1
|
Lin Y, Cao G, Xu J, Zhu H, Tang L. Multi-Omics Analysis Provides Insights into Green Soybean in Response to Cold Stress. Metabolites 2024; 14:687. [PMID: 39728468 DOI: 10.3390/metabo14120687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Green soybean (Glycine max (L.) Merrill) is a highly nutritious food that is a good source of protein and fiber. However, it is sensitive to low temperatures during the growing season, and enhancing cold tolerance has become a research hotspot for breeding improvement. Background/Objectives: The underlying molecular mechanisms of cold tolerance in green soybean are not well understood. Methods: Here, a comprehensive analysis of transcriptome and metabolome was performed on a cold-tolerant cultivar treated at 10 °C for 24 h. Results: Compared to control groups, we identified 17,011 differentially expressed genes (DEGs) and 129 differentially expressed metabolites (DEMs). The DEGs and DEMs were further subjected to KEGG functional analysis. Finally, 11 metabolites (such as sucrose, lactose, melibiose, and dehydroascorbate) and 17 genes (such as GOLS, GLA, UGDH, and ALDH) were selected as candidates associated with cold tolerance. Notably, the identified metabolites and genes were enriched in two common pathways: 'galactose metabolism' and 'ascorbate and aldarate metabolism'. Conclusions: The findings suggest that green soybean modulates the galactose metabolism and ascorbate and aldarate metabolism pathways to cope with cold stress. This study contributes to a deeper understanding of the complex molecular mechanisms enabling green soybeans to better avoid low-temperature damage.
Collapse
Affiliation(s)
- Yanhui Lin
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Guangping Cao
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jing Xu
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Honglin Zhu
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Liqiong Tang
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
2
|
Yang J, Lin S, Shen Y, Ye J, Jiang X, Li S, Jiang M. Transcriptome analysis of Sesuvium portulacastrum L. uncovers key genes and pathways involved in root formation in response to low-temperature stress. PLANT MOLECULAR BIOLOGY 2024; 114:89. [PMID: 39168922 DOI: 10.1007/s11103-024-01482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/24/2024] [Indexed: 08/23/2024]
Abstract
Sesuvium portulacastrum L., a perennial facultative halophyte, is extensively distributed across tropical and subtropical coastal regions. Its limited cold tolerance significantly impacts both the productivity and the geographical distribution of this species in higher-latitude areas. In this study, we employed RNA-Seq technology to delineate the transcriptomic alterations in Sesuvium plants exposed to low temperatures, thus advancing our comprehension of the molecular underpinnings of this physiological adaptation and root formation. Our findings demonstrated differential expression of 10,805, 16,389, and 10,503 genes in the low versus moderate temperature (LT vs. MT), moderate versus high temperature (MT vs. HT), and low versus high temperature (LT vs. HT) comparative analyses, respectively. Notably, the gene categories "structural molecule activity", "ribosome biogenesis", and "ribosome" were particularly enriched among the LT vs. HT-specific differentially expressed genes (DEGs). When synthesizing the insights from these three comparative studies, the principal pathways associated with the cold response mechanism were identified as "carbon fixation in photosynthetic organisms", "starch and sucrose metabolism", "plant hormone signal transduction", "glycolysis/gluconeogenesis", and "photosynthesis". In addition, we elucidated the involvement of auxin signaling pathways, adventitious root formation (ARF), lateral root formation (LRF), and novel genes associated with shoot system development in root formation. Subsequently, we constructed a network diagram to investigate the interplay between hormone levels and pivotal genes, thereby clarifying the regulatory pathways of plant root formation under low-temperature stress and isolating key genes instrumental in root development. This study has provided critical insights into the molecular mechanisms that facilitate the adaptation to cold stress and root formation in S. portulacastrum.
Collapse
Affiliation(s)
- Jingyi Yang
- Key Laboratory for Green Mariculture of Ministry of Agriculture and Rural Affairs, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315832, PR China
| | - Shiyu Lin
- Key Laboratory for Green Mariculture of Ministry of Agriculture and Rural Affairs, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315832, PR China
| | - Yinghan Shen
- Key Laboratory for Green Mariculture of Ministry of Agriculture and Rural Affairs, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315832, PR China
| | - Jingtao Ye
- Key Laboratory for Green Mariculture of Ministry of Agriculture and Rural Affairs, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315832, PR China
| | - Xiamin Jiang
- Key Laboratory for Green Mariculture of Ministry of Agriculture and Rural Affairs, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315832, PR China
| | - Sheng Li
- Xiangshan Laifa Aquaculture Hatchery Facility, Ningbo, 315704, PR China
| | - Maowang Jiang
- Key Laboratory for Green Mariculture of Ministry of Agriculture and Rural Affairs, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315832, PR China.
| |
Collapse
|
3
|
Thapa R, Tabien RE, Johnson CD, Septiningsih EM. Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress. BMC Genomics 2023; 24:185. [PMID: 37024819 PMCID: PMC10080786 DOI: 10.1186/s12864-023-09262-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Rice is one of the most important cereals consumed worldwide. Two major abiotic factors affecting rice plants in different growth stages are flooding stress and cold stress. These abiotic stresses can take place independently or simultaneously and significantly affect rice plants during germination and seedling growth. Fortunately, a wide array of phenotypic responses conferring flooding stress and chilling stress tolerance exist within the rice germplasm, indicating the presence of different molecular mechanisms underlying tolerance to these stresses. Understanding these differences may assist in developing improved rice cultivars having higher tolerance to both stresses. In this study, we conducted a comparative global gene expression analysis of two rice genotypes with contrasting phenotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination. RESULTS The differential gene expression analysis revealed that 5571 differentially expressed genes (DEGs), 7206 DEGs, and 13279 DEGs were identified under anaerobic stress, cold stress, and combined stress, respectively. Genes involved in the carbohydrate metabolic process, glucosyltransferase activity, regulation of nitrogen compound metabolic process, protein metabolic process, lipid metabolic process, cellular nitrogen compound biosynthetic process, lipid biosynthetic process, and a microtubule-based process were enriched across all stresses. Notably, the common Gene Ontology (GO) analysis identified three hub genes, namely Os08g0176800 (similar to mRNA-associated protein mrnp 41), Os11g0454200 (dehydrin), and OS10g0505900 (expressed protein). CONCLUSION A large number of differentially expressed genes were identified under anaerobic, cold conditions during germination and the combination of the two stress conditions in rice. These results will assist in the identification of promising candidate genes for possible manipulation toward rice crops that are more tolerant under flooding and cold during germination, both independently and concurrently.
Collapse
Affiliation(s)
- Ranjita Thapa
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Present address: Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Endang M Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Lei Q, Yuan B, Liu K, Peng L, Xia Z. A novel prognostic related lncRNA signature associated with amino acid metabolism in glioma. Front Immunol 2023; 14:1014378. [PMID: 37114036 PMCID: PMC10126287 DOI: 10.3389/fimmu.2023.1014378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Background Glioma is one of the deadliest malignant brain tumors in adults, which is highly invasive and has a poor prognosis, and long non-coding RNAs (lncRNAs) have key roles in the progression of glioma. Amino acid metabolism reprogramming is an emerging hallmark in cancer. However, the diverse amino acid metabolism programs and prognostic value remain unclear during glioma progression. Thus, we aim to find potential amino-related prognostic glioma hub genes, elaborate and verify their functions, and explore further their impact on glioma. Methods Glioblastoma (GBM) and low-grade glioma (LGG) patients' data were downloaded from TCGA and CCGA datasets. LncRNAs associated with amino acid metabolism were discriminated against via correlation analysis. LASSO analysis and Cox regression analysis were conducted to identify lncRNAs related to prognosis. GSVA and GSEA were performed to predict the potential biological functions of lncRNA. Somatic mutation data and CNV data were further built to demonstrate genomic alterations and the correlation between risk scores. Human glioma cell lines U251 and U87-MG were used for further validation in vitro experiments. Results There were eight amino-related lncRNAs in total with a high prognostic value that were identified via Cox regression and LASSO regression analyses. The high risk-score group presented a significantly poorer prognosis compared with the low risk-score group, with more clinicopathological features and characteristic genomic aberrations. Our results provided new insights into biological functions in the above signature lncRNAs, which participate in the amino acid metabolism of glioma. LINC01561 is one of the eight identified lncRNAs, which was adopted for further verification. In in vitro experiments, siRNA-mediated LINC01561 silencing suppresses glioma cells' viability, migration, and proliferation. Conclusion Novel amino-related lncRNAs associated with the survival of glioma patients were identified, and a lncRNA signature can predict glioma prognosis and therapy response, which possibly has vital roles in glioma. Meanwhile, it emphasized the importance of amino acid metabolism in glioma, particularly in providing deeper research at the molecular level.
Collapse
Affiliation(s)
- Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Yuan
- Department of Cerebrovascular Surgery, The Second People’s Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kun Liu
- Department of Cerebrovascular Surgery, The Second People’s Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Peng
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Zhiwei Xia, ; Li Peng,
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, Hunan, China
- *Correspondence: Zhiwei Xia, ; Li Peng,
| |
Collapse
|
5
|
Luo Z, Zhou Z, Li Y, Tao S, Hu ZR, Yang JS, Cheng X, Hu R, Zhang W. Transcriptome-based gene regulatory network analyses of differential cold tolerance of two tobacco cultivars. BMC PLANT BIOLOGY 2022; 22:369. [PMID: 35879667 PMCID: PMC9316383 DOI: 10.1186/s12870-022-03767-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/20/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cold is one of the main abiotic stresses that severely affect plant growth and development, and crop productivity as well. Transcriptional changes during cold stress have already been intensively studied in various plant species. However, the gene networks involved in the regulation of differential cold tolerance between tobacco varieties with contrasting cold resistance are quite limited. RESULTS Here, we conducted multiple time-point transcriptomic analyses using Tai tobacco (TT, cold susceptibility) and Yan tobacco (YT, cold resistance) with contrasting cold responses. We identified similar DEGs in both cultivars after comparing with the corresponding control (without cold treatment), which were mainly involved in response to abiotic stimuli, metabolic processes, kinase activities. Through comparison of the two cultivars at each time point, in contrast to TT, YT had higher expression levels of the genes responsible for environmental stresses. By applying Weighted Gene Co-Expression Network Analysis (WGCNA), we identified two main modules: the pink module was similar while the brown module was distinct between the two cultivars. Moreover, we obtained 100 hub genes, including 11 important transcription factors (TFs) potentially involved in cold stress, 3 key TFs in the brown module and 8 key TFs in the pink module. More importantly, according to the genetic regulatory networks (GRNs) between TFs and other genes or TFs by using GENIE3, we identified 3 TFs (ABI3/VP1, ARR-B and WRKY) mainly functioning in differential cold responses between two cultivars, and 3 key TFs (GRAS, AP2-EREBP and C2H2) primarily involved in cold responses. CONCLUSION Collectively, our study provides valuable resources for transcriptome- based gene network studies of cold responses in tobacco. It helps to reveal how key cold responsive TFs or other genes are regulated through network. It also helps to identify the potential key cold responsive genes for the genetic manipulation of tobacco cultivars with enhanced cold tolerance in the future.
Collapse
Affiliation(s)
- Zhenyu Luo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zhicheng Zhou
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Shentong Tao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zheng-Rong Hu
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Jia-Shuo Yang
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China.
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
6
|
Bhat KA, Mahajan R, Pakhtoon MM, Urwat U, Bashir Z, Shah AA, Agrawal A, Bhat B, Sofi PA, Masi A, Zargar SM. Low Temperature Stress Tolerance: An Insight Into the Omics Approaches for Legume Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:888710. [PMID: 35720588 PMCID: PMC9204169 DOI: 10.3389/fpls.2022.888710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 05/27/2023]
Abstract
The change in climatic conditions is the major cause for decline in crop production worldwide. Decreasing crop productivity will further lead to increase in global hunger rate. Climate change results in environmental stress which has negative impact on plant-like deficiencies in growth, crop yield, permanent damage, or death if the plant remains in the stress conditions for prolonged period. Cold stress is one of the main abiotic stresses which have already affected the global crop production. Cold stress adversely affects the plants leading to necrosis, chlorosis, and growth retardation. Various physiological, biochemical, and molecular responses under cold stress have revealed that the cold resistance is more complex than perceived which involves multiple pathways. Like other crops, legumes are also affected by cold stress and therefore, an effective technique to mitigate cold-mediated damage is critical for long-term legume production. Earlier, crop improvement for any stress was challenging for scientific community as conventional breeding approaches like inter-specific or inter-generic hybridization had limited success in crop improvement. The availability of genome sequence, transcriptome, and proteome data provides in-depth sight into different complex mechanisms under cold stress. Identification of QTLs, genes, and proteins responsible for cold stress tolerance will help in improving or developing stress-tolerant legume crop. Cold stress can alter gene expression which further leads to increases in stress protecting metabolites to cope up the plant against the temperature fluctuations. Moreover, genetic engineering can help in development of new cold stress-tolerant varieties of legume crop. This paper provides a general insight into the "omics" approaches for cold stress in legume crops.
Collapse
Affiliation(s)
- Kaisar Ahmad Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, India
| | - Uneeb Urwat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| | - Zaffar Bashir
- Deparment of Microbiology, University of Kashmir, Srinagar, India
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ankit Agrawal
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| |
Collapse
|
7
|
Karimzadeh Soureshjani H, Nezami A, Nabati J, Oskoueian E, Ahmadi-Lahijani MJ. The Physiological, Biochemical, and Molecular Modifications of Chickpea (Cicer arietinum L.) Seedlings Under Freezing Stress. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:1109-1124. [PMID: 0 DOI: 10.1007/s00344-021-10369-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/08/2021] [Indexed: 05/20/2023]
|
8
|
STN7 Kinase Is Essential for Arabidopsis thaliana Fitness under Prolonged Darkness but Not under Dark-Chilling Conditions. Int J Mol Sci 2022; 23:ijms23094531. [PMID: 35562922 PMCID: PMC9100030 DOI: 10.3390/ijms23094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Reversible phosphorylation of photosystem II light harvesting complexes (LHCII) is a well-established protective mechanism enabling efficient response to changing light conditions. However, changes in LHCII phosphorylation were also observed in response to abiotic stress regardless of photoperiod. This study aimed to investigate the impact of dark-chilling on LHCII phosphorylation pattern in chilling-tolerant Arabidopsis thaliana and to check whether the disturbed LHCII phosphorylation process will impact the response of Arabidopsis to the dark-chilling conditions. We analyzed the pattern of LHCII phosphorylation, the organization of chlorophyll–protein complexes, and the level of chilling tolerance by combining biochemical and spectroscopy techniques under dark-chilling and dark conditions in Arabidopsis mutants with disrupted LHCII phosphorylation. Our results show that during dark-chilling, LHCII phosphorylation decreased in all examined plant lines and that no significant differences in dark-chilling response were registered in tested lines. Interestingly, after 24 h of darkness, a high increase in LHCII phosphorylation was observed, co-occurring with a significant FV/FM parameter decrease. The highest drop of FV/FM was detected in the stn7-1 line–mutant, where the LHCII is not phosphorylated, due to the lack of STN7 kinase. Our results imply that STN7 kinase activity is important for mitigating the adverse effects of prolonged darkness.
Collapse
|
9
|
Verma SK, Mittal S, Gayacharan, Wankhede DP, Parida SK, Chattopadhyay D, Prasad G, Mishra DC, Joshi DC, Singh M, Singh K, Singh AK. Transcriptome Analysis Reveals Key Pathways and Candidate Genes Controlling Seed Development and Size in Ricebean ( Vigna umbellata). Front Genet 2022; 12:791355. [PMID: 35126460 PMCID: PMC8815620 DOI: 10.3389/fgene.2021.791355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
Ricebean (Vigna umbellata) is a lesser known pulse with well-recognized potential. Recently, it has emerged as a legume with endowed nutritional potential because of high concentration of quality protein and other vital nutrients in its seeds. However, the genes and pathways involved in regulating seed development and size are not understood in this crop. In our study, we analyzed the transcriptome of two genotypes with contrasting grain size (IC426787: large seeded and IC552985: small seeded) at two different time points, namely, 5 and 10 days post-anthesis (DPA). The bold seeded genotype across the time points (B5_B10) revealed 6,928 differentially expressed genes (DEGs), whereas the small seeded genotype across the time point (S5_S10) contributed to 14,544 DEGs. We have also identified several candidate genes for seed development-related traits like seed size and 100-seed weight. On the basis of similarity search and domain analysis, some candidate genes (PHO1, cytokinin dehydrogenase, A-type cytokinin, and ARR response negative regulator) related to 100-seed weight and seed size showed downregulation in the small seeded genotype. The MapMan and KEGG analysis confirmed that auxin and cytokinin pathways varied in both the contrasting genotypes and can therefore be the regulators of the seed size and other seed development-related traits in ricebeans. A total of 51 genes encoding SCF TIR1/AFB , Aux/IAA, ARFs, E3 ubiquitin transferase enzyme, and 26S proteasome showing distinct expression dynamics in bold and small genotypes were also identified. We have also validated randomly selected SSR markers in eight accessions of the Vigna species (V. umbellata: 6; Vigna radiata: 1; and Vigna mungo: 1). Cross-species transferability pattern of ricebean-derived SSR markers was higher in V. radiata (73.08%) than V. mungo (50%). To the best of our knowledge, this is the first transcriptomic study conducted in this crop to understand the molecular basis of any trait. It would provide us a comprehensive understanding of the complex transcriptome dynamics during the seed development and gene regulatory mechanism of the seed size determination in ricebeans.
Collapse
Affiliation(s)
| | - Shikha Mittal
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | | | - Geeta Prasad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
10
|
Cross-Kingdom Comparative Transcriptomics Reveals Conserved Genetic Modules in Response to Cadmium Stress. mSystems 2021; 6:e0118921. [PMID: 34874779 PMCID: PMC8651089 DOI: 10.1128/msystems.01189-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
It is known that organisms have developed various mechanisms to cope with cadmium (Cd) stress, while we still lack a system-level understanding of the functional isomorphy among them. In the present study, a cross-kingdom comparison was conducted among Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii, through toxicological tests, comparative transcriptomics, as well as conventional functional genomics. An equivalent level of Cd stress was determined via inhibition tests. Through transcriptome comparison, the three organisms exhibited differential gene expression under the same Cd stress relative to the corresponding no-treatment control. Results from functional enrichment analysis of differentially expressed genes (DEGs) showed that four metabolic pathways responsible for combating Cd stress were commonly regulated in the three organisms, including antioxidant reactions, sulfur metabolism, cell wall remodeling, and metal transport. In vivo expression patterns of 43 DEGs from the four pathways were further examined using quantitative PCR and resulted in a relatively comparable dynamic of gene expression patterns with transcriptome sequencing (RNA-seq). Cross-kingdom comparison of typical Cd stress-responding proteins resulted in the detection of 12 groups of homologous proteins in the three species. A class of potential metal transporters were subjected to cross-transformation to test their functional complementation. An ABC transporter gene in E. coli, possibly homologous to the yeast ycf1, was heterologously expressed in S. cerevisiae, resulting in enhanced Cd tolerance. Overall, our findings indicated that conserved genetic modules against Cd toxicity were commonly regulated among distantly related microbial species, which will be helpful for utilizing them in modifying microbial traits for bioremediation. IMPORTANCE Research is establishing a systems biology view of biological response to Cd stress. It is meaningful to explore whether there is regulatory isomorphy among distantly related organisms. A transcriptomic comparison was done among model microbes, leading to the identification of a conserved cellular model pinpointing the generic strategies utilized by microbes for combating Cd stress. A novel E. coli transporter gene substantially increased yeast’s Cd tolerance. Knowledge on systems understanding of the cellular response to metals provides the basis for developing bioengineering remediation technology.
Collapse
|
11
|
Menéndez AB, Ruiz OA. Stress-regulated elements in Lotus spp., as a possible starting point to understand signalling networks and stress adaptation in legumes. PeerJ 2021; 9:e12110. [PMID: 34909267 PMCID: PMC8641479 DOI: 10.7717/peerj.12110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/14/2021] [Indexed: 11/20/2022] Open
Abstract
Although legumes are of primary economic importance for human and livestock consumption, the information regarding signalling networks during plant stress response in this group is very scarce. Lotus japonicus is a major experimental model within the Leguminosae family, whereas L. corniculatus and L. tenuis are frequent components of natural and agricultural ecosystems worldwide. These species display differences in their perception and response to diverse stresses, even at the genotype level, whereby they have been used in many studies aimed at achieving a better understanding of the plant stress-response mechanisms. However, we are far from the identification of key components of their stress-response signalling network, a previous step for implementing transgenic and editing tools to develop legume stress-resilient genotypes, with higher crop yield and quality. In this review we scope a body of literature, highlighting what is currently known on the stress-regulated signalling elements so far reported in Lotus spp. Our work includes a comprehensive review of transcription factors chaperones, redox signals and proteins of unknown function. In addition, we revised strigolactones and genes regulating phytochelatins and hormone metabolism, due to their involvement as intermediates in several physiological signalling networks. This work was intended for a broad readership in the fields of physiology, metabolism, plant nutrition, genetics and signal transduction. Our results suggest that Lotus species provide a valuable information platform for the study of specific protein-protein (PPI) interactions, as a starting point to unravel signalling networks underlying plant acclimatation to bacterial and abiotic stressors in legumes. Furthermore, some Lotus species may be a source of genes whose regulation improves stress tolerance and growth when introduced ectopically in other plant species.
Collapse
Affiliation(s)
- Ana B Menéndez
- Departamento de Biodiversidad y Biología Experimental. Facultad de Ciencias Exactas y Naturales., Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Overseas, Argentina.,Instituto de Micología y Botánica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Overseas, Argentina
| | - Oscar Adolfo Ruiz
- Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Buenos Aires, Argentina
| |
Collapse
|
12
|
Irshad A, Rehman RNU, Kareem HA, Yang P, Hu T. Addressing the challenge of cold stress resilience with the synergistic effect of Rhizobium inoculation and exogenous melatonin application in Medicago truncatula. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112816. [PMID: 34597844 DOI: 10.1016/j.ecoenv.2021.112816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 05/17/2023]
Abstract
Cold stress is an adverse environmental condition that limits the growth and yield of leguminous plants. Thus, discovering an effective way of ameliorating cold-mediated damage is important for sustainable legume production. In this study, the combined use of Rhizobium inoculation (RI) and melatonin (MT) pretreatment was investigated in Medicago truncatula plants under cold stress. Eight-week-old seedlings were divided into eight groups: (i) CK (no stress, noninoculated, no MT), (ii) RI (Rhizobium inoculated), (iii) MT (75 μM melatonin), (iv) RI+MT, (v) CS (cold stress at 4 °C without Rhizobium inoculation and melatonin), (vi) CS+RI, (vii) CS+MT, and (viii) CS+RI+MT. Plants were exposed to cold stress for 24 hrs. Cold stress decreased photosynthetic pigments and increased oxidative stress. Pretreatment with RI and MT alone or combined significantly improved root activity and plant biomass production under cold stress. Interestingly, chlorophyll contents increased by 242.81% and MDA levels dramatically decreased by 34.22% in the CS+RI+MT treatment compared to the CS treatment. Moreover, RI+MT pretreatment improved the antioxidative ability by increasing the activities of peroxidase (POD; 8.45%), superoxide dismutase (SOD; 50.36%), catalase (CAT; 140.26%), and ascorbate peroxidase (APX; 42.63%) over CS treated plants. Additionally, increased osmolyte accumulation, nutrient uptake, and nitrate reductase activity due to the combined use of RI and MT helped the plants counteract cold-mediated damage by strengthening the nonenzymatic antioxidant system. These data indicate that pretreatment with a combined application of RI and MT can attenuate cold damage by enhancing the antioxidation ability of legumes.
Collapse
Affiliation(s)
- Annie Irshad
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rana Naveed Ur Rehman
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Zhang J, Huang D, Zhao X, Zhang M. Evaluation of drought resistance and transcriptome analysis for the identification of drought-responsive genes in Iris germanica. Sci Rep 2021; 11:16308. [PMID: 34381085 PMCID: PMC8358056 DOI: 10.1038/s41598-021-95633-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Iris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profile changes exhibited by high-drought-resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought-resistance performance, the 10 cultivars were ordered as follows: 'Little Dream' > 'Music Box' > 'X'Brassie' > 'Blood Stone' > 'Cherry Garden' > 'Memory of Harvest' > 'Immortality' > 'White and Gold' > 'Tantara' > 'Clarence'. Using the high-drought-resistant cultivar 'Little Dream' as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)-6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG-6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2. 7849 and 24,127 differentially expressed genes (DEGs) were obtained from leaves and rhizomes, respectively. GO and KEGG enrichment analyses of the DEGs revealed significantly enriched KEGG pathways, including ribosome, photosynthesis, hormone signal transduction, starch and sucrose metabolism, synthesis of secondary metabolites, and related genes, such as heat shock proteins (HSPs), transcription factors (TFs), and active oxygen scavengers. In conclusion, we conducted the first transcriptome sequencing analysis of the I. germanica cultivar 'Little Dream' under drought stress and generated a large amount of genetic information. This study lays the foundation for further exploration of the molecular mechanisms underlying the responses of I. germanica to drought stress and provides valuable genetic resources for the breeding of drought-resistant plants.
Collapse
Affiliation(s)
- Jingwei Zhang
- grid.274504.00000 0001 2291 4530College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Dazhuang Huang
- grid.274504.00000 0001 2291 4530College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xiaojie Zhao
- grid.274504.00000 0001 2291 4530College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Man Zhang
- grid.274504.00000 0001 2291 4530State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
14
|
Fang Y, Coulter JA, Wu J, Liu L, Li X, Dong Y, Ma L, Pu Y, Sun B, Niu Z, Jin J, Zhao Y, Mi W, Xu Y, Sun W. Identification of differentially expressed genes involved in amino acid and lipid accumulation of winter turnip rape (Brassica rapa L.) in response to cold stress. PLoS One 2021; 16:e0245494. [PMID: 33556109 PMCID: PMC7870078 DOI: 10.1371/journal.pone.0245494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/03/2021] [Indexed: 11/24/2022] Open
Abstract
Winter turnip rape (Brassica rapa L.) is an important overwintering oil crop that is widely planted in northwestern China. It considered to be a good genetic resource for cold-tolerant research because its roots can survive harsh winter conditions. Here, we performed comparative transcriptomics analysis of the roots of two winter turnip rape varieties, Longyou7 (L7, strong cold tolerance) and Tianyou2 (T2, low cold tolerance), under normal condition (CK) and cold stress (CT) condition. A total of 8,366 differentially expressed genes (DEGs) were detected between the two L7 root groups (L7CK_VS_L7CT), and 8,106 DEGs were detected for T2CK_VS_T2CT. Among the DEGs, two ω-3 fatty acid desaturase (FAD3), two delta-9 acyl-lipid desaturase 2 (ADS2), one diacylglycerol kinase (DGK), and one 3-ketoacyl-CoA synthase 2 (KCS2) were differentially expressed in the two varieties and identified to be related to fatty acid synthesis. Four glutamine synthetase cytosolic isozymes (GLN), serine acetyltransferase 1 (SAT1), and serine acetyltransferase 3 (SAT3) were down-regulated under cold stress, while S-adenosylmethionine decarboxylase proenzyme 1 (AMD1) had an up-regulation tendency in response to cold stress in the two samples. Moreover, the delta-1-pyrroline-5-carboxylate synthase (P5CS), δ-ornithine aminotransferase (δ-OAT), alanine-glyoxylate transaminase (AGXT), branched-chain-amino-acid transaminase (ilvE), alpha-aminoadipic semialdehyde synthase (AASS), Tyrosine aminotransferase (TAT) and arginine decarboxylase related to amino acid metabolism were identified in two cultivars variously expressed under cold stress. The above DEGs related to amino acid metabolism were suspected to the reason for amino acids content change. The RNA-seq data were validated by real-time quantitative RT-PCR of 19 randomly selected genes. The findings of our study provide the gene expression profile between two varieties of winter turnip rape, which lay the foundation for a deeper understanding of the highly complex regulatory mechanisms in plants during cold treatment.
Collapse
Affiliation(s)
- Yan Fang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jeffrey A. Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States of America
| | - Junyan Wu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lijun Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xuecai Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Li Ma
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Pu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Bolin Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zaoxia Niu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiaojiao Jin
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuhong Zhao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenbo Mi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yaozhao Xu
- College of Agronomy and Biotechnology, Hexi University, Zhangye, China
| | - Wancang Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Liu Y, Wu C, Hu X, Gao H, Wang Y, Luo H, Cai S, Li G, Zheng Y, Lin C, Zhu Q. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). TREE PHYSIOLOGY 2020; 40:538-556. [PMID: 31860727 DOI: 10.1093/treephys/tpz133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 05/20/2023]
Abstract
Most bamboo species including Moso bamboo (Phyllostachys edulis) are tropical or subtropical plants that greatly contribute to human well-being. Low temperature is one of the main environmental factors restricting bamboo growth and geographic distribution. Our knowledge of the molecular changes during bamboo adaption to cold stress remains limited. Here, we provided a general overview of the cold-responsive transcriptional profiles in Moso bamboo by systematically analyzing its transcriptomic response under cold stress. Our results showed that low temperature induced strong morphological and biochemical alternations in Moso bamboo. To examine the global gene expression changes in response to cold, 12 libraries (non-treated, cold-treated 0.5, 1 and 24 h at -2 °C) were sequenced using an Illumina sequencing platform. Only a few differentially expressed genes (DEGs) were identified at early stage, while a large number of DEGs were identified at late stage in this study, suggesting that the majority of cold response genes in bamboo are late-responsive genes. A total of 222 transcription factors from 24 different families were differentially expressed during 24-h cold treatment, and the expressions of several well-known C-repeat/dehydration responsive element-binding factor negative regulators were significantly upregulated in response to cold, indicating the existence of special cold response networks. Our data also revealed that the expression of genes related to cell wall and the biosynthesis of fatty acids were altered in response to cold stress, indicating their potential roles in the acquisition of bamboo cold tolerance. In summary, our studies showed that both plant kingdom-conserved and species-specific cold response pathways exist in Moso bamboo, which lays the foundation for studying the regulatory mechanisms underlying bamboo cold stress response and provides useful gene resources for the construction of cold-tolerant bamboo through genetic engineering in the future.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chu Wu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Hu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongye Gao
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Wang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Luo
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sen Cai
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guowei Li
- College of Life Science, Shandong Normal University, Jinan 250000, China
| | - Yushan Zheng
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qiang Zhu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Zhou J, Wang Z, Mao Y, Wang L, Xiao T, Hu Y, Zhang Y, Ma Y. Proteogenomic analysis of pitaya reveals cold stress-related molecular signature. PeerJ 2020; 8:e8540. [PMID: 32095361 PMCID: PMC7020823 DOI: 10.7717/peerj.8540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022] Open
Abstract
Pitayas (Hylocereus spp.) is an attractive, highly nutritious and commercially valuable tropical fruit. However, low-temperature damage limits crop production. Genome of pitaya has not been sequenced yet. In this study, we sequenced the transcriptome of pitaya as the reference and further investigated the proteome under low temperature. By RNAseq technique, approximately 25.3 million reads were obtained, and further trimmed and assembled into 81,252 unigene sequences. The unigenes were searched against UniProt, NR and COGs at NCBI, Pfam, InterPro and Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and 57,905 unigenes were retrieved annotations. Among them, 44,337 coding sequences were predicted by Trandecoder (v2.0.1), which served as the reference database for label-free proteomic analysis study of pitaya. Here, we identified 116 Differentially Abundant Proteins (DAPs) associated with the cold stress in pitaya, of which 18 proteins were up-regulated and 98 proteins were down-regulated. KEGG analysis and other results showed that these DAPs mainly related to chloroplasts and mitochondria metabolism. In summary, chloroplasts and mitochondria metabolism-related proteins may play an important role in response to cold stress in pitayas.
Collapse
Affiliation(s)
- Junliang Zhou
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Zhuang Wang
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yongya Mao
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Lijuan Wang
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Tujian Xiao
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yang Hu
- Zhejiang Academy of Forestry, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Fudan University, Institutes of Biomedical Sciences, Shanghai, Shanghai, China
| | - Yuhua Ma
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| |
Collapse
|
17
|
Gao H, Yang W, Li C, Zhou X, Gao D, Khashi u Rahman M, Li N, Wu F. Gene Expression and K + Uptake of Two Tomato Cultivars in Response to Sub-Optimal Temperature. PLANTS 2020; 9:plants9010065. [PMID: 31947736 PMCID: PMC7020494 DOI: 10.3390/plants9010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022]
Abstract
Sub-optimal temperatures can adversely affect tomato (Solanum lycopersicum) growth, and K+ plays an important role in the cold tolerance of plants. However, gene expression and K+ uptake in tomato in response to sub-optimal temperatures are still not very clear. To address these questions, one cold-tolerant tomato cultivar, Dongnong 722 (T722), and one cold-sensitive cultivar, Dongnong 708 (S708), were exposed to sub-optimal (15/10 °C) and normal temperatures (25/18 °C), and the differences in growth, K+ uptake characteristics and global gene expressions were investigated. The results showed that compared to S708, T722 exhibited lower reduction in plant growth rate, the whole plant K+ amount and K+ net uptake rate, and T722 also had higher peroxidase activity and lower K+ efflux rate under sub-optimal temperature conditions. RNA-seq analysis showed that a total of 1476 and 2188 differentially expressed genes (DEGs) responding to sub-optimal temperature were identified in S708 and T722 roots, respectively. Functional classification revealed that most DEGs were involved in “plant hormone signal transduction”, “phenylpropanoid biosynthesis”, “sulfur metabolism” and “cytochrome P450”. The genes that were significantly up-regulated only in T722 were involved in the “phenylpropanoid biosynthesis” and “plant hormone signal transduction” pathways. Moreover, we also found that sub-optimal temperature inhibited the expression of gene coding for K+ transporter SIHAK5 in both cultivars, but decreased the expression of gene coding for K+ channel AKT1 only in S708. Overall, our results revealed the cold response genes in tomato roots, and provided a foundation for further investigation of mechanism involved in K+ uptake in tomato under sub-optimal temperatures.
Collapse
Affiliation(s)
- Huan Gao
- Department of Horticulture, Northeast Agricultural University, Harbin 150030, China; (H.G.); (C.L.); (X.Z.); (D.G.); (M.K.uR.); (N.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Wanji Yang
- Department of Computer and Information Engineering, Heilongjiang University of Science and Technology, Harbin150030, China;
| | - Chunxia Li
- Department of Horticulture, Northeast Agricultural University, Harbin 150030, China; (H.G.); (C.L.); (X.Z.); (D.G.); (M.K.uR.); (N.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Xingang Zhou
- Department of Horticulture, Northeast Agricultural University, Harbin 150030, China; (H.G.); (C.L.); (X.Z.); (D.G.); (M.K.uR.); (N.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Danmei Gao
- Department of Horticulture, Northeast Agricultural University, Harbin 150030, China; (H.G.); (C.L.); (X.Z.); (D.G.); (M.K.uR.); (N.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Muhammad Khashi u Rahman
- Department of Horticulture, Northeast Agricultural University, Harbin 150030, China; (H.G.); (C.L.); (X.Z.); (D.G.); (M.K.uR.); (N.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Naihui Li
- Department of Horticulture, Northeast Agricultural University, Harbin 150030, China; (H.G.); (C.L.); (X.Z.); (D.G.); (M.K.uR.); (N.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin 150030, China; (H.G.); (C.L.); (X.Z.); (D.G.); (M.K.uR.); (N.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: or ; Tel.: +86-0451-5519-0215
| |
Collapse
|
18
|
Gurung PD, Upadhyay AK, Bhardwaj PK, Sowdhamini R, Ramakrishnan U. Transcriptome analysis reveals plasticity in gene regulation due to environmental cues in Primula sikkimensis, a high altitude plant species. BMC Genomics 2019; 20:989. [PMID: 31847812 PMCID: PMC6916092 DOI: 10.1186/s12864-019-6354-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Studying plasticity in gene expression in natural systems is crucial, for predicting and managing the effects of climate change on plant species. To understand the contribution of gene expression level variations to abiotic stress compensation in a Himalaya plant (Primula sikkimensis), we carried out a transplant experiment within (Ambient), and beyond (Below Ambient and Above Ambient) the altitudinal range limit of species. We sequenced nine transcriptomes (three each from each altitudinal range condition) using Illumina sequencing technology. We compared the fitness variation of transplants among three transplant conditions. RESULTS A large number of significantly differentially expressed genes (DEGs) between below ambient versus ambient (109) and above ambient versus ambient (85) were identified. Transcripts involved in plant growth and development were mostly up-regulated in below ambient conditions. Transcripts involved in signalling, defence, and membrane transport were mostly up-regulated in above ambient condition. Pathway analysis revealed that most of the genes involved in metabolic processes, secondary metabolism, and flavonoid biosynthesis were differentially expressed in below ambient conditions, whereas most of the genes involved in photosynthesis and plant hormone signalling were differentially expressed in above ambient conditions. In addition, we observed higher reproductive fitness in transplant individuals at below ambient condition compared to above ambient conditions; contrary to what we expect from the cold adaptive P. sikkimensis plants. CONCLUSIONS We reveal P. sikkimensis's capacity for rapid adaptation to climate change through transcriptome variation, which may facilitate the phenotypic plasticity observed in morphological and life history traits. The genes and pathways identified provide a genetic resource for understanding the temperature stress (both the hot and cold stress) tolerance mechanism of P. sikkimensis in their natural environment.
Collapse
Affiliation(s)
- Priya Darshini Gurung
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
- Manipal University, Manipal, India
| | - Atul Kumar Upadhyay
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
- Present Address: Thapar Institute of Engineering & Technology, Department of Biotechnology, Patiala, Punjab 147004 India
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresource & Sustainable Development, A National Institute under Department of Biotechnology, Ministry of Science & Technology, Government of India, Gangtok, Sikkim 737102 India
- Present address: Institute of Bioresources and Sustainable Development, Meghalaya, 6th Mile, Upper Shillong, Meghalaya 793009 India
| | - Ramanathan Sowdhamini
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
| | - Uma Ramakrishnan
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
| |
Collapse
|
19
|
Nieva AS, Vilas JM, Gárriz A, Maiale SJ, Menéndez AB, Erban A, Kopka J, Ruiz OA. The fungal endophyte Fusarium solani provokes differential effects on the fitness of two Lotus species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:100-109. [PMID: 31561198 DOI: 10.1016/j.plaphy.2019.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/31/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
The interactions established between plants and endophytic fungi span a continuum from beneficial to pathogenic associations. The aim of this work was to isolate potentially beneficial fungal endophytes in the legume Lotus tenuis and explore the mechanisms underlying their effects. One of the nine fungal strains isolated was identified as Fusarium solani and shows the highest phosphate-solubilisation activity, and also grows endophytically in roots of L. japonicus and L. tenuis. Interestingly, fungal invasion enhances plant growth in L. japonicus but provokes a contrasting effect in L. tenuis. These differences were also evidenced when the rate of photosynthesis as well as sugars and K contents were assessed. Our results indicate that the differential responses observed are due to distinct mechanisms deployed during the establishment of the interactions that involve the regulation of photosynthesis, potassium homeostasis, and carbohydrate metabolism. These responses are employed by these plant species to maintain fitness during the endophytic interaction.
Collapse
Affiliation(s)
- Amira Susana Nieva
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Av. Intendente Marino km 8.2, Chascomús, 7130, Argentina
| | - Juan Manuel Vilas
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Av. Intendente Marino km 8.2, Chascomús, 7130, Argentina
| | - Andrés Gárriz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Av. Intendente Marino km 8.2, Chascomús, 7130, Argentina
| | - Santiago Javier Maiale
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Av. Intendente Marino km 8.2, Chascomús, 7130, Argentina
| | - Ana Bernardina Menéndez
- Departamento de Biodiversidad y Biología Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, PROPLAME-PRHIDEB (CONICET), Argentina
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Oscar Adolfo Ruiz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Av. Intendente Marino km 8.2, Chascomús, 7130, Argentina; Instituto de Fisiología y Recursos Genéticos Vegetales-Instituto Nacional de Tecnología Agropecuaria (IFRGV-INTA), Camino 60 cuadras km 5.5, Córdoba, 5119, Argentina.
| |
Collapse
|
20
|
Identification and Expression Analysis of the NAC Gene Family in Coffea canephora. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NAC gene family is one of the largest families of transcriptional regulators in plants, and it plays important roles in the regulation of growth and development as well as in stress responses. Genome-wide analyses have been performed in diverse plant species, but there is still no systematic analysis of the NAC genes of Coffea canephora Pierre ex A. Froehner. In this study, we identified 63 NAC genes from the genome of C. canephora. The basic features and comparison analysis indicated that the NAC gene members increased via duplication events during the evolution of the plant. Phylogenetic analysis divided the NAC proteins from C. canephora, Arabidopsis and rice into 16 subgroups. Analysis of the expression patterns of CocNACs under cold stress and coffee bean development indicated that 38 CocNACs were differentially expressed under cold stress; six genes may play important roles in the process of cold acclimation, and four genes among 54 CocNACs showing a variety of expression patterns during different developmental stages of coffee beans may be positively related to the bean development. This study can expand our understanding of the functions of the CocNAC gene family in cold responses and bean development, thereby potentially intensifying the molecular breeding programs of Coffea spp. plants.
Collapse
|
21
|
Identification of Genes Differentially Expressed in Response to Cold in Pisum sativum Using RNA Sequencing Analyses. PLANTS 2019; 8:plants8080288. [PMID: 31443248 PMCID: PMC6724123 DOI: 10.3390/plants8080288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
Low temperature stress affects growth and development in pea (Pisum sativum L.) and decreases yield. In this study, RNA sequencing time series analyses performed on lines, Champagne frost-tolerant and Térèse frost-sensitive, during a low temperature treatment versus a control condition, led us to identify 4981 differentially expressed genes. Thanks to our experimental design and statistical analyses, we were able to classify these genes into three sets. The first one was composed of 2487 genes that could be related to the constitutive differences between the two lines and were not regulated during cold treatment. The second gathered 1403 genes that could be related to the chilling response. The third set contained 1091 genes, including genes that could be related to freezing tolerance. The identification of differentially expressed genes related to cold, oxidative stress, and dehydration responses, including some transcription factors and kinases, confirmed the soundness of our analyses. In addition, we identified about one hundred genes, whose expression has not yet been linked to cold stress. Overall, our findings showed that both lines have different characteristics for their cold response (chilling response and/or freezing tolerance), as more than 90% of differentially expressed genes were specific to each of them.
Collapse
|
22
|
Escaray FJ, Antonelli CJ, Carrasco P, Ruiz OA. Interspecific hybridization improves the performance of Lotus spp. under saline stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:202-210. [PMID: 31128690 DOI: 10.1016/j.plantsci.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Salinity is one of the most frequent limiting conditions in pasture production for grazing livestock. Legumes, such as Lotus spp. with high forage quality and capable of adapting to different environments, improves pasture performance in restrictive areas. In order to determine potential cultivars with better forage traits, the current study assess the response to salt stress of L. tenuis, L. corniculatus and a novel L. tenuis x L. corniculatus accession. For this purpose, chlorophyll fluorescence, biomass production, ion accumulation and anthocyanins and proanthocyanidins levels have been evaluated in control and salt-treated plants PSII activity was affected by salt in L. tenuis, but not in L. corniculatus or hybrid plants. Analyzed accessions showed similar values of biomass, Na+ and K+ levels after salt treatment. Increasing Cl- concentrations were observed in all accessions. However, hybrid plants accumulate Cl- in stems at higher levels than their parental. At the same time, the levels of anthocyanins considerably increased in L. tenuis x L. corniculatus stems. Chloride and anthocyanin accumulation in stems could explain the best performance of hybrid plants after a long saline treatment. Finally, as proanthocyanidins levels were no affected by salt, L. tenuis x L. corniculatus plants maintained adequate levels to be used as ruminant feed. In conclusion, these results suggest that hybrid plants have a high potential to be used as forage on salt-affected lands. High Cl- and anthocyanins accumulation in Lotus spp. stems seems to be a trait associated to salinity tolerance, with the possibility of being used in legume breeding programs.
Collapse
Affiliation(s)
- Francisco José Escaray
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (INTECh) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cristian Javier Antonelli
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (INTECh) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Pedro Carrasco
- Departament de Bioquìmica y Biologia Molecular, Universitat de València, Spain
| | - Oscar Adolfo Ruiz
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (INTECh) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV / INTA), Argentina.
| |
Collapse
|
23
|
Shi H, He S, He X, Lu S, Guo Z. An eukaryotic elongation factor 2 from Medicago falcata (MfEF2) confers cold tolerance. BMC PLANT BIOLOGY 2019; 19:218. [PMID: 31133003 PMCID: PMC6537394 DOI: 10.1186/s12870-019-1826-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/09/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND An eukaryotic translation elongation factor-2 (eEF-2) plays an important role in protein synthesis, however, investigation on its role in abiotic stress responses is limited. A cold responsive eEF2 named as MfEF2 was isolated from yellow-flowered alfalfa [Medicago sativa subsp. falcata (L.) Arcang, thereafter M. falcata], a forage legume with great cold tolerance, and transgenic tobacco (Nicotiana tabacum L.) plants overexpressing MfEF2 were analyzed in cold tolerance and proteomic profiling was conducted under low temperature in this study. RESULTS MfEF2 transcript was induced and peaked at 24 h and remained at the high level during cold treatment up to 96 h. Overexpression of MfEF2 in trasngenic tobacco plants resulted in enhanced cold tolerance. Compared to the wild type, transgenic plants showed higher survival rate after freezing treatment, higher levels of net photosynthetic rate (A), maximum photochemical efciency of photosystem (PS) II (Fv/Fm) and nonphotochemical quenching (NPQ) and lower levels of ion leakage and reactive oxygen species (ROS) production after chilling treatment. iTRAQ-based quantitative proteomic analysis identified 336 differentially expressed proteins (DEPs) from leaves of one transgenic line versus the wild type after chilling treatment for 48 h. GO and KEGG enrichment were conducted for analysis of the major biological process, cellular component, molecular function, and pathways of the DEPs involving in. It is interesting that many down-regulated DEPs were grouped into "photosynthesis" and "photosynthesis-antenna", such as subunits of PSI and PSII as well as light harvesting chlorophyll protein complex (LHC), while many up-regulated DEPs were grouped into "spliceosome". CONCLUSIONS The results suggest that MfEF2 confers cold tolerance through regulating hundreds of proteins synthesis under low temperature conditions. The elevated cold tolerance in MfEF2 transgenic plants was associated with downregulation of the subunits of PSI and PSII as well as LHC, which leads to reduced capacity for capturing sunlight and ROS production for protection of plants, and upregulation of proteins involving in splicesome, which promotes alternative splicing of pre-mRNA under low temperature.
Collapse
Affiliation(s)
- Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sijian He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642 China
| | - Xueying He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642 China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642 China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
24
|
Díaz ML, Soresi DS, Basualdo J, Cuppari SJ, Carrera A. Transcriptomic response of durum wheat to cold stress at reproductive stage. Mol Biol Rep 2019; 46:2427-2445. [PMID: 30798485 DOI: 10.1007/s11033-019-04704-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Understanding the genetic basis of cold tolerance is a key step towards obtaining new and improved crop varieties. Current geographical distribution of durum wheat in Argentina exposes the plants to frost damage when spikes have already emerged. Biochemical pathways involved in cold tolerance are known to be early activated at above freezing temperatures. In this study we reported the transcriptome of CBW0101 spring durum wheat by merging data from untreated control and cold (5 °C) treated plant samples at reproductive stage. A total of 128,804 unigenes were predicted. Near 62% of the unigenes were annotated in at least one database. In total 876 unigenes were differentially expressed (DEGs), 562 were up-regulated and 314 down-regulated in treated samples. DEGs are involved in many critical processes including, photosynthetic activity, lipid and carbohydrate synthesis and accumulation of amino acids and seed proteins. Twenty-eight transcription factors (TFs) belonging to 14 families resulted differentially expressed from which eight families comprised of only TFs induced by cold. We also found 31 differentially expressed Long non-coding RNAs (lncRNAs), most of them up-regulated in treated plants. Two of these lncRNAs could operate via microRNAs (miRNAs) target mimic. Our results suggest a reprogramming of expression patterns in CBW0101 that affects a number of genes that is closer to the number reported in winter genotypes. These observations could partially explain its moderate tolerance (low proportion of frost-damaged spikes) when exposed to freezing days in the field.
Collapse
Affiliation(s)
- Marina L Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Comisión de Investigaciones Científicas (CIC), Bahía Blanca, Buenos Aires, Argentina.
| | - Daniela S Soresi
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Jessica Basualdo
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Selva J Cuppari
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Alicia Carrera
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
25
|
The increase of photosynthetic carbon assimilation as a mechanism of adaptation to low temperature in Lotus japonicus. Sci Rep 2019; 9:863. [PMID: 30696867 PMCID: PMC6351645 DOI: 10.1038/s41598-018-37165-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/25/2018] [Indexed: 11/15/2022] Open
Abstract
Low temperature is one of the most important factors affecting plant growth, it causes an stress that directly alters the photosynthetic process and leads to photoinhibition when severe enough. In order to address the photosynthetic acclimation response of Lotus japonicus to cold stress, two ecotypes with contrasting tolerance (MG-1 and MG-20) were studied. Their chloroplast responses were addressed after 7 days under low temperature through different strategies. Proteomic analysis showed changes in photosynthetic and carbon metabolism proteins due to stress, but differentially between ecotypes. In the sensitive MG-1 ecotype acclimation seems to be related to energy dissipation in photosystems, while an increase in photosynthetic carbon assimilation as an electron sink, seems to be preponderant in the tolerant MG-20 ecotype. Chloroplast ROS generation was higher under low temperature conditions only in the MG-1 ecotype. These data are consistent with alterations in the thylakoid membranes in the sensitive ecotype. However, the accumulation of starch granules observed in the tolerant MG-20 ecotype indicates the maintenance of sugar metabolism under cold conditions. Altogether, our data suggest that different acclimation strategies and contrasting chloroplast redox imbalance could account for the differential cold stress response of both L. japonicus ecotypes.
Collapse
|
26
|
Kenchanmane Raju SK, Barnes AC, Schnable JC, Roston RL. Low-temperature tolerance in land plants: Are transcript and membrane responses conserved? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:73-86. [PMID: 30348330 DOI: 10.1016/j.plantsci.2018.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 05/20/2023]
Abstract
Plants' tolerance of low temperatures is an economically and ecologically important limitation on geographic distributions and growing seasons. Tolerance for low temperatures varies significantly across different plant species, and different mechanisms likely act in different species. In order to survive low-temperature stress, plant membranes must maintain their fluidity in increasingly cold and oxidative cellular environments. The responses of different species to low-temperature stress include changes to the types and desaturation levels of membrane lipids, though the precise lipids affected tend to vary by species. Regulation of membrane dynamics and other low-temperature tolerance factors are controlled by both transcriptional and post-transcriptional mechanisms. Here, we review low-temperature induced changes in both membrane lipid composition and gene transcription across multiple related plant species with differing degrees of low-temperature tolerance. We attempt to define a core set of changes for transcripts and lipids across species and treatment variations. Some responses appear to be consistent across all species for which data are available, while many others appear likely to be species or family-specific. Potential rationales are presented, including variance in testing, reporting and the importance of considering the level of stress perceived by the plant.
Collapse
Affiliation(s)
- Sunil Kumar Kenchanmane Raju
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Allison C Barnes
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Rebecca L Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
27
|
Hitting the Wall-Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress. PLANTS 2018; 7:plants7040089. [PMID: 30360552 PMCID: PMC6313904 DOI: 10.3390/plants7040089] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022]
Abstract
Plant cells are surrounded by highly dynamic cell walls that play important roles regulating aspects of plant development. Recent advances in visualization and measurement of cell wall properties have enabled accumulation of new data about wall architecture and biomechanics. This has resulted in greater understanding of the dynamics of cell wall deposition and remodeling. The cell wall is the first line of defense against different adverse abiotic and biotic environmental influences. Different abiotic stress conditions such as salinity, drought, and frost trigger production of Reactive Oxygen Species (ROS) which act as important signaling molecules in stress activated cellular responses. Detection of ROS by still-elusive receptors triggers numerous signaling events that result in production of different protective compounds or even cell death, but most notably in stress-induced cell wall remodeling. This is mediated by different plant hormones, of which the most studied are jasmonic acid and brassinosteroids. In this review we highlight key factors involved in sensing, signal transduction, and response(s) to abiotic stress and how these mechanisms are related to cell wall-associated stress acclimatization. ROS, plant hormones, cell wall remodeling enzymes and different wall mechanosensors act coordinately during abiotic stress, resulting in abiotic stress wall acclimatization, enabling plants to survive adverse environmental conditions.
Collapse
|
28
|
Zhou Q, Luo D, Chai X, Wu Y, Wang Y, Nan Z, Yang Q, Liu W, Liu Z. Multiple Regulatory Networks Are Activated during Cold Stress in Medicago sativa L. Int J Mol Sci 2018; 19:ijms19103169. [PMID: 30326607 PMCID: PMC6214131 DOI: 10.3390/ijms19103169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cultivated alfalfa (Medicago sativa L.) is one of the most important perennial legume forages in the world, and it has considerable potential as a valuable forage crop for livestock. However, the molecular mechanisms underlying alfalfa responses to cold stress are largely unknown. In this study, the transcriptome changes in alfalfa under cold stress at 4 °C for 2, 6, 24, and 48 h (three replicates for each time point) were analyzed using the high-throughput sequencing platform, BGISEQ-500, resulting in the identification of 50,809 annotated unigenes and 5283 differentially expressed genes (DEGs). Metabolic pathway enrichment analysis demonstrated that the DEGs were involved in carbohydrate metabolism, photosynthesis, plant hormone signal transduction, and the biosynthesis of amino acids. Moreover, the physiological changes of glutathione and proline content, catalase, and peroxidase activity were in accordance with dynamic transcript profiles of the relevant genes. Additionally, some transcription factors might play important roles in the alfalfa response to cold stress, as determined by the expression pattern of the related genes during 48 h of cold stress treatment. These findings provide valuable information for identifying and characterizing important components in the cold signaling network in alfalfa and enhancing the understanding of the molecular mechanisms underlying alfalfa responses to cold stress.
Collapse
Affiliation(s)
- Qiang Zhou
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Dong Luo
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Xutian Chai
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yuguo Wu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhibiao Nan
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China.
| | - Wenxian Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhipeng Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
29
|
Amombo E, Li X, Wang G, An S, Wang W, Fu J. Comprehensive Transcriptome Profiling and Identification of Potential Genes Responsible for Salt Tolerance in Tall Fescue Leaves under Salinity Stress. Genes (Basel) 2018; 9:E466. [PMID: 30248970 PMCID: PMC6210376 DOI: 10.3390/genes9100466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022] Open
Abstract
Soil salinity is a serious threat to plant growth and crop productivity. Tall fescue utilization in saline areas is limited by its inferior salt tolerance. Thus, a transcriptome study is a prerequisite for future research aimed at providing deeper insights into the molecular mechanisms of tall fescue salt tolerance as well as molecular breeding. Recent advances in sequencing technology offer a platform to achieve this. Here, Illumina RNA sequencing of tall fescue leaves generated a total of 144,339 raw reads. After de novo assembly, unigenes with a total length of 129,749,938 base pairs were obtained. For functional annotations, the unigenes were aligned to various databases. Further structural analyses revealed 79,352 coding DNA sequences and 13,003 microsatellites distributed across 11,277 unigenes as well as single nucleotide polymorphisms. In total, 1862 unigenes were predicted to encode for 2120 transcription factors among which most were key salt-responsive. We determined differential gene expression and distribution per sample and most genes related to salt tolerance and photosynthesis were upregulated in 48 h vs. 24 h salt treatment. Protein interaction analysis revealed a high interaction of chaperonins and Rubisco proteins in 48 h vs. 24 h salt treatment. The gene expressions were finally validated using quantitative polymerase chain reaction (qPCR), which was coherent with sequencing results.
Collapse
Affiliation(s)
- Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan, Wuhan 430074, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Xiaoning Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan, Wuhan 430074, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan, Wuhan 430074, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Shao An
- The Institute of Advanced Studies in Coastal Ecology, Ludong University, Yantai 264000, China.
| | - Wei Wang
- The Institute of Advanced Studies in Coastal Ecology, Ludong University, Yantai 264000, China.
| | - Jinmin Fu
- The Institute of Advanced Studies in Coastal Ecology, Ludong University, Yantai 264000, China.
| |
Collapse
|
30
|
Abdelrahman M, Jogaiah S, Burritt DJ, Tran LSP. Legume genetic resources and transcriptome dynamics under abiotic stress conditions. PLANT, CELL & ENVIRONMENT 2018; 41:1972-1983. [PMID: 29314055 DOI: 10.1111/pce.13123] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/04/2023]
Abstract
Grain legumes are an important source of nutrition and income for billions of consumers and farmers around the world. However, the low productivity of new legume varieties, due to the limited genetic diversity available for legume breeding programmes and poor policymaker support, combined with an increasingly unpredictable global climate is resulting in a large gap between current yields and the increasing demand for legumes as food. Hence, there is a need for novel approaches to develop new high-yielding legume cultivars that are able to cope with a range of environmental stressors. Next-generation technologies are providing the tools that could enable the more rapid and cost-effective genomic and transcriptomic studies for most major crops, allowing the identification of key functional and regulatory genes involved in abiotic stress resistance. In this review, we provide an overview of the recent achievements regarding abiotic stress resistance in a wide range of legume crops and highlight the transcriptomic and miRNA approaches that have been used. In addition, we critically evaluate the availability and importance of legume genetic resources with desirable abiotic stress resistance traits.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Laboratory of Genomic Reproductive Biology, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Sudisha Jogaiah
- Plant Healthcare and Diagnostic Center, Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, India
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
31
|
Cho SM, Lee H, Jo H, Lee H, Kang Y, Park H, Lee J. Comparative transcriptome analysis of field- and chamber-grown samples of Colobanthus quitensis (Kunth) Bartl, an Antarctic flowering plant. Sci Rep 2018; 8:11049. [PMID: 30038328 PMCID: PMC6056519 DOI: 10.1038/s41598-018-29335-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/09/2018] [Indexed: 11/09/2022] Open
Abstract
Colobanthus quitensis is one of the two vascular plants inhabiting the Antarctic. In natural habitats, it grows in the form of a cushion or mats, commonly observed in high latitudes or alpine vegetation. Although this species has been investigated over many years to study its geographical distribution and physiological adaptations to climate change, very limited genetic information is available. The high-throughput sequencing with a de novo assembly analysis yielded 47,070 contigs with blast-hits. Through the functional classification and enrichment analysis, we identified that photosynthesis and phenylpropanoid pathway genes show differential expression depending on the habitat environment. We found that the known 'plant core environmental stress response (PCESR)' genes were abundantly expressed in Antarctic samples, and confirmed that their expression is mainly induced by low-temperature. In addition, we suggest that differential expression of thermomorphogenesis-related genes may contribute to phenotypic plasticity of the plant, for instance, displaying a cushion-like phenotype to adapt to harsh environments.
Collapse
Affiliation(s)
- Sung Mi Cho
- Unit of Polar Genomics, Korea Polar Research Institute, KIOST, Incheon, 21990, Republic of Korea
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, KIOST, Incheon, 21990, Republic of Korea.,Polar Science, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Hojin Jo
- Unit of Polar Genomics, Korea Polar Research Institute, KIOST, Incheon, 21990, Republic of Korea.,Polar Science, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Horim Lee
- Department of Biotechnology, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Yoonjee Kang
- Unit of Polar Genomics, Korea Polar Research Institute, KIOST, Incheon, 21990, Republic of Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, KIOST, Incheon, 21990, Republic of Korea.,Polar Science, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Jungeun Lee
- Unit of Polar Genomics, Korea Polar Research Institute, KIOST, Incheon, 21990, Republic of Korea. .,Polar Science, University of Science and Technology, Incheon, 21990, Republic of Korea.
| |
Collapse
|
32
|
Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response. Genes Genomics 2018; 40:1181-1197. [DOI: 10.1007/s13258-018-0681-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/28/2018] [Indexed: 01/26/2023]
|
33
|
Pareek A, Khurana A, Sharma AK, Kumar R. An Overview of Signaling Regulons During Cold Stress Tolerance in Plants. Curr Genomics 2017; 18:498-511. [PMID: 29204079 PMCID: PMC5684653 DOI: 10.2174/1389202918666170228141345] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/23/2016] [Accepted: 10/05/2016] [Indexed: 11/22/2022] Open
Abstract
Plants, being sessile organisms, constantly withstand environmental fluctuations, including low-temperature, also referred as cold stress. Whereas cold poses serious challenges at both physiological and developmental levels to plants growing in tropical or sub-tropical regions, plants from temperate climatic regions can withstand chilling or freezing temperatures. Several cold inducible genes have already been isolated and used in transgenic approach to generate cold tolerant plants. The conventional breeding methods and marker assisted selection have helped in developing plant with improved cold tolerance, however, the development of freezing tolerant plants through cold acclimation remains an unaccomplished task. Therefore, it is essential to have a clear understanding of how low temperature sensing strategies and corresponding signal transduction act during cold acclimation process. Herein, we synthesize the available information on the molecular mechanisms underlying cold sensing and signaling with an aim that the summarized literature will help develop efficient strategies to obtain cold tolerant plants.
Collapse
Affiliation(s)
- Amit Pareek
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Ashima Khurana
- Ashima Khurana, Botany Department, Zakir Husain Delhi College, University of Delhi, New Delhi-110002, India
| | - Arun K. Sharma
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Rahul Kumar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad500046, India
| |
Collapse
|
34
|
Jin J, Zhang H, Zhang J, Liu P, Chen X, Li Z, Xu Y, Lu P, Cao P. Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genomics 2017; 18:496. [PMID: 28662642 PMCID: PMC5492280 DOI: 10.1186/s12864-017-3871-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND CB-1 and K326 are closely related tobacco cultivars; however, their cold tolerance capacities are different. K326 is much more cold tolerant than CB-1. RESULTS We studied the transcriptomes and metabolomes of CB-1 and K326 leaf samples treated with cold stress. Totally, we have identified 14,590 differentially expressed genes (DEGs) in CB-1 and 14,605 DEGs in K326; there was also 200 differentially expressed metabolites in CB-1 and 194 in K326. Moreover, there were many overlapping genes (around 50%) that were cold-responsive in both plant cultivars, although there were also many differences in the cold responsive genes between the two cultivars. Importantly, for most of the overlapping cold responsive genes, the extent of the changes in expression were typically much more pronounced in K326 than in CB-1, which may help explain the superior cold tolerance of K326. Similar results were found in the metabolome analysis, particularly with the analysis of primary metabolites, including amino acids, organic acids, and sugars. The large number of specific responsive genes and metabolites highlight the complex regulatory mechanisms associated with cold stress in tobacco. In addition, our work implies that the energy metabolism and hormones may function distinctly between CB-1 and K326. CONCLUSIONS Differences in gene expression and metabolite levels following cold stress treatment seem likely to have contributed to the observed difference in the cold tolerance phenotype of these two tobacco cultivars.
Collapse
Affiliation(s)
- Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Xia Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| |
Collapse
|
35
|
Transcriptome Sequencing of Dianthus spiculifolius and Analysis of the Genes Involved in Responses to Combined Cold and Drought Stress. Int J Mol Sci 2017; 18:ijms18040849. [PMID: 28420173 PMCID: PMC5412433 DOI: 10.3390/ijms18040849] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/18/2023] Open
Abstract
Dianthus spiculifolius, a perennial herbaceous flower and a member of the Caryophyllaceae family, has strong resistance to cold and drought stresses. To explore the transcriptional responses of D. spiculifolius to individual and combined stresses, we performed transcriptome sequencing of seedlings under normal conditions or subjected to cold treatment (CT), simulated drought treatment (DT), or their combination (CTDT). After de novo assembly of the obtained reads, 112,015 unigenes were generated. Analysis of differentially expressed genes (DEGs) showed that 2026, 940, and 2346 genes were up-regulated and 1468, 707, and 1759 were down-regulated in CT, DT, and CTDT samples, respectively. Among all the DEGs, 182 up-regulated and 116 down-regulated genes were identified in all the treatment groups. Analysis of metabolic pathways and regulatory networks associated with the DEGs revealed overlaps and cross-talk between cold and drought stress response pathways. The expression profiles of the selected DEGs in CT, DT, and CTDT samples were characterized and confirmed by quantitative RT-PCR. These DEGs and metabolic pathways may play important roles in the response of D. spiculifolius to the combined stress. Functional characterization of these genes and pathways will provide new targets for enhancement of plant stress tolerance through genetic manipulation.
Collapse
|
36
|
Meng D, Yu X, Ma L, Hu J, Liang Y, Liu X, Yin H, Liu H, He X, Li D. Transcriptomic Response of Chinese Yew ( Taxus chinensis) to Cold Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:468. [PMID: 28503178 PMCID: PMC5408010 DOI: 10.3389/fpls.2017.00468] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/17/2017] [Indexed: 05/04/2023]
Abstract
Taxus chinensis is a rare and endangered shrub, highly sensitive to temperature changes and widely known for its potential in cancer treatment. How gene expression of T. chinensis responds to low temperature is still unknown. To investigate cold response of the genus Taxus, we obtained the transcriptome profiles of T. chinensis grown under normal and low temperature (cold stress, 0°C) conditions using Illumina Miseq sequencing. A transcriptome including 83,963 transcripts and 62,654 genes were assembled from 4.16 Gb of reads data. Comparative transcriptomic analysis identified 2,025 differently expressed (DE) isoforms at p < 0.05, of which 1,437 were up-regulated by cold stress and 588 were down-regulated. Annotation of DE isoforms indicated that transcription factors (TFs) in the MAPK signaling pathway and TF families of NAC, WRKY, bZIP, MYB, and ERF were transcriptionally activated. This might have been caused by the accumulation of secondary messengers, such as reactive oxygen species (ROS) and Ca2+. While accumulation of ROS will have caused damages to cells, our results indicated that to adapt to low temperatures T. chinensis employed a series of mechanisms to minimize these damages. The mechanisms included: (i) cold-enhanced expression of ROS deoxidant systems, such as peroxidase and phospholipid hydroperoxide glutathione peroxidase, to remove ROS. This was further confirmed by analyses showing increased activity of POD, SOD, and CAT under cold stress. (ii) Activation of starch and sucrose metabolism, thiamine metabolism, and purine metabolism by cold-stress to produce metabolites which either protect cell organelles or lower the ROS content in cells. These processes are regulated by ROS signaling, as the "feedback" toward ROS accumulation.
Collapse
Affiliation(s)
- Delong Meng
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
- School of Biology and Environmental Science, University College DublinDublin, Ireland
| | - Xianghua Yu
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
- *Correspondence: Xianghua Yu
| | - Liyuan Ma
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Jin Hu
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South UniversityChangsha, China
| | - Xiaojia He
- The Administrative Centre for China's Agenda 21Beijing, China
| | - Diqiang Li
- Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment, and Protection, Chinese Academy of ForestryBeijing, China
| |
Collapse
|
37
|
Jha UC, Bohra A, Jha R. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. PLANT CELL REPORTS 2017; 36:1-35. [PMID: 27878342 DOI: 10.1007/s00299-016-2073-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/04/2016] [Indexed: 05/11/2023]
Abstract
Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Abhishek Bohra
- Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Rintu Jha
- Indian Institute of Pulses Research, Kanpur, 208024, India
| |
Collapse
|
38
|
Dong R, Dong D, Luo D, Zhou Q, Chai X, Zhang J, Xie W, Liu W, Dong Y, Wang Y, Liu Z. Transcriptome Analyses Reveal Candidate Pod Shattering-Associated Genes Involved in the Pod Ventral Sutures of Common Vetch ( Vicia sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:649. [PMID: 28496452 PMCID: PMC5406471 DOI: 10.3389/fpls.2017.00649] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/10/2017] [Indexed: 05/19/2023]
Abstract
The seed dispersion caused by pod shattering is a form of propagation used by many wild species. Loss of seeds from pod shattering is frequent in the common vetch (Vicia sativa L.), an important self-pollinating annual forage legume. However, pod shattering is one of the most important defects that limits the reproduction of the vetch in the field and the usage as a leguminous forage crop. To better understand the vetch pod shattering mechanism, we used high-throughput RNA sequencing to assess the global changes in the transcriptomes of the pod ventral sutures of shattering-susceptible and shattering-resistant vetch accessions screened from 541 vetch germplasms. A total of 1,285 significantly differentially expressed unigenes (DEGs) were detected, including 575 up-regulated unigenes and 710 down-regulated unigenes. Analyses of Gene Ontology and KEGG metabolic enrichment pathways of 1,285 DEGs indicated that 22 DEGs encoding cell wall modifications and hydrolases associated with pod shattering were highly expressed in shattering-susceptible accessions. These genes were mainly enriched in "hydrolase activity," "cytoplasm," and "carbohydrate metabolic process" systems. These cell wall modifications and hydrolases genes included β-glucosidase and endo-polygalacturonase, which work together to break down the glycosidic bonds of pectin and cellulose, and to promote the dissolution and disappearance of the cell wall in the ventral suture of the pod and make the pod more susceptible to shattering. We demonstrated the differences in gene transcription levels between the shattering-susceptible and shattering-resistant vetch accessions for the first time and our results provided valuable information for the identifying and characterizing of pod shattering regulation networks in vetch. This information may facilitate the future identification of pod shattering-related genes and their underlying molecular mechanisms in the common vetch.
Collapse
Affiliation(s)
- Rui Dong
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Deke Dong
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Dong Luo
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Xutian Chai
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Wengang Xie
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Yang Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
- *Correspondence: Yanrong Wang
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
- Zhipeng Liu
| |
Collapse
|
39
|
Kumar M, Gho YS, Jung KH, Kim SR. Genome-Wide Identification and Analysis of Genes, Conserved between japonica and indica Rice Cultivars, that Respond to Low-Temperature Stress at the Vegetative Growth Stage. FRONTIERS IN PLANT SCIENCE 2017; 8:1120. [PMID: 28713404 PMCID: PMC5491850 DOI: 10.3389/fpls.2017.01120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/09/2017] [Indexed: 05/14/2023]
Abstract
Cold stress is very detrimental to crop production. However, only a few genes in rice have been identified with known functions related to cold tolerance. To meet this agronomic challenge more effectively, researchers must take global approaches to select useful candidate genes and find the major regulatory factors. We used five Gene expression omnibus series data series of Affymetrix array data, produced with cold stress-treated samples from the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), and identified 502 cold-inducible genes common to both japonica and indica rice cultivars. From them, we confirmed that the expression of two randomly chosen genes was increased by cold stress in planta. In addition, overexpression of OsWRKY71 enhanced cold tolerance in 'Dongjin,' the tested japonica cultivar. Comparisons between japonica and indica rice, based on calculations of plant survival rates and chlorophyll fluorescence, confirmed that the japonica rice was more cold-tolerant. Gene Ontology enrichment analysis indicate that the 'L-phenylalanine catabolic process,' within the Biological Process category, was the most highly overrepresented under cold-stress conditions, implying its significance in that response in rice. MapMan analysis classified 'Major Metabolic' processes and 'Regulatory Gene Modules' as two other major determinants of the cold-stress response and suggested several key cis-regulatory elements. Based on these results, we proposed a model that includes a pathway for cold stress-responsive signaling. Results from our functional analysis of the main signal transduction and transcription regulation factors identified in that pathway will provide insight into novel regulatory metabolism(s), as well as a foundation by which we can develop crop plants with enhanced cold tolerance.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Life Sciences, Sogang UniversitySeoul, South Korea
| | - Yun-Shil Gho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee UniversityYongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee UniversityYongin, South Korea
- *Correspondence: Seong-Ryong Kim, Ki-Hong Jung,
| | - Seong-Ryong Kim
- Department of Life Sciences, Sogang UniversitySeoul, South Korea
- *Correspondence: Seong-Ryong Kim, Ki-Hong Jung,
| |
Collapse
|
40
|
Chen C, Zhang Y, Xu Z, Luan A, Mao Q, Feng J, Xie T, Gong X, Wang X, Chen H, He Y. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance. PLoS One 2016; 11:e0163315. [PMID: 27656892 PMCID: PMC5033252 DOI: 10.1371/journal.pone.0163315] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple's response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar 'Shenwan' before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance.
Collapse
Affiliation(s)
- Chengjie Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Yafeng Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Zhiqiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Aiping Luan
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Qi Mao
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Junting Feng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Tao Xie
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Xue Gong
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Xiaoshuang Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Hao Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Yehua He
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| |
Collapse
|
41
|
Calzadilla PI, Signorelli S, Escaray FJ, Menéndez AB, Monza J, Ruiz OA, Maiale SJ. Photosynthetic responses mediate the adaptation of two Lotus japonicus ecotypes to low temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:59-68. [PMID: 27457984 DOI: 10.1016/j.plantsci.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 05/09/2023]
Abstract
Lotus species are important forage legumes due to their high nutritional value and adaptability to marginal conditions. However, the dry matter production and regrowth rate of cultivable Lotus spp. is drastically reduced during colder seasons. In this work, we evaluated the chilling response of Lotus japonicus ecotypes MG-1 and MG-20. No significant increases were observed in reactive oxygen species and nitric oxide production or in lipid peroxidation, although a chilling-induced redox imbalance was suggested through NADPH/NADP(+) ratio alterations. Antioxidant enzyme catalase, ascorbate peroxidase, and superoxide dismutase activities were also measured. Superoxide dismutase, in particular the chloroplastic isoform, showed different activity for different ecotypes and treatments. Stress-induced photoinhibition also differentially influenced both ecotypes, with MG-1 more affected than MG-20. Data showed that the D2 PSII subunit was more affected than D1 after 1 d of low temperature exposure, although its protein levels recovered over the course of the experiment. Interestingly, D2 recovery was accompanied by improvements in photosynthetic parameters (Asat and Fv/Fm) and the NADPH/NADP(+) ratio. Our results suggest that the D2 protein is involved in the acclimation response of L. japonicus to low temperature. This may provide a deeper insight into the chilling tolerance mechanisms of the Lotus genus.
Collapse
Affiliation(s)
- Pablo Ignacio Calzadilla
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, UNSAM-CONICET, Chascomús, Argentina.
| | - Santiago Signorelli
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay; School of Plant Biology and the UWA Institute of Agriculture, University of Western Australia, Perth, Australia.
| | - Francisco Jose Escaray
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, UNSAM-CONICET, Chascomús, Argentina.
| | - Ana Bernardina Menéndez
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, PROPLAME-PRHIDEB (CONICET), Buenos Aires, Argentina.
| | - Jorge Monza
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay.
| | - Oscar Adolfo Ruiz
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, UNSAM-CONICET, Chascomús, Argentina.
| | - Santiago Javier Maiale
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, UNSAM-CONICET, Chascomús, Argentina.
| |
Collapse
|