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Silva SLO, Prado RDM, Abreu-Junior CH, da Silva GP, da Silva Júnior GB, da Silva JLF. 10Boron Is Mobile in Cowpea Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:717219. [PMID: 34721451 PMCID: PMC8554063 DOI: 10.3389/fpls.2021.717219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Cowpea [Vigna unguiculata (L.) Walp] is cultivated in tropical and subtropical regions worldwide, but its production is usually limited by boron (B) deficiency, which can be mitigated by applying B via foliar spraying. In plants with nutrient mobility, the residual effect of foliar fertilization increases, which might improve its efficiency. An experiment was carried out to evaluate the concentration and mobility of the B isotopic tracer (10B) in different organs of cowpea plants, after the application of this micronutrient in the growing media and also to leaves. Treatments were designed based on B fertilization as follows: without B in the growth media, with 10B applied via foliar spraying (10B-L), with B in the growth media (substrate) and 10B via foliar spraying (10B-L + B-S), and with 10B in the growth media (substrate) without foliar spraying (10B-S), and a control without fertilization. A redistribution of 10B was observed in new leaves when the element was supplied via foliar spraying, resulting in greater leaf area, dry mass and dry matter production of aerial parts, and also the whole plant. 10Boron was redistributed when applied via foliar spraying in cowpea plants, regardless of the plant's nutritional status, which in turn might increase internal B cycling.
Collapse
Affiliation(s)
| | - Renato de Mello Prado
- Department of Agricultural Production Sciences, Soils and Fertilizers Sector, São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | | | | | - José Lucas Farias da Silva
- Department of Agricultural Production Sciences, Soils and Fertilizers Sector, São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
25
|
Li F, Wang X, Wang F, Wen D, Wu Z, Du Y, Du R, Robinson BH, Zhao P. A risk-based approach for the safety analysis of eight trace elements in Chinese flowering cabbage (Brassica parachinensis L.) in China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5583-5590. [PMID: 33709452 DOI: 10.1002/jsfa.11209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Most countries set regulatory values for the total trace element (TE) concentrations in soil, although there is growing interest in using a risk-based approach to evaluate the bioavailable TE using dilute salt extractants or other soil parameters, including pH and organic carbon. The present study compares the current regulatory system (based on total TEs and pH) and a risk-based approach using 0.01 mol L-1 CaCl2 to estimate the bioavailable fraction. RESULTS In total, 150 paired samples of Chinese flowering cabbages (Brassica parachinensis) and their growth soils were collected, and the total and extractable concentrations of chromium (Cr), cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As) and mercury (Hg), as well as soil pH and organic matter content, were measured. No more than 3.33% of the edible parts exceeded Chinese food safety standards, even when growing in soils exceeding the current regulatory thresholds by over 50%. The total soil Cd (1.5 mg kg-1 ), as well as the extractable concentrations of Cd (0.1 mg kg-1 ), Ni (0.03 mg kg-1 ) and Zn (0.1 mg kg-1 ), are the key factors affecting the TE concentrations in B. parachinensis. CONCLUSION Our findings suggest that the current soil regulatory guidelines for safe production of B. parachinensis are overly strict and conservative. A risk-based approach based on the extractable TE concentrations would provide a better indication for plant uptake of soil TEs and avoid the waste of farmlands that can still produce safe vegetables. Future research should focus on providing crop-specific available TE concentration guidelines to promote effective utilization of farmlands. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Furong Li
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Fuhua Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dian Wen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhichao Wu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Yingqiong Du
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Ruiying Du
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Brett H Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Peihua Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
26
|
Du W, Hussain SB, Jin LF, Liu X, Li RN, Han ZX, Liu YZ, Pan ZY, Peng SA. Characteristics of boron distribution in the 'Newhall' navel orange plant with two root systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:42-48. [PMID: 34332253 DOI: 10.1016/j.plaphy.2021.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Grafting is a technique that provides a substantial way to enhance nutrient utilization thereby improves plant growth and yield quality. Although it is commonly practised in horticultural crops, the impact of scion-rootstock interaction on nutrient distribution is still unclear. Here, 'Newhall' navel orange plants grafted on Trifoliate orange (T) as the original rootstock were inarched with trifoliate orange (N/Tt combination) or carrizo citrange (N/Tc combination) rootstock seedlings. The experimental plants were treated with isotope 10B solution for 7 weeks to investigate the effect of different inarched rootstocks on B distribution and translocation by using a two-root system. From this study, the original rootstock played a more dominant role in B distribution to scion tissues than the inarching rootstock either in N/Tt or N/Tc combination. From inarched combinations, the carrizo citrange in the N/Tc combination had a higher ability to distribute B to new leaves, new twigs and old twigs than trifoliate orange in the N/Tt combination. However, the original rootstock of N/Tt distributed more B to scion tissues than N/Tc and the B concentration in old leaves and new leaves of N/Tt plants was significantly higher than that of N/Tc plants. These results suggest that scion B status is influenced by the B distribution of two inarching rootstocks in an inarching plant, as well as the affinity between the inarching rootstock and grafted plant. In addition, by either adding 10B to the inarching rootstock or original rootstock, we could detect 10B in the other rootstock root in both N/Tt and N/Tc combinations. The results further suggest that B can translocate from rootstock to leaves and then, re-translocate from scion to rootstock through the cycling of B transportation.
Collapse
Affiliation(s)
- Wei Du
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Syed Bilal Hussain
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Long-Fei Jin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiao Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ruo-Nan Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhong-Xing Han
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Zhi-Yong Pan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Shu-Ang Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
27
|
Incidence of GLMD-Like Symptoms on Grapevines Naturally Infected by Grapevine Pinot gris virus, Boron Content and Gene Expression Analysis of Boron Metabolism Genes. AGRONOMY-BASEL 2021. [DOI: 10.3390/agronomy11061020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Grapevine Pinot gris virus (GPGV) is considered to be a causal agent of Grapevine Leaf Mottling and Deformation (GLMD) disease that has been reported worldwide through the grapevine-growing regions. Seven grapevines that were collected from a vineyard in the Czech Republic were tested for the presence of GPGV in leaf and phloem tissues. Each of the seven grapevines was infected by GPGV, from which sic symptoms were mostly shown without a typical mottling. The phylogeny based on RNA-dependent RNA polymerase and movement/coat protein sequences indicated the same origin of the GPGV isolates. The GPGV titer was the highest in the grapevines with the highest GLMD-like symptoms; however, some of the grapevines with milder GLMD-like symptoms had a lower GPGV titer than the asymptomatic grapevine. Soil analysis showed uneven boron content in the direct vicinity of the grapevines, while the boron content in the grapevines was more, even showing no boron deficiency. The quantitative analysis of selected gene expressions associated with boron efflux and transport only partially explained the boron content in the soil and grapevines and only in the grapevines growing in soils with the highest or lowest boron contents. The VvBor2 and VvNIP5 genes had a higher expression and VvNIP6 had a lower expression in the grapevine growing in the soil with the lowest boron content, while a low expression of VvBor1 and VvBor2 was observed in the grapevine that was grown in the soil with the highest boron content.
Collapse
|
28
|
Wang T, Dong Q, Wang W, Chen S, Cheng Y, Tian H, Li X, Hussain S, Wang L, Gong L, Wang S. Evolution of AITR family genes in cotton and their functions in abiotic stress tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:58-68. [PMID: 33202099 DOI: 10.1111/plb.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/11/2020] [Indexed: 05/18/2023]
Abstract
Abiotic stresses are major environmental factors inhibiting plant growth and development. AITRs (ABA-induced transcription repressors) are a novel family of transcription factors regulating ABA (abscisic acid) signalling and plant responses to abiotic stresses in Arabidopsis. However, the composition and evolution history of AITRs and their roles in the cotton genus are largely unknown. A total of 12 putative AITRs genes were identified in cultivated tetraploid cotton, Gossypium hirsutum. Phylogenetic analysis of GhAITRs in these tetraploid cottons and their closely related species implicate ancient genome-wide duplication occurring after speciation of Gossypium, and Theobroma could generate duplicates of GhAITRs. Duplicated GhAITRs were stably inherited following diploid speciation and further allotetraploidy in Gossypium. Homologous GhAITRs shared common expression patterns in response to ABA, drought and salinity treatments, and drought tolerance induced in transgenic Arabidopsis plants expressing GhAITR-A1. Together, our findings reveal that duplicates in the GhAITRs gene family were achieved by whole genome duplication rather than three individual duplication events, and that GhAITRs function as transcription repressors and are involved in the regulation of plant responses to ABA and drought stress. These results provide insights towards the improvement of abiotic stress tolerance in cotton using GhAITRs.
Collapse
Affiliation(s)
- T Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Q Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - W Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Y Cheng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - H Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - X Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Hussain
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - L Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - L Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| |
Collapse
|
29
|
Ghifari AS, Teixeira PF, Kmiec B, Pružinská A, Glaser E, Murcha MW. A mitochondrial prolyl aminopeptidase PAP2 releases N-terminal proline and regulates proline homeostasis during stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1182-1194. [PMID: 32920905 DOI: 10.1111/tpj.14987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Most mitochondrial proteins are synthesised in the cytosol and targeted into the organelle via N-terminal targeting peptides that are cleaved upon import. The free targeting peptide is subsequently processed in a stepwise manner, with single amino acids released as final products. Here, we have characterised a proline-cleaving aminopeptidase in Arabidopsis thaliana, prolyl aminopeptidase-2 (PAP2, At3g61540). Activity assays show that PAP2 has a preferred activity to hydrolyse N-terminal proline. Protein localisation studies revealed that PAP2 is exclusively targeted to mitochondria. Characterisation of pap2 mutants show defective pollen, enhanced dark-induced senescence and increased susceptibility to abiotic stresses, which are likely attributed to a reduced level of accumulated free proline. Taken together, these results demonstrate the role of PAP2 in proline cleavage from mitochondrial peptides and proline homeostasis, which is required for the development of male gametophyte, tolerance to abiotic stresses, and leaf senescence.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Adriana Pružinská
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| |
Collapse
|
30
|
Conditioning Machine Learning Models to Adjust Lowbush Blueberry Crop Management to the Local Agroecosystem. PLANTS 2020; 9:plants9101401. [PMID: 33096712 PMCID: PMC7589862 DOI: 10.3390/plants9101401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Agroecosystem conditions limit the productivity of lowbush blueberry. Our objectives were to investigate the effects on berry yield of agroecosystem and crop management variables, then to develop a recommendation system to adjust nutrient and soil management of lowbush blueberry to given local meteorological conditions. We collected 1504 observations from N-P-K fertilizer trials conducted in Quebec, Canada. The data set, that comprised soil, tissue, and meteorological data, was processed by Bayesian mixed models, machine learning, compositional data analysis, and Markov chains. Our investigative statistical models showed that meteorological indices had the greatest impact on yield. High mean temperature at flower bud opening and after fruit maturation, and total precipitation at flowering stage showed positive effects. Low mean temperature and low total precipitation before bud opening, at flowering, and by fruit maturity, as well as number of freezing days (<−5 °C) before flower bud opening, showed negative effects. Soil and tissue tests, and N-P-K fertilization showed smaller effects. Gaussian processes predicted yields from historical weather data, soil test, fertilizer dosage, and tissue test with a root-mean-square-error of 1447 kg ha−1. An in-house Markov chain algorithm optimized yields modelled by Gaussian processes from tissue test, soil test, and fertilizer dosage as conditioned to specified historical meteorological features, potentially increasing yield by a median factor of 1.5. Machine learning, compositional data analysis, and Markov chains allowed customizing nutrient management of lowbush blueberry at local scale.
Collapse
|
31
|
Yoon HI, Kim D, Son JE. Spatial and Temporal Bioactive Compound Contents and Chlorophyll Fluorescence of Kale (Brassica oleracea L.) Under UV-B Exposure Near Harvest Time in Controlled Environments. Photochem Photobiol 2020; 96:845-852. [PMID: 32104924 DOI: 10.1111/php.13237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023]
Abstract
UV-B irradiation has been used to enhance the secondary metabolite content in plants, but its spatial effect on plants has not been considered. The objective of this study was to compare spatial photosynthetic traits and bioactive compound accumulation in kale (Brassica oleracea L. var Acephala) according to the distribution and length of UV-B exposure near harvest. Plants were exposed to UV-B of 0-3, 3-6 and 6-9 W m-2 for 4 h per day at 5 days (Exp. 1) and 4.2 W m-2 at 5, 4, 3, 2 or 1 days (Exp. 2) before harvest. In spatial distribution, the higher the UV-B intensity, the lower the mean Fv /Fm (maximal photochemical efficiency of PSII) and the higher the concentration of total flavonoid compound (TFC). With UV-B stress, Fv /Fm and fluorescence transient parameters decreased except for DI0 /CS (dissipated energy flux per cross section) and PIabs (performance index of PSII). When exposed to UV-B radiation for 2 days before harvest, the total phenolic compounds and TFC per plant were highest, not always proportional to the local Fv /Fm but affected by dry weight. Short-term UV-B stress near harvest would be more efficient for the accumulation of bioactive compounds by minimizing the loss of plant weight.
Collapse
Affiliation(s)
- Hyo In Yoon
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Damin Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jung Eek Son
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
32
|
Du W, Pan ZY, Hussain SB, Han ZX, Peng SA, Liu YZ. Foliar Supplied Boron Can Be Transported to Roots as a Boron-Sucrose Complex via Phloem in Citrus Trees. FRONTIERS IN PLANT SCIENCE 2020; 11:250. [PMID: 32211005 PMCID: PMC7076173 DOI: 10.3389/fpls.2020.00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/18/2020] [Indexed: 05/07/2023]
Abstract
Although foliar boron (B) fertilization is regarded as an efficient way to remedy B deficiency, the mechanisms of foliar B transport from leaves to roots are still unclear. In this study, performed with 1-year-old "Newhall" navel orange (Citrus sinensis) grafted on trifoliate orange (Poncirus trifoliata) plants, we analyzed the B concentration in leaves and roots, B-sucrose complex in the phloem sap after foliar application of 10B, girdling, and/or shading treatments. Results indicated that 10B concentration was significantly increased in roots after foliar 10B treatment. On the other hand, both girdling the scion stem and shading over the plants with a black plastic net significantly reduced the B and 10B concentration in roots. LC-MS analysis revealed that foliar 10B-treated plants had higher concentration of sucrose and some sugar alcohols in the phloem sap as compared to foliar water-treated plants. Combining with the analysis in the artificial mixture of B and sucrose, a higher peak intensity of the 10B-sucrose complex was found in the phloem sap of foliar 10B-treated plants compared to the control plants. Taken together, it is concluded that foliar B can be long distance transported from leaves to roots via phloem, at least by forming a B-sucrose complex in citrus plants.
Collapse
Affiliation(s)
- Wei Du
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Yong Pan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Syed Bilal Hussain
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhong-Xing Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Shu-Ang Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Buoso S, Pagliari L, Musetti R, Fornasier F, Martini M, Loschi A, Fontanella MC, Ermacora P. With or Without You: Altered Plant Response to Boron-Deficiency in Hydroponically Grown Grapevines Infected by Grapevine Pinot Gris Virus Suggests a Relation Between Grapevine Leaf Mottling and Deformation Symptom Occurrence and Boron Plant Availability. FRONTIERS IN PLANT SCIENCE 2020; 11:226. [PMID: 32194603 PMCID: PMC7062799 DOI: 10.3389/fpls.2020.00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Despite the increasing spread of Grapevine Leaf Mottling and Deformation (GLMD) worldwide, little is known about its etiology. After identification of grapevine Pinot gris virus (GPGV) as the presumptive causal agent of the disease in 2015, various publications have evaluated GPGV involvement in GLMD. Nevertheless, there are only partial clues to explain the presence of GPGV in both symptomatic and asymptomatic grapevines and the mechanisms that trigger symptom development, and so a consideration of new factors is required. Given the similarities between GLMD and boron (B)-deficiency symptoms in grapevine plants, we posited that GPGV interferes in B homeostasis. By using a hydroponic system to control B availability, we investigated the effects of different B supplies on grapevine phenotype and those of GPGV infection on B acquisition and translocation machinery, by means of microscopy, ionomic and gene expression analyses in both roots and leaves. The transcription of the genes regulating B homeostasis was unaffected by the presence of GPGV alone, but was severely altered in plants exposed to both GPGV infection and B-deficiency, allowing us to speculate that the capricious and patchy occurrence of GLMD symptoms in the field may not be related solely to GPGV, but to GPGV interference in plant responses to different B availabilities. This hypothesis found preliminary positive confirmations in analyses on field-grown plants.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Laura Pagliari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Flavio Fornasier
- CREA Research Centre for Viticulture and Enology, Gorizia, Italy
| | - Marta Martini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Alberto Loschi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Maria Chiara Fontanella
- Department for Sustainable Process, Agricultural Faculty, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Ermacora
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
34
|
Boron Toxicity and Deficiency in Agricultural Plants. Int J Mol Sci 2020; 21:ijms21041424. [PMID: 32093172 PMCID: PMC7073067 DOI: 10.3390/ijms21041424] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Boron is an essential plant micronutrient taken up via the roots mostly in the form of boric acid. Its important role in plant metabolism involves the stabilization of molecules with cis-diol groups. The element is involved in the cell wall and membrane structure and functioning; therefore, it participates in numerous ion, metabolite, and hormone transport reactions. Boron has an extremely narrow range between deficiency and toxicity, and inadequate boron supply exhibits a detrimental effect on the yield of agricultural plants. The deficiency problem can be solved by fertilization, whereas soil boron toxicity can be ameliorated using various procedures; however, these approaches are costly and time-consuming, and they often show temporary effects. Plant species, as well as the genotypes within the species, dramatically differ in terms of boron requirements; thus, the available soil boron which is deficient for one crop may exhibit toxic effects on another. The widely documented intraspecies genetic variability regarding boron utilization efficiency and toxicity tolerance, together with the knowledge of the physiology and genetics of boron, should result in the development of efficient and tolerant varieties that may represent a long-term sustainable solution for the problem of inadequate or excess boron supply.
Collapse
|
35
|
Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy10010019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Salinity stress is a severe environmental stress that affects plant growth and productivity of potato, a strategic crop moderately sensitive to saline soils. Limited studies are available on the use of combined nano-micronutrients to ameliorate salinity stress in potato plants (Solanum tuberosum L.). Two open field experiments were conducted in salt-affected sandy soil to investigate plant growth, physiology, and yield of potato in response to soil salinity stress under single or combined application of Zn, B, Si, and Zeolite nanoparticles. It was hypothesized that soil application of nanoparticles enhanced plant growth and yield by alleviating the adverse impact of soil salinity. In general, all the nano-treatments applications significantly increased plant height, shoot dry weight, number of stems per plant, leaf relative water content, leaf photosynthetic rate, leaf stomatal conductance, chlorophyll content, and tuber yield, as compared to the untreated control. Furthermore, soil application of these treatments increased the concentration of nutrients (N, P, K, Ca, Zn, and B) in plant tissues, leaf proline, and leaf gibberellic acid hormone (GA3) in addition to contents of protein, carbohydrates, and antioxidant enzymes (polyphenol oxidase (PPO) and peroxidase (POD) in tubers. Compared to other treatments, the combined application of nanoparticles showed the highest plant growth, physiological parameters, endogenous elements (N, P, K, Ca, Zn, and B) and the lowest concentration of leaf abscisic acid (ABA) and transpiration rate. The present findings suggest that soil addition of the aforementioned nanoparticles can be a promising approach to improving crop productivity in salt-affected soils.
Collapse
|
36
|
Landi M, Margaritopoulou T, Papadakis IE, Araniti F. Boron toxicity in higher plants: an update. PLANTA 2019; 250:1011-1032. [PMID: 31236697 DOI: 10.1007/s00425-019-03220-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 05/24/2023]
Abstract
In this review, emphasis is given to the most recent updates about morpho-anatomical, physiological, biochemical and molecular responses adopted by plants to cope with B excess. Boron (B) is a unique micronutrient for plants given that the range of B concentration from its essentiality to toxicity is extremely narrow, and also because it occurs as an uncharged molecule (boric acid) which can pass lipid bilayers without any degree of controls, as occurs for other ionic nutrients. Boron frequently exceeds the plant's requirement in arid and semiarid environments due to poor drainage, and in agricultural soils close to coastal areas due to the intrusion of B-rich seawater in fresh aquifer or because of dispersion of seawater aerosol. Global releases of elemental B through weathering, volcanic and geothermal processes are also relevant in enriching B concentration in some areas. Considerable progress has been made in understanding how plants react to B toxicity and relevant efforts have been made to investigate: (I) B uptake and in planta partitioning, (II) physiological, biochemical, and molecular changes induced by B excess, with particular emphasis to the effects on the photosynthetic process, the B-triggered oxidative stress and responses of the antioxidant apparatus to B toxicity, and finally (III) mechanisms of B tolerance. Recent findings addressing the effects of B toxicity are reviewed here, intending to clarify the effect of B excess and to propose new perspectives aimed at driving future researches on the topic.
Collapse
Affiliation(s)
- Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Theoni Margaritopoulou
- Laboratory of Mycology, Department of Phytopathology, Benaki Phytopathological Institute, St. Delta 8, 14561, Kifisia, Greece
| | - Ioannis E Papadakis
- Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC, 89124, Reggio Calabria, RC, Italy
| |
Collapse
|
37
|
Sechet J, Htwe S, Urbanowicz B, Agyeman A, Feng W, Ishikawa T, Colomes M, Kumar KS, Kawai‐Yamada M, Dinneny JR, O'Neill MA, Mortimer JC. Suppression of Arabidopsis GGLT1 affects growth by reducing the L-galactose content and borate cross-linking of rhamnogalacturonan-II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1036-1050. [PMID: 30203879 PMCID: PMC6263843 DOI: 10.1111/tpj.14088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 05/16/2023]
Abstract
Boron is a micronutrient that is required for the normal growth and development of vascular plants, but its precise functions remain a subject of debate. One established role for boron is in the cell wall where it forms a diester cross-link between two monomers of the low-abundance pectic polysaccharide rhamnogalacturonan-II (RG-II). The inability of RG-II to properly assemble into a dimer results in the formation of cell walls with abnormal biochemical and biomechanical properties and has a severe impact on plant productivity. Here we describe the effects on RG-II structure and cross-linking and on the growth of plants in which the expression of a GDP-sugar transporter (GONST3/GGLT1) has been reduced. In the GGLT1-silenced plants the amount of L-galactose in side-chain A of RG-II is reduced by up to 50%. This leads to a reduction in the extent of RG-II cross-linking in the cell walls as well as a reduction in the stability of the dimer in the presence of calcium chelators. The silenced plants have a dwarf phenotype, which is rescued by growth in the presence of increased amounts of boric acid. Similar to the mur1 mutant, which also disrupts RG-II cross-linking, GGLT1-silenced plants display a loss of cell wall integrity under salt stress. We conclude that GGLT1 is probably the primary Golgi GDP-L-galactose transporter, and provides GDP-L-galactose for RG-II biosynthesis. We propose that the L-galactose residue is critical for RG-II dimerization and for the stability of the borate cross-link.
Collapse
Affiliation(s)
- Julien Sechet
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Present address:
INRAVersailles78000France
| | - Soe Htwe
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
| | - Abigail Agyeman
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
- Present address:
School of PharmacySouth UniversitySavannahGA31406USA
| | - Wei Feng
- Department of Plant BiologyCarnegie Institute for ScienceStanfordCA94305USA
| | - Toshiki Ishikawa
- Graduate School of Science and EngineeringSaitama UniversitySaitama338‐8570Japan
| | - Marianne Colomes
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Present address:
NutribioParis75440France
| | - Kavitha Satish Kumar
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Maki Kawai‐Yamada
- Graduate School of Science and EngineeringSaitama UniversitySaitama338‐8570Japan
| | - José R. Dinneny
- Department of Plant BiologyCarnegie Institute for ScienceStanfordCA94305USA
- Department of BiologyStanford UniversityStanfordCA94305USA
| | - Malcolm A. O'Neill
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
| | - Jenny C. Mortimer
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
38
|
Shireen F, Nawaz MA, Chen C, Zhang Q, Zheng Z, Sohail H, Sun J, Cao H, Huang Y, Bie Z. Boron: Functions and Approaches to Enhance Its Availability in Plants for Sustainable Agriculture. Int J Mol Sci 2018; 19:E1856. [PMID: 29937514 PMCID: PMC6073895 DOI: 10.3390/ijms19071856] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
Boron (B) is an essential trace element required for the physiological functioning of higher plants. B deficiency is considered as a nutritional disorder that adversely affects the metabolism and growth of plants. B is involved in the structural and functional integrity of the cell wall and membranes, ion fluxes (H⁺, K⁺, PO₄3−, Rb⁺, Ca2+) across the membranes, cell division and elongation, nitrogen and carbohydrate metabolism, sugar transport, cytoskeletal proteins, and plasmalemma-bound enzymes, nucleic acid, indoleacetic acid, polyamines, ascorbic acid, and phenol metabolism and transport. This review critically examines the functions of B in plants, deficiency symptoms, and the mechanism of B uptake and transport under limited B conditions. B deficiency can be mitigated by inorganic fertilizer supplementation, but the deleterious impact of frequent fertilizer application disrupts soil fertility and creates environmental pollution. Considering this, we have summarized the available information regarding alternative approaches, such as root structural modification, grafting, application of biostimulators (mycorrhizal fungi (MF) and rhizobacteria), and nanotechnology, that can be effectively utilized for B acquisition, leading to resource conservation. Additionally, we have discussed several new aspects, such as the combination of grafting or MF with nanotechnology, combined inoculation of arbuscular MF and rhizobacteria, melatonin application, and the use of natural and synthetic chelators, that possibly play a role in B uptake and translocation under B stress conditions.
Collapse
Affiliation(s)
- Fareeha Shireen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Muhammad Azher Nawaz
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
- Department of Horticulture, University College of Agriculture, University of Sargodha, Sargodha, Punjab 40100, Pakistan.
| | - Chen Chen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Qikai Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Zuhua Zheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Hamza Sohail
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Jingyu Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Haishun Cao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Yuan Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
39
|
Yoshinari A, Takano J. Insights into the Mechanisms Underlying Boron Homeostasis in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1951. [PMID: 29204148 PMCID: PMC5698777 DOI: 10.3389/fpls.2017.01951] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/30/2017] [Indexed: 05/21/2023]
Abstract
Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.
Collapse
Affiliation(s)
| | - Junpei Takano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
40
|
Liu X, Zhang JW, Guo LX, Liu YZ, Jin LF, Hussain SB, Du W, Deng Z, Peng SA. Transcriptome Changes Associated with Boron Deficiency in Leaves of Two Citrus Scion-Rootstock Combinations. FRONTIERS IN PLANT SCIENCE 2017; 8:317. [PMID: 28352276 PMCID: PMC5349144 DOI: 10.3389/fpls.2017.00317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/21/2017] [Indexed: 05/31/2023]
Abstract
Boron (B) deficiency stress is frequently observed in citrus orchards and causes considerable loss of productivity and fruit quality. Carrizo citrange (Cc) has been reported as a rootstock more tolerant to B deficiency than Trifoliate orange (To). The 'Newhall' navel orange (Ns) performed better when grafted onto Cc (Ns/Cc) than when grafted onto To (Ns/To) under long-term B deficiency. The present study confirmed that Ns/Cc had higher boron content, leaf fresh weight, lower leaf chlorosis and stronger photosynthesis ability than Ns/To. Moreover, B-deficiency significantly reduced the chlorophyll and carotenoid content in Ns/To. The content of total soluble sugar and lignin were dramatically increased and the expression levels of photosynthesis-related genes were substantially down-regulated in Ns/To by B-deficient treatment. B-deficiency also strongly induced expression levels of chlorophyll decomposition-related genes, glucose synthesis-related genes and lignin synthesis-related genes, and significantly inhibited the expression of carotenoid synthesis-related genes in Ns/To. Overall, these findings suggested that the influence of To on the scion of Ns was worse than that of Cc due to differently regulating these metabolic pathways under the long term of B-deficiency. The transcriptome analysis provided further information for understanding the mechanism of the different responses of scion-rootstock combinations to B-deficiency stress.
Collapse
|
41
|
Tanou G, Ziogas V, Molassiotis A. Foliar Nutrition, Biostimulants and Prime-Like Dynamics in Fruit Tree Physiology: New Insights on an Old Topic. FRONTIERS IN PLANT SCIENCE 2017; 8:75. [PMID: 28203243 PMCID: PMC5285389 DOI: 10.3389/fpls.2017.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/12/2017] [Indexed: 05/15/2023]
Abstract
Despite the fact that the usage of foliar nutrients has long history, many aspects of fertilization through leaves are still unknown. Herein, we review the current knowledge regarding the canopy fertilization putting special emphasis on Fe nutrition and briefly provide insights into the nanofertilizer technology of the foliar feeding of fruit crops. In addition, this paper discusses the main aspects of the foliar application of biostimulants regarding crucial factors of fruit cropping systems, such as fruit yield/size, tolerance to environmental stresses, and nutrient availability. Also, we specifically discuss the role of hydrogen peroxide (H2O2) and nitric oxide (NO) as priming molecules and their possible cross-talk with biostimulants in fruit tree physiology. Finally, a view of the key issues for future fundamental and applied research in the topic is put forward.
Collapse
|
42
|
Mesquita GL, Zambrosi FCB, Tanaka FAO, Boaretto RM, Quaggio JA, Ribeiro RV, Mattos D. Anatomical and Physiological Responses of Citrus Trees to Varying Boron Availability Are Dependent on Rootstock. FRONTIERS IN PLANT SCIENCE 2016; 7:224. [PMID: 26973670 PMCID: PMC4777737 DOI: 10.3389/fpls.2016.00224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/10/2016] [Indexed: 05/03/2023]
Abstract
In Citrus, water, nutrient transport and thereby fruit production, are influenced among other factors, by the interaction between rootstock and boron (B) nutrition. This study aimed to investigate how B affects the anatomical structure of roots and leaves as well as leaf gas exchange in sweet orange trees grafted on two contrasting rootstocks in response to B supply. Plants grafted on Swingle citrumelo or Sunki mandarin were grown in a nutrient solution of varying B concentration (deficient, adequate, and excessive). Those grafted on Swingle were more tolerant to both B deficiency and toxicity than those on Sunki, as revealed by higher shoot and root growth. In addition, plants grafted on Sunki exhibited more severe anatomical and physiological damages under B deficiency, showing thickening of xylem cell walls and impairments in whole-plant leaf-specific hydraulic conductance and leaf CO2 assimilation. Our data revealed that trees grafted on Swingle sustain better growth under low B availablitlity in the root medium and still respond positively to increased B levels by combining higher B absorption and root growth as well as better organization of xylem vessels. Taken together, those traits improved water and B transport to the plant canopy. Under B toxicity, Swingle rootstock would also favor plant growth by reducing anatomical and ultrastructural damage to leaf tissue and improving water transport compared with plants grafted on Sunki. From a practical point of view, our results highlight that B management in citrus orchards shall take into account rootstock varieties, of which the Swingle rootstock was characterized by its performance on regulating anatomical and ultrastructural damages, improving water transport and limiting negative impacts of B stress conditions on plant growth.
Collapse
Affiliation(s)
- Geisa L. Mesquita
- Centro de Citricultura Sylvio Moreira, Instituto AgronômicoCordeirópolis, Brazil
| | | | - Francisco A. O. Tanaka
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
| | - Rodrigo M. Boaretto
- Centro de Citricultura Sylvio Moreira, Instituto AgronômicoCordeirópolis, Brazil
| | - José A. Quaggio
- Centro de Solos e Recursos Ambientais, Instituto AgronômicoCampinas, Brazil
| | - Rafael V. Ribeiro
- Department of Plant Biology, Institute of Biology, University of CampinasCampinas, Brazil
| | - Dirceu Mattos
- Centro de Citricultura Sylvio Moreira, Instituto AgronômicoCordeirópolis, Brazil
| |
Collapse
|